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Discrepancies

For an infinite sequence X = (xn)n≥1 in [0,1], a sub-interval [α, β) of
[0,1], and an integer N ≥ 1, the discrepancy function is the difference

E([α, β);N ;X) = A([α, β);N ;X)−N(β − α),where

A(J,N) = #{n; 1 ≤ n ≤ N,Xn ∈ J}. Various discrepancies of X:

D(N,X) = sup
0≤α<β≤1

|E([α, β);N ;X)|, D∗(N,X) = sup
0≤α≤1

|E([0, α);N ;X)|,

D+(N,X) = sup
0≤α≤1

E([0, α);N ;X), D−(N,X) = sup
0≤α≤1

(−E([0, α);N ;X)).

We have D = D+ +D−, D∗ = max(D+, D−) and D∗ ≤ D ≤ 2D∗.
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Sequences
1. Generalized van der Corput sequences

Let b ≥ 2 be an arbitrary integer and let Σ = (σr)r≥0 be a sequence
of permutations of {0,1, . . . , b − 1}. For any integer N ≥ 1, the gen-
eralized van der Corput sequence SΣ

b in base b associated with Σ is
defined by

SΣ
b (N) =

∞∑
r=0

σr
(
ar(N)

)
br+1

, with N − 1 =
∞∑
r=0

ar(N) br,

(b-adic expansion of N − 1).

If Σ = (σr) = (σ) is constant, we write SΣ
b = Sσb .

van der Corput sequences in base b, Sid
b , are obtained with identical

permutations id. The original van der Corput sequence (1935) is Sid
2 .
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2. Digital (0,1) sequences over Zb
Instead of permutations, infinite matrices over Zb act on the digits:

Let C = (crk)r≥0,k≥0 be an infinite matrix with crk ∈ Zb such that
every left upper sub-matrix of C is non singular.

Then a digital (0,1)-sequence XC
b associated with C is defined by

XC
b (N) =

∞∑
r=0

xN,r

br+1
where xN,r =

∞∑
k=0

ckrak(N) (mod b).

Note that the second summation is finite and performed in Zb, but
the first one can be infinite with the possibility that xN,r = b−1 for all
but finitely many r (hence requiring a troncation operator as defined
by Niederreiter–Xing (1995)).

Remark: Generalized van der Corput sequences and digital (0,1)-
sequences are (0,1)-sequences in the sense of Niederreiter–Xing.
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3. NUT digital (0,1)-sequences over Zb
Are sequences XC

b with nonsingular upper triangular C. Formulas have
been proved for D+ and D− (HF’05) needing more notations:

Let σ be a permutation of Zb and set Zσb :=
(
σ(0)

b
, · · · ,

σ(b− 1)

b

)
.

The so-called functions ϕσb,h related to a pair (b, σ) are linearizations of
discrepancy functions associated with Zσb , defined on [0,1], and then
extended to R by periodicity: For any integers h, k with 0 ≤ h ≤ b−1,
1 ≤ k ≤ b and any real x with (k − 1)/b ≤ x < k/b we set

ϕσb,h(x) = A

([
0,
h

b

[
; k;Zσb

)
− hx if 0 ≤ h ≤ σ(k − 1) and

ϕσb,h(x) = (b− h)x−A

([
h

b
,1

[
; k;Zσb

)
if σ(k − 1) < h < b.
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Note that ϕσb,0 = 0. The b functions ϕσb,h give rise to other functions:

ψ
σ,+
b = max

0≤h≤b−1
(ϕσb,h), ψ

σ,−
b = max

0≤h≤b−1
(−ϕσb,h) and ψσb = ψ

σ,+
b + ψ

σ,−
b

which appear in formulas below for D+, D− and D. Further set

θr(N) :=
∞∑

k=r+1

ckrak(N) (mod b) (r ≥ 0).

Moreover, with the diagonal entries crr of C, define permutations δr
by δr(i) := crri (mod b). And finally, define the translated permutation

of a given permutation σ with a given t ∈ Zb by

(σ ] t)(i) := σ(i) + t (mod b) for all i ∈ Zb.

Together, these definitions permit to state a theorem from (HF’05):
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Theorem 1. Let b be a prime. For any NUT digital (0,1)-sequence
XC
b over Zb , we have

D+(N,XC
b ) =

∞∑
j=1

ψ
δj−1]θj−1(N),+
b

(
N

bj

)
,

D−(N,XC
b ) =

∞∑
j=1

ψ
δj−1]θj−1(N),−
b

(
N

bj

)
,

D(N,XC
b ) =

∞∑
j=1

ψ
δj−1
b

(
N

bj

)
.

Remarks: In fact these series are geometrical for sufficiently large
indices j (j > n for integers n such that 1 ≤ N ≤ bn).
The most remarkable feature is that D, the extreme discrepancy, only
depends on the diagonal entries of C, via permutations δr.
Similar formulas exist for L2 discrepancy and diaphony.
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4. Generalized NUT (0,1)-sequences over Zb
We now introduce a mixed construction for arbitrary bases contain-

ing generalized van der Corput sequences and NUT digital (0,1)-

sequences over Zb. The idea is to put arbitrary permutations in place

of the diagonal entries of C. Let Sb be the set of permutations of Zb.

Definition: For any integer b ≥ 2, let Σ = (σr)r≥0 ∈ SN
b be a sequence

of permutations and let C = (ckr)r≥0,k≥r+1 be a strict upper triangular

(SUT) matrix with entries in Zb. Then, for all integers N ≥ 1, set

X
Σ,C
b (N) =

∞∑
r=0

xN,r

br+1
with xN,r = σr(ar(N)) +

∞∑
k=r+1

ckrak(N) (mod b).

We call XΣ,C
b a NUT (0,1)-sequence over Zb.
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Remark: If all entries of C are zero, then we have X
Σ,C
b = SΣ

b , the
generalized van der Corput sequence associated with Σ.
If σr = δr (multiplication by crr) for all r, then we have XΣ,C

b = XC′
b , the

NUT digital (0,1)-sequence with generating matrix C′ = (ckr)r≥0,k≥r
obtained from C by putting entries crr on the diagonal.

It is quite remarkable that Theorem 1 is still valid for XΣ,C
b sequences:

Theorem 2. For any NUT (0,1)-sequence X
Σ,C
b over Zb , we have

D+(N,XΣ,C
b ) =

∞∑
j=1

ψ
σj−1]θj−1(N),+
b

(
N

bj

)
,

D−(N,XΣ,C
b ) =

∞∑
j=1

ψ
σj−1]θj−1(N),−
b

(
N

bj

)
,

D(N,XΣ,C
b ) =

∞∑
j=1

ψ
σj−1
b

(
N

bj

)
.
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The proof closely follows that of Theorem 1, but is rather complex

and requires several technical changes.

Concerning QMC Methods, this extension enlarges the choices of

“good” scramblings for the construction of efficient point sets which

can avoid correlations induced by linear permutations.

Concerning Number Theory, as an application of Theorem 2, we are

interested in this talk to obtain best possible lower bounds for the

star discrepancy of many sub-classes of (0,1)-sequences in base b. In

this way we generalize results on shifted van der Corput sequences in

base 2 from Kritzer, Larcher and Pillichshammer to a wide extent.
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Best possible lower bounds for star discrepancy

1.Overview of the problem

For an infinite sequence X in [0,1], set

s(X) := lim sup
N→∞

D(N,X)

logN
and s∗(X) := lim sup

N→∞

D∗(N,X)

logN
.

A famous theorem of Schmidt (72 further improved by Béjian 82)
states that for any X, s(X) > 0.12, and hence s∗(X) > 0.06.

On the other hand, it is known that this order is best possible with
s∗(Sid

2 ) = 1/(3 log2) = 0,48 . . .(Haber 66). Since then, trying to
reduce the gap between upper and lower bounds is still a challenge.

In the following, we consider the problem of finding best possible
lower bounds within our new family of sequences XΣ,C

b .
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2. A lower bound for a family of XΣ,C
b seq.

Let τ ∈ Sb be the permutation defined by τ(k) = b−k−1 (all k ∈ Zb).
For any subset S of integers and any σ ∈ Sb, define the sequence

Σσ
S = (σr)r≥0 by σr = σ if r ∈ S and σr = τ ◦ σ =: σ if r /∈ S.

The permutation τ “swaps” the functions ψ
σ,+
b and ψ

σ,−
b , that is

ψ
σ,+
b = ψ

τ◦σ,−
b and ψ

σ,−
b = ψ

τ◦σ,+
b . Thanks to that we can prove

Theorem 3. For any integer b ≥ 2, let σ ∈ Sb and let C be a strict
upper triangular matrix with entries in Zb. Then, for any subset S of
integers, we have

D∗(N,X
Σσ
S ,C

b ) ≥
1

2
D(N,Sσb ) and hence s∗(X

Σσ
S ,C

b ) ≥
ασb

2 log b
,

where ασb = infn≥1 supx∈[0,1]
1
n

∑n
j=1ψ

σ
b

(
x
bj

)
.
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Hint for Theorem 3: From Theorem 2, we obtain

D(N,X
Σσ
S ,C

b ) =
∞∑
j=1

ψ
σj−1
b

(
N

bj

)
=

∞∑
j=1

ψσb

(
N

bj

)
= D(N,Sσb ),

since σj−1 = σ or τ ◦σ so that ψ
σj−1
b = ψ

σj−1,+
b +ψ

σj−1,−
b = ψσb . Hence

D∗(N,S
Σσ
S

b ) ≥
1

2
D(N,S

Σσ
S

b ) =
1

2
D(N,Sσb ).

Now, the last inequality follows since it is known (HF’81) that

lim sup
N→∞

D(N,Sσb )

logN
=

ασb
log b

.
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3. An optimized set for low star discrepancy
Let A be the subset A : = {0,2,3,6,7,8,12,13,14,15, . . .}, so that

Σσ
A = (σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, σ, . . .). Then (HF’81)

s∗(S
Σσ
A

b ) =
α
σ,+
b + α

σ,−
b

2 log b
where

α
σ,+
b = inf

n≥1
sup

x∈[0,1]

1

n

n∑
j=1

ψ
σ,+
b

(
x

bj

)
, ασ,−b = inf

n≥1
sup

x∈[0,1]

1

n

n∑
j=1

ψ
σ,−
b

(
x

bj

)
.

This construction has given the lowest known star discrepancies, cur-
rently (Ostromoukhov’09): there exists a permutation σ0 ∈ S60 s.t.

s∗(S
Σ
σ0
A

60 ) =
32209

35400 log60
= 0.2222 . . . .

It is interesting to note that ψσ0,−
60 = 0, hence D∗(S

Σ
σ0
A

60 ) = D(S
Σ
σ0
A

60 ).
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For reasonable small b, constants α
σ,+
b and α

σ,−
b are not difficult to

compute and for identy, it is even possible to find them:

s∗(S
Σid
A

b ) =
α
I,+
b

2 log b
=

b− 1

8 log b
if b is odd, and

s∗(S
Σid
A

b ) =
α
I,+
b

2 log b
=

b2

8(b+ 1) log b
if b is even.
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4. Best possible lower bounds for X
Σσ
S,C

b seq.

Now, comparing the lower bound s∗(X
Σσ
S ,C

b ) ≥
ασb

2 log b
for arbitrary

sets S from Theorem 3 and the result with the set A,

s∗(S
Σσ
A

b ) =
α
σ,+
b + α

σ,−
b

2 log b
,

we cannot infer any relation between them since in general we have

ασb ≤ α
σ,+
b + α

σ,−
b .

But if we have either ψσ,+b = 0 or ψσ,−b = 0, in which case we get

ασb = α
σ,+
b +α

σ,−
b , we obtain that ασb /(2 log b) is the best possible lower

bound for the star discrepancy of sequences X
Σσ
S ,C

b :
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Corollary 1 Let CSUT be the set of all strict upper triangular matrices

and let σ ∈ Sb such that D∗(Sσb ) = D(Sσb ). Then

inf
Σ∈{σ,τ◦σ}N
C∈CSUT

s∗(XΣ,C
b ) =

ασb
2 log b

.

Hint: Theorem 3 implies that ασb /(2 log b) is a lower bound and on the

other hand, with the null matrix C = 0 and Σσ
A, we have X

Σσ
A,0

b = S
Σσ
A

b
so that

s∗(X
Σσ
A,0

b ) = s∗(S
Σσ
A

b ) =
ασb

2 log b
,

since in the present case we have ασb = α
σ,+
b + α

σ,−
b .
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The case of identity in Corollary 1 is of special interest because αid
b

is explicitly known for any integer b ≥ 2.

Corollary 2 With the notations of Corollary 1, we obtain

inf
b≥2

inf
Σ∈{id,τ}N
C∈CSUT

s∗(XΣ,C
b ) = s∗(S

Σid
A

3 ) =
1

4 log3
= 0.2275 . . . .

This result can be seen as an analog (for van der Corput sequences

and NUT (0,1)-sequences) of the result on (nα) sequences obtained

by Dupain and Sós (1984):

inf
α
s∗((nα)) = s∗((n

√
2)) =

1

4 log(
√

2 + 1)
= 0.2836 . . . .
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5. Linearly digit scrambled NUT (0,1)-seq.

A linear digit scrambling (following Matoušek’98) is a permutation
π ∈ Sb of the form

π(k) = γk+ l (mod b) for all k ∈ Zb, with γ 6= 0, l ∈ Zb.

Let Π = (πr)r≥0 ∈ SN
b be a sequence of linear digit scramblings and let

C1
NUT be the set of NUT matrices C with all diagonal entries crr = 1.

A linearly digit scrambled NUT digital (0,1)-sequence, denoted Z
Π,C
b ,

is defined by

Z
Π,C
b (N) =

∞∑
r=0

πr(xN,r)

br+1
in which xN,r =

∞∑
k=r

ckrak(N) (mod b).
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Corollary 3 Let ZΠ,C
b be a linearly digit scrambled NUT digital (0,1)-

sequence associated with C ∈ C1
NUT and Π = (πr)r≥0 ∈ {id, τ}N. Then

we have

inf
b≥2

inf
Π∈{id,τ}N

C∈C1
NUT

s∗(ZΠ,C
b ) =

1

4 log3
= 0.2275 . . . .

Hint: The permutation τ is a linear digit scrambling since

τ(k) = (b− 1)k+ b− 1 (mod b),

from which it is easy to prove that ZΠ,C
b = X

Π,C′
b where

C′ =
(
(b− 1)ckr

)
r≥0,k≥r+1

∈ CSUT .

Remark: The only linear digit scramblings π verifying D(Sπb ) = D∗(Sπb )
are permutations id and τ , as we checked recently.

21



Finally, we come back to the question that first motivated this study:

“Is it true that the constant 1/(6 log2) is best possible for any digitally

shifted NUT digital (0,1)-sequence in base 2, as it is the case for any

digitally shifted van der Corput sequence?”

Since in base 2, the permutation τ is the nonzero shift and since the

diagonal entries of C are all equal to 1, we can answer this question

in the affirmative as a special case of Corollary 3:

Corollary 4 We have

inf
∆∈ZN

2
C∈CNUT

s∗(Z∆,C
2 ) =

1

6 log2
= 0.2404 . . . .

Thanks for your attention!
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