Constructions and properties of finite-row (t, s)-sequences¹

Roswitha Hofer²

Institute of Financial Mathematics, University of Linz, Austria

June 2012, UDT12, Smolenice, Slovakia

¹Partially joint work with Pirsic and with Larcher

²supported by the Austrian Science Fund (FWF), Project P21943.

Topics of the talk

- Definition of (finite-row) digital (t, s)-sequences
- Constructions/Examples of (finite-row) digital (t, s)-sequences
- Some specific properties

Definition (digital sequence over \mathbb{F}_q by Niederreiter 1987)

s ...dimension, \mathbb{F}_q ... a finite field, $\pi:\{0,1,\ldots,q-1\}\to\mathbb{F}_q$... a bijection, C_1,\ldots,C_s ... $(\infty\times\infty)$ -matrices over \mathbb{F}_q , .

 $x_n^{(i)}$ of the sequence $\left(\left(x_n^{(1)},\ldots,x_n^{(s)}\right)\right)_{n\geq 0}\in [0,1)^s$ is generated as follows.

Let $n = n_0 + n_1 q + n_2 q^2 + \cdots$ with $n_i \in \{0, 1, \dots, q-1\}$. Compute

$$C_i \cdot \begin{pmatrix} \pi(n_0) \\ \pi(n_1) \\ \vdots \end{pmatrix} = \begin{pmatrix} y_0^{(i)} \\ y_1^{(i)} \\ \vdots \end{pmatrix} \in \mathbb{F}_q^{\infty}$$

and set

$$x_n^{(i)} := \frac{\pi^{-1}(y_0^{(i)})}{q} + \frac{\pi^{-1}(y_1^{(i)})}{q^2} + \frac{\pi^{-1}(y_2^{(i)})}{q^3} + \cdots$$

• **digital** (t, s)-**sequences** ... good distribution properties! Here the generating matrices fulfill for all m > t and all $d_1 + \cdots + d_s = m - t$, $(d_i > 0)$ that

$$C_1 = \left(\begin{array}{c} \stackrel{m}{\longrightarrow} d_1 \\ \end{array}\right), \ldots, C_s = \left(\begin{array}{c} \stackrel{m}{\longrightarrow} d_s \\ \end{array}\right)$$
 the matrix
$$\begin{array}{c} \stackrel{m}{\longrightarrow} d_1 \\ \vdots \\ \vdots \\ \vdots \\ \end{array}$$
 has rank $m-t$

• **digital** (t, s)-**sequences** ... good distribution properties! Here the generating matrices fulfill for all m > t and all $d_1 + \cdots + d_s = m - t$, $(d_i \ge 0)$ that

• finite-row (digital) sequence ... interesting, e.g., for fast computation.

Here the generating matrices satisfy that each **row** contains just **finitely many nonzero entries.**

Example (van der Corput sequence = finite-row (0,1)-sequence)

The van der Corput sequence in base q is a digital (0,1)-sequence, since for the generating matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \in \mathbb{F}_q^{\infty \times \infty}$$

we have $\begin{pmatrix} 1 \end{pmatrix}$ has rank 1, $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ has rank 2, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ has rank 3, ...

Example (digital (0, p)-sequences by Faure 1982)

For prime base p, the Pascal matrices P(a) defined by

$$P(a) := \begin{pmatrix} 1 & \binom{1}{0}(-a)^1 & \binom{2}{0}(-a)^2 & \binom{3}{0}(-a)^3 & \dots \\ 0 & 1 & \binom{2}{1}(-a)^1 & \binom{3}{1}(-a)^2 & \dots \\ 0 & 0 & 1 & \binom{3}{2}(-a)^1 & \dots \\ \vdots & \vdots & \ddots & \vdots \end{pmatrix} \in \mathbb{F}_p^{\infty \times \infty},$$

 $a \in \{0, 1, \dots, p-1\}$ generate a digital (0, p)-sequence over \mathbb{F}_p . For p = 2 (Sobol 1967) the matrices are sketched:

Example (classical Niederreiter sequences, 1988)

Take *s* distinct irreducible polynomials h_1, h_2, \ldots, h_s in $\mathbb{F}_q[x]$ of degrees e_1, e_2, \ldots, e_s .

Now the j-th **row** of the i-th generating matrix, $(c_{j,r}^{(i)})_{r\geq 0}$, is determined using the coefficients of the formal **Laurent-series of the rational** function

$$\frac{x^k}{(h_i(x))^l} = \sum_{r=0}^{\infty} c_{j,r}^{(i)} x^{-r-1},$$

where $0 \le k < e_i, l \ge 1$ satisfy $j + 1 = e_i l - k$.

Then

$$t=\sum_{i=1}^s(e_i-1).$$

Research Question

Let s>1. Can finite rows satisfy for all m>t and $d_1,\ldots,d_s\geq 0$ with $d_1+\ldots+d_s=m-t$

Do there exist multi-dimensional finite-row (t, s)-sequences?

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If $C_1, \ldots, C_s \in \mathbb{F}_q^{\infty \times \infty}$ generate a digital (t, s)-sequence over \mathbb{F}_q and M is a NUT matrix over \mathbb{F}_q .

Then the matrices C_1M, \ldots, C_sM generate a digital (t, s)-sequence.

Idea (Construct a proper "scrambling" matrix, H.& Larcher 2010)

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \dots \\ 0 & 1 & 0 & 1 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \cdot \begin{pmatrix} 1 & \times & \times & \times & \times & \times & \dots \\ 0 & 1 & \times & \times & \times & \times & \dots \\ 0 & 0 & 1 & \times & \times & \times & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \times & \times & 0 & \mathbf{0} & 0 & 0 & \dots \\ \times & \times & \times & \times & \times & 0 & 0 & \dots \\ \times & \times & \times & \times & \times & \times & \dots \\ \vdots & \ddots \end{pmatrix}$$

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If $C_1, \ldots, C_s \in \mathbb{F}_q^{\infty \times \infty}$ generate a digital (t, s)-sequence over \mathbb{F}_q and M is a NUT matrix over \mathbb{F}_q .

Then the matrices C_1M, \ldots, C_sM generate a digital (t, s)-sequence.

Idea (Construct a proper "scrambling" matrix, H.& Larcher 2010)

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \dots \\ 0 & 1 & 0 & 1 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ 0 & 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 1 & 1 & 0 & \dots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} x & x & 0 & \mathbf{0} & 0 & 0 & \dots \\ x & x & x & x & x & 0 & 0 & \dots \\ x & x & x & x & x & x & x & \dots \\ \vdots & \ddots \end{pmatrix}$$

Constructions via Faure and Tezuka Scramblings

Theorem (Faure & Tezuka 2000)

If $C_1, \ldots, C_s \in \mathbb{F}_q^{\infty \times \infty}$ generate a digital (t, s)-sequence over \mathbb{F}_q and M is a NUT matrix over \mathbb{F}_q .

Then the matrices C_1M, \ldots, C_sM generate a digital (t, s)-sequence.

Idea (Construct a proper "scrambling" matrix, H.& Larcher 2010)

$$\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 1 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 1 & 1 & 0 & \cdots \\ \vdots & \ddots \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 0 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 1 & 1 & \cdots \\ 0 & 0 & 0 & 1 & \cdots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 1 & 1 & 0 & \cdots \\ \vdots & \ddots \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 1 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 1 & 1 & \cdots \\ \vdots & \ddots \end{pmatrix}$$

- We see: one can compute for given generating matrices of a digital (t,s)-sequence a proper scrambling NUT matrix that yields finite rows in the resulting matrices ...
- BUT a lot of computation must be done ...
- Maybe we can find explicit formulas for some examples ...

- We see: one can compute for given generating matrices of a digital (t, s)-sequence a proper scrambling NUT matrix that yields finite rows in the resulting matrices ...
- BUT a lot of computation must be done ...
- Maybe we can find explicit formulas for some examples ...

Figure: The Pascal matrices in base 2 and the modified finite-row matrices.

Figure: The Pascal matrices in base 5:

Figure: The scrambled matrices in base 5:

A formula for the scrambling matrix?

 We have a formula for a scrambling matrix that can be used for the generating matrices of the Faure sequences.

.... (H. & Pirsic 2011)

 We also have a formula for a scrambling matrix that can be used for the generating matrices of the classical Niederreiter sequences.

.... (H. & Pirsic 2012)

Interesting properties:

Faure sequences over \mathbb{F}_p is generated by $P(0), P(1), \dots, P(p-1)$ with

$$P(a) = \left(\binom{r}{j} (-a)^{r-j} \right)_{j \ge 0, r \ge 0} \pmod{p}.$$

A scrambling matrix that yields finite rows is

$$S = \left(\begin{bmatrix} r \\ j \end{bmatrix} \right)_{j \ge 0, r \ge 0} \pmod{p},$$

where $\begin{bmatrix} r \\ j \end{bmatrix}$ denotes the Stirling numbers of the first kind.

• Furthermore the new generating matrices satisfy

$$P(a)S = SQ^a$$

Interesting properties:

Faure sequences over \mathbb{F}_p is generated by $P(0), P(1), \dots, P(p-1)$ with

$$P(a) = \left(\binom{r}{j} (-a)^{r-j} \right)_{j \ge 0, r \ge 0} \pmod{p}.$$

• A scrambling matrix that yields finite rows is

$$S = \left(\begin{bmatrix} r \\ j \end{bmatrix} \right)_{j \ge 0, r \ge 0} \pmod{p},$$

where $\begin{bmatrix} r \\ j \end{bmatrix}$ denotes the Stirling numbers of the first kind.

• Furthermore the new generating matrices satisfy

$$P(a)S = SQ^{a} \text{ or } S^{-1}P(a)S = Q^{a} \text{ with } Q = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 0 & 0 & \cdots \\ 0 & 0 & 1 & -3 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \cdots \end{pmatrix}.$$

... **Scrambling to finite-rows** here is related to **simultaneous almost diagonalization.**

Column-wise construction, H. 2012

Take s distinct monic irreducible polynomials h_1, \ldots, h_s in $\mathbb{F}_q[x]$ of degrees e_1, \ldots, e_s and a sequence $(p_r)_{r>0}$ in $\mathbb{F}_q[x]$ satisfying $\deg(p_r) = r$.

Now the r-th column of the i-th generating matrix is determined

Column-wise construction, H. 2012

Take s distinct monic irreducible polynomials h_1, \ldots, h_s in $\mathbb{F}_q[x]$ of degrees e_1, \ldots, e_s and a sequence $(p_r)_{r>0}$ in $\mathbb{F}_q[x]$ satisfying $\deg(p_r) = r$.

Now the *r*-th column of the *i*-th generating matrix is determined using the representation of $p_r(x)$ in terms of powers of $h_i(x)$:

$$p_r(x) = \rho_0(x) + \rho_1(x)h_i(x) + \rho_2(x)h_i(x)^2 + \dots = \sum_{k=0}^{\infty} \rho_k(x)h_i(x)^k$$

where the $\rho_k(x)$ have degrees $\langle e_i$. Now...

- the coefficients of $\rho_0(x)$ determine the first e_i entries of the column,
- the coefficients of $\rho_1(x)$ determine the next e_i entries of the column,

- ...

This construction yields

$$t=\sum_{i=1}^s(e_i-1).$$

Example (Faure sequence over \mathbb{F}_p)

-
$$h_1(x) = x, h_2(x) = x + 1, \dots, h_p(x) = x + (p - 1)$$
 and

$$- p_r(x) = x^r$$
.

Using the binomial theorem we see:

$$x^{r} = (x + a - a)^{r} = \sum_{k=0}^{r} {r \choose k} (-a)^{r-k} (x + a)^{k}.$$

Matrix entries are given by such terms

$$c_{j,r}(a) = \binom{r}{j} (-a)^{r-j}.$$

Example (Finite-row (0, p)-sequences over \mathbb{F}_p)

- $h_1(x) = x, h_2(x) = x + 1, \dots, h_p(x) = x + (p 1)$ and
- $p_r(x) = x(x+1)\cdots(x+r-1) = (x)^{(r)}...$ rising factorial modulo p.

(I) We see that for r big enough $(x)^{(r)}$ can be divided by (x + a) with residue 0 several times! THIS YIELDS FINITE ROWS.

Example (Finite-row (0, p)-sequences over \mathbb{F}_p)

- $h_1(x) = x, h_2(x) = x + 1, \dots, h_p(x) = x + (p 1)$ and
- $p_r(x) = x(x+1)\cdots(x+r-1) = (x)^{(r)}$...rising factorial modulo p.

(II) Furthermore, the rising factorials are related to the Stirling numbers as follows:

$$x(x+1)(x+2)\cdots(x+r-1)=\sum_{k=0}^r \begin{bmatrix} r \\ k \end{bmatrix} x^k.$$

The matrix related to $h_1(x) = x$ is

$$S = \left(\begin{bmatrix} r \\ j \end{bmatrix} \right)_{j \ge 0, r \ge 0} \pmod{p}.$$

Example (Finite-row (0, p)-sequences over \mathbb{F}_p)

- $h_1(x) = x$, $h_2(x) = x + 1$, ..., $h_p(x) = x + (p 1)$ and
- $p_r(x) = x(x+1)\cdots(x+r-1) = (x)^{(r)}$...rising factorial modulo p.

(III) Using that

$$(x+a)^{(r)} = \sum_{k=0}^{r} {r \choose k} (a)^{(r-k)} (x)^{(k)},$$

one can see the relations between the generating matrices:

$$S, SQ, \dots, SQ^{p-1}$$
 with $Q = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 0 & 0 & \cdots \\ 0 & 0 & 1 & -3 & 0 & \cdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \end{pmatrix}$.

References:

- Faure H. Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41, 337–351, 1982.
- Faure H. and Tezuka S. Another Random Scrambling of Digital (t, s)-Sequences, in: K.T. Fang, F.J. Hickernell, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin, 2002, pp. 242-256.
- Hofer R. A construction of low-discrepancy sequences involving finite-row digital (t, s)-sequences. Submitted.
- Hofer R. and Larcher G. On existence and discrepancy of certain Niederreiter-Halton sequences. Acta Arith. 141, 369–394, 2010.
- Hofer R. and Pirsic G. An explicit construction of finite-row digital (0, s)-sequences. Uniform Distribution Theory 6, 11-28, 2011.
- Hofer R. and Pirsic G. On existence of finite-row digital (t, s)-sequences.
 Submitted.
- Niederreiter H. Point sets and sequences with small discrepancy. Monatsh. Math. 104 (1987), no. 4, 273–337.
- Sobol' I.M. On the distribution of points in a cube and approximate evaluation of integrals. Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 784-802.