Notes on a family of preimage resistant functions

János Folláth

follathj@inf.unideb.hu

University of Debrecen

Security requirements

- Preimage resistance
- Second preimage resistance
- Collision resistance

The old construction

Let $P(X) \in \mathbb{Z}[X]$ be a fixed monic polynomial of degree $n \ge 3$ having no multiple roots. Denote by $\alpha_1, \ldots, \alpha_n$ the roots of P and put

$$L_i(\underline{X}) := \sum_{j=1}^m \alpha_i^{j-1} X_j \text{ for } i = 1, \dots, n \text{ and } m \le n.$$

Define the norm form corresponding to the polynomial P by

$$\mathcal{N}_P(\underline{X}) := \prod_{i=1}^n L_i(\underline{X}).$$

Aumassons attack

- Non-standard notion of collision resistance
- Iterated scheme
- Circulant matrices
- Implementation flaws

New construction

Theorem 1 Let $f(\underline{X}) \in \mathbb{F}_q[X_1, \ldots, X_m]$ be a polynomial such that

$$f(\underline{X}) := b(X_1, \dots, X_m) + a(X_1, \dots, X_m)$$

with homogeneous polynomials $a(\underline{X}), b(\underline{X})$ satisfying $k = \deg a(\underline{X}) < \deg b(\underline{X}) = n$, $\deg_{X_i} b(\underline{X}) = n$ for $1 \le i \le m$. Further, s uppose that there exist indices $1 \le j_1 < j_2 \le n$ such that the binary form

$$b_0(X_{j_1}, X_{j_2}) := b(0, \dots, 0, X_{j_1}, 0, \dots, 0, X_{j_2}, 0, \dots, 0)$$
⁽¹⁾

has no multiple zero.

Let $N(f, \gamma, q)$ denote the number of solutions of the equation $f(x_1, \ldots, x_m) = \gamma$ in $x_1, \ldots, x_m \in \mathbb{F}_q$. Then

$$|N(f,\gamma,q) - q^{m-1}| \le (n-1)(n-2)q^{m-3/2} + 5n^{13/3}q^{m-2}.$$
(2)

Moreover, if $q > 15n^{13/3}$, then

$$|N(f,\gamma,q) - q^{m-1}| \le (n-1)(n-2)q^{m-3/2} + (5n^2 + n + 1)q^{m-2}.$$
(3)

Practical considerations

Lemma 1 Let $f(\underline{X}) := b(\underline{X}) + a(\underline{X})$ such that $b(\underline{X}) = \beta_1 X_1^r + \dots + \beta_m X_m^r$, $a(\underline{X}) = \alpha_1 X_1^s + \dots + \alpha_m X_m^s$ and $\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_m \neq 0$. If 0 < s < r < q and r is odd if $q = 2^f$, then $f(\underline{X})$ satisfies all assumptions of Theorem 1.

Practical considerations

- Odd characteristic arithmetic
- Even characteristic arithmetic

Strict avalanche criterion

If a function is to satisfy the strict avalanche criterion, then each of its output bits should change with a probability of one half whenever a single input bit is complemented.

Asymptotic behavior

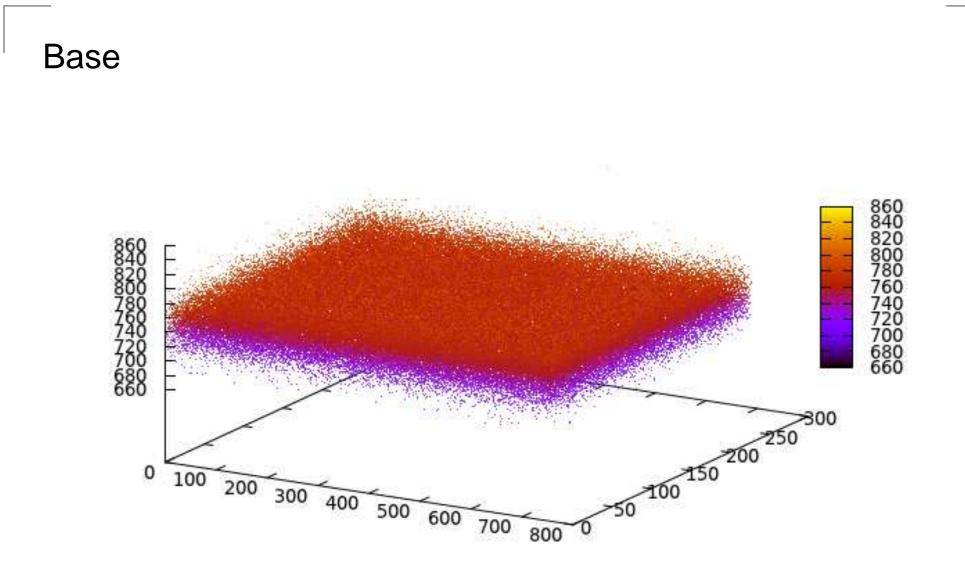
Theorem 2 Let us define $f \in \mathbb{F}_{2^k}[x_1, \ldots, x_m]$ as $f(x_1, \ldots, x_m) = \sum_{i=1}^m \alpha_i x_i^n + \sum_{i=1}^m \beta_i x_i$ where $n = 2^l + 1$ such that (l, k) = 1. Then

$$(1-q\varepsilon)^{m-1}(\frac{1}{q}-\varepsilon) \le$$

$$P(f(x_1, \dots, x_m) - f(x_1 + \delta_1, \dots, x_m + \delta_m) = \gamma)$$
$$\leq (1 + q\varepsilon)^{m-1} (\frac{1}{q} + \varepsilon)$$

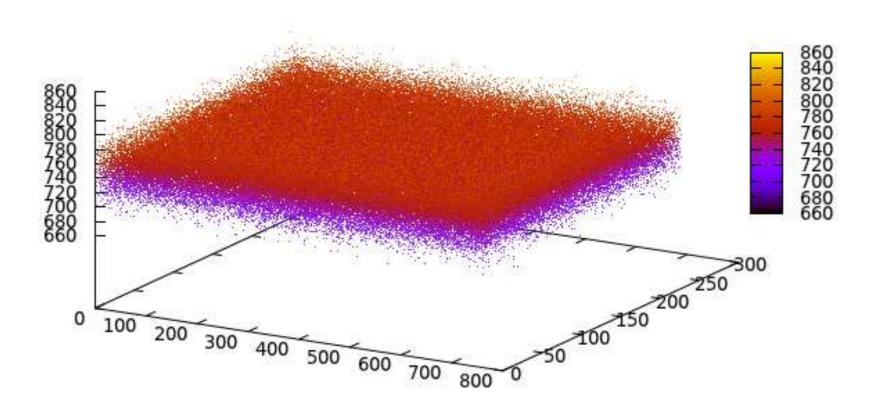
where $0 \le \varepsilon \le (q-n)q^{-\frac{3}{2}}$.

Test results 1.



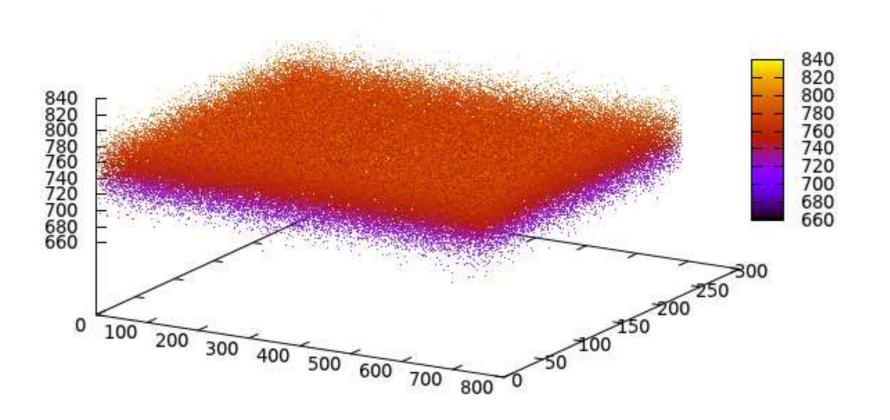
Test results 2.

Coefficients changed



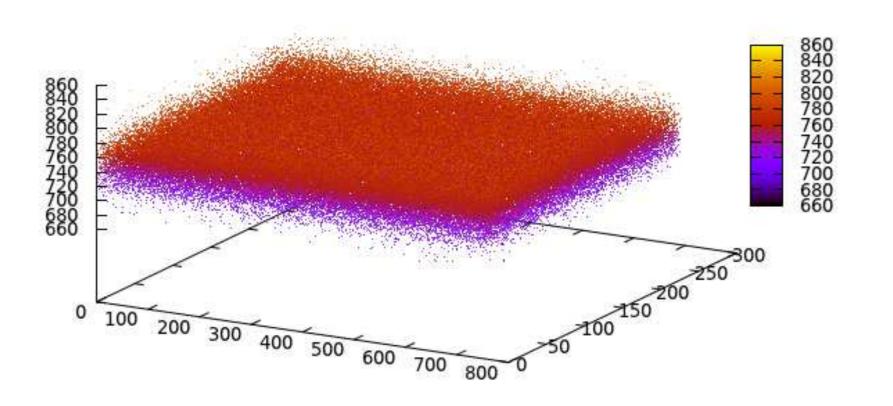
Test results 3.

Small exponent



Test results 4.

Low weight exponent



Thank you for your attention!

References

- [1] R. Lidl and H. Niederreiter "Finite Fields", Encyclopedia of Mathematics and its Applications, vol. 20, 1997
- [2] R. Coulter and M. Henderson "A note on the roots of trinomials over a finite field", Bull. Austral. Math. Soc., vol. 69, 429-432, 2004
- [3] R. Forré "The strict avalanche criterion: spectral properties of boolean functions and an extended definition", Advances in cryptology—CRYPTO '88 (Santa Barbara, CA, 1988), 450–468
- [4] A. Bérczes and J. Ködmön and A. Pethő "A one-way function based on norm form equations", Periodica Mathematica Hungarica vol. 49, 1-13, 2004
- [5] A. Béreczes, J. Folláth, A. Pethő "On a family of preimage resistant functions", Tatra Mountains Mathematical Publications vol. 47, 1-13, 2010