Approximation of the maximal commutative subgroups of GL(n, R)

Oleg Karpenkov, TU Graz (jointly with Anatoly Vershik)

28 June 2012

Oleg Karpenkov, TU Graz Generalized rational approximations

< ∃ >

Institute of Geometry

TU Graz

Diophantine approximations

Diophantine approximations

(4回) (4回) (4回)

Classical problem of Diophantine approximations

How to define good approximations

A 3 >

A ■

Classical problem of Diophantine approximations

Definition

A rational number a/b (where b > 0) is a *best approximation* of a real α if for any other fraction c/d with $0 < d \le b$ it holds

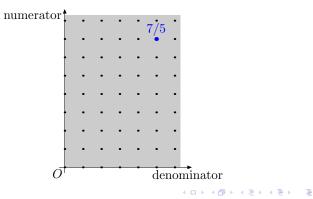
$$\left|\alpha - \frac{c}{d}\right| \ge \left|\alpha - \frac{a}{b}\right|.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Classical problem of Diophantine approximations

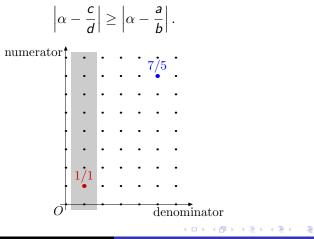
Definition

$$\left| \alpha - \frac{c}{d} \right| \geq \left| \alpha - \frac{a}{b} \right|.$$



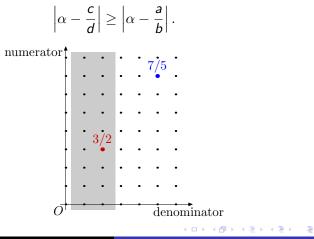
Classical problem of Diophantine approximations

Definition



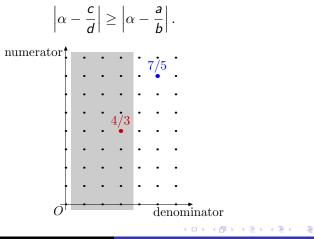
Classical problem of Diophantine approximations

Definition



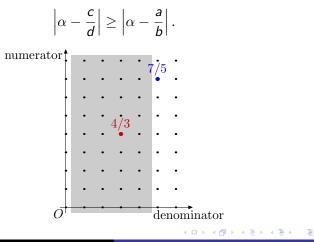
Classical problem of Diophantine approximations

Definition



Classical problem of Diophantine approximations

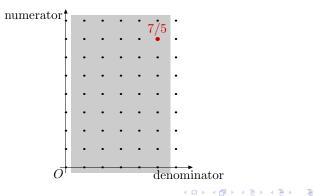
Definition



Classical problem of Diophantine approximations

Definition

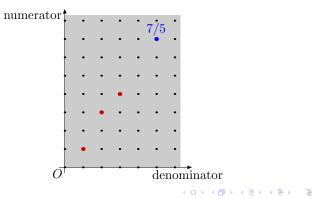
$$\left| \alpha - \frac{c}{d} \right| \geq \left| \alpha - \frac{a}{b} \right|.$$



Classical problem of Diophantine approximations

Definition

$$\left| \alpha - \frac{c}{d} \right| \geq \left| \alpha - \frac{a}{b} \right|.$$



Ordinary continued fractions

The expression (finite or infinite)

$$a_0 + 1/(a_1 + 1/(a_2 + \ldots)))$$

is an ordinary continued fraction if $a_0 \in \mathbb{Z}$, $a_k \in \mathbb{Z}_+$ for k > 0. Denote it $[a_0 : a_1; \ldots]$ (or $[a_0 : a_1; \ldots; a_n]$).

• 3 >

Ordinary continued fractions

The expression (finite or infinite)

$$a_0 + 1/(a_1 + 1/(a_2 + \ldots)))$$

is an ordinary continued fraction if $a_0 \in \mathbb{Z}$, $a_k \in \mathbb{Z}_+$ for k > 0. Denote it $[a_0 : a_1; ...]$ (or $[a_0 : a_1; ...; a_n]$).

Ordinary continued fraction is *odd* (*even*) if it has odd (even) number of elements.

$$\frac{7}{5} = 1 + \frac{1}{2 + \frac{1}{2}} = 1 + \frac{1}{2 + \frac{1}{1 + 1/1}}$$
$$\frac{7}{5} = [1:2;2] = [1:2;1;1]$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Ordinary continued fractions

The expression (finite or infinite)

$$a_0 + 1/(a_1 + 1/(a_2 + \ldots)))$$

is an ordinary continued fraction if $a_0 \in \mathbb{Z}$, $a_k \in \mathbb{Z}_+$ for k > 0. Denote it $[a_0 : a_1; ...]$ (or $[a_0 : a_1; ...; a_n]$).

Ordinary continued fraction is *odd* (*even*) if it has odd (even) number of elements.

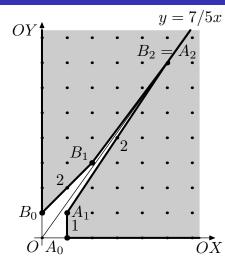
Proposition

Any rational number has a unique odd and even ordinary continued fractions.

Any irrational number has a unique infinite ordinary continued fraction

・ 同 ト ・ ヨ ト ・ ヨ ト

Geometry of continued fractions



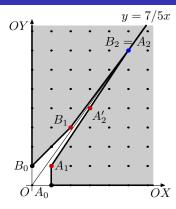
$$a_0 = l\ell(A_0A_1) = 1;$$

 $a_1 = l\ell(B_0B_1) = 2;$
 $a_2 = l\ell(A_1A_2) = 2.$

$$7/5 = [1; 2: 2].$$

-≣-> Э

Description of best approximations



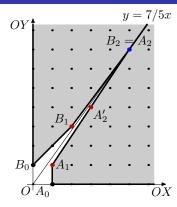
 $A_1 = (1, 1)$ 1/1 = [1]; $B_1 = (3, 2)$ 3/2 = [1; 2]; $A_2 = (7, 5)$ 7/5 = [1; 2: 2];

$$A_2' = (4,3) \quad 4/3 = [1;2:1].$$

A ■

글 🕨 🛛 글

Description of best approximations



 $A_1 = (1, 1)$ 1/1 = [1]; $B_1 = (3, 2)$ 3/2 = [1; 2]; $A_2 = (7, 5)$ 7/5 = [1; 2: 2];

$$A_2' = (4,3) \quad 4/3 = [1;2:1].$$

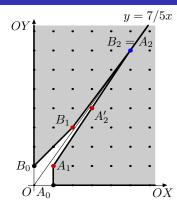
Theorem

 $\alpha = [a_0; a_1 : \ldots : a_n]$. Then the best approximations are

▶
$$p_k/q_k = [a_0; a_1 : ... : a_k];$$

▶ $extra: [a_0; a_1 : ... : a_{n-1} : a_n - 1].$

Description of best approximations



 $A_1 = (1, 1)$ 1/1 = [1]; $B_1 = (3, 2)$ 3/2 = [1; 2]; $A_2 = (7, 5)$ 7/5 = [1; 2: 2];

$$A_2' = (4,3) \quad 4/3 = [1;2:1].$$

글 > 글

Theorem

 $\alpha = [a_0; a_1 : \ldots].$ Then the best approximations are $p_k/q_k = [a_0; a_1 : \ldots : a_k].$ Institute of Geometry

TU Graz

Simultaneous approximation

Simultaneous approximation

Oleg Karpenkov, TU Graz Generalized rational approximations

Simultaneous approximation

Problems related to approximations of vectors in \mathbb{R}^n by rational vectors.

▲周 → ▲ 三 →

< ≣ > æ

Simultaneous approximation

Problems related to approximations of vectors in \mathbb{R}^n by rational vectors.

The same model of best approximation

- ◆ 臣 → - æ

Simultaneous approximation

Problems related to approximations of vectors in \mathbb{R}^n by rational vectors.

- The same model of best approximation
- Algorithms: Jacobi-Perron, matrix method, etc.

• 3 >

Institute of Geometry

TU Graz

Simultaneous approximation

Approximation of maximal commutative subgroups in $SL(n, \mathbb{R})$

Oleg Karpenkov, TU Graz Generalized rational approximations

・日・ ・ ヨ・ ・ ヨ・

Maximal commutative subgroups

▶ We work in $GL(n, \mathbb{R})$

▲ 御 ▶ ▲ 臣 ▶

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A
- A centralizer of A is commutative iff A has distinct eigenvalues

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A
- A centralizer of A is commutative iff A has distinct eigenvalues
- Commutative centralizer = maximal regular commutative subgroup (MCRS-subgroups)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A
- A centralizer of A is commutative iff A has distinct eigenvalues
- Commutative centralizer = maximal regular commutative subgroup (MCRS-subgroups)
- All MCRS-groups are n-dimensional

・ 同 ト ・ ヨ ト ・ ヨ ト

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A
- A centralizer of A is commutative iff A has distinct eigenvalues
- Commutative centralizer = maximal regular commutative subgroup (MCRS-subgroups)
- All MCRS-groups are n-dimensional
- Generators $E, A, A^2, \ldots, A^{n-1}$

米部 シネヨシネヨシ 三日

Maximal commutative subgroups

- We work in $GL(n, \mathbb{R})$
- Centralizer of $A \in GL(n, \mathbb{R})$ is the set of all matrices of $GL(n,\mathbb{R})$ commuting with A
- A centralizer of A is commutative iff A has distinct eigenvalues
- Commutative centralizer = maximal regular commutative subgroup (MCRS-subgroups)
- All MCRS-groups are n-dimensional
- Generators $E, A, A^2, \ldots, A^{n-1}$
- MCRS-group $\frac{1-1}{2}$ a collection of conjugate *n* planes in \mathbb{C}^n

(本部) (本語) (本語) (語)

Markoff-Davenport form

Consider a MCRS-group \mathcal{A} .

(1日) (日) (日)

Markoff-Davenport form

Consider a MCRS-group \mathcal{A} .

Let l_1, \ldots, l_n be eigenlines (maybe complex).

・ 回 と ・ ヨ と ・ モ と …

Markoff-Davenport form

Consider a MCRS-group \mathcal{A} .

Let l_1, \ldots, l_n be eigenlines (maybe complex).

Denote by $L_i(x_1, \ldots, x_n)$ a linear form that annulates all I_i for $j \neq i$.

(本間) (本語) (本語) (語)

Markoff-Davenport form

Consider a MCRS-group \mathcal{A} .

Let l_1, \ldots, l_n be eigenlines (maybe complex).

Denote by $L_i(x_1, \ldots, x_n)$ a linear form that annulates all I_i for $j \neq i$.

Let $\Delta(L_1, \ldots, L_n)$ be the determinants of one forms in the dual basis.

(本間) (本語) (本語) (語)

Markoff-Davenport form

Consider a MCRS-group \mathcal{A} .

Let l_1, \ldots, l_n be eigenlines (maybe complex).

Denote by $L_i(x_1, \ldots, x_n)$ a linear form that annulates all I_i for $i \neq i$. Let $\Delta(L_1, \ldots, L_n)$ be the determinants of one forms in the dual basis.

Markoff-Davenport form

$$\Phi_{\mathcal{A}}(x) = \frac{\prod_{k=1}^{n} (L_k(x_1, \ldots, x_n))}{\Delta(L_1, \ldots, L_n)}$$

→ 同 → → 目 → → 目 → → 目

Example

Consider an MCRS-group containing a Fibonacci operator

$$\left(\begin{array}{rr}1 & 1\\ 1 & 0\end{array}\right).$$

(1日) (日) (日)

æ

Example

Consider an MCRS-group containing a Fibonacci operator

$$\left(\begin{array}{rr}1 & 1\\ 1 & 0\end{array}\right).$$

Fibonacci operator has two eigenlines

$$y = -\theta x$$
 and $y = \theta^{-1} x$,

where θ is the golden ration $\frac{1+\sqrt{5}}{2}$.

回 と く ヨ と く ヨ と …

Example

Consider an MCRS-group containing a Fibonacci operator

$$\left(\begin{array}{rrr}1 & 1\\ 1 & 0\end{array}\right)$$

Fibonacci operator has two eigenlines

$$y = -\theta x$$
 and $y = \theta^{-1}x$,

where θ is the golden ration $\frac{1+\sqrt{5}}{2}$.

The Markoff-Davenport form of Fibonacci operator is

$$rac{(y+ heta x)(y- heta^{-1}x)}{ heta- heta^{-1}}=rac{1}{\sqrt{5}}(-x^2+xy+y^2).$$

向下 イヨト イヨト

Rational subgroups and their sizes

▲御 → ▲ 副 →

< ∃>

æ

Rational subgroups and their sizes

Definition

An MCRS-group \mathcal{A} is *rational* if all its eigenspaces contain *Gaussian* vectors, i. e. vectors type a + lb for integers a and b, where $l^{2} = -1$.

▲圖▶ ▲屋▶ ▲屋▶ ---

æ

Rational subgroups and their sizes

Definition

An MCRS-group A is *rational* if all its eigenspaces contain *Gaussian* vectors, i. e. vectors type a + lb for integers a and b, where $l^2 = -1$.

Example

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ with eigenvectors } (I, 1) \text{ and } (-I, 1), \\ \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \text{ with eigenvectors } (1, 2) \text{ and } (1, -2)$$

Denote them by A_i and A_{ii} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Rational subgroups and their sizes

Definition

An MCRS-group \mathcal{A} is *rational* if all its eigenspaces contain *Gaussian* vectors, i. e. vectors type a + lb for integers a and b, where $l^{2} = -1$.

Example

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ with eigenvectors } (I, 1) \text{ and } (-I, 1), \\ \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \text{ with eigenvectors } (1, 2) \text{ and } (1, -2)$$

Denote them by \mathcal{A}_i and \mathcal{A}_{ii} .

Definition

Size: $\nu(\mathcal{A}) = \max_{i=1,\dots,n} \{ |v_j| | v - a \text{ primitive Gaussian vector in } l_i \}$

- 4 回 ト 4 ヨ ト - 4 ヨ ト

Rational subgroups and their sizes

Definition

An MCRS-group \mathcal{A} is *rational* if all its eigenspaces contain *Gaussian* vectors, i. e. vectors type a + lb for integers a and b, where $I^2 = -1$

Example

$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ with eigenvectors } (I,1) \text{ and } (-I,1), \\ \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} \text{ with eigenvectors } (1,2) \text{ and } (1,-2)$$

Denote them by \mathcal{A}_i and \mathcal{A}_{ii} .

Definition

Size: $\nu(\mathcal{A}) = \max_{i=1,...,n} \{ |v_i| | v - a \text{ primitive Gaussian vector in } l_i \}$ $\nu(\mathcal{A}_i) = 1, \qquad \nu(\mathcal{A}_{ii}) = 2.$ Examples:

Discrepancy functional

Definition

For MCRF-groups \mathcal{A}_1 and \mathcal{A}_2 consider two symmetric quadratic forms

$$\Phi_{\mathcal{A}_1}(v) + \Phi_{\mathcal{A}_2}(v)$$
 and $\Phi_{\mathcal{A}_1}(v) - \Phi_{\mathcal{A}_2}(v)$

Let a_i , b_i – the coefficients of them. $\rho(\mathcal{A}_1, \mathcal{A}_2) = \min(\max_i(a_i), \max_i(b_i)).$ Discrepancy: Discrepancy is a natural distance between MCRF-groups.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Discrepancy functional

Definition

For MCRF-groups A_1 and A_2 consider two symmetric quadratic forms

$$\Phi_{\mathcal{A}_1}(v) + \Phi_{\mathcal{A}_2}(v)$$
 and $\Phi_{\mathcal{A}_1}(v) - \Phi_{\mathcal{A}_2}(v)$

Let a_i , b_i – the coefficients of them. $\rho(\mathcal{A}_1, \mathcal{A}_2) = \min(\max_i(a_i), \max_i(b_i)).$ Discrepancy: Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate $\rho(A_i, A_{ii})$.

(本部)) (本語)) (本語)) (語)

Discrepancy functional

Definition

For MCRF-groups A_1 and A_2 consider two symmetric quadratic forms

$$\Phi_{\mathcal{A}_1}(v) + \Phi_{\mathcal{A}_2}(v)$$
 and $\Phi_{\mathcal{A}_1}(v) - \Phi_{\mathcal{A}_2}(v)$

Let a_i , b_i – the coefficients of them. $\rho(\mathcal{A}_1, \mathcal{A}_2) = \min(\max_i(a_i), \max_i(b_i)).$ Discrepancy: Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate $\rho(A_i, A_{ii})$. We have

$$\left|\Phi_{\mathcal{A}_{i}}(v)\pm\Phi_{\mathcal{A}_{ii}}(v)\right|=\left|Irac{x^{2}+y^{2}}{2}\pmrac{y^{2}-4x^{2}}{4}
ight|$$

(本部)) (本語)) (本語)) (語)

Discrepancy functional

Definition

For MCRF-groups \mathcal{A}_1 and \mathcal{A}_2 consider two symmetric quadratic forms

$$\Phi_{\mathcal{A}_1}(v) + \Phi_{\mathcal{A}_2}(v)$$
 and $\Phi_{\mathcal{A}_1}(v) - \Phi_{\mathcal{A}_2}(v)$

Let a_i , b_i – the coefficients of them. $\rho(\mathcal{A}_1, \mathcal{A}_2) = \min(\max_i(a_i), \max_i(b_i)).$ Discrepancy: Discrepancy is a natural distance between MCRF-groups.

Example

Let us calculate $\rho(A_i, A_{ii})$. We have

$$\left|\Phi_{\mathcal{A}_{i}}(v)\pm\Phi_{\mathcal{A}_{ii}}(v)\right|=\left|I\frac{x^{2}+y^{2}}{2}\pm\frac{y^{2}-4x^{2}}{4}\right|$$

Therefore, $\rho(\mathcal{A}_i, \mathcal{A}_{ii}) = \frac{\sqrt{3}}{2}$.

General approximation model

Definition

A rational MCRS-group \mathcal{A} is a *best approximation* of \mathcal{A} if for any other \mathcal{A}' with $\nu(\mathcal{A}') \leq \nu(\mathcal{A})$ it holds

 $\rho(\mathcal{A}, \mathcal{A}_N) < \rho(\mathcal{A}, \mathcal{A}').$

• E • 2

General approximation model

Definition

A rational MCRS-group \mathcal{A} is a *best approximation* of \mathcal{A} if for any other \mathcal{A}' with $\nu(\mathcal{A}') \leq \nu(\mathcal{A})$ it holds

$$\rho(\mathcal{A}, \mathcal{A}_N) \leq \rho(\mathcal{A}, \mathcal{A}').$$

To compare:

A rational number a/b is a *best approximation* of a real α if for any other fraction c/d with 0 < d < b it holds

$$\left| \alpha - \frac{c}{d} \right| \ge \left| \alpha - \frac{a}{b} \right|.$$

伺 と く き と く き と

General approximation model

Definition

A rational MCRS-group \mathcal{A} is a *best approximation* of \mathcal{A} if for any other \mathcal{A}' with $\nu(\mathcal{A}') \leq \nu(\mathcal{A})$ it holds

$$\rho(\mathcal{A}, \mathcal{A}_N) \leq \rho(\mathcal{A}, \mathcal{A}').$$

To compare:

A rational number a/b is a *best approximation* of a real α if for any other fraction c/d with 0 < d < b it holds

$$\left| \alpha - \frac{c}{d} \right| \geq \left| \alpha - \frac{a}{b} \right|.$$

Here $\nu(a/b) = b$, and $\rho(\alpha_1, \alpha_2) = |\alpha_1 - \alpha_2|$.

伺下 イヨト イヨト

Special case 1: Diophantine approximations

For a real α denote by $\mathcal{A}[\alpha]$ an MCRS-group of $GL(2,\mathbb{R})$ defined by the two spaces x = 0 and $y = \alpha x$.

I ≥ ≥

Special case 1: Diophantine approximations

For a real α denote by $\mathcal{A}[\alpha]$ an MCRS-group of $GL(2,\mathbb{R})$ defined by the two spaces x = 0 and $y = \alpha x$.

Then

• Let $0 \le \frac{m}{n} \le 1$ then we have (with max-norm)

$$\nu\left(\mathcal{A}\left[\frac{m}{n}\right]\right)=n.$$

 $\triangleright \rho(\mathcal{A}[\alpha_1], \mathcal{A}[\alpha_2]) = |\alpha_1 - \alpha_2|$

▲□→ ▲目→ ▲目→ 三日

Special case 1: Diophantine approximations

For a real α denote by $\mathcal{A}[\alpha]$ an MCRS-group of $GL(2,\mathbb{R})$ defined by the two spaces x = 0 and $y = \alpha x$.

Then

• Let $0 \le \frac{m}{n} \le 1$ then we have (with max-norm)

$$\nu\left(\mathcal{A}\left[\frac{m}{n}\right]\right)=n.$$

$$\rho(\mathcal{A}[\alpha_1], \mathcal{A}[\alpha_2]) = |\alpha_1 - \alpha_2|$$

Diophantine approximations \subset MCRS-group approximations.

(4回) (注) (注) (注) (三)

Special case 2: Simultaneous approximations

Let $\mathcal{A}[a, b, c]$ denotes the MCRS-group defined by vectors

(a, b, c), (0, 1, I), (0, 1, -I).

< □→ < 注→ < 注→ = 注

Special case 2: Simultaneous approximations

Let $\mathcal{A}[a, b, c]$ denotes the MCRS-group defined by vectors

$$(a, b, c), (0, 1, I), (0, 1, -I).$$

Then

▶ For Gaussian simple [*a*, *b*, *c*] we have

$$\nu(\mathcal{A}[a,b,c]) = |[a,b,c]|.$$

► Denote
$$\mathcal{A} = \mathcal{A}[a, b, c]$$
 and $\mathcal{A}' = \mathcal{A}[a', b', c']$, then

$$\rho(\mathcal{A}, \mathcal{A}') = \min\left(\max\left(\left|\frac{b}{a} - \frac{b'}{a'}\right|, \left|\frac{c}{a} - \frac{c'}{a'}\right|, \left|\frac{b^2 + c^2}{2a^2} - \frac{b'^2 + c'^2}{2a'^2}\right|\right), \\ \max\left(\left|\frac{b}{a} + \frac{b'}{a'}\right|, \left|\frac{c}{a} + \frac{c'}{a'}\right|, \left|\frac{b^2 + c^2}{2a^2} + \frac{b'^2 + c'^2}{2a'^2}\right|\right)\right).$$

A 3 >

Special case 2: Simultaneous approximations

Let $\mathcal{A}[a, b, c]$ denotes the MCRS-group defined by vectors

$$(a, b, c), (0, 1, I), (0, 1, -I).$$

Then

▶ For Gaussian simple [*a*, *b*, *c*] we have

$$\nu(\mathcal{A}[a,b,c]) = |[a,b,c]|.$$

► Denote
$$\mathcal{A} = \mathcal{A}[a, b, c]$$
 and $\mathcal{A}' = \mathcal{A}[a', b', c']$, then

$$\rho(\mathcal{A}, \mathcal{A}') = \min\left(\max\left(\left|\frac{b}{a} - \frac{b'}{a'}\right|, \left|\frac{c}{a} - \frac{c'}{a'}\right|, \left|\frac{b^2 + c^2}{2a^2} - \frac{b'^2 + c'^2}{2a'^2}\right|\right), \\ \max\left(\left|\frac{b}{a} + \frac{b'}{a'}\right|, \left|\frac{c}{a} + \frac{c'}{a'}\right|, \left|\frac{b^2 + c^2}{2a^2} + \frac{b'^2 + c'^2}{2a'^2}\right|\right)\right).$$

Simultaneous approximations " \subset " MCRS-group approximations.

(4) (2) (4) (2) (4)

General approximation in 2D

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

General approximation in 2D

- Hyperbolic (totally real) case
- Nonhyperbolic (complex) case

< 3 > <

A ■

Denote by $\mathcal{A}[\alpha_1, \alpha_2]$ an MCRS-group with eigenspaces $y = \alpha_1 x$ and $y = \alpha_2 x$.

▲□ → ▲ □ → ▲ □ → …

æ

Denote by $\mathcal{A}[\alpha_1, \alpha_2]$ an MCRS-group with eigenspaces $y = \alpha_1 x$ and $y = \alpha_2 x$.

Theorem

Let α_1 and α_2 be real numbers having infinite continued fractions with bounded elements. Then there exist C_1 , $C_2 > 0$ such that for any N > 0 we have

$$\frac{C_1}{N^2} < \rho(\mathcal{A}[\alpha_1, \alpha_2], \mathcal{A}_N[\alpha_1, \alpha_2]) < \frac{C_2}{N^2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Denote by $\mathcal{A}[\alpha_1, \alpha_2]$ an MCRS-group with eigenspaces $y = \alpha_1 x$ and $y = \alpha_2 x$.

Theorem

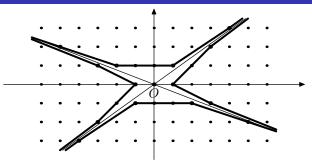
Let α_1 and α_2 be real numbers having infinite continued fractions with bounded elements. Then there exist C_1 , $C_2 > 0$ such that for any N > 0 we have

$$\frac{C_1}{N^2} < \rho(\mathcal{A}[\alpha_1, \alpha_2], \mathcal{A}_N[\alpha_1, \alpha_2]) < \frac{C_2}{N^2}.$$

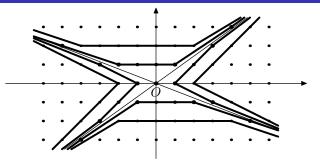
Example

Let $\varepsilon > 0$. Consider $\alpha_1 = [a_0, a_1, \ldots]$, such that $a_0 = 1$, $a_n = (n_{k-1})^{M-1}$. Denote $\frac{m_k}{n_k} = [a_0, \ldots, a_k]$. Let $\alpha_2 = 0$. Take $N_k = \frac{n_k + n_{k+1}}{2}$. Then there exists C > 0 such that for any integer i we have

$$\rho(\mathcal{A}, \mathcal{A}_{N_i}) \geq \frac{C}{N_i^{1+\varepsilon}}.$$



The set of all sails is called *geometric continued fraction* (in the sense of Klein).

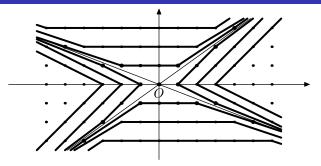


2-sails.

▲□→ < □→</p>

< ≣⇒

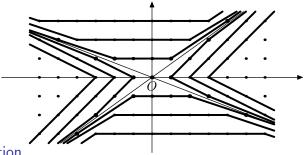
Э



3-sails.

・ロト ・回ト ・ヨト

<2 € > 2 €

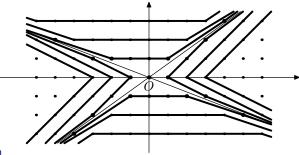


Proposition

The k-sail is homothetic to the 1-sail with coefficient k.

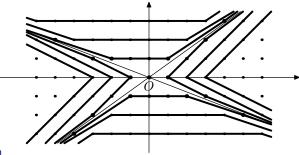
A ►

э.



Theorem

Let A be an algebraic (with periodic sail) MCRS-group. Then there exists C > 0 such that for any N > 0 the following holds. Let A_N be defined by primitive vectors v_1 and v_2 contained in k_1 and k_2 -geometric continued fractions respectively, then $k_1, k_2 \leq C$.



Theorem

Let A be an algebraic (with periodic sail) MCRS-group. Then there exists C > 0 such that for any N > 0 the following holds. Let A_N be defined by primitive vectors v_1 and v_2 contained in k_1 and k_2 -geometric continued fractions respectively, then $k_1, k_2 \leq C$.

Conjecture

The constant C can be chosen to be equal to 1.

Denote by $\mathcal{A}[\alpha+I\beta]$ an MCRS-group with eigenspaces $y = (\alpha+I\beta)x$ and $y = (\alpha - I\beta)x$.

回 と く ヨ と く ヨ と …

æ

Non-Hyperbolic case in 2D

Denote by $\mathcal{A}[\alpha + I\beta]$ an MCRS-group with eigenspaces $y = (\alpha + I\beta)x$ and $\mathbf{v} = (\alpha - I\beta)\mathbf{x}$.

Theorem

Let α and β be real numbers having infinite continued fractions with bounded elements. Then there exist $C_1, C_2 > 0$ such that for any N > 0 we have

$$\frac{C_1}{N^2} < \rho(\mathcal{A}[\alpha + I\beta], \mathcal{A}_N[\alpha + I\beta]) < \frac{C_2}{N^2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

What to do next?

æ

What to do next?

How do the best approximations of MCRS-groups in \mathbb{R}^3 related to

- vertices of Klein polyhedra;
- Minkovski minima:
- etc.

▲圖▶ ▲屋▶ ▲屋▶