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Topics of the talk

e Definition of (finite-row) digital (¢, s)-sequences
e Constructions/Examples of (finite-row) digital (¢, s)-sequences

@ Some specific properties
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Definition (digital sequence over F, by Niederreiter 1987)

s ...dimension, F... a finite field, = : {0,1,...,q—1} = Fq ...

G, ..., Cs ... (00 x 00)-matrices over Fy, .
X\ of the sequence ((x,(,l), . ,x,(,s))> € [0,1)° is generated as follows.

a bijection,

Let n = ng + n1q + nxg® + - - with nj € {0,1,...,q9 — 1}. Compute

(o) yéf)
C-|m(m) | = yl(’) € Fy

and set (7 (7 (i)
G I 50 I O 0 N €7 )

q q? q3
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o digital (t,s)-sequences ... good distribution properties!
Here the generating matrices fulfill for all m > t and all
di+---+ds=m—t, (di > 0) that

m m
—— ——
= el L G= e
m
—_——
}odi
the matrix . has rank m — t
}ode
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digital (t, s)-sequences ... good distribution properties!
Here the generating matrices fulfill for all m > t and all
di+---+ds=m—t, (di > 0) that

m m
—— ——
= el L G= e
m
—_——
}od
the matrix . has rank m — t
}ods

finite-row (digital) sequence ... interesting, e.g., for fast
computation.

Here the generating matrices satisfy that each row contains just
finitely many nonzero entries.
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Example (van der Corput sequence = finite-row (0, 1)-sequence)

The van der Corput sequence in base q is a digital (0, 1)-sequence, since
for the generating matrix

00 X 00
€ F9

o O O
o O = O
o = O O
= O O O

1
we have (1) has rank 1, 10 hasrank 2, | O
01 0

o = O

0
0 | has rank 3, ...
1
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Example (digital (0, p)-sequences by Faure 1982)
For prime base p, the Pascal matrices P(a) defined by

L)) (3) (§) —3)’
Pla)=1o0 o ()1 8 3 € Fpr e,

ae{0,1...,p— 1} generate a digital (0, p)-sequence over [,.
For p = 2 (Sobol 1967) the matrices are sketched:

.
m mﬂtHL{E

E) B3 T 0 2 =
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Example (classical Niederreiter sequences, 1988)

Take s distinct irreducible polynomials hy, hy, ..., hs in Fg[x] of degrees

€1,€2,...,6s.

Now the j-th row of the i-th generating matrix, (cJ-(’ir)),ZO, is determined

using the coefficients of the formal Laurent-series of the rational

function
k 0

X _ (’) —r—1
(hi(x))’ —EW !

where 0 < k < ¢,/ > 1 satisfy j + 1 = ¢;/ — k.

Then .
t = Z(e,- = 1)
i=1
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Research Question
Let s > 1. Can finite rows satisfy for all m > t and di,...,ds > 0 with
di+...+ds=m—t

O
b
has rank m — t?

o

Do there exist multi-dimensional finite-row (¢, s)-sequences?
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Constructions via Faure and Tezuka Scramblings
Theorem (Faure & Tezuka 2000)

If Ci,...,Cs € F°X> generate a digital (t,s)-sequence over Fy and M is
a NUT matrix over IF.
Then the matrices C1 M, ..., CsM generate a digital (t, s)-sequence.

|dea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

L 000 0 1 x x x x x x 0O 0 0 0 O
0 1 0 O

0 1 x x x x x x x 0 0 O
vo L 0 0 1 x x x =|lx x x x x 0
0 0 0 1
Lo 41 1 x x x x x x x 0 0 0 O
0 1 0 1

0 1 x x x x x x x x 0 0
0 0 1 1 00 1 .
00 0 1 X X X =|x x x x X X
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Constructions via Faure and Tezuka Scramblings
Theorem (Faure & Tezuka 2000)

If Ci,...,Cs € F°X> generate a digital (t,s)-sequence over Fy and M is
a NUT matrix over IF.
Then the matrices C1 M, ..., CsM generate a digital (t, s)-sequence.

|dea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

é (lJ 8 g 1 0 0 0 0 O x 0 0 0 0 O
0 1 1 0 0 O x x x 0 0 O

SO o 0 1 1 1 0 =|lx x x x x 0

0 0 0 1

é i (1) 1 1 0 0 0 0 O x x 0 0 0 O
0O 1 1 0 0 O x x x x 0 0

L 0O 0 1 1 1 o0 =|x x x x x x

0 0 0 1 -
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Constructions via Faure and Tezuka Scramblings
Theorem (Faure & Tezuka 2000)

If Ci,...,Cs € F°X> generate a digital (t,s)-sequence over Fy and M is
a NUT matrix over IF.
Then the matrices C1 M, ..., CsM generate a digital (t, s)-sequence.

|dea (Construct a proper “scrambling” matrix, H.& Larcher 2010)

(1) (1J g 8 1 0 0 0 0 O 1 0 0 0 0 O
0 0 1 0 0 1 1 0 0 O 0 1 1 0 0 O
00 0 1 0 0 1 1 1 0 =0 0 1 1 1 0
(1) i (1) 1 1 0 0 0 0 O 1 1 0 0 0 O
00 1 1 0 1 1 0 0 O 0 1 1 1 0 O
0 0 0 1 0 0 1 1 1 0 =0 0 1 0 1 1
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@ We see: one can compute for given generating matrices of a digital
(t,s)-sequence a proper scrambling NUT matrix that yields finite
rows in the resulting matrices ...

@ BUT a lot of computation must be done ...

@ Maybe we can find explicit formulas for some examples ...
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@ We see: one can compute for given generating matrices of a digital

(t,s)-sequence a proper scrambling NUT matrix that yields finite
rows in the resulting matrices ...

@ BUT a lot of computation must be done ...

@ Maybe we can find explicit formulas for some examples ...

Figure: The Pascal matrices in base 2 and the modified finite-row matrices.
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Figure: The Pascal matrices in base 5:
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A formula for the scrambling matrix?

@ We have a formula for a scrambling matrix that can be used for
the generating matrices of the Faure sequences.
<. (H. & Pirsic 2011)

@ We also have a formula for a scrambling matrix that can be used
for the generating matrices of the classical Niederreiter sequences.
... (H. & Pirsic 2012)
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Interesting properties:

Faure sequences over I, is generated by P(0), P(1),..., P(p — 1) with

P(a) = <(Jr.)(—a)ff)j207r20 (mod p).

@ A scrambling matrix that yields finite rows is

(), o0

where [j’} denotes the Stirling numbers of the first kind.

@ Furthermore the new generating matrices satisfy

P(a)S = SQ?
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Interesting properties:
Faure sequences over I, is generated by P(0), P(1),..., P(p — 1) with

@ A scrambling matrix that yields finite rows is

(), o0

where [ﬂ denotes the Stirling numbers of the first kind.
@ Furthermore the new generating matrices satisfy

1 -1 0 0 0

P(a)S = SQa or 5*1P(a)5 — Qa with @ = g 0 1 -3 o0

... Scrambling to finite-rows here is related to simultaneous
almost diagonalization.
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Column-wise construction, H. 2012

Take s distinct monic irreducible polynomials hy,
degrees ey, ..., es and

a sequence (p;),>o in Fg[x] satisfying deg(p,) = r.

..., hs in Fg[x] of

Now the r-th column of the /-th generating matrix is determined
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Column-wise construction, H. 2012

Take s distinct monic irreducible polynomials hy, ..., hs in Fg[x] of
degrees e1,...,es and

a sequence (p;),>o in Fg[x] satisfying deg(p,) = r.

Now the r-th column of the /-th generating matrix is determined using
the representation of p,(x) in terms of powers of h;(x):

pr(x) = po(x) + pr(x)hi(x) + p2(x)hi(x Zpk x)hi(x

where the pi(x) have degrees < e;. Now...
- the coefficients of po(x) determine the first e; entries of the column,
- the coefficients of p1(x) determine the next e; entries of the column,

This construction yields
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Example (Faure sequence over [F},)
- hi(x) =x,ho(x) =x+1,...,hp(x) =x+ (p—1) and

- pr(x) = x".
Using the binomial theorem we see:

x'=(x+a—-a) = k;o (;) (—a) K (x + a)k.

Matrix entries are given by such terms

6(2) = (7)o
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Example (Finite-row (0, p)-sequences over F,)

- hi(x) =x,ho(x) =x+1,...,hp(x) =x+ (p—1) and
- pr(x) = x(x +1) -~ (x + r — 1) = (x)(")..rising factorial modulo p.

(1) We see that for r big enough (x)(") can be divided by (x + a) with
residue 0 several times! THIS YIELDS FINITE ROWS.
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Example (Finite-row (0, p)-sequences over F,)

- hi(x) =x,ho(x) =x+1,...,hp(x) =x+ (p—1) and
- pr(x) = x(x +1) -~ (x + r — 1) = (x)(")..rising factorial modulo p.

(I1) Furthermore, the rising factorials are related to the Stirling numbers

as follows:
.

x(x+1)(x-|—2)~-(x-|—r—1)zz[I:]xk.
k=0

The matrix related to hi(x) = x is

([0 e
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Example (Finite-row (0, p)-sequences over F,)

- hi(x) =x,ho(x) =x+1,...,hp(x) =x+ (p—1) and
- pr(x) = x(x +1) -~ (x + r — 1) = (x)(")..rising factorial modulo p.

(111) Using that

r

e+ )0 =3 () @0,

k=0
one can see the relations between the generating matrices:

-
|
N
o
coo

$.5Q,....5QP T with Q= [0 o = 5
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