Directional Discrepancy

Dmitriy Bilyk University of South Carolina / University of Minnesota

> Uniform Distribution Theory 2012 Smolenice, Slovakia June 27, 2012

Discrepancy bounds in dimension d = 2

LOWER BOUND		UPPER BOUND
Axis-parallel rectangles		
L^{∞}	log N	log N
L^2	$\log^{\frac{1}{2}} N$	$\log^{\frac{1}{2}} N$
Rotated rectangles		
	$\mathcal{N}^{1/4}$	$N^{1/4}\sqrt{\log N}$
Circles		
	$N^{1/4}$	$N^{1/4}\sqrt{\log N}$
Convex Sets		
	$N^{1/3}$	$N^{1/3}\log^4 N$

Geometric discrepancy

No rotations: discrepancy ≈ log N
 (K. Roth, W. Schmidt, van der Corput)

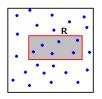
• All rotations: discrepancy $\approx N^{1/4}$ (J. Beck, H. Montgomerry)

Higher dimensions: $d \ge 3$

LOWER BOUND		UPPER BOUND	
Axis-parallel boxes			
L∞	$(\log N)^{rac{d-1}{2}+\eta}$	$(\log N)^{d-1}$	
L^2	$(\log N)^{\frac{d-1}{2}}$	$(\log N)^{\frac{d-1}{2}}$	
Rotated boxes			
	$N^{\frac{1}{2}-\frac{1}{2d}}$	$N^{\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}$	
Balls			
$N^{\frac{1}{2}-\frac{1}{2d}}$		$N^{\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}$	
Convex Sets			
$N^{1-\frac{2}{d+1}}$		$N^{1-\frac{2}{d+1}}\log^c N$	

Directional Discrepancy: Setting

 \mathcal{P}_N – a set of N points in $[0,1]^d$ $R \subset [0,1]^d$ – a measurable set.



$$D(\mathcal{P}_N, R) = \sharp \{\mathcal{P}_N \cap R\} - N \cdot vol(R)$$

- Let $\Omega \subset [0, \pi/2)$
- $A_{\Omega} = \{ \text{rectangles pointing in directions of } \Omega \}$

$$D_{\Omega}(N) = \inf_{\mathcal{P}_{N}} \sup_{R \in \mathcal{A}_{\Omega}} |D(\mathcal{P}_{N}, R)|$$

No rotations: axis-parallel rectangles

•
$$\Omega = \{0\}$$

Theorem (Lerch; Schmidt)

$$D_{\Omega}(N) \approx \log N$$

Theorem (L^2 : Roth; Davenport)

$$D_{\Omega}^{(2)}(N) \approx \sqrt{\log N}$$

No rotations: axis-parallel rectangles

•
$$\Omega = \{0\}$$

Theorem (Lerch; Schmidt)

$$D_{\Omega}(N) \approx \log N$$

Theorem (L^2 : Roth; Davenport)

$$D_{\Omega}^{(2)}(N) \approx \sqrt{\log N}$$

• Ω finite \longrightarrow same (Beck-Chen, Chen-Travaglini)

All rotations

•
$$\Omega = [0, \pi/2)$$

Theorem (J. Beck)

$$N^{1/4} \lesssim D_{\Omega}(N) \lesssim N^{1/4} \sqrt{\log N}$$

Irrational Lattice

Example

Let $\theta \in [0, \pi]$. Denote by \mathcal{P}_N^{θ} the lattice $\frac{1}{\sqrt{N}}\mathbb{Z}^2$ rotated by θ and intersected with $[0, 1]^2$.

Theorem

If $\tan \theta$ is badly approximable, i.e.

$$\left| \mathsf{tan}(\theta) - \frac{p}{q} \right| \gtrsim \frac{1}{q^2}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$, then the discrepancy of \mathcal{P}_N^{θ} with respect to axis-parallel rectangles satisfies

$$D(\mathcal{P}_N^{\theta}) \approx \log N$$
.

Finitely many directions: Davenport-Cassels lemma

Lemma (Davenport; Cassels)

For all n > 0 there exists c = c(n) > 0 so that for any $\phi_1, \phi_2, ..., \phi_n$ there exists θ such that for all j = 1, ..., n

$$\left| an(heta - \phi_j) - rac{
ho}{q}
ight| > rac{c}{q^2}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

- $c(n) \approx 1/n^2$
- Davenport (1964)
- Cassels (1956): without tangent.
- Hall (1947): any real number is representable as a sum of two continued fractions with partial quotients at most 4.

Lacunary directions

- Lacunary sequence of directions $\Omega = \{\phi_n\}_{n=1}^{\infty}$
- $\frac{|\phi_n \phi|}{|\phi_{n+1} \phi|} \ge \lambda > 1$ for some ϕ .
- $\bullet \ \mathsf{E.g.}, \ \Omega = \{2^{-n}\}_{n=1}^{\infty}$

Lacunary directions

- Lacunary sequence of directions $\Omega = \{\phi_n\}_{n=1}^{\infty}$
- $\frac{|\phi_n \phi|}{|\phi_{n+1} \phi|} \ge \lambda > 1$ for some ϕ .
- E.g., $\Omega = \{2^{-n}\}_{n=1}^{\infty}$

Lemma (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| an(heta - \phi) - rac{p}{q}
ight| \gtrsim rac{1}{q^2 \log^2 q}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

Lacunary of finite order

- Lacunary set of order M: union of a lacunary set $\mathcal L$ of order M-1 and lacunary sequences converging to points of $\mathcal L$.
- Harmonic analysis: Maximal function with respect to rectangles in \mathcal{A}_{Ω} is bounded in $L^p(\mathbb{R}^2)$ iff Ω is a finite union of lacunary sets of finite order (M. Bateman, 2007)
- Example: $\Omega = \{2^{-n_1} + 2^{-n_2} + ... + 2^{-n_M}\}_{n_k \in \mathbb{N}}$

Lacunary of finite order

- Lacunary set of order M: union of a lacunary set $\mathcal L$ of order M-1 and lacunary sequences converging to points of $\mathcal L$.
- Harmonic analysis: Maximal function with respect to rectangles in \mathcal{A}_{Ω} is bounded in $L^p(\mathbb{R}^2)$ iff Ω is a finite union of lacunary sets of finite order (M. Bateman, 2007)
- Example: $\Omega = \{2^{-n_1} + 2^{-n_2} + ... + 2^{-n_M}\}_{n_k \in \mathbb{N}}$

Lemma (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(\theta - \phi) - \frac{p}{q} \right| \gtrsim \frac{1}{q^2 \log^{2M} q}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

Minkowski dimension

• Upper Minkowski dimension: infimum of exponents d such that for every $0 < \delta \ll 1$ the set Ω can be covered by $\mathcal{O}(\delta^{-d})$ intervals of length δ .

Minkowski dimension

• Upper Minkowski dimension: infimum of exponents d such that for every $0 < \delta \ll 1$ the set Ω can be covered by $\mathcal{O}(\delta^{-d})$ intervals of length δ .

Lemma (DB, X. Ma, J. Pipher, C. Spencer)

Let Ω have upper Minkowski dimension at most d, $0 \le d < 1$. Then there exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(heta - \phi) - rac{p}{q}
ight| \gtrsim rac{1}{q^{rac{2}{(1-d)^2} + arepsilon}}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and any $\varepsilon > 0$.

Minkowski dimension

• Upper Minkowski dimension: infimum of exponents d such that for every $0 < \delta \ll 1$ the set Ω can be covered by $\mathcal{O}(\delta^{-d})$ intervals of length δ .

Lemma (DB, X. Ma, J. Pipher, C. Spencer)

Let Ω have upper Minkowski dimension at most d, $0 \le d < 1$. Then there exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(heta - \phi) - rac{p}{q}
ight| \gtrsim rac{1}{q^{rac{2}{(1-d)^2} + arepsilon}}$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and any $\varepsilon > 0$.

Examples:

- Cantor-type sets (standard Cantor set has dimension d = log₃ 2)
- Sequence $\{n^{-lpha}\}$ has Minkowski dimension $d=rac{1}{lpha+1}$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all
$$\theta \in I_n$$
, $\phi \in \Omega$, and $R(n) \le q \le R(n+1)$

• Cover Ω with N(n) intervals of length $\delta(n)$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals of length $\delta(n)$
- $N = N(\delta)$ is determined by geometry of Ω

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals of length $\delta(n)$
- $N = N(\delta)$ is determined by geometry of Ω
- Lacunary:

$$N \lesssim \log rac{1}{\delta}$$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

- Cover Ω with N(n) intervals of length $\delta(n)$
- $N = N(\delta)$ is determined by geometry of Ω
- Lacunary:

$$N \lesssim \log \frac{1}{\delta}$$

• Lacunary of order *M*:

$$N \lesssim \log^{M} \frac{1}{\delta}$$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals of length $\delta(n)$
- $N = N(\delta)$ is determined by geometry of Ω
- Lacunary: $N \lesssim \log \frac{1}{\delta}$
- Lacunary of order M: $N \lesssim \log^M \frac{1}{\delta}$
- Upper Minkowski dimension d: $N \leq C_{\varepsilon} \left(\frac{1}{\delta}\right)^{d+\varepsilon}$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

• We construct a sequence $..I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

• Cover Ω with N(n) intervals B_k of length $\delta(n)$

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals B_k of length $\delta(n)$
- Assume $(\theta_1, \phi_1, p_1, q_1)$ and $(\theta_2, \phi_2, p_2, q_2)$ with $\phi_i \in B_k$, $\theta_i \in I_{n-1}$, $R(n) \le q \le R(n+1)$ violate (*)

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals B_k of length $\delta(n)$
- Assume $(\theta_1, \phi_1, p_1, q_1)$ and $(\theta_2, \phi_2, p_2, q_2)$ with $\phi_i \in B_k$, $\theta_i \in I_{n-1}$, $R(n) \le q \le R(n+1)$ violate (*)

$$\left| \frac{p_1}{q_1} - \frac{p_2}{q_2} \right| \le \frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n)$$

•

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- Cover Ω with N(n) intervals B_k of length $\delta(n)$
- Assume $(\theta_1, \phi_1, p_1, q_1)$ and $(\theta_2, \phi_2, p_2, q_2)$ with $\phi_i \in B_k$, $\theta_i \in I_{n-1}$, $R(n) \le q \le R(n+1)$ violate (*)

$$\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \le \frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$$

•

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \le q \le R(n+1)$

- Cover Ω with N(n) intervals B_k of length $\delta(n)$
- Assume $(\theta_1, \phi_1, p_1, q_1)$ and $(\theta_2, \phi_2, p_2, q_2)$ with $\phi_i \in B_k$, $\theta_i \in I_{n-1}$, $R(n) \le q \le R(n+1)$ violate (*)

$$\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \le \frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$$

• Then there is at most one p/q with $R(n) \le q_i \le R(n+1)$, which violates (*) for each B_k .

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

• We construct a sequence $..I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

• For each k = 1, ..., N(n) remove from I_{n-1} the set

$$\tan^{-1}\left(\frac{p}{q}-\frac{c(n)}{R(n)^2},\frac{p}{q}-\frac{c(n)}{R(n)^2}\right)+B_k$$

•

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

• For each k = 1, ..., N(n) remove from I_{n-1} the set

$$\tan^{-1}\left(\frac{p}{q}-\frac{c(n)}{R(n)^2},\frac{p}{q}-\frac{c(n)}{R(n)^2}\right)+B_k$$

$$|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right)$$

•

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

• For each k = 1, ..., N(n) remove from I_{n-1} the set

$$\tan^{-1}\left(\frac{p}{q}-\frac{c(n)}{R(n)^2},\frac{p}{q}-\frac{c(n)}{R(n)^2}\right)+B_k$$

$$|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \ge (N(n) + 1)|I_n|$$

•

• We construct a sequence $..I_{n-1} \supset I_n \supset ...$ with $|I_n| \to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

for all $\theta \in I_n$, $\phi \in \Omega$, and $R(n) \leq q \leq R(n+1)$

• For each k = 1, ..., N(n) remove from I_{n-1} the set

$$\tan^{-1}\left(\frac{p}{q}-\frac{c(n)}{R(n)^2},\frac{p}{q}-\frac{c(n)}{R(n)^2}\right)+B_k$$

 $|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \geq (N(n) + 1)|I_n|$

• Then the remainder contains an interval of length $|I_n|$

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

•
$$|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \ge (N(n) + 1)|I_n|$$

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- $\bullet |I_{n-1}| N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \ge (N(n) + 1)|I_n|$
- $\frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- $|I_{n-1}| N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \geq (N(n) + 1)|I_n|$
- $\frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \leq \frac{1}{R(n+1)^2}$
- Finite: $R(n) = a^n$, c(n) = c, $\delta(n) = 0$, N(n) = N

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

•
$$|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \geq (N(n) + 1)|I_n|$$

•
$$\frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$$

• Lacunary:
$$R(n) = n^{n/2} \log^{n/2} n$$
, $c(n) = \frac{c}{n^2 \log^2 n}$
 $c(n) \approx \log^{-2} R(n)$

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

- $|I_{n-1}| N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \ge (N(n) + 1)|I_n|$
- $\frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$
- Lacunary of order M: $R(n) = n^{nM/2}$, $c(n) = \frac{c}{n^{2M} \log^{2M} n}$ $c(n) \approx \log^{-2M} R(n)$

• We construct a sequence ... $I_{n-1}\supset I_n\supset ...$ with $|I_n|\to 0$ so that

$$\left| \tan(\theta - \phi) - \frac{p}{q} \right| \ge \frac{c(n)}{q^2}$$
 (*)

•
$$|I_{n-1}| - N(n) \cdot \left(\frac{2c(n)}{R(n)^2} + \delta(n)\right) \ge (N(n) + 1)|I_n|$$

- $\frac{2c(n)}{R(n)^2} + C|I_{n-1}| + C\delta(n) \le \frac{1}{R(n+1)^2}$
- Minkowski dimension d: $R(n) = 2^{a^n}$,

$$c(n) = c2^{-2a^n(a^2-1)} \approx R(n)^{-(2a^2-1)}$$
, where $a = \frac{1}{1-d-\varepsilon}$

• Let N(x) be an upper bound of the minimal number of intervals of length x needed to cover Ω .

- Let N(x) be an upper bound of the minimal number of intervals of length x needed to cover Ω .
- Let $F(x) \approx x \cdot N(x)$

- Let N(x) be an upper bound of the minimal number of intervals of length x needed to cover Ω .
- Let $F(x) \approx x \cdot N(x)$

Theorem (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(heta - \phi) - rac{p}{q}
ight| \gtrsim F^{-1} \left(F^{-1} \left(rac{1}{q^2}
ight)
ight)$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

Theorem (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(\theta - \phi) - rac{p}{q}
ight| \gtrsim F^{-1} \left(F^{-1} \left(rac{1}{q^2}
ight)
ight)$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

• Ω finite: $N = \#\Omega$, $F(x) \approx Nx$,

$$F^{-1}(F^{-1}(1/q^2)) pprox rac{1}{N^2 q^2}$$

• Ω lacunary: $N(x) \approx \log \frac{1}{x}$, $F(x) \approx x \cdot \log \frac{1}{x}$, $F^{-1}(x) \approx \frac{x}{\log(1/x)}$,

$$F^{-1}(F^{-1}(1/q^2)) pprox rac{1}{q^2 \log^2 q}$$

Theorem (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(\theta - \phi) - rac{p}{q}
ight| \gtrsim F^{-1} \left(F^{-1} \left(rac{1}{q^2}
ight)
ight)$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

• Ω lacunary of order M: $N(x) \approx \log^M \frac{1}{x}$, $F(x) \approx x \cdot \log^M (1/x)$, $F^{-1}(x) \approx \frac{x}{\log^M (1/x)}$,

$$F^{-1}(F^{-1}(1/q^2)) \approx \frac{1}{q^2 \log^{2M} q}$$

• Ω has upper Minkowski dimension d: $N(x) \approx \left(\frac{1}{x}\right)^{d+\epsilon}$, $F(x) \lesssim x^{1-d-\epsilon}$, $F^{-1}(x) \gtrsim x^{\frac{1}{1-d}-\epsilon}$,

$$F^{-1}(F^{-1}(1/q^2)) \approx q^{-\frac{2}{(1-d)^2}-\epsilon}$$

Theorem (DB, X. Ma, J. Pipher, C. Spencer)

There exists θ such that for all $\phi \in \Omega$

$$\left| \mathsf{tan}(\theta - \phi) - rac{p}{q}
ight| \gtrsim F^{-1} \left(F^{-1} \left(rac{1}{q^2}
ight)
ight)$$

for all $p \in \mathbb{Z}$, $q \in \mathbb{N}$.

• Ω "superlacunary", e.g. $\Omega = \left\{2^{-2^m}\right\}$: $F(x) \approx x \cdot N(x) \approx x \cdot \log\log(1/x), \ F^{-1}(x) \approx \frac{x}{\log\log(1/x)},$ $F^{-1}(F^{-1}(1/q^2)) \approx \frac{1}{q^2(\log\log q)^2}$

Erdős-Turan inequality

• For a sequence $\omega = (\omega_n) \subset [0,1]$:

$$D_N(\omega) = \sup_{x \subset [0,1]} \left| \#\{n \leq N : \omega_n \leq x\} - Nx \right|$$

Theorem (Erdős-Turan)

For any sequence $\omega \subset [0,1]$ we have

$$D_N(\omega) \lesssim \frac{N}{m} + \sum_{h=1}^m \frac{1}{h} \left| \sum_{n=1}^N e^{2\pi i h \omega_n} \right|$$

for all natural numbers m.

• If $\omega_n = \{n\alpha\}$

$$\left|\sum_{n=1}^N e^{2\pi i h n \alpha}\right| \leq \frac{2}{|e^{2\pi i h \alpha} - 1|} = \frac{1}{|\sin(\pi h \alpha)|} = \frac{1}{\sin(\pi \|h\alpha\|)} \lesssim \frac{1}{\|h\alpha\|}.$$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q\in\mathbb{N}$ we have $q\|q\alpha\|>1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q\in\mathbb{N}$ we have $q\|q\alpha\|>1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h||h\alpha||} \lesssim \psi(2m) \log m + \sum_{h=1}^{m} \frac{\psi(2h) \log h}{h}$$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q||q\alpha|| > 1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h \|h\alpha\|} \lesssim \log^2 m + \psi(m) + \sum_{h=1}^{m} \frac{\psi(h)}{h}$$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q||q\alpha|| > 1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h \|h\alpha\|} \lesssim \log^2 m + \psi(m) + \sum_{h=1}^{m} \frac{\psi(h)}{h}$$

Finitely many directions: $\psi(q) = \text{const}$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q||q\alpha|| > 1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h \|h\alpha\|} \lesssim \log^2 m + \psi(m) + \sum_{h=1}^{m} \frac{\psi(h)}{h}$$

Lacunary directions: $\psi(q) \approx \log^2 q$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q||q\alpha|| > 1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h||h\alpha||} \lesssim \log^2 m + \psi(m) + \sum_{h=1}^{m} \frac{\psi(h)}{h}$$

Lacunary of order M: $\psi(q) \approx \log^{2M} q$

Let ψ be a non-decreasing function on \mathbb{R}_+ . We say that $\alpha \in \mathbb{R}$ is of type $<\psi$ if for all $q \in \mathbb{N}$ we have $q||q\alpha|| > 1/\psi(q)$, i.e.

$$\left|\alpha - \frac{p}{q}\right| > \frac{1}{q^2 \cdot \psi(q)}$$

$$\sum_{h=1}^{m} \frac{1}{h \|h\alpha\|} \lesssim \log^2 m + \psi(m) + \sum_{h=1}^{m} \frac{\psi(h)}{h}$$

Minkowski dimension $d\colon \psi(q) pprox q^{rac{2}{(1-d)^2}-2+arepsilon}$

- Let $\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{...}}} = [a_0; a_1, a_2, a_3, ...]$ and consider its convergents $\frac{p_n}{q_n} = [a_0; a_1, a_2, ..., a_n]$.
- For the Kronecker sequence ω : $\omega_n = \{n\alpha\}$

$$D_N(\omega) \lesssim \sum_{j=1}^{m+1} a_j,$$

when $q_m \leq N < q_m + 1$.

- Let $\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{...}}} = [a_0; a_1, a_2, a_3, ...]$ and consider its convergents $\frac{p_n}{q_n} = [a_0; a_1, a_2, ..., a_n]$.
- For the Kronecker sequence ω : $\omega_n = \{n\alpha\}$

$$D_N(\omega) \lesssim \sum_{j=1}^{m+1} a_j,$$

when $q_m \leq N < q_m + 1$.

• If α is of type $< \psi$, then $a_{n+1} \le \psi(q_n)$.

- Let $\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{...}}} = [a_0; a_1, a_2, a_3, ...]$ and consider its convergents $\frac{p_n}{q_n} = [a_0; a_1, a_2, ..., a_n]$.
- For the Kronecker sequence ω : $\omega_n = \{n\alpha\}$

$$D_N(\omega) \lesssim \sum_{j=1}^{m+1} a_j,$$

when $q_m \leq N < q_m + 1$.

- If α is of type $< \psi$, then $a_{n+1} \le \psi(q_n)$.
- Ω "superlacunary", e.g. $\Omega=\left\{2^{-2^m}\right\}$: $F^{-1}(F^{-1}(1/q^2))\approx \frac{1}{q^2(\log\log q)^2} \text{, i.e. } \psi(q)=(\log\log q)^2$

- Let $\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{...}}} = [a_0; a_1, a_2, a_3, ...]$ and consider its convergents $\frac{p_n}{q_n} = [a_0; a_1, a_2, ..., a_n]$.
- For the Kronecker sequence ω : $\omega_n = \{n\alpha\}$

$$D_N(\omega) \lesssim \sum_{j=1}^{m+1} a_j,$$

when $q_m \leq N < q_m + 1$.

- If α is of type $< \psi$, then $a_{n+1} \le \psi(q_n)$.
- Ω "superlacunary", e.g. $\Omega=\left\{2^{-2^m}\right\}$: $F^{-1}(F^{-1}(1/q^2))\approx \frac{1}{q^2(\log\log q)^2} \text{, i.e. } \psi(q)=(\log\log q)^2$
- One can deduce that

$$D_N(\omega) \lesssim \log N \cdot (\log \log N)^2$$
,

while Erdős-Turan would only yield log² N.

Directional Discrepancy

$$D_{\Omega}(\mathcal{P}_{N}^{\theta}) \lesssim \sup_{\phi \in \Omega} \ D_{c\sqrt{N}}\left(\{n \cdot \tan(\theta - \phi)\}\right)$$

Directional Discrepancy

$$D_{\Omega}(\mathcal{P}_{N}^{\theta}) \lesssim \sup_{\phi \in \Omega} \ D_{c\sqrt{N}}\left(\left\{n \cdot \tan(\theta - \phi)\right\}\right)$$

Theorem (DB, Ma, Pipher, Spencer)

Lacunary directions

$$D_{\Omega}(N) \lesssim \log^3 N$$

Lacunary of order M

$$D_{\Omega}(N) \lesssim \log^{2M+1} N$$

• Ω has upper Minkowski dimension $0 \le d < 1$

$$D_{\Omega}(N) \lesssim N^{\frac{\tau}{2(\tau+1)}+\varepsilon},$$

where
$$\tau = \frac{2}{(1-d)^2} - 2$$
.

Critical dimension

• Ω has upper Minkowski dimension $0 \le d < 1$

$$D_{\Omega}(N) \lesssim N^{\frac{\tau}{2(\tau+1)}+\varepsilon}, \qquad (*)$$

where
$$\tau = \frac{2}{(1-d)^2} - 2$$
.

Critical dimension

• Ω has upper Minkowski dimension $0 \le d < 1$

$$D_{\Omega}(N) \lesssim N^{\frac{\tau}{2(\tau+1)}+\varepsilon}, \qquad (*)$$

where
$$\tau = \frac{2}{(1-d)^2} - 2$$
.

• but for $\Omega = [0, 2\pi)$, i.e. all rotations,

$$D_{\Omega}(N) \lesssim N^{1/4} \sqrt{\log N}$$

Critical dimension

• Ω has upper Minkowski dimension $0 \le d < 1$

$$D_{\Omega}(N) \lesssim N^{\frac{\tau}{2(\tau+1)}+\varepsilon}, \qquad (*)$$

where
$$\tau = \frac{2}{(1-d)^2} - 2$$
.

• but for $\Omega = [0, 2\pi)$, i.e. all rotations,

$$D_{\Omega}(N) \lesssim N^{1/4} \sqrt{\log N}$$

• So (*) is interesting only for $\frac{\tau}{2(\tau+1)}<\frac{1}{4}$, i.e. $\tau<1$,

$$d < 1 - \left(\frac{2}{3}\right)^{\frac{1}{2}} \approx 0.1835....$$

Directional Discrepancy in L^2

Theorem (DB, Ma, Pipher, Spencer)

Let μ be any probability measure on \mathcal{A}_{Ω} . Then

1) If Ω is a lacunary sequence, there exists $\mathcal{P} \subset [0,1]^2$, $\#\mathcal{P} = N$

$$\left(\int_{\mathcal{A}_{\Omega}} |D_{\Omega}(\mathcal{P},R)|^2 d\mu(R)\right)^{\frac{1}{2}} \lesssim \log^{\frac{5}{2}} N.$$

2) If Ω is lacunary of order M, there exists $\mathcal{P}\subset [0,1]^2$, $\#\mathcal{P}=N$

$$\left(\int_{\mathcal{A}_{\Omega}}|D_{\Omega}(\mathcal{P},R)|^2d\mu(R)\right)^{\frac{1}{2}}\lesssim \log^{2M+\frac{1}{2}}N.$$

3) If Ω has upper Minkowski dimension $0 \le d < 1$, there exists $\mathcal P$

$$\left(\int_{\mathcal{A}_{\Omega}}|D_{\Omega}(\mathcal{P},R)|^2d\mu(R)\right)^{\frac{1}{2}}\lesssim N^{\frac{1}{2}-\frac{1}{2(\tau+1)}+\varepsilon},$$

for any $\varepsilon > 0$, if $\tau = \frac{2}{(1-d)^2} - 2 < 1$

Directional Discrepancy in L^2

Lemma

Let I be a finite interval of consecutive integers.

1) Assume that α satisfies $\nu\|\nu\alpha\|>\frac{c}{\log^{2M}\nu}$, for all $\nu\in\mathbb{N}$. Then

$$\sum_{\nu=1}^{\infty} \frac{1}{\nu^2} \left| \sum_{n \in I} e^{-2\pi i \nu n \alpha} \right|^2 \lesssim \log^{4M+1} |I|.$$

2) Assume that α satisfies $\nu\|\nu\alpha\|>c\nu^{-\tau+\varepsilon}$, for all $\varepsilon>0$, where $0\leq \tau<1$. Then

$$\sum_{\nu=1}^{\infty} \frac{1}{\nu^2} \left| \sum_{n \in I} e^{-2\pi i \nu n \alpha} \right|^2 \lesssim |I|^{\frac{2\tau}{\tau+1} + \varepsilon'}, \text{ where } \varepsilon' = \mathcal{O}(\varepsilon).$$