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Definition
Let a0, . . . , ad−1 ∈ Z and u = {un}∞n=0 be a sequence in Z
satisfying the recurrence relation

un+d = ad−1un+d−1 + · · ·+ a0un for n = 0, 1, . . . .

– u is a linear recurring sequence (LRS) with defining
coefficients a0, . . . , ad−1 and initial values u0, . . . , ud−1.

– d is the order of the recurrence

– P(x) = xd − ad−1xd−1 − · · · − a0 is a characteristic
polynomial of u.
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Remarks
Let P(x),Q(x) ∈ Z[x ] and m, n ∈ Z.

– If P(x) is a characteristic polynomial of u, then the same is
true for P(x) · Q(x).

– u mod m is periodic.

– If u is uniformly distributed (UD) mod m · n then it is UD
mod m, too.
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Question
Assume m, n ∈ Z and u is UD both mod m and mod n.

Is it UD mod m · n?

Answer
It depends.

– If the period lengths mod m and mod n are coprime,
then yes.

– If m and n are coprime, but the period lengths are not, then
need some additional observations.
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Theorem
Let p ∈ N be a prime, d ≥ 2 be an integer, u be a dth-order LRS
of integers and let σ = 3d2+9d

2 + 1.

If u is UD modulo pσ, then it is also UD modulo ps for any s ∈ N.

The theorem is proven in a more general settings in [H 2004].

If d is large (> 1000), then it is practically useless.

With some - not difficult to fulfill - assumptions, we can set σ = 2,
independently of d .

Remains: find (construct) a UD sequence mod p2.
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Theorem
Let P,Q,Pi ∈ Z[x ] where i = 1, 2, 3, 4,

a. Q be monic irreducible modulo 2 of degree k

b. P(x) ≡ (x2 − 1)Q(x) mod 2

c. P1(x) = P(x)
P2(x) = P(x)− 2
P3(x) = P(x)− 2x
P4(x) = P(x)− 2x − 2

d. u(i) are LRS corresponding to Pi , with the greatest minimal
period length modulo 2.

Then at least one of the u(i)’s is UD modulo 2s with minimal
period length 2sord(Q) for any s ∈ N. [H 201?]
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A similar result can be found for the case p = 3.
Crucial point is finding the characteristic polynomial P(x) of the
sequence.

Lemma
Let F be a finite field and let u be a LRS over F. If u is UD, then
the characteristic polynomial of u has a multiple factor.

We search in the form P(x) ≡ (x + 1)2Q(x) mod 3, assuming
Q(x) is irreducible with maximal order.
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Lemma
Let

a. Q(x) be irreducible modulo 3,

b. P(x) ≡ (x + 1)2Q(x) mod 3,

c. u be a sequence having characteristic polynomial P and
minimal period length modulo 3 equal to ord(P).

Then u is uniformly distributed modulo 3.
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Lemma
Let

a. Q(x) be irreducible modulo 3,

b. P(x) ≡ (x + 1)2Q(x) mod 3,

c. u be a sequence having characteristic polynomial P and
minimal period length modulo 3 equal to ord(P).

Then u is uniformly distributed modulo 3.

Remark
If (x + 1)Q(x) and (x + 1)2 is not a characteristic polynomial of u
then condition c. holds.
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Lemma
Let

a. Q(x) be irreducible modulo 3,

b. P(x) ≡ (x + 1)2Q(x) mod 3,

c. u be a sequence having characteristic polynomial P and
minimal period length modulo 3 equal to ord(P).

Then u is uniformly distributed modulo 3.

The proof based on the fact that the period length divides ord(P).
The sequences classified by shifting ( cyclic permutation ) and the
sequences in the maximal classes contains all numbers with equal
frequency.
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Theorem
Let

a. Q ∈ Z[x ] be monic irreducible modulo 3 of degree k

b. P(x) ≡ (x + 1)2Q(x) mod 3,

c. P1(x) = P(x)
P2(x) = P(x)− 3
P3(x) = P(x)− 6

d. u(i) be LRS corresponding to Pi , with greatest minimal period
length modulo 3.

Then at least one of the u(i)’s is UD modulo 3s with period length
3sord(Q) for any s ∈ N.
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Theorem

– P(x) ≡ (x + 1)2Q(x) mod 3,

– P1(x) = P(x) → u(1)

P2(x) = P(x)− 3 → u(2)

P3(x) = P(x)− 6 → u(2)

⇒ one of u(i)’s is UD
modulo 3s .

Proof:
1. In one of the cases the period length increases by a factor of 3,
as the exponent of 3 increases.
2. In that case, the period modulo 32 is divided into 3 equal part
and the parts can be additively shifted to each other ⇒ the
sequence is UD.
3. By a general theorem of [H 2004] this implies the UD for any
exponent.
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Algorithm for constructing UD sequence

Step 1 Choose modulo 3 irreducible Q(x) ∈ Z[x ] of degree k .

Step 2 Calculate P(x) ≡ (x + 1)2Q(x) mod 3,
P ′(x) ≡ (x + 1)Q(x) mod 3 and
P1(x) = P(x), P2(x) = P1(x)− 3, P3(x) = P1(x)− 6.
Step 3 Calculate the companion matrices M(i) corresponding to
the characteristic polynomials Pi (x).
Step 4 Compute % = ord(Q) modulo 3 and M3%

1 modulo 9. If

M3%
1 6≡ E mod 9 then set M = M1 else do the same with M2. If it

is still not good then M = M3.
Step 5 Initial values: we want to have s digits random numbers,
choose random u0, u1, . . . , uk ∈ [0, 3s − 1]. Set these values as
initial values of the linear recurring sequence with characteristic
polynomial P ′(x). Compute the next element of the sequence
u′k+1. Find a random number uk+1 ∈ [0, 3s − 1] satisfying
uk+1 6≡ u′k+1 mod 3. The set u0, u1, . . . , uk , uk+1 are suitable
initial values for the sequence.
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