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Classical problem of Diophantine approximations

How to define good approximations

Definition
A rational number a/b (where b > 0) is a best approximation of a
real α if for any other fraction c/d with 0 < d ≤ b it holds∣∣∣α− c

d

∣∣∣ ≥ ∣∣∣α− a

b

∣∣∣ .
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Ordinary continued fractions

The expression (finite or infinite)

a0 + 1/(a1 + 1/(a2 + . . .) . . .))

is an ordinary continued fraction if a0 ∈ Z, ak ∈ Z+ for k > 0.
Denote it [a0 : a1; . . .] (or [a0 : a1; . . . ; an]).

Ordinary continued fraction is odd (even) if it has odd (even) number
of elements.

Proposition

Any rational number has a unique odd and even ordinary continued
fractions.
Any irrational number has a unique infinite ordinary continued
fraction
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Geometry of continued fractions

OX

OY
y = 7/5x

O

1

2

2

A0

A1

B2 = A2

B0

B1

a0 = l`(A0A1) = 1;

a1 = l`(B0B1) = 2;

a2 = l`(A1A2) = 2.

7/5 = [1; 2 : 2].
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Description of best approximations

OX

OY
y = 7/5x

O

A′
2

A0

A1

B2 = A2

B0

B1

A1 = (1, 1) 1/1 = [1];

B1 = (3, 2) 3/2 = [1; 2];

A2 = (7, 5) 7/5 = [1; 2 : 2];

A′
2 = (4, 3) 4/3 = [1; 2 : 1].
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Description of best approximations

OX

OY
y = 7/5x

O

A′
2

A0

A1

B2 = A2

B0

B1

A1 = (1, 1) 1/1 = [1];

B1 = (3, 2) 3/2 = [1; 2];

A2 = (7, 5) 7/5 = [1; 2 : 2];

A′
2 = (4, 3) 4/3 = [1; 2 : 1].

Theorem
α = [a0; a1 : . . . : an]. Then the best approximations are

I pk/qk = [a0; a1 : . . . : ak ];

I extra: [a0; a1 : . . . : an−1 : an−1].
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Simultaneous approximation

Simultaneous approximation

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Simultaneous approximation

Problems related to approximations of vectors in Rn by rational
vectors.

I The same model of best approximation

I Algorithms: Jacobi-Perron, matrix method, etc.
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Simultaneous approximation

Approximation of maximal commutative subgroups in
SL(n, R)
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Maximal commutative subgroups

I We work in GL(n, R)

I Centralizer of A ∈ GL(n, R) is the set of all matrices of
GL(n, R) commuting with A

I A centralizer of A is commutative iff A has distinct eigenvalues

I Commutative centralizer = maximal regular commutative
subgroup (MCRS-subgroups)

I All MCRS-groups are n-dimensional

I Generators E ,A,A2, . . . ,An−1

I MCRS-group 1−1 a collection of conjugate n planes in Cn
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Markoff-Davenport form

Consider a MCRS-group A.

Let l1, . . . , ln be eigenlines (maybe complex).

Denote by Li (x1, . . . , xn) a linear form that annulates all lj for j 6= i .

Let ∆(L1, . . . , Ln) be the determinants of one forms in the dual
basis.

Markoff-Davenport form

ΦA(x) =

n∏
k=1

(
Lk(x1, . . . , xn)

)
∆(L1, . . . , Ln)
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Example

Consider an MCRS-group containing a Fibonacci operator(
1 1
1 0

)
.

Fibonacci operator has two eigenlines

y = −θx and y = θ−1x ,

where θ is the golden ration 1+
√

5
2 .

The Markoff-Davenport form of Fibonacci operator is

(y + θx)(y − θ−1x)

θ − θ−1
=

1√
5
(−x2 + xy + y2).
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Rational subgroups and their sizes

Definition
An MCRS-group A is rational if all its eigenspaces contain
Gaussian vectors, i. e. vectors type a + Ib for integers a and b,
where I 2 = −1.

Example(
0 −1
1 0

)
with eigenvectors (I , 1) and (−I , 1),(

1 1
4 1

)
with eigenvectors (1, 2) and (1,−2)

Denote them by Ai and Aii .

Definition
Size: ν(A) = max

j=1,...,n

{
|vj |

∣∣v – a primitive Gaussian vector in li
}

Examples: ν(Ai ) = 1, ν(Aii ) = 2.
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Discrepancy functional

Definition
For MCRF-groups A1 and A2 consider two symmetric quadratic
forms

ΦA1(v) + ΦA2(v) and ΦA1(v)− ΦA2(v)

Let ai , bi – the coefficients of them.
Discrepancy: ρ(A1,A2) = min(maxi (ai ),maxi (bi )).

Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate ρ(Ai ,Aii ). We have

∣∣ΦAi
(v)± ΦAii

(v)
∣∣ =

∣∣∣∣I x2 + y2

2
± y2 − 4x2

4

∣∣∣∣
Therefore, ρ(Ai ,Aii ) =

√
3

2 .

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Discrepancy functional

Definition
For MCRF-groups A1 and A2 consider two symmetric quadratic
forms

ΦA1(v) + ΦA2(v) and ΦA1(v)− ΦA2(v)

Let ai , bi – the coefficients of them.
Discrepancy: ρ(A1,A2) = min(maxi (ai ),maxi (bi )).

Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate ρ(Ai ,Aii ).

We have

∣∣ΦAi
(v)± ΦAii

(v)
∣∣ =

∣∣∣∣I x2 + y2

2
± y2 − 4x2

4

∣∣∣∣
Therefore, ρ(Ai ,Aii ) =

√
3

2 .

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Discrepancy functional

Definition
For MCRF-groups A1 and A2 consider two symmetric quadratic
forms

ΦA1(v) + ΦA2(v) and ΦA1(v)− ΦA2(v)

Let ai , bi – the coefficients of them.
Discrepancy: ρ(A1,A2) = min(maxi (ai ),maxi (bi )).

Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate ρ(Ai ,Aii ). We have

∣∣ΦAi
(v)± ΦAii

(v)
∣∣ =

∣∣∣∣I x2 + y2

2
± y2 − 4x2

4

∣∣∣∣

Therefore, ρ(Ai ,Aii ) =
√

3
2 .

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Discrepancy functional

Definition
For MCRF-groups A1 and A2 consider two symmetric quadratic
forms

ΦA1(v) + ΦA2(v) and ΦA1(v)− ΦA2(v)

Let ai , bi – the coefficients of them.
Discrepancy: ρ(A1,A2) = min(maxi (ai ),maxi (bi )).

Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate ρ(Ai ,Aii ). We have

∣∣ΦAi
(v)± ΦAii

(v)
∣∣ =

∣∣∣∣I x2 + y2

2
± y2 − 4x2

4

∣∣∣∣
Therefore, ρ(Ai ,Aii ) =

√
3

2 .
Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

General approximation model

Definition
A rational MCRS-group A is a best approximation of A if for any
other A′ with ν(A′) ≤ ν(A) it holds

ρ(A,AN) ≤ ρ(A,A′).

To compare:

A rational number a/b is a best approximation of a real α if for any
other fraction c/d with 0 < d ≤ b it holds∣∣∣α− c

d

∣∣∣ ≥ ∣∣∣α− a

b

∣∣∣ .

Here ν(a/b) = b, and ρ(α1, α2) = |α1 − α2|.
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Special case 1: Diophantine approximations

For a real α denote by A[α] an MCRS-group of GL(2, R) defined by
the two spaces x = 0 and y = αx .

Then

I Let 0 ≤ m
n ≤ 1 then we have (with max-norm)

ν
(
A

[m

n

])
= n.

I ρ(A[α1],A[α2]) = |α1 − α2|

Diophantine approximations ⊂ MCRS-group approximations.

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Special case 1: Diophantine approximations

For a real α denote by A[α] an MCRS-group of GL(2, R) defined by
the two spaces x = 0 and y = αx .

Then

I Let 0 ≤ m
n ≤ 1 then we have (with max-norm)

ν
(
A

[m

n

])
= n.

I ρ(A[α1],A[α2]) = |α1 − α2|

Diophantine approximations ⊂ MCRS-group approximations.

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Special case 1: Diophantine approximations

For a real α denote by A[α] an MCRS-group of GL(2, R) defined by
the two spaces x = 0 and y = αx .

Then

I Let 0 ≤ m
n ≤ 1 then we have (with max-norm)

ν
(
A

[m

n

])
= n.

I ρ(A[α1],A[α2]) = |α1 − α2|

Diophantine approximations ⊂ MCRS-group approximations.

Oleg Karpenkov, TU Graz Generalized rational approximations



Institute of Geometry TU Graz

Special case 2: Simultaneous approximations

LetA[a, b, c] denotes the MCRS-group defined by vectors

(a, b, c), (0, 1, I ), (0, 1,−I ).

Then

I For Gaussian simple [a, b, c] we have

ν
(
A[a, b, c]

)
=

∣∣[a, b, c]
∣∣.

I Denote A = A[a, b, c] and A′ = A[a′, b′, c ′], then

ρ(A,A′) = min
(
max

(∣∣∣b
a −

b′

a′

∣∣∣ ,
∣∣∣ c
a −

c ′

a′

∣∣∣ ,
∣∣∣b2+c2

2a2 − b′2+c ′2

2a′2

∣∣∣) ,

max
(∣∣∣b

a + b′

a′

∣∣∣ ,
∣∣∣ c
a + c ′

a′

∣∣∣ ,
∣∣∣b2+c2

2a2 + b′2+c ′2

2a′2

∣∣∣))
.

Simultaneous approximations “⊂” MCRS-group approxima-
tions.
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General approximation in 2D

I Hyperbolic (totally real) case

I Nonhyperbolic (complex) case
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Hyperbolic case in 2D

Denote by A[α1, α2] an MCRS-group with eigenspaces y = α1x and
y = α2x .

Theorem
Let α1 and α2 be real numbers having infinite continued fractions
with bounded elements. Then there exist C1,C2 > 0 such that for
any N > 0 we have

C1

N2
< ρ(A[α1, α2],AN [α1, α2]) <

C2

N2
.

Example

Let ε > 0. Consider α1 = [a0, a1, . . .], such that a0 = 1,
an = (nk−1)

M−1. Denote mk
nk

= [a0, . . . , ak ]. Let α2 = 0. Take

Nk = nk+nk+1

2 . Then there exists C > 0 such that for any integer i
we have

ρ(A,ANi
) ≥ C

N1+ε
i

.
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Hyperbolic case in 2D

O

The set of all sails is called geometric continued fraction (in the
sense of Klein).

Theorem
Let A be an algebraic (with periodic sail) MCRS-group. Then
there exists C > 0 such that for any N > 0 the following holds.
Let AN be defined by primitive vectors v1 and v2 contained in k1-
and k2-geometric continued fractions respectively, then k1, k2 ≤ C.

Conjecture

The constant C can be chosen to be equal to 1.
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Hyperbolic case in 2D

O

2-sails.
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Hyperbolic case in 2D

O

3-sails.

Theorem
Let A be an algebraic (with periodic sail) MCRS-group. Then
there exists C > 0 such that for any N > 0 the following holds.
Let AN be defined by primitive vectors v1 and v2 contained in k1-
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Hyperbolic case in 2D

O

Proposition

The k-sail is homothetic to the 1-sail with coefficient k.
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Non-Hyperbolic case in 2D

Denote byA[α+Iβ] an MCRS-group with eigenspaces y = (α+Iβ)x
and y = (α− Iβ)x .

Theorem
Let α and β be real numbers having infinite continued fractions
with bounded elements. Then there exist C1,C2 > 0 such that for
any N > 0 we have

C1

N2
< ρ(A[α + Iβ],AN [α + Iβ]) <

C2

N2
.
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What to do next?

How do the best approximations of MCRS-groups in R3 related
to
— vertices of Klein polyhedra;
— Minkovski minima;
— etc.
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