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On the limit distribution of consecutive elements
of the van der Corput sequence

Christoph Aistleitner

Abstract

Let (xn)n≥1 be the van der Corput sequence. We calculate the limit distribution
of the s-dimensional sequence (xn, . . . , xn+s−1)n≥1. To obtain our results, we use the
connection between the van der Corput sequence and the ergodic von Neumann-
Kakutani transformation, which we present in detail.
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Hilbert space with reproducing kernel and
uniform distribution preserving maps, II

Vladimir Baláž — Jana Fialová — Vassil Grozdanov

Stanislava Stoilova — Oto Strauch

Abstract

In Part I of this series we discuss the relation between a uniform distribution
preserving map Φ(x) and the mean square worst-case error

∫

[0,1]s
sup
f∈H

||f||≤1

∣∣∣∣∣
1

N

N−1∑

n=0

f
(
Φ(xn ⊕ σ)

)
−

∫

[0,1]s
f(x)dx

∣∣∣∣∣

2

dσ (1)

in a Hilbert space H with reproducing kernel K(x,y) with respect to a sequence

x0, . . . ,xN−1 shifted to Φ(x0 ⊕ σ), . . . ,Φ(xN−1 ⊕ σ).

Applying the method of Fourier-Walsh expansion, which was introduced by
F. J. Hickernell (2002), we find a partially known formula of the mean square worst-
-case error (1) in the form

∑

k∈Ns
0

k6=0

K̂1(k,k)

∣∣∣∣∣
1

N

N−1∑

n=0

walk(xn)

∣∣∣∣∣

2

,

where K̂1(k,k) are Fourier-Walsh coefficients of K
(
Φ(x),Φ(y)

)
.

In Part II, for dimension s = 1, using Riemann-Stieltjes integration and theory
of distribution functions we find (1) in the form

K
(
Φ(1),Φ(1)

)
−

∫ 1

0
ydyK

(
Φ(1),Φ(y)

)
−

∫ 1

0
xdxK

(
Φ(x),Φ(1)

)

+

∫ 1

0

∫ 1

0

(
1

N2

N−1∑

m,n=0

gm,n(x, y)

)
dxdyK

(
Φ(x),Φ(y)

)

−

∫ 1

0

∫ 1

0
K(x, y)dxdy,

where Φ(x) is an arbitrary u.d.p. map, x0, . . . , xN−1 be a sequence in [0, 1),
Φ(x⊕σ) can be replaced by Φ(x+σ mod 1), and gm,n(x, y) is a distribution function
(xm ⊕ σi, xn + σi) or

(
{xm + σi}, {xn + σi}

)
, where σi, i = 1, 2, . . . is u.d. in [0, 1).
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Directional discrepancy

Dmitriy Bilyk

Abstract

It is well known in the theory of irregularities of distribution that the nature of
the discrepancy estimates depends crucially on the geometry of the underlying sets.
In particular, while the discrepancy with respect to axis-parallel rectangles behaves
logarithmically, the discrepancy with respect to rectangles rotated in arbitrary di-
rections is polynomial in the number of points N. In this talk we shall attempt to
explore the gap between these two phenomena and study what happens when the
rectangles are allowed to be rotated in some partial sets of directions. We consider
some particular cases (lacunary sets of directions, Cantor-type sets etc) and derive
more general results in terms of the metric entropy of the set of rotations. This is
joint work with X. Ma, J. Pipher and C. Spencer.
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Spherical nets and their relatives –
– optimal order Quasi-Monte Carlo methods

on the sphere

Johann S. Brauchart 1

Abstract

A Quasi-Monte Carlo rule approximates the integral of a function with respect to
the uniform measure using the average of function values at well-chosen nodes. In the
unit cube digital nets and sequences provide a very efficient method to generate low-
discrepancy sequences of such node sets giving an optimal bound for the discrepancy
part in the celebrated Koksma-Hlawka inequality.

The study of low-discrepancy sequences suitable for (effective) numerical inte-
gration on the unit sphere in, say, the d+1 dimensional Euclidean space has to cope
with a number of obstacles emerging from the topology and the symmetry of the
d-sphere Sd.

Notable is the absence of the notion of “the Koksma-Hlawka inequality” on the
sphere. Instead many Koksma-Hlawka like inequalities propose different approaches
to “discrepancy” of point sets and struggle with a replacement of “total variation
of a function”.

The quantification of the irregularity of distribution of a sequence of configura-
tions with respect to test functions from a sufficiently smooth Sobolev space Hs over
Sd rather than taking test sets like spherical caps leads to the notation of “gener-
alized discrepancy”. In fact, since H

s(Sd) is also a reproducing kernel Hilbert space
for s > d/2, the error of numerical integration for the qMC rule QN for functions
in this space satisfies

∣∣∣∣QN (f)−

∫

Sd

f dσd

∣∣∣∣ ≤ wce(QN ;Hs(Sd)) ‖f‖
Hs

and the worst-case error wce(QN ;Hs(Sd)) takes over the role of discrepancy of the
integration node set. Perhaps surprisingly, one can find suitable reproducing kernels
so that the worst-case error has the following simple closed form for d/2+ L < s <

d/2 + L+ 1 (L an integer ≥ 0):

[
wce(QN ;Hs(Sd))

]2
=

1

N2

N∑

j=1

N∑

k=1

(−1)L+1 |xj − xk|
2s−d − (−1)L+1Vd−2s(S

d),

1Postdoctoral Fellow School of Mathematics and Statistics at the University of New South Wales
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subject to the requirement that for L ≥ 1 the nodes form a so-called spherical L-
design. It is well-known that for optimal sum of distance points with d/2 < s <

d/2 + 1 one has wce(QN ;Hs(Sd)) ≍ N−s/d. Spherical t-designs with Nt ≍ td points
also satisfy such a relation but for every s > d/2! This leads to the definition of
sequences of approximate spherical designs for Hs(Sd); that is, of point sets with
worst-case error not worse than spherical designs with optimal number of points.
The corresponding qMC rules, thus, provide optimal order numerical integration
on S

d. It is interesting to note that all sequences of N -point configurations with
low spherical cap discrepancy are approximate spherical designs for Hs(Sd) with
d/2 < s < (d+ 1)/2.

We remark that for s = (d+1)/2 (s = (d+1)/2+L) the worst-case error above
equals a constant multiple of the spherical cap L2-discrepancy (or a generalization
for integers L ≥ 1). This is in analogue to Warnock’s formula for the unit cube.

One way to obtain good numerical integration nodes is to minimize above energy
functional. This is a highly non-linear optimization problem. One would like to
have explicit constructions of good node sets. A straightforward approach is to lift
digital nets or sequences to the d-sphere using an area preserving map. This leads to
spherical nets and sequences and also to spherical lattice rules (spherical Fibonacci
rules). A discussion of theoretical and numerical results for these constructions will
round off the talk.

5



The 3rd International Conference on Uniform Distribution Theory, Smolenice, June 25–29, 2012

Bases with small representation function

Artūras Dubickas

Abstract

Let A be a subset of the set of nonnegative integers N ∪ {0}, and let rA(n)
be the number of representations of n ≥ 0 by the sum a + b with a, b ∈ A.
Then

(∑
a∈A xa

)2
=

∑∞
n=0

rA(n)x
n. The set A ⊆ N ∪ {0} is called a basis of

N ∪ {0} if rA(n) ≥ 1 for each n ≥ 0. A conjecture of Erdős and Turán asserts
that lim sup

n→∞ rA(n) = ∞ if A is a basis of N ∪ {0}. By an old result of Erdős
(1954), there exists a basis A of N ∪ {0} for which rA(n) ≤ c log n with some pos-
itive constant c > 0. We show that this result holds with the constant 2e, namely,
that there exists a basis A of N ∪ {0} whose representation function rA(n) satisfies
rA(n) < (2e + ε) logn for each sufficiently large integer n. Towards a polynomial
version of the Erdős-Turán conjecture we prove that for each ε > 0 and each suffi-
ciently large integer n there is a set A ⊆ {0, 1, . . . , n} such that the square of the
corresponding Newman polynomial f(x) :=

∑
a∈A xa of degree n has all of its 2n+1

coefficients in the interval [1, (1 + ε)(4/π)(log n)2].

The correct order of growth for H(f2) of those reciprocal Newman polynomials f
of degree n whose squares f2 have all their 2n+ 1 coefficients positive is

√
n. More

precisely, if the Newman polynomial f(x) =
∑

a∈A xa of degree n is reciprocal, i.e.,
A = n−A, then A+ A = {0, 1, . . . , 2n} implies that the coefficient for xn in f(x)2

is at least 2
√
n − 3. In the opposite direction, we explicitly construct a reciprocal

Newman polynomial f(x) of degree n such that the coefficients of its square f(x)2

all belong to the interval [1, 2
√
2n+ 4].

6



The 3rd International Conference on Uniform Distribution Theory, Smolenice, June 25–29, 2012

Best possible lower bounds
for the star discrepancy of (0, 1)-sequences

Henri Faure

Abstract

In this communication, we will present best possible lower bounds for the star
discrepancy of several sub-classes of (0, 1)-sequences, which are one-dimensional
versions of (t, s)-sequences as introduced by Niederreiter. Originally, this study was
motivated by a best possible lower bound on the star discrepancy of digitally shifted
van der Corput sequences in base 2 as shown in [2, Corollary 4] and the question:
“Is it true that the constant 1/(6 log 2) is also best possible for any digitally shifted
NUT (nonsingular upper triangular) digital (0, 1)-sequence in base 2?” Quickly, it
appeared that for this problem the case of base 2 with digital shifts is not simpler
than the general case of arbitrary bases with linear digit scramblings. Further, we
found it is even possible to deal with arbitrary permutations acting in place of the
diagonal entries of generating matrices.

For short we consider sequences X
Σ,C
b in base b generated by strict upper tri-

angular matrices C with entries in Zb, completed on the diagonal by sequences of
permutations Σ = (σr)r≥0 ∈ SN

b . (A precise definition will be given in the talk.)
Essentially, our results read as follows

Let CSUT be the set of strict upper triangular matrices, let σ ∈ Sb such that
D∗(Sσ

b ) = D(Sσ
b ) and define τ ∈ Sb by τ (k) = b− k − 1. Then

inf
Σ∈{σ,τ◦σ}N

C∈CSUT

lim sup
N→∞

D∗(N,X
Σ,C
b )

logN
=

ασ
b

2 log b
,where ασ

b is effectively computable.

In the special case of identity id, with the same notations, we obtain

inf
b≥2

inf
Σ∈{id,τ}N

C∈CSUT

lim sup
N→∞

D∗(N,X
Σ,C
b )

logN
=

1

4 log 3
= 0.2275 . . .

And for digitally shifted NUT digital (0, 1)-sequences in base 2, denoted Z
∆,C
2

,
we answer the original question

inf
∆∈ZN

2

C∈CNUT

lim sup
N→∞

D∗(N,Z
∆,C
2

)

logN
=

1

6 log 2
= 0.2404 . . .
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Notes on a family
of preimage-resistant functions

János Folláth

Abstract

Cryptographic hash functions are important building blocks for most of the
protocols and play a fundamental role in verifying passwords and creating digital
signatures. Their use is important for constructing cryptographically secure pseudo-
random-number generators. An important property of cryptographic hash func-
tions is preimage-resistance. In [1] the authors proposed a new Family of Preimage-
Resistant Functions.

An important property of cryptographic hash functions is the strict avalanche
criterion [2]. Although the functions in question do not possess the avalanche crite-
rion in the strict sense, a slightly weaker statement holds.

Theorem 1. Let us define f ∈ F2k [x1, . . . , xm] as

f(x1, . . . , xm) =
m∑

i=1

αix
n

i
+

m∑

i=1

βixi,

where n = 2l + 1 such that (l, k) = 1. Then

(1− qε)m−1

(
1

q
− ε

)
≤P

(
f(x1, . . . , xm)− f(x1 + δ1, . . . , xm + δm) = γ

)

≤(1 + qε)m−1

(
1

q
+ ε

)
,

where 0 ≤ ε ≤ (q − n)q−
3

2 .

The implementation discussed in [1] is reconsidered, and improvements have
been made. The avalanche criterion of the implemented version have been tested
and the results visualized.
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On the weighted (W(b); γ)−diaphony

of the generalized van der Corput sequence and
the Zaremba-Halton net

Vassil S. Grozdanov

Abstract

In this talk, we will present a new weighted b−adic version of the diaphony,
the so-called weighted (W(b); γ)− diaphony, as a numerical measure for irregular-
ity of distribution of sequences in the s−dimensional unit cube. The exact order
O
(
1
N

)
of the (W(b); γ)−diaphony of the generalized Van der Corput sequence is

obtained. For an arbitrary integer ν ≥ 3 the exact order O
(
logN
N2

)
(N = bν) of

the (W(b); γ)−diaphony of the generalized Zaremba-Halton net is obtained. Also
the exact constant in this exact order is shown. These orders are smaller than the
corresponding orders of the classical b−adic diaphony. This is a joint work Vesna
Dimitrievska-Ristovska, Dora Mavrodieva, Stanislava Stoilova.
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On the correlation of subsequences

Katalin Gyarmati

Abstract

In 1997 Sárközy and Mauduit introduced the well-distribution measure (W ) and
the correlation measure of order ℓ (Cℓ) of binary sequences EN as measures of their
pseudorandomness. For a truly random binary sequence these measures are small
(≪ N1/2(logN)c for a sequence of length N). Several constructions have been given
for which these measures are small, namely they are ≪ N1/2(logN)c, thus the se-
quence EN has strong pseudorandom properties. But in certain applications, e.g.,
in cryptography, it is not enough to know that the sequence has strong pseudoran-
dom properties, it is also important that the subsequences EM (where EM is of the
form {ex, ex+1, . . . , ex+M−1}) also have strong pseudorandom properties for values
M possibly small in terms of N . In this talk I will deal with this problem in case of
M values M ≫ N1/4+ε.
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Function systems in the theory of u.d. mod 1

Peter Hellekalek

Abstract

Any construction method for finite or infinite sequences ω of points in [0, 1)s will
have to employ arithmetical operations like addition, on some suitable domain D.

For the analysis of the equidistribution behavior of such sequences it is necessary
to employ function systems F that possess several properties.

F should be convergence determining, i.e., a Weyl criterion for F should hold.

F should be suitable for the type of addition that is used on D. If D is a
compact abelian group, then there is a natural choice for F , namely the dual
group of D.

In this talk, this observation will be our starting point. For several types of
addition, like addition of digit vectors over F2 without or with carry, we will discuss
the associated function systems. We will present the appropriate variants of the Weyl
criterion and of the inequality of Erdös-Turán-Koksma. Further, we will derive the
related version of diaphony and of the spectral test. Finally, we will exhibit a general
concept behind these uniform distribution measures, the Weyl array.

In the last part of the talk, we will extend our technique to hybrid sequences.
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Construction of uniformly distributed
linear recurring sequences

modulo powers of 3

Tamás Herendi

Abstract

Linear recurring sequences are among the earliest and most widely studied meth-
ods to generate pseudo random number sequences. In [1] the theoretical background
is developed for proving uniform distribution property of linear recurring sequences
modulo prime powers. Here it is shown, that if a linear recurring sequence is uni-
formly distributed modulo ps, where p is a prime and s is bound depending only
on the order of the recurrence relation, then the sequence is uniformly distributed
modulo pt, for any t. In [2] we develop the theory of construction of linear recurring
sequences which are uniformly distributed modulo 2n for any n ∈ N and give an al-
gorithm based on the results. The constructed sequences has arbitrary large period
length depending only on the computational power of the used machine.

In the present work the results of [2] are modified to be able to apply for the
case, when the base prime of the modulus is 3.

Corresponding to some more general results, it is assumed that the generating
polynomial of the candidate sequence contains a factor of (x + 1)2. First, it is
shown, that if the period length of the observed sequence is large enough, then it
is uniformly distributed modulo 3. Obviously, this is a necessary condition for the
targeted result.

Then, applying the methods of [1], it is proven, that the chosen sequence has
some strict periodicity properties. As a consequence, one can determine a small set
of recurrence relations, such that one of them have the required uniform distribution
property.

Based on the proofs, an algorithm is given for the construction (selecting from
the previously determined set) of the suitable recurring sequence.

References

[1] T. Herendi: Uniform distribution of linear recurring sequences modulo prime pow-
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Enhanced matrix multiplication algorithm

for FPGA

Tamás Herendi — Sándor Roland Major

Abstract

The presented work is based on a previous research done by Herendi [1] on
uniformly distributed random number sequences. The fast, efficient and reliable
computation of ”high quality” random values is an important requirement of many
applications, e.g., cryptographic protocols. In [1], an algorithm is given for the con-
struction of uniformly distributed linear recurring sequences with arbitrarily large
periods. The most computation demanding step of this algorithm raises large ma-
trices to powers exponentially large in the matrix size (e.g., raising 1000× 1000 size
matrices to a power in the order of magnitude of 21000).

While this operation can become very time-consuming on traditional architec-
tures, it can be greatly speed up using the unique options of an FPGA. A previous
implementation working on 896 × 896 size matrices, achieving a speedup factor
of ∼ 200 compared to a highly optimized PC implementation has already been
detailed in [2].

Further research on the algorithm enables new optimization opportunities, lead-
ing to a significant restructuring of the FPGA implementation. This new module is
currently in development, utilizing the unique architecture of the hardware and spe-
cial properties of the algorithm. The presented solution manages a speedup factor
of ∼ 10 over the previous version.

References

[1] Herendi, T: Construction of uniformly distributed linear recurring sequences modulo

powers of 2 (to appear).

[2] Herendi, T.—Major, R.S.: Modular exponentiation of matrices on FPGA-s,
Acta Univ. Sapientiae, Informatica, 3 (2011), 172–191.
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Uniform distribution of generalized Kakutani’s
sequences of partitions

Markus Hofer

Abstract

We consider a generalized version of Kakutani’s splitting procedure where an
arbitrary starting partition π is given and in each step all intervals of maximal
length are split into m parts, according to a splitting rule ρ. We give conditions on
π and ρ under which the resulting sequence of partitions is uniformly distributed.
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Constructions and properties
of finite-row (t, s)-sequences

Roswitha Hofer

Abstract

We consider the special class of digital (t, s)-sequences, where the generator
matrices are finite-row matrices, that are N × N-matrices satisfying that each row
consists of only finitely many nonzero entries. We discuss different ways of construct-
ing such finite-row generating matrices and identify certain interesting properties of
these matrices and the corresponding low-discrepancy sequences.
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Lattice point problems in the plane and
their relationship to uniform distribution methods

Martin Huxley

Abstract

To find the area of a shape S by “counting squares”, we put a sheet of trans-
parent squared paper over S, and count the squares inside. Some squares cross the
boundary. For these, we pick a representative point (u, v) in the unit square, and
count a square when the corresponding point in it lies in S. The error can be anal-
ysed in terms of the boundary arcs of S reduced modulo the unit square. This leads
to problems of uniform distribution.
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On normal numbers

Imre Kátai

Abstract

In a series of paper written jointly with Jean-Marie De Koninck we constructed
normal numbers based on classification of prime divisors of integers, one example
of which is the next assertion.

Let q ≥ 2, q ∈ N, Aq := {0, 1, · · · , q − 1}. Given n = pe1
1
. . . p

ek+1

k+1

with primes p1 < · · · < pk+1 and positive exponents e1, . . . , ek+1 we define the
arithmetic function H(n) = c1(n) · · · ck(n) (H(n) is a word over Aq , where

cj(n) =

⌊
q log pj

P log pj+1

⌋
(j = 1, . . . , k).

Let
ξ = 0, H(2)H(3) . . . ,

ξ is the real number the q-ary expansion of which is the infinite sequence standing
on the right hand side. Then ξ is a normal number.
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On congruences with products of variables and
double character sums 1

Sergei V. Konyagin

Abstract

The talk is based on a joint paper of the speaker with J. Bourgain, M. Z. Garaev
and I. E. Shaprlinski.

For a prime p, let Fp be the field of residues modulo p. For positive integers h

and ν and an element s ∈ Fp, we denote by Kν(p, h, s) the number of solutions of
the congruence

(x1 + s) . . . (xν + s) ≡(y1 + s) . . . (yν + s) 6≡ 0 (mod p),

1 ≤ x1, . . . ,xν , y1, . . . , yν ≤ h.
(1)

Clearly, Kν(p, h, s) ≥ hν . We prove the inequality

Kν(p, h, s) ≤ hν exp

(
c(ν)

logh

log log h

)

if 3 ≤ h ≤ pαν , where αν = 1/max(ν2−2ν−2, ν2−3ν+4) and c(ν) depends only on ν.
Also, for ν = 2 we estimate from above the number of solutions of congruences

similar to (1) with additional restrictions on variables and prove several applica-
tions of our estimates. In particular, we establish nontrivial estimates for a double
character sum ∑

a∈A

∑

b∈A

χ(a+ b),

where χ is a non-principal multiplicative character modulo a prime p, A⊂ [M,M+A]
for some integer M,A ≤ p1/2 and #A > p9/20+ε for some ε > 0.

1The research of Sergei Konyagin was partially supported by Russian Fund for Basic Research,
Grant N. 11-01-00329.
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On the distribution properties
of hybrid point sets 1

Peter Kritzer

Abstract

Quasi-Monte Carlo (QMC) methods are important tools in numerical integration.
For the point sets serving as the integration nodes in QMC algorithms, it is ad-
vantageous if they are evenly spread in the integration domain. A recent topic in
this field of research is that of hybrid QMC point sets, which are finite or infinite
sequences of points in the unit cube, the components of which stem from two or
more different other QMC point sets. Studying the distribution properties of such
point sets is a challenging problem, and in many cases it is not clear if or under
which conditions the hybrid point sets are uniformly distributed.

In this talk, we discuss recent findings on two special types of hybrid point sets,
namely:

• point sets based on Halton sequences and lattice points,

• point sets based on (t, s)-sequences and lattice points.

We present results that guarantee the existence of such hybrid point sets with excel-
lent distribution properties, where we use the recently introduced hybrid diaphony
as a way of measuring uniformity of distribution.

This talk is based on joint work with P. Hellekalek (Salzburg) and F. Pillichsham-
mer (Linz).

1P. Kritzer gratefully acknowledges the support of the Austrian Science Fund (FWF), Project
P23389-N18.
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Group extensions: from old to new results with
various applications

Pierre Liardet

Abstract

Let X be a set and let (Γ, .) be a group. For given maps T : X → X and
ϕ : X → Γ, the map Tϕ : X × Γ → X × Γ, defined by

Tϕ(x, γ) = (Tx, γ.ϕ(x)),

is called a (ϕ,Γ)-group extension of base T or a skew product of T with cocycle ϕ.
In the case of topological dynamical systems, X is a compact metrizable space, T
is continuous, Γ is a locally compact metrizable group and ϕ is continuous. In the
metric theory of dynamical systems, X is a standard Borel space (X,B) equipped
with a σ-finite measure µ, T is an endomorphism of (X,B, µ), Γ is a compact
(eventually locally compact) metrizable group and ϕ is measurable. Let ν be the
Haar measure of Γ (eventually a right invariant measure).

The case where X and Γ are the one dimensional torus (usually identified to
[0, 1[ (mod 1), or the unit circle U as well), was introduced by H. Anzai (1951). Such
products and generalizations have been intensively studied into many directions. In
this talk, we pay attention to various applications in uniform distribution theory in
regard to minimality, ergodicity and spectral properties of skew products.

We will start from examples to exhibit tools that can be used for studying
both topological and metrical properties. When T and ϕ are µ-continuous and
(Tϕ, µ ⊗ ν) is ergodic (and Γ compact), a useful result says that if x is generic for
(T, µ), then (x, γ), with any γ in Γ, is generic for (Tϕ, µ ⊗ ν). Consequently, the
sequence n → ϕ(x).ϕ ◦ T (x) · · ·ϕ ◦ Tn(x) is uniformly distributed in Γ.

Example: let X = Γ = [0, 1[ and ϕ(x) = 1

x+1
, and let u = (uk) be a sequence

uniformly distributed in X. A rather natural question is to know when the sequence
Σu : n 7→

∑n
n=1

1

uk+1
is uniformly distributed mod 1. We show that the answer

is positive if (un)n is completely uniformly distributed mod 1. In that case ϕ can
be replaced by a large family of cocycles. The proof follows easily from a classical
characterization of ergodicity for skew products. The answer also is positive for
sequences of the form un=nα(mod 1) where α is irrational, but the proof is much
more complicated and extension to other cocycles needs extra regular conditions.
Statistical independency in between such sequences are discussed. Notice that the
uniform distribution of Σu is unknown (but positive answer is conjectured) for
un = qnx(mod 1) where q is an integer ≥ 2 and x normal in base q.

The case where T is the Gauss transformation of regular continued fraction
on [0, 1[ (and more generally when T is an S-expansion in the sense of C. Kraaikamp)
leads to a large domain of investigation. For x ∈ [0, 1[, let pn(x)/qn(x) be the

21



sequence of T -convergents of x. We present some generalizations of an old result
(1987) we proved, saying that for all generic point x for T the frequency of the
qn(x) which are square free exists and equal to an explicit constant.

Unimodular multiplicative sequences related to numeration systems give
rise to interesting skew products and have been intensively studied. We recall some
old results and give new ones involving in dependency and spectral properties.
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Uniform distribution modulo 1 of ratios
of various arithmetic functions

Florian Luca

Abstract

This is a survey talk on various results concerning the uniform distribution modulo
1 of ratios of various arithmetic functions. For example, let pa(n), pg(n), ph(n) be
the arithmetic, geometric and harmonic means of the prime factors of the positive
integer n, respectively. All the above sequences are uniformly distributed modulo 1.
Furthermore, the arithmetic mean of the first n primes is also uniformly distributed
modulo 1. We also present some new results. For example, for an integer a > 1
we show that the sequence a

n
/n is dense module 1. Finally, we present an amusing

application of uniform distribution modulo 1 to the problem of bounding from above
the counting function of positive integers n such that Fn is a base 10 palindrome.
These results are joint with various colleagues such as W. D. Banks, J. Cilleruelo,
J. M. Deshouillers, M. Z. Garaev, I. Kátai, A. Kumchev, J. Rué, I. E. Shparlinski
and R. Tesoro.
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Quasi-Monte Carlo methods for integration
of functions with dominating mixed smoothness

Lev Markhasin

Abstract

In a celebrated construction, Chen and Skriganov gave explicit examples of point
sets achieving the best possible L2-norm of the discrepancy function. We consider the
discrepancy function of the Chen-Skriganov point sets in Besov spaces of dominating
mixed smoothness and show that they also achieve the best possible rate in this
setting. The proof uses a b-adic generalization of the Haar system and corresponding
characterizations of the Besov space norm. Results for further function spaces and
integration errors are concluded.
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On the distribution
of the elliptic curve power generator

László Mérai

Abstract

Let P ∈ E(Fq) be a point of order T on a nonsupersingular elliptic curve E .
The elliptic curve power generator builds a sequence by the rule

P0 = P and Pn = ePn−1 n = 1, 2, . . .

with a fixed integer e with (T, e) = 1.
An obvious way to compute the elements of the sequence is to compute e which

would be the solution of the discrete logarithm problem on this curve. On the other
hand to compute an element from the previous part of the sequence one may need
to solve the computational Diffie-Hellman problem. Since in general both of these
problems are assumed to be hard, the elliptic curve power generator is thought to
have good pseudorandom properties.

The distribution of the coordinate sequence (x(Pn)) have been widely studied,
especially its discrepancy. In this talk results are presented about the distribution of
the sequences (f(Pn)) where f ∈ Fq(E) is a general (not constant) rational function.

The main tool to obtain, for example, discrepancy bound is to prove the following
exponential sum estimate

max
c1,...,cs

∑

P∈H

ψ

(
s∑

i=1

cif(kiP )

)
≪ s deg fK2q1/2,

where ψ is a non-trivial additive character of Fq , and the bound is uniform in all
1 ≤ k1 < · · · < ks ≤ K.
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Hausdorff dimension of sets
of numbers with prescribed digit densities

Ladislav Mǐśık — Jan Šustek — Bodo Volkmann

Abstract

For a set A of positive integers a1 < a2 < . . . let d(A), d(A) denote its lower and
upper asymptotic density. The gap density is defined as λ(A) = lim sup

n→∞

an+1

an
. We

investigate the class G(α, β, γ) of all sets A with d(A) = α, d(A) = β and λ(A) = γ

for given α, β, γ with 0 ≤ α ≤ β ≤ 1 and 1 ≤ γ ≤ β
α if α > 0. Using the classical

dyadic mapping ̺(A) =
∞∑
n=1

χA(n)
2n

, where χA is the characteristic function of A, we

are interested in the Hausdorff dimension of the ̺-image set ̺G(α, β, γ). The main
result states that

dim ̺G(α, β, γ) = min
{
δ(α), δ(β),

1

γ
max

σ∈[αγ,β]
δ(σ)

}
,

where δ is the entropy function

δ(x) =
x logx+ (1− x) log(1− x)

log 1

2

.

We also present a general formula for computing the Hausdorff dimension of
̺-image sets satisfying some conditions.
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Oscillating theorems for irrationality measures

Nikolay Moshchevitin 1

Abstract

For a real α we consider the irrationality measure function

ψα(t) = min
1≤x≤t, x∈Z

||xα||

(here || · || stands for the distance to the nearest integer).

In [1] it was proved that for any two different irrational numbers α, β such that
α± β 6∈ Z the difference function

ψα(t)− ψβ(t)

changes its sign infinitely many times as t→ +∞.

We consider the function µα(t) associated with Minkowski diagonal continued
fraction expansion for α (see [3]). The situation with oscillating property of the
difference

µα(t)− µβ(t)

is quite different. In [2] it is shown that there exist real α and β such that they are
linearly independent over Z together with 1 and

µα(t) > µβ(t), ∀t ≥ 1.

However as it is shown in the same paper [2] for almost all pairs (α, β) ∈ R2 (in the
sense of Lebesgue measure) the difference does oscillate as t→ ∞.

We will discuss certain results on oscillating properties of differences

∫ T

1

ψα(t)dt−

∫ T

1

ψβ(t)dt

(see [5]) as well as various multidimensional generalizations and related Diophantine
spectra [4].

1Research is supported by RFBR grant No.12-01-00681-a and by the grant of Russian government,
project 11 G.34.31.0053.
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On the metric theory
of p-adic continued fractions

Radhakrishnan Nair

Abstract

An analogue of the regular continued fraction expansion for the p-adic numbers
for prime p was given by T. Schneider, such that for x in pZp, i.e. the open unit
ball in the p-adic numbers, we have uniquely determined sequences (bn ∈ {1, 2, . . .
. . . , p− 1}, an ∈ N) (n = 1, 2, . . .) such that

x =
pa0

b1 +
pa1

b2 +
pa2

b3 +
pa3

b4+...

.

A sample result we prove is that if pn (n = 1, 2, . . .) denotes the sequences of rational
primes, we have

lim
N→∞

1

N

N∑

n=1

apn(x) =
p

p− 1
,

almost everywhere with respect to Haar measure. In the case where pn is replaced by
n this result is due to J. Hirsh and L. C. Washington. The proofs rely on pointwise
subsequence and moving average ergodic theorems. This is joint work with J. Hančl
(Ostrava), A. Jaššová (Liverpool), and P. Lertchoosakul (Liverpool).
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Omega results for a class of arithmetic functions
(On a question of A. Schinzel) 1

Werner G. Nowak — Manfred Kühleitner

Abstract

The class of arithmetic functions f under consideration is characterized by a gen-
erating Dirichlet series

F (s) =
∞∑

n=1

f(n)

ns
= ζ2(s)ζ(2s− 1)(ζ(2s))MH(s) , (1)

where ζ denotes the Riemann zeta-function, M is any fixed integer, and the function
H(s) has an Euler product which converges absolutely in a half-plane ℜ(s) > σ0 for
some σ0 <

1

2
.

At the Czech and Slovak Number Theory Conference in fall 2011 in Stará Lesná,
an account was given on approaches to derive asymptotics for

∑
n≤x f(n), with

upper bounds for the error term, culminating in the estimate [1]

∑

n≤x

f(n) = Ress=1

(
F (s)

xs

s

)
+ O

(
x547/832(log x)26947/8320

) (
547

832
= 0.65745 . . .

)
.

In the discussion following that talk, Professor Schinzel raised the question:
”What can be said about Omega-estimates?”

Here we give the following general answer [2]:

Theorem 1. For any arithmetic function f with a generating Dirichlet F (s) ac-

cording to (1),
∑

n≤x

f(n) = Ress=1

(
F (s)

xs

s

)
+Ω

( √
x (logx)2

(log logx)|M+1|

)
.

Special examples of interest are discussed.
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Van der Corput sequences and
permutation polynomials 1

Florian Pausinger

Abstract

Generalized van der Corput sequences are one-dimensional, infinite sequences in
the unit interval. They are generated from permutations in integer base b and are
the building blocks of the multi-dimensional Halton sequences. Motivated by recent
progress of Atanassov on the uniform distribution behavior of Halton sequences, we
study permutations of the form P (i) = ai (mod b) for coprime integers a and b.
We show that multipliers a that either divide b−1 or b+1 generate van der Corput
sequences with weak distribution properties and we relate them to sequences gener-
ated from identity permutations. These are, due to Faure, the weakest distributed
generalized van der Corput sequences. Furthermore, we discuss distribution proper-
ties of sequences generated from a wider class of permutations given by permutation
polynomials due to Carlitz.

1This work is supported by the Graduate School of IST Austria (Institute of Science and Technology
Austria).
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Recent results for the discrepancy
of polynomial lattice point sets 1

Friedrich Pillichshammer

Abstract

Polynomial lattice point sets (PLPSs) as introduced by Niederreiter in 1992
are polynomial versions of classical lattice point sets due to Korobov and Hlawka.
The main difference is that here one uses polynomial arithmetic in F

b
[x] instead

of the usual integer arithmetic. PLPSs are special instances of digital (t,m, s)-nets
which are among the most widely used classes of node sets for quasi-Monte Carlo
integration rules.

For quasi-Monte Carlo rules the integration error is intimately connected with
the disrepancy of the underlying node set via the Koksma-Hlawka inequality. In this
talk we review recent results for the classical and weighted star discrepancy of PLPSs.

1Supported by the Austrian Science Fund (FWF), Project S9609.
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On the family complexity
of families of binary sequences

András Sárközy

Abstract

In cryptography one needs large families of binary sequences with strong pseu-
dorandom properties. In the last decades many families of this type have been con-
structed. However, in many applications it is not enough to know that our family
of “good” binary sequences is large; it can be much more important to know that
the family has a “rich”, “complex” structure. Thus in 2003 Ahlswede, Khachatrian,
Mauduit and Sárközy introduced and studied the notion of family complexity as a
quantitative measure of a property of families of binary sequences which plays an es-
pecially important role in cryptography. Since that the family complexity of many
families of binary sequences with strong pseudorandom properties has been esti-
mated and the notion of family complexity has been extended in various directions.
In my talk I will give a survey of all these results.
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Additive structures in multiplicative subgroups

Ilya D. Shkredov

Abstract

We investigate various ”random” properties of multiplicative subgroups of finite
fields such as intersections of such subgroups with its additive shifts, basis properties,
representations of subgroups as sumsets, intersections with arithmetic progressions
and so on. We give a survey of old and new results in the field.
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Some unsolved problems
in the theory of distribution functions

Oto Strauch

Abstract

Some functional and some integral equations need to be solved in various parts
of the theory of distribution functions (d.f.s) of sequences. In this lecture we will
discuss the open problems related to the following equations:

g(x/2) + g
(
(x+ 1)/2

)
− g(1/2)

= g(x/3) + g
(
(x+ 1)/3

)
+ g

(
(x+ 2)/3

)
− g(1/3)− g(2/3), (1)

g(x) =
∞∑

n=1

g

(
1

n

)
− g

(
1

n+ x

)
, (2)

x =
∞∑

i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1] and d.f.s g(x), (3)

∫
1

0

∫
1

0

F (x, y)dg(x)dg(y) = 0, (4)

∫
1

0

∫
1

0

F (x, y)dg(x, y), g(x, y) take copulas. (5)

• The functional equation (1) connects with the sequence

xn = ξ(3/2)n mod 1, n = 1, 2, . . .

• The functional equation (2) connects with the Gauss-Kuzmin theorem and
iterated sequence

f(α), f
(
f(α)

)
, . . . , where f(x) = 1/x mod 1.

• The functional equation (3) connecs with Benford law.

• The integral equation (4) is used to find d.f.s of xn satisfying the limit below

lim
N→∞

1

N2

N∑

m,n=1

F (xm, xn) = 0.

• Integrals (5) serve to finding limit points of

1

N

N∑

n=1

F (xn, yn), N = 1, 2, . . . , where xn and yn are u.d.

Any general solutions have not been known in all such cases, see web page
http://www.boku.ac.at/MATH/udt/unsolvedproblems.pdf
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A new construction of (0,1)-sequences

Shu Tezuka

Abstract

In this talk, we consider the hybridization of van der Corput sequences and
polynomial Weyl sequences, which includes the former as one extreme of base poly-
nomial with degree one, and the latter as the other extreme of base polynomial
with degree infinity. We show that between these two extremes the hybridization
provides one- dimensional low-discrepancy sequences for base polynomial with any
positive degree, and thereby leads to a new construction of digital (0, 1)-sequences.
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Farey fraction spin chains and Gauss-Kuz’min
statistics for quadratic irrationals

Alexey Ustinov

Abstract

Farey fraction spin chains were introduced by Kleban and Özlük in [2]. In this
model spin configuration

↑↑ . . . ↑︸ ︷︷ ︸
a1

↓↓ . . . ↓︸ ︷︷ ︸
a2

↑↑ . . . ↑︸ ︷︷ ︸
a3

. . . =↑a1↓a2↑a3 . . .

has energy
E(↑a1↓a2↑a3 . . .) = log (Tr (Aa1Ba2Aa3 . . .)) ,

where

A =

(
1 0
1 1

)
, B =

(
1 1
0 1

)
.

Boca (see [1]) proved following asymptotic formula for the number of spin chains
with given energy

Ψ(N) =
∣∣{C = Aa1Ba2Aa3 . . . : 3 ≤ TrC 6 N

}∣∣ = N2(c1 logN+c0)+Oε

(
N7/4+ε

)
.

In the talk more sharp result will be presented

Ψ(N) = N2(c1 logN + c0) +O
(
N3/2+ε

)
.

This formula can be generalized for the case of Gauss-Kuz’min statistics and gives
a result about quadratic irrationals. Quadratic irrational ω is called to be regular
iff it has purely periodic continued fraction expansion.

Let R be the set of all reduced quadratic irrationals. For ω ∈ R denote by ρ(ω)
the length of ω (the length of corresponding geodesics on H/PSL2(Z)) and by ω∗

conjugate of ω.
Theorem. For any x, y ∈ [0, 1]

∑

ω∈R,ρ(ω)≤2 logN

ω≤x,−1/ω∗≤y

1 =
log(1 + xy)

2ζ(2)
N2 + O(N3/2+ε)

In particular this result means that continued fraction expansions of reduced
quadratic irrationals have the same statistical properties as continued fraction ex-
pansions of almost all real numbers.
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Probabilistic star discrepancy bounds
for double infinite random matrices

Markus Weimar

Abstract

In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski proved that the inverse of
the discrepancy depends linearly on the dimension, by showing that a Monte Carlo
point set P of N points in the s-dimensional unit cube satisfies the discrepancy
bound D

∗s
N (P) ≤ cabss

1/2
N

−1/2 with positive probability. Later their results were
generalized by Dick to the case of double infinite random matrices.

In this talk we give explicit, asymptotically optimal bounds for the star discrep-
ancy of such random matrices, and give estimates for the corresponding probabili-
ties. Using the same techniques we derive similar discrepancy bounds for randomly
generated completely uniformly distributed (c.u.d.) sequences. Finally, we mention
an application of these results to Markov Chain Monte Carlo.

The talk is based on a recent paper which is joint work with C. Aistleitner [1].
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Asymptotic behaviour of average Lp-discrepancies

Heidi Weyhausen

Abstract

We analyse the limit behavior of the average Lp-B-discrepancy for arbitrary
0 < p < ∞ if the number of sample points n tends to infinity. We present a
new proof for a result of Steinerberger who investigated the Lp-star discrepancy
and the extreme Lp-discrepancy. The Lp-B-discrepancy involves several types of
discrepancy functions studied in the literature, for example Lp-star discrepancy,
extreme, centered and periodic Lp-discrepancies. Furthermore, it is also possible to
study discrepancy functions based on non-rectangular sets.

To prove our result we use probabilistic methods, namely the central limit theo-
rem, characteristic functions and the dominated convergence theorem. Furthermore,
we employ symmetrization techniques to obtain estimates for arbitrary p.

This is joint work with Aicke Hinrichs.
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On the digits of squares and the distribution
of quadratic subsequences of digital sequences

Heidrun Zellinger 1

Abstract

Let q be a prime and γ = (γ0, γ1, γ2, . . . ) be a finite weight sequence with

γi ∈ {0, 1, . . . , q − 1} and γi = 0 for some i ≥ i0.

We study
lim

N→∞
#

{
0 ≤ n < N |sq,γ(n

2) ≡ d (mod q)
}
/N,

where sq,γ(n
2) denotes the weighted sum of digits of n2 in base q.

We will give formulas for the limit above in dependence of the base q, the weight
sequence γ and the digit d. Particularly, we analyze in which cases we obtain a fair
distribution in the sense that the limit tends to 1/q.
Finally, we show how these results can be used to classify all digital sequences
(xn)n≥0

in the sense of Niederreiter, that are generated by matrices with finite

rows, for which (xn2)n≥0
is uniformly distributed.

1Recipient of a DOC-FFORTE-fellowship of the Austrian Academy of Sciences at the Institute
of Financial Mathematics at the University of Linz (Austria).
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Optimality of the width-w non-adjacent form–
–a diophanitne inequality

Volker Ziegler

Abstract

Efficient scalar multiplication in Abelian groups (which is an important task in
public key cryptography) can be performed using digital expensions. Because the
Frobenius endomporphism on elliptic curves fulfils a quadratic equation, imaginary
quadratic integer bases are of special interest. One strategy for improving the effi-
ciency is to increase the digit set (at the prize of additional precomputations). A
common choice is the width-w non-adjacent form (w-NAF): each block of w con-
secutive digits contains at most one nonzero digit. Heuristically, this ensures a low
weight, i.e., number of non-zero digits, which translates in few costly curve oper-
ations. This talk relates the optimality of w-NAF-expansions with properties of
lattices, where optimality means minimizing the weight over all possible expansions
with the same digit set.
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Maria Rita Iacò : iaco@mat.unical.it

Maria Infusino : infusino@mat.unical.it

Oleg Karpenkov : karpenkov@tugraz.at
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