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Definitions

Let A be a finite or infinite subset of the set N∪ {0}. The square
of the power series

fA(x) =
∑
a∈A

xa

associated with A is given by the formulae

fA(x)2 =
∞∑

n=0

rA(n)xn,

where rA(n) stands for the number of representations of the
integer n > 0 by the sum a + b with a,b ∈ A, namely,

rA(n) := |{(a,b) ∈ A2 : a + b = n}|.
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n > 0, cannot all lie in the interval [1,5]
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Erdős-Turán conjecture, J. Number Theory, 102 (2003),
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It is known that for any A ⊆ N ∪ {0} the values of rA(n), where
n > 0, cannot all lie in the interval [1,5]

G. GREKOS, L. HADDAD, C. HELOU AND J. PIHKO, On the
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√
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Integers, 8 (2008), #A30, 4 p.

For instance, all rA(n) cannot all lie in the interval [7,13],
because √

13−
√

7 = 0.959 · · · < 1.



Partial results on the Erdős-Turán conjecture
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N. Alon and M.N. Kolountzakis (1995), Helm (1993, 1994).



Related results

In the opposite direction, Erdős answered a question of Sidon
and showed that there exists a basis A of N ∪ {0} such that

rA(n) 6 c1 log n (1)

for some positive constant c1 and each n > 2.

P. ERDŐS, On a problem of Sidon in additive number
theory, Acta Sci. Math., 15 (1954), 255–259.
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Theorem 1
For each ε satisfying 0 < ε < 1/2 there is a positive constant
c(ε) and a basis A of N ∪ {0} such that

0.1ε2 log n 6 rA(n) 6 (2e + ε) log n + c(ε) (3)

for every n > 2.

2e = 5.4365 . . .
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coefficients

Under additional assumption of f being a reciprocal polynomial,
namely, f (x) = xnf (1/x), it was proved

A. DUBICKAS AND G. ŠEMETULSKIS, On polynomials with
flat squares, Acta Arith., 146 (2011), 247–255.

that if the coefficients of f (x)2 are all at least 1 then the largest
coefficient of f (x)2 must be at least κrec(n), where

κrec(n) ∼
2
π

log n

as n→∞.
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A. DUBICKAS AND G. ŠEMETULSKIS, On polynomials with
flat squares, Acta Arith., 146 (2011), 247–255.

that if the coefficients of f (x)2 are all at least 1 then the largest
coefficient of f (x)2 must be at least κrec(n), where

κrec(n) ∼
2
π

log n

as n→∞.



Polynomial reciprocal version of ET with nonnegative
coefficients

The extremal reciprocal polynomial with nonnegative
coefficients was found explicitly:
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In fact, the first bn/2c+ 1 and the last bn/2c+ 1 coefficients of
its square are all equal to 1.
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Polynomial version of ET with nonnegative coefficients

We conjectured that the extremal polynomial (with nonnegative
coefficients) in the general case should be the same reciprocal
polynomial (4). However, there are no results in this direction
so far (neither for general polynomials with real nonnegative
coefficients nor for Newman polynomials).
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For a general Newman polynomial we prove that

Theorem 2
For each ε > 0 and each integer n > n0(ε) there is Newman
polynomial of degree n whose square has all of its coefficients
in the interval [1, (1 + ε)(4/π)(log n)2].
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Polynomial version of ET: another interpretation

In terms of sumsets Theorem 2 asserts that for each ε > 0 and
each sufficiently large n there is subset A of the set
{0,1, . . . ,n} such that A + A = {0,1, . . . ,2n} and the number of
representations of each given k ∈ {0,1, . . . ,2n} by the sum
a + a′, with a,a′ ∈ A, is at most (1 + ε)(4/π)(log n)2, i.e.,

1 6 rA(k) 6 (1 + ε)(4/π)(log n)2

for every k = 0,1, . . . ,2n.
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Under weaker assumption

Under a slightly weaker assumption

{0,1, . . . , b(2− ε)nc} ⊆ A + A

Theorem 1 gives a stronger bound with (log n)2 replaced by
log n:

Corollary 3
For each ε > 0 there is a positive constant C = C(ε) such that
for every integer n > 2 there is a set A ⊆ {0,1, . . . ,n} for which
the sumset A + A contains the set {0,1, . . . , b(2− ε)nc} and
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for every k = 0,1, . . . ,2n.
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Reciprocal Newman polynomial

For a reciprocal Newman polynomial the correct growth is of
the order

√
n:

Theorem 4
For each reciprocal Newman polynomial f (x) of degree n
whose square has all of its 2n + 1 coefficients at least 1, the
middle coefficient for xn in f (x)2 must be at least 2

√
n − 3. On

the other hand, for each n ∈ N there is a reciprocal Newman
polynomial of degree n such that the coefficients of its square
are all in the interval [1,2

√
2n + 4].
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Reciprocal Newman polynomial

The constants −3 and 4 in Theorem 4 can be easily improved.
However, we do not know for which constant in the interval
[2,2
√

2] both parts of Theorem 4 hold, so we ask for the best
possible constant κ for

√
n in the sense that for each ε > 0 and

each sufficiently large n ∈ N the first statement of Theorem 4
holds with (κ− ε)

√
n instead of 2

√
n− 3 while the second holds

with (κ+ ε)
√

n instead of 2
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Probabilistic construction

For the proof of Theorems 1 and 2 we define mutually
independent random variables Yk and Y ∗k taking only values 0
and 1, by

P(Y0 = 1) = P(Y ∗0 = 1) = P(Y1 = 1)

= P(Y ∗1 = 1) = P(Y2 = 1) = P(Y ∗2 = 1) = 1

and

P(Yk = 1) = P(Y ∗k = 1) = pk := λ

√
2 log k
πk

(6)

for each integer k > 3. Here, λ will be chosen in the interval

1 < λ < 2, (7)
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so that 0 < pk 6 p3 < 2
√

2 log 3
3π < 0.97 < 1 for k > 3, by (6) and

(7). For convenience, we shall also use the notation
p0 = p1 = p2 = 1, so, by (6),

P(Yk = 0) = P(Y ∗k = 0) = 1− pk

for every nonnegative integer k , and

p0 = p1 = p2 > p3 > p4 > p5 > p6 > . . . . (8)
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Suppose X1, . . . ,Xs are s independent Bernoulli trials, where

P(Xi = 1) = pi ∈ [0,1] and P(Xi = 0) = 1− pi

for i = 1, . . . , s. Set X := X1 + · · ·+ Xs and

E(X ) :=
s∑

i=1

pi

for the expectation of the random variable X .
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Then Chernoff’s inequality asserts that

Lemma 5
For any δ > 0 we have

P(X > (1 + δ)E(X )) 6 e−((1+δ) log(1+δ)−δ)E(X) (9)

and
P(X < (1− δ)E(X )) 6 e−(δ+(1−δ) log(1−δ))E(X). (10)
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Preparation for the proof of Theorem 2

In the proof of Theorem 2 we will consider the random Newman
polynomial

f (x) :=
n∑

k=0

Ukxk =
∑

06k<n/2

(Ykxk + Y ∗k xn−k ) + Yn/2xn/2, (11)

where Ym/2 = Y ∗m/2 = pm/2 = 0 if m is odd.
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Note that Uk = Yk for k 6 n/2 and Uk = Y ∗n−k for n/2 < k 6 n.
The square of f is given by

f (x)2 =
2n∑

m=0

Zmxm, (12)

where
Zm := 2

∑
06k<m/2

UkUm−k + Um/2 (13)

for m 6 n.
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Preparation for the proof of Theorem 2

By symmetry (see (6), (11) and (12)), for each interval I ⊆ R we
must have

P(Zm ∈ I) = P(Z2n−m ∈ I) (14)

for n < m 6 2n.
In the sum

Vm :=
∑

06k<m/2

UkUm−k (15)
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Preparation for the proof of Theorem 2

UkUm−k , where 0 6 k < m/2, are mutually independent
random variables taking only values 0 and 1, so we will be able
to apply Lemma 5 to Vm. For k 6 n/2 we have Um−k = Ym−k if
m − k 6 n/2 and Um−k = Y ∗n−m+k if m − k > n/2. Hence, by
(6),

P(UkUm−k = 1) = P(YkUm−k = 1)

= P(Yk = 1)P(Um−k = 1) = pkpmin{m−k ,n−m+k}.
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E(Vm) = Tm :=
∑

06k<m/2

pkpmin{m−k ,n−m+k}. (16)
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