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Star Discrepancy: Definition

X ⊂ [0, 1]d n-point set, [0, y) := [0, y1) × · · · × [0, yd) “test box”.

y

Local discrepancy: δ(y) = δ(y, X) = vol([0, y)) −
1

n
|X ∩ [0, y)|

Star discrepancy: disc∗(X) = sup
y∈[0,1]d

|δ(y, X)|
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Known Methods for Calculation

Elementary Method for Exact Calculation

For X = {x1, . . . , xn} ⊂ [0, 1]d put

Γj(X) := {xi
j | i = 1, . . . , n} ∪ {1} , j = 1, . . . , d ,

Γ(X) := Γ1(X) × · · · × Γd(X)

Then disc∗(X) =

max
y∈Γ(X)

max

{

vol([0, y)) −
1

n

∣

∣[0, y) ∩ X
∣

∣ ,
1

n

∣

∣[0, y] ∩ X
∣

∣ − vol([0, y))

}

Thus disc∗(X) can be calculated by considering at most 2(n + 1)d

test boxes.
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Known Methods for Calculation

Elementary Method for Exact Calculation

y

1

0 1

Simple Observation: It suffices to consider 2(n + 1)d test boxes to
calculate the discrepancy.
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Further Methods for Calculation

Improvements of the Elementary Method:

Exact formula for the star discrepancy in dimension d = 1 by
Niederreiter ’72 (d = 1).

Faster methods than the elementary one by De Clerck ’86 (d = 2)
and Bundschuh and Zhu ’93 (d ≥ 3). Time to calculate the star
discrepancy still O(nd).

Fastest algorithm to calculate the star discrepancy needs time
O(n1+d/2) [Dobkin, Eppstein, Mitchell ’96].
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Known Methods for Calculation

Observation: Exact calculation of star discrepancy is discrete
optimization problem.

Bad news from Discrete Complexity Theory:

Theorem [G., Srivastav, Winzen ‘09].
The calculation of the star discrepancy is NP -hard.

Theorem [Giannopoulos, Knauer, Wahlström, Werner ‘11].
Calculation of star discrepancy is W [1]-hard with respect to
parameter d.
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Methods for Approximation

Algorithms with error guarantee

• Algorithms from [Thiémard ’00, ’01a] to approximate the star
discrepancy up to some user-specified error δ.

Cost of the algorithms is ≥ Ω(dδ−d) [G.’08].

Algorithms based on optimization heuristics

• Algorithm from [Thiémard’01b] formulates problem as integer
linear program (ILP) and relies on cutting plane and
branch-and-bound techniques.

• Algorithm of Winker & Fang ’97 is a local search algorithm
relying on the meta heuristic “Threshold Accepting”.

• Genetic algorithm of Shah ’10.
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Randomized Approach

Algorithm of Winker & Fang (“Threshold Accepting”)

Idea: Calculate lower bound for star discrepancy by choosing test
boxes randomly within a (refined) local search algorithm

Local neighborhood structure for x∗ ∈ Γ(X)

Nk(x∗) ≃ subgrid of Γ(X) of cardinality (2k + 1)d with center x∗,

with uniform distribution.
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Algorithm of Winker & Fang

For y ∈ [0, 1]d put

δ(y) := vol([0, y))−
1

n

∣

∣[0, y)∩X
∣

∣ , δ(y) :=
1

n

∣

∣[0, y]∩X
∣

∣−vol([0, y)) ,

and δ∗(y) := max{δ(y), δ(y)}.

Choose threshold values T1 > T2 > · · · > TI ≥ 0

Concrete Algorithm

Choose x randomly from Γ(X) and put x∗ := x.

For i = 1 to I
For j = 1 to J

Choose x ∈ Nk(x∗) randomly
If δ∗(x∗) − δ∗(x) ≤ Ti then x∗ := x

Return δ∗(x∗)
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Improving on the W&F-Algorithm

Main Idea: Modification of the Neigborhoods

Endow neighborhoods Nk(x) with new probability measure putting
more weight on

• larger coordinates

• large gaps in grid Γ(X)

Concrete Approach:

Ck(x) := conv(Nk(x)), endowed with probability measure

µd :=

d
⊗

j=1

dyd−1
j λ(dyj) ,

λ the Lebesgue measure on R. Choose y ∈ Ck(x) randomly.

10 / 17



Randomized
Algorithms to
Approximate
Discrepancies

Definition

Calculation

Approximation

Threshold
Accepting

Improved
Algorithm

Numerical Results

Applications

References

Further Improvement on the W&F-Algorithm

Procedures “snapping up” and “snapping down”:

Rounding y up and down to critical test boxes y+,sn and y−,sn.

y

1

0 1
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Some Numerical Results

disc∗(·) TA improved Winker & Fang
Name d n found Hits Best-of-10 Hits Best-of-10
Faure 7 343 0.1298 100 0.1298 0 0.1143
Faure 8 121 0.1702 100 0.1702 0 0.1573
Faure 9 121 0.2121 100 0.2121 0 0.1959
Faure 10 121 0.2574 100 0.2574 0 0.2356
Faure 11 121 0.3010 100 0.3010 0 0.2632
Faure 12 169 0.2718 100 0.2718 0 0.1708
Sobol’ 50 2000 0.1030∗ 0 0.1024 0 0.0005
Sobol’ 50 4000 0.0677∗ 0 0.0665 0 0.00025
Faure 50 2000 0.3112∗ 100 0.3112 0 0.0123
Faure 50 4000 0.1979∗ 0 0.1978 0 0.0059
GLP 50 2000 0.1465∗ 0 0.1450 0 0.0005
GLP 50 4000 0.1205∗ 0 0.1201 0 0.0003

Table: New instance comparisons. Discrepancy values marked with a star are
lower bounds only (i.e., largest discrepancy found over all executions of algorithm
variants). All data is computed using 100 trials of 100, 000 iterations; reported is
the average value of best-of-10 calls, and number of times (out of 100) that the
optimum (or a value matching the largest known value) was found.
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Further Numerical Results

TA improved Shah
Class d n disc∗(·) Hits Best-of-10 Hits Best Found
Halton 5 50 0.1886 100 0.1886 81 0.1886
Halton 7 50 0.2678 100 0.2678 22 0.2678
Halton 7 100 0.1714 100 0.1714 13 0.1714

Halton 7 1000 0.0430 81 0.0430 8(1) 0.0430(1)

Faure 10 50 0.4680 100 0.4680 97 0.4680
Faure 10 100 0.2483 100 0.2483 28 0.2483

Faure 10 500 0.0717∗ 100 0.0717 0(1) 0.0689(1)

Table: Comparison against point sets used by Shah. Reporting average value of
best-of-10 calls, and number of times (out of 100) that the optimum was found;
for Shah, reporting highest value found, and number of times (out of 100) this
value was produced. The discrepancy value marked with a star is lower bound
only (i.e., largest value found by any algorithm). Values marked (1) are
recomputed using the same settings as in [Sha’10].
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Applications

Quality Testing of Point Sets

[Doerr, G., Wahlström 2010]: Basic version of randomized TA
algorithm used to compare quality of small samples generated by
derandomized algorithm with classical low-discrepancy point sets and
Monte Carlo points in dimension d ≤ 21.

Generating Low-Discrepancy Point Sets via Optimization
Approach

[De Rainville, Gagné, Teytaud, Laurendeau 2012]: Genetic algorithm
used to optimize the choice of permutations for generalized Halton
sequences with respect to Hickernell’s modified L2-discrepancy.

Work in progress: With our randomized TA algorithm the
optimization should now be done with respect to star discrepancy.
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Applications

Scenario Reduction in Stochastic Programming

Goal of Stochastic Programming: Solving optimization problems with
random input data obeying law P.

Common Approach: Approximate distribution P by discrete
distribution P supported on N atoms (= scenarios).

Practical Problem: Good approximation of P leads to large N , which
is usually too large for efficient computation.

Scenario Reduction: Try to reduce the scenarios from N to n << N
by replacing P by new measure Q.

Quality of scenario reduction is measured in terms of discrepancy
with respect to axis-parallel rectangles:

discR(P, Q) = sup
R∈R

|P (R) − Q(R)|.

Started work with W. Römisch to design efficient algorithm for
scenario reduction that uses modified TA randomized algorithm.
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Modified Measure is Superior in High Dimension

GLP-sets: 0 < h1 < h2 < · · · < hd < n, ∃j : gcd(hj , n) = 1

T := {t1, . . . , tn} , tij :=

{

2ihj − 1

2n

}

, i = 1, . . . , n , j = 1, . . . , d

Mean values of coordinates of optimal test boxes for randomly
chosen GLP-sets:

d = 4 : 0.799743

d = 5 : 0.840825

d = 6 : 0.873523

Expectation of coordinates of randomly chosen y with respect to µd

is d/(d + 1):

d = 4 : 0.8

d = 5 : 0.83

d = 6 : 0.857143
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