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Discrepancies

For an infinite sequence X = (zn),>1 in [0, 1], a sub-interval [a, 3) of
[0,1], and an integer N > 1, the discrepancy function is the difference

E([a, 8); N; X) = A([e, 8); N; X) — N(B8 — a), where

A(J,N) = #{n;1 <n < N, X, € J}. Various discrepancies of X:

D(N,X)= sup |E([e,B);N;X)|, D*(N,X)= sup |E([0,a);N;X)|,
0<a<p<L1 0<a<l1

DT(N,X) = OggglE([O,a); N;X), D”(N,X) = Ogggl(—E([O,a); N; X)).

We have D =Dt 4+ D~, D*=max(Dt,D~) and D* < D < 2D*.
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Sequences
1. Generalized van der Corput sequences

Let b > 2 be an arbitrary integer and let ~ = (o),>0 be a sequence
of permutations of {0,1,...,b— 1}. For any integer N > 1, the gen-
eralized van der Corput sequence sz in base b associated with X is
defined by

S>(N) = i 0<:J§]1V)> with N — 1 = fj ar(N) b,

r=0 r=0

(b-adic expansion of N —1).

If = = (or) = (o) is constant, we write S = S7.

van der Corput sequences in base b, Si¢, are obtained with identical
permutations id. The original van der Corput sequence (1935) is S'Qd.
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2. Digital (0,1) sequences over 7

Instead of permutations, infinite matrices over Z; act on the digits:

Let C = (c})r>0 k>0 b€ an infinite matrix with c; € Z; such that
every left upper sub-matrix of C' is non singular.

Then a digital (0,1)-sequence X,? associated with C is defined by

O

@)

xSy =Y Z”Xrg where zy, = Y cFap(IV) (mod b).
r=0 k=0

Note that the second summation is finite and performed in Z;, but

the first one can be infinite with the possibility that TN = b—1 for all

but finitely many r (hence requiring a troncation operator as defined

by Niederreiter—Xing (1995)).

Remark: Generalized van der Corput sequences and digital (0,1)-
sequences are (0,1)-sequences in the sense of Niederreiter—Xing.
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3. NUT digital (0,1)-sequences over 7

Are sequences Xg with nonsingular upper triangular C. Formulas have
been proved for Dt and D~ (HF'05) needing more notations:

0 b—1
Let o be a permutation of Z; and set Z; = (%,--- ,0( ; )).
The so-called functions ¢f , related to a pair (b,0) are linearizations of
discrepancy functions associated with Z¢, defined on [0, 1], and then
extended to R by periodicity: For any integers h,k with 0 < h <b—1,

1 <k<bandany real x with (k—1)/b <z < k/b we set
h
@g’h(aﬁ) =A<[O,E[;R;Zg> —hx iTfO<h<o(k—1) and

vy p(x) = (b—h)z — A([%, 1[; k; Z{,’) if o(k—1)<h<b.



Note that goao = 0. The b functions gpg’h give rise to other functions:

o,+ o - o o o,+ 0,—
T = max : = max (— and = )’ ’
(0 Oghgb—l(wb’h) (o Oghgb—l( ©p.1) Yy =% Ty

which appear in formulas below for D+, D~ and D. Further set

0r(N) := ioj cﬁak(N) (modb) (r > 0).
k=r-+1

Moreover, with the diagonal entries c. of (', define permutations ¢,
by 6-(7) == cli (mod b). And finally, define the translated permutation
of a given permutation ¢ with a given t € Z; by

(cwWt)(i) :==0() +t(modb) for all i € Z,.
Together, these definitions permit to state a theorem from (HF'05):
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Theorem 1. Let b be a prime. For any NUT digital (0, 1)-sequence
X over Z, , we have

DH(N, X,?) =3 ng—lwej_l(N),-l— (N) |

=1 b
C X5 10 _1(N),— N
- — J— J— ’ -
(N, X{) =3 ().
=1
O 5 N
bV x0) = 3 0 ()

Remarks: In fact these series are geometrical for sufficiently large

indices j (j > n for integers n such that 1 < N < bp").
The most remarkable feature is that D, the extreme discrepancy, only

depends on the diagonal entries of C', via permutations d,.
Similar formulas exist for Lo discrepancy and diaphony.



4. Generalized NUT (0,1)-sequences over 7

We now introduce a mixed construction for arbitrary bases contain-
ing generalized van der Corput sequences and NUT digital (0,1)-
sequences over Zy. The idea is to put arbitrary permutations in place
of the diagonal entries of C'. Let G, be the set of permutations of Z,.

Definition: For any integer b > 2, let ¥ = (or),>0 € 6})\1 be a sequence
of permutations and let C = (Cff)rzo,kzr+1 be a strict upper triangular
(SUT) matrix with entries in Z,. Then, for all integers N > 1, set

o T . ©.@)
XNy =Y brfi’g with oy, = or(ar(N)) + 3 Fap(N) (mod b).
r=0 k=r+41

We call sz,c a NUT (0, 1)-sequence over Zy.



Remark: If all entries of C are zero, then we have XZ(J = sz, the
generalized van der Corput sequence associated with Z
If o = & (multiplication by ¢%) for all r, then we have X = XbC , the
NUT digital (0,1)-sequence with generating matrix C’ = (cF )r>0.k>r
obtained from C by putting entries c;. on the diagonal.

C

It is quite remarkable that Theorem 1 is still valld for XZ sequences:

Theorem 2. For any NUT (0, 1)-sequence X ¢ over Zy, , we have

D—I—(N XZC)— Z¢U] 1U93 1(N)+(E)’

J 1 b7
D~ (N XZ C) — Z ¢0'3 1U9] 1(N),— (g)
1=1
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The proof closely follows that of Theorem 1, but is rather complex
and requires several technical changes.

Concerning QMC Methods, this extension enlarges the choices of
“good” scramblings for the construction of efficient point sets which
can avoid correlations induced by linear permutations.

Concerning Number Theory, as an application of Theorem 2, we are
interested in this talk to obtain best possible lower bounds for the
star discrepancy of many sub-classes of (0, 1)-sequences in base b. In
this way we generalize results on shifted van der Corput sequences in
base 2 from Kritzer, Larcher and Pillichshammer to a wide extent.
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Best possible lower bounds for star discrepancy
1.0Overview of the problem

For an infinite sequence X in [0, 1], set

D(N, X D*(N, X
s(X) ;= Ilimsup (N, X) and s*(X) := limsup (&, ).
N —o00 |OgN N —o0 |OgN

A famous theorem of Schmidt (72 further improved by Béjian 82)
states that for any X, s(X) > 0.12, and hence s*(X) > 0.06.

On the other hand, it is known that this order is best possible with
s*(SK¥) = 1/(3log2) = 0,48...(Haber 66). Since then, trying to
reduce the gap between upper and lower bounds is still a challenge.

In the following, we consider the problem of finding best possible

lower bounds within our new family of sequences XbZ’C.
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2. A lower bound for a family of XZ ¢ sed.
Let 7 € G, be the permutation defined by 7(k) =b—k—1 (all k € Z).
For any subset S of integers and any o € G, define the sequence

f§=(0r)r20 by o =cifreSand o =17o00=:cifré¢s.
The permutation = “swaps’ the functions ¢g’+ and ¢,’", that is
w?"’ =, "7 and ¢ = @bgo"’_". Thanks to that we can prove

Theorem 3. For any integer b > 2, let o0 € G and let C be a strict
upper triangular matrix with entries in Z;. Then, for any subset S of
integers, we have

2,0, _ 1 ~2,C

o
) > D(N Sy) and hence s*(X; %b

D*(N, X, ) 2 21logb’
where ap = inf,>q SUP,¢[0,1] ﬁZ?zl by (E) '
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Hint for Theorem 3: From Theorem 2, we obtain

DX = 3w () = 3 vt (i) = v,

: 0j—1 01,1 Oj—1,—
since o;_1 = o0 or Too so that ¢’ " =’ + = ¢y . Hence

>Z 1 > 1
D*(N, S, ) > 5D(N, S, S) = 5D(N, S7).
Now, the last inequality follows since it is known (HF'81) that

D(N, 57 g
lim sup (N, 5) — %
N—oco |OgN log b
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3. An optimized set for low star discrepancy
Let A be the subset A: = {0,2,3,6,7,8,12,13,14,15,...}, so that

?-4: (0-7670-7075767070707575767'")' Then (HF,81)

o O-a_l_ 0,—
s*(SbZA) =% T%here
21ogb
U= inf sup -— ’ — | = inf sup -— — .
“ Pyn 2 (57) nzue[o?nnj; VT

T his construction has given the lowest known star discrepancies, cur-
rently (Ostromoukhov'09): there exists a permutation og € Ggg s.t.

>0 32209
s*(Sgg ) = = 0.2222....
35400 log 60

_ >0 >0
It is interesting to note that ¢¢8~ = 0, hence D*(Sgs' ) = D(Sgs' ).
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For reasonable small b, constants oz(g’_l_ and ozg’_ are not difficult to

compute and for identy, it is even possible to find them:
I,+

>id b—1
Sy = b = if b is odd, and
21log b 81ogb
> id b
s*(S, ) = % if b is even.

2logb  8(b+ 1)logb
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4. Best possible lower bounds for sz sed.

Zg,C) ay
— 2logb
sets § from Theorem 3 and the result with the set A,
Oéz-’—l_ _I_ aga_
21o0gb

for arbitrary

Now, comparing the lower bound s*(X

Y

55, ) =

we cannot infer any relation between them since in general we have

ozb <ab++ab

But if we have either @bg”L = 0 or ¢y°~ = 0, in which case we get

af = a +—I—ozb we obtain that af /(210ogd) is the best possible lower
> C

bound for the star discrepancy of sequences X S’
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Corollary 1 Let Cqgiyr be the set of all strict upper triangular matrices
and let o € G, such that D*(Sy) = D(S7). Then

o

(@7
inf  s*(X7Y) =
ZE{O,TOJ}N 21logb
CECSUT

Hint: Theorem 3 implies that a7 /(2logb) is a lower bound and on the
>9.0 >0
other hand, with the null matrix C = 0 and X9, we have X, 4" = G~

so that

o
Qy,

2logb’

2 29
S A7) = 57(8, ) =

since in the present case we have ag = aZ’+ + ab’_.
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The case of identity in Corollary 1 is of special interest because ald
is explicitly known for any integer b > 2.

Corollary 2 With the notations of Corollary 1, we obtain

Zid

inf inf _s(X79) = s*(554) =

b>2 ZE{id,T}N 41093
CECSUT

= 0.2275....

This result can be seen as an analog (for van der Corput sequences
and NUT (0, 1)-sequences) of the result on (na) sequences obtained
by Dupain and Sés (1984):

1

inf s*((na)) = s*((nv2)) = doa(VAL D) 0.2836....
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5. Linearly digit scrambled NUT (0,1)-seq.

A linear digit scrambling (following Matou3ek’98) is a permutation
m € G of the form

(k) = vk + 1 (mod b) for all k € Z, with v # 0,1 € Zy.

Let M = (7r),>0 € 6}}1 be a sequence of linear digit scramblings and let
C}VUT be the set of NUT matrices C' with all diagonal entries ¢, =

A linearly digit scrambled NUT digital (0,1)-sequence, denoted Z;)_"C,
is defined by

Mn,C o WT(wN,r) : : > L
Z, U (N) = > .| in which  ay, = ) c¢fap(IN) (modb).
k=r

r=0
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Corollary 3 Let Z,')_"C be a linearly digit scrambled NUT digital (0,1)-
sequence associated with C € Ck;;r and M = (7r),>0 € {id, 7}, Then
we have

inf inf _s%(2,"%) = = 0.2275....
b>2 Mefid,r}N 41093

CeCxyr

Hint: The permutation 7 is a linear digit scrambling since

(k) = (b— 1)k +b— 1 (modb),

!/
from which it is easy to prove that Z;)_"C — X(';"C where

/] . k
C! = ((b 1)Cr)r20,k2r—l—1 € Cspr

Remark: The only linear digit scramblings = verifying D(S]) = D*(S}')
are permutations id and 7, as we checked recently.
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Finally, we come back to the question that first motivated this study:

“Is it true that the constant 1/(610g2) is best possible for any digitally
shifted NUT digital (0,1)-sequence in base 2, as it is the case for any
digitally shifted van der Corput sequence?”

Since in base 2, the permutation 7 is the nonzero shift and since the
diagonal entries of C' are all equal to 1, we can answer this question
in the affirmative as a special case of Corollary 3:

Corollary 4 We have

1
inf  s*(25%) =
A7y 6log 2
CECNUT

= 0.2404....

Thanks for your attention!
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