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Security requirements

Preimage resistance

Second preimage resistance

Collision resistance
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The old construction

Let P (X) ∈ Z[X] be a fixed monic polynomial of degree
n ≥ 3 having no multiple roots. Denote by α1, . . . , αn the
roots of P and put

Li(X) :=

m∑

j=1

α
j−1

i Xj for i = 1, . . . , n and m ≤ n.

Define the norm form corresponding to the polynomial P by

NP (X) :=

n∏

i=1

Li(X).
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Aumassons attack

Non-standard notion of collision resistance

Iterated scheme

Circulant matrices

Implementation flaws
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New construction

Theorem 1 Let f(X) ∈ Fq [X1, . . . , Xm] be a polynomial such that

f(X) := b(X1, . . . , Xm) + a(X1, . . . , Xm)

with homogeneous polynomials a(X), b(X) satisfying k = deg a(X) < deg b(X) = n,
degXi

b(X) = n for 1 ≤ i ≤ m. Further, s uppose that there exist indices 1 ≤ j1 < j2 ≤ n

such that the binary form

b0(Xj1 , Xj2 ) := b(0, . . . , 0, Xj1 , 0, . . . , 0, Xj2 , 0, . . . , 0) (1)

has no multiple zero.

Let N(f, γ, q) denote the number of solutions of the equation f(x1, . . . , xm) = γ in
x1, . . . , xm ∈ Fq . Then

|N(f, γ, q)− qm−1| ≤ (n− 1)(n− 2)qm−3/2 + 5n13/3qm−2. (2)

Moreover, if q > 15n13/3, then

|N(f, γ, q)− qm−1| ≤ (n− 1)(n− 2)qm−3/2 + (5n2 + n+ 1)qm−2. (3)
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Practical considerations

Lemma 1 Let f(X) := b(X) + a(X) such that
b(X) = β1X

r
1
+ · · ·+ βmXr

m, a(X) = α1X
s
1
+ · · ·+ αmXs

m and
α1, . . . , αm, β1, . . . , βm 6= 0. If 0 < s < r < q and r is odd if
q = 2f , then f(X) satisfies all assumptions of Theorem 1.
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Practical considerations

Odd characteristic arithmetic

Even characteristic arithmetic
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Strict avalanche criterion

If a function is to satisfy the strict avalanche criterion, then
each of its output bits should change with a probability of
one half whenever a single input bit is complemented.
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Asymptotic behavior

Theorem 2 Let us define f ∈ F2k [x1, . . . , xm] as
f(x1, . . . , xm) =

∑m
i=1

αix
n
i +

∑m
i=1

βixi where n = 2l + 1 such
that (l, k) = 1. Then

(1− qε)m−1(
1

q
− ε) ≤

P (f(x1, . . . , xm)− f(x1 + δ1, . . . , xm + δm) = γ)

≤ (1 + qε)m−1(
1

q
+ ε)

where 0 ≤ ε ≤ (q − n)q−
3

2 .
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Test results 1.

Base
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Test results 2.

Coefficients changed

3rd International Conference on Uniform Distribution Theory Smolenice, 25/06/2012 – p. 11



Test results 3.

Small exponent
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Test results 4.

Low weight exponent
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Thank you for your attention!
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