Definition Calculatio

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

References

Randomized Algorithms to Approximate Discrepancies and Applications

Michael Gnewuch¹

School of Mathematics and Statistics University of New South Wales, Sydney

June 28, 2012

Joint Work with Magnus Wahlström & Carola Winzen Max Planck Institute of Computer Science, Saarbrücken

 $^{^1 \}text{Supported}$ by the German Science Foundation (DFG) under grants GN-91/3 and GN-91/4

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

References

Star Discrepancy: Definition

 $X \subset [0,1]^d$ n-point set, $[0,y) := [0,y_1) \times \cdots \times [0,y_d)$ "test box".

Local discrepancy: $\delta(y) = \delta(y, X) = \operatorname{vol}([0, y]) - \frac{1}{n} |X \cap [0, y)|$

Star discrepancy:

$$\operatorname{disc}^*(X) = \sup_{y \in [0,1]^d} |\delta(y,X)|$$

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

References

Known Methods for Calculation

Elementary Method for Exact Calculation

For $X=\{x^1,\ldots,x^n\}\subset [0,1]^d$ put

$$\Gamma_j(X) := \{x_j^i \mid i = 1, \dots, n\} \cup \{1\}, \ j = 1, \dots, d,$$

$$\Gamma(X) := \Gamma_1(X) \times \dots \times \Gamma_d(X)$$

Then $\operatorname{disc}^*(X) =$

 $\max_{y\in \Gamma(X)} \max\left\{ \mathrm{vol}([0,y)) - \frac{1}{n} \big| [0,y) \cap X \big| \,, \, \frac{1}{n} \big| [0,y] \cap X \big| - \mathrm{vol}([0,y)) \right\}$

Thus $\operatorname{disc}^*(X)$ can be calculated by considering at most $2(n+1)^d$ test boxes.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

References

Known Methods for Calculation

Elementary Method for Exact Calculation

Simple Observation: It suffices to consider $2(n+1)^d$ test boxes to calculate the discrepancy.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results Applications

Further Methods for Calculation

Improvements of the Elementary Method:

Exact formula for the star discrepancy in dimension d = 1 by Niederreiter '72 (d = 1).

Faster methods than the elementary one by De Clerck '86 (d = 2) and Bundschuh and Zhu '93 ($d \ge 3$). Time to calculate the star discrepancy still $O(n^d)$.

Fastest algorithm to calculate the star discrepancy needs time ${\cal O}(n^{1+d/2})$ [Dobkin, Eppstein, Mitchell '96].

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results Applications

Known Methods for Calculation

Observation: Exact calculation of star discrepancy is discrete optimization problem.

Bad news from Discrete Complexity Theory:

Theorem [G., Srivastav, Winzen '09]. The calculation of the star discrepancy is NP-hard.

Theorem [Giannopoulos, Knauer, Wahlström, Werner '11]. Calculation of star discrepancy is W[1]-hard with respect to parameter d.

Definition

Calculation

Approximation

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

References

Methods for Approximation

Algorithms with error guarantee

Algorithms from [Thiémard '00, '01a] to approximate the star discrepancy up to some user-specified error δ.
Cost of the algorithms is ≥ Ω(dδ^{-d}) [G.'08].

Algorithms based on optimization heuristics

- Algorithm from [Thiémard'01b] formulates problem as integer linear program (ILP) and relies on cutting plane and branch-and-bound techniques.
- Algorithm of Winker & Fang '97 is a local search algorithm relying on the meta heuristic "Threshold Accepting".
- Genetic algorithm of Shah '10.

Definition Calculation

Threshold Accepting

Improved Algorithm Numerical Results Applications References

Randomized Approach

Algorithm of Winker & Fang ("Threshold Accepting")

Idea: Calculate lower bound for star discrepancy by choosing test boxes randomly within a (refined) local search algorithm

Local neighborhood structure for $x^* \in \Gamma(X)$

 $N_k(x^*) \simeq \text{subgrid of } \Gamma(X) \text{ of cardinality } (2k+1)^d \text{ with center } x^*,$

with uniform distribution.

Definition

Approximatio

Threshold Accepting

Improved Algorithm Numerical Results Applications References

Algorithm of Winker & Fang

For $y\in[0,1]^d$ put

$$\begin{split} \delta(y) &:= \operatorname{vol}([0,y)) - \frac{1}{n} \left| [0,y) \cap X \right|, \quad \overline{\delta}(y) &:= \frac{1}{n} \left| [0,y] \cap X \right| - \operatorname{vol}([0,y)), \\ \text{and } \delta^*(y) &:= \max\{\delta(y), \overline{\delta}(y)\}. \end{split}$$

Choose threshold values $T_1 > T_2 > \cdots > T_I \ge 0$

Concrete Algorithm

Choose x randomly from $\Gamma(X)$ and put $x^* := x$.

For
$$i = 1$$
 to I
For $j = 1$ to J
Choose $x \in N_k(x^*)$ randomly
If $\delta^*(x^*) - \delta^*(x) \le T_i$ then $x^* := x$
Return $\delta^*(x^*)$

Calculation Approximati

Threshold Accepting

Improved Algorithm

Numerical Results Applications References

Improving on the W&F-Algorithm

Main Idea: Modification of the Neigborhoods

Endow neighborhoods $N_k(\boldsymbol{x})$ with new probability measure putting more weight on

- larger coordinates
- large gaps in grid $\Gamma(X)$

Concrete Approach:

 $C_k(x) := \operatorname{conv}(N_k(x))$, endowed with probability measure

$$\mu_d := \bigotimes_{j=1}^d dy_j^{d-1} \,\lambda(\mathrm{d} y_j)\,,$$

 λ the Lebesgue measure on $\mathbb R.$ Choose $y\in C_k(x)$ randomly.

Calculation Approximat

Improved Algorithm

Numerical Results Applications References Further Improvement on the W&F-Algorithm

Procedures "snapping up" and "snapping down": Rounding y up and down to critical test boxes $y^{+,sn}$ and $y^{-,sn}$.

Ŀŗ		 1		
L				
t	 	 		
			9	
Γ				
			1	
ŀ		 		
h				
٦ ^ـ				
۶.				

Numerica

Some Numerical Results

				$disc^*(\cdot)$	TA improved		Winker & Fang	
	Name	d	n	found	Hits	Best-of-10	Hits	Best-of-10
	Faure	7	343	0.1298	100	0.1298	0	0.1143
	Faure	8	121	0.1702	100	0.1702	0	0.1573
	Faure	9	121	0.2121	100	0.2121	0	0.1959
	Faure	10	121	0.2574	100	0.2574	0	0.2356
	Faure	11	121	0.3010	100	0.3010	0	0.2632
Results	Faure	12	169	0.2718	100	0.2718	0	0.1708
	Sobol'	50	2000	0.1030^{*}	0	0.1024	0	0.0005
	Sobol'	50	4000	0.0677^{*}	0	0.0665	0	0.00025
	Faure	50	2000	0.3112^{*}	100	0.3112	0	0.0123
	Faure	50	4000	0.1979^{*}	0	0.1978	0	0.0059
	GLP	50	2000	0.1465^{*}	0	0.1450	0	0.0005
	GLP	50	4000	0.1205^{*}	0	0.1201	0	0.0003

Table: New instance comparisons. Discrepancy values marked with a star are lower bounds only (i.e., largest discrepancy found over all executions of algorithm variants). All data is computed using 100 trials of 100,000 iterations; reported is the average value of best-of-10 calls, and number of times (out of 100) that the optimum (or a value matching the largest known value) was found.

Calculation Approximati

Threshold Accepting

Improved Algorithm

Numerical Results

Application

References

Further Numerical Results

				TA	improved	Shah		
Class	d	n	$\operatorname{disc}^*(\cdot)$	Hits	Best-of-10	Hits	Best Found	
Halton	5	50	0.1886	100	0.1886	81	0.1886	
Halton	7	50	0.2678	100	0.2678	22	0.2678	
Halton	7	100	0.1714	100	0.1714	13	0.1714	
Halton	7	1000	0.0430	81	0.0430	$8^{(1)}$	$0.0430^{(1)}$	
Faure	10	50	0.4680	100	0.4680	97	0.4680	
Faure	10	100	0.2483	100	0.2483	28	0.2483	
Faure	10	500	0.0717^{*}	100	0.0717	$0^{(1)}$	$0.0689^{(1)}$	

Table: Comparison against point sets used by Shah. Reporting average value of best-of-10 calls, and number of times (out of 100) that the optimum was found; for Shah, reporting highest value found, and number of times (out of 100) this value was produced. The discrepancy value marked with a star is lower bound only (i.e., largest value found by any algorithm). Values marked (1) are recomputed using the same settings as in [Sha'10].

Definition Calculation

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

References

Applications

Quality Testing of Point Sets

[Doerr, G., Wahlström 2010]: Basic version of randomized TA algorithm used to compare quality of small samples generated by derandomized algorithm with classical low-discrepancy point sets and Monte Carlo points in dimension $d \leq 21$.

Generating Low-Discrepancy Point Sets via Optimization $\ensuremath{\mathsf{Approach}}$

[De Rainville, Gagné, Teytaud, Laurendeau 2012]: Genetic algorithm used to optimize the choice of permutations for generalized Halton sequences with respect to Hickernell's modified L_2 -discrepancy.

Work in progress: With our randomized TA algorithm the optimization should now be done with respect to star discrepancy.

Definition

Approximatio

Threshold Accepting

Improved Algorithm

Numerical Results

Applications

Applications

Scenario Reduction in Stochastic Programming

Goal of Stochastic Programming: Solving optimization problems with random input data obeying law $\mathbb{P}.$

Common Approach: Approximate distribution \mathbb{P} by discrete distribution P supported on N atoms (= scenarios).

Practical Problem: Good approximation of \mathbb{P} leads to large N, which is usually too large for efficient computation.

Scenario Reduction: Try to reduce the scenarios from N to $n \ll N$ by replacing P by new measure Q.

Quality of scenario reduction is measured in terms of discrepancy with respect to axis-parallel rectangles:

 $\operatorname{disc}_{\mathcal{R}}(P,Q) = \sup_{R \in \mathcal{R}} |P(R) - Q(R)|.$

Started work with W. Römisch to design efficient algorithm for scenario reduction that uses modified TA randomized algorithm.

- Definition
- Calculation
- Approximation
- Threshold Accepting
- Improved Algorithm
- Numerical Results
- Applications
- References

Some References

Algorithms for Discrepancy Approximation

- M. Gnewuch, C. Winzen, M. Wahlström. A new randomized algorithm to approximate the star discrepancy based on threshold accepting, SIAM J. Numer. Anal. 50 (2012), 781–807.
- M. Shah. A genetic algorithm approach to estimate lower bounds of the star discrepancy, Monte Carlo Methods Appl. 16 (2010), 379–398.
- E. Thiémard. An algorithm to compute bounds for the star discrepancy, J. Complexity 17 (2001), 850–880.
- E. Thiémard. Optimal volume subintervals with k points and star discrepancy via integer programming, Math. Methods Oper. Res. 54 (2001), 21–45.
- P. Winker, K.-T. Fang. Application of threshold accepting to the evaluation of the discrepancy of a set of points, SIAM J. Numer. Anal. 34 (1997), 2028–2042.

Applications

- F.-M. De Rainville, C. Gagné, O. Teytaud, D. Laurendeau. Evolutionary optimization of low-discrepancy sequences, ACM Trans. Model. Comp. Simul. 22 (2012), article 9.
- B. Doerr, M. Gnewuch, M. Wahlström. Algorithmic construction of low-discrepancy point sets via dependent randomized rounding, J. Complexity 26 (2010), 490–507.

Calculation Approximat

I hreshold Accepting

Improved Algorithm

Numerical Results

Application

References

Modified Measure is Superior in High Dimension GLP-sets: $0 < h_1 < h_2 < \dots < h_d < n$, $\exists j : \gcd(h_j, n) = 1$ $T := \{t^1, \dots, t^n\}, t^i_j := \left\{\frac{2ih_j - 1}{2n}\right\}, i = 1, \dots, n, j = 1, \dots, d$

Mean values of coordinates of optimal test boxes for randomly chosen $\mathsf{GLP}\text{-}\mathsf{sets}:$

d = 4: 0.799743d = 5: 0.840825d = 6: 0.873523

Expectation of coordinates of randomly chosen y with respect to μ_d is d/(d+1):

d = 4: 0.8 $d = 5: 0.8\overline{3}$ d = 6: 0.857143