On Normal Numbers

UDT 2012 Smolenice

Imre Kátai

Joint work with Jean-Marie De Koninck.

Let $E := \{e_1, e_2, \dots, e_q\}, E_q^* = \text{words over } E_q, E_q^{\mathbb{N}} = E_q \times E_q \times \dots = \text{infinite sequences over } E_q.$

Let
$$\alpha \in E^*$$
, $\underline{\varepsilon} = \varepsilon_1 \varepsilon_2 \ldots \in E_q^{\mathbb{N}}$, $\underline{\varepsilon}^T = \varepsilon_1 \ldots \varepsilon_T$.

Let

$$M_T(\underline{\varepsilon}|\alpha) = \#\{\beta_1, \beta_2|\underline{\varepsilon}^T = \beta_1 \alpha \beta_2\}.$$

Definition. $\underline{\varepsilon}$ is a normal sequence if for every $\alpha \in E^*$,

$$rac{q^{\lambda(lpha)}M_T(arepsilon|lpha)}{q^T}
ightarrow \mathbf{1} \quad (T
ightarrow \infty),$$

 $\lambda(\alpha) = length \ of \ \alpha.$

Clear: If $E = A_q = \{0, 1, ..., q - 1\}$, then $\underline{\varepsilon}$ is a normal sequence if and only if

$$\xi = \sum \frac{\varepsilon_n}{q^n}$$

is a q-normal number, i.e. if $\{q^n\xi\}$ is UD sequence.

I. Let
$$R(n)=n(n+1)\cdots(n+q-1)$$
.
$$R(n)=\vartheta\pi_1^{\alpha_1}\dots\pi_r^{\alpha_r}$$

$$q+1\leq\pi_1<\dots<\pi_r,\quad\pi_j\in\mathcal{P}$$

$$P(\vartheta)< q.$$

Let

$$h_n(\pi^a) = h_n(\pi) = \begin{cases} \Lambda & \text{if } \pi | \vartheta \\ l & \text{if } \pi^a | n + l \end{cases}$$
$$\alpha_n = h_n(\pi_1^{\alpha_1}) \dots h_n(\pi_r^{\alpha_r}).$$

Let

$$\underline{\eta} = \alpha_1 \alpha_2 \dots;$$

$$\underline{\xi} = \alpha_3 \alpha_4 \alpha_6 \dots \alpha_{p+1} \dots$$

Theorem 1. $\underline{\eta}$ and $\underline{\xi}$ are normal sequences.

II.
$$\mathcal{B} \subset \mathbb{N}$$
, $B(x) = \#\{b \leq x; b \in \mathcal{B}\}$

$$F: \mathcal{B} \to \mathbb{N}, \quad (0 <) c_1 \le \frac{F(b)}{b^r} \le c_2 \quad (b \in \mathcal{B})$$

$$n = \sum_{i=0}^{\infty} \varepsilon_j(n) q^j, \quad \varepsilon_j(n) \in A_q$$

$$\overline{n} = \varepsilon_0(n) \dots \varepsilon_t(n), \quad \varepsilon_t(n) \ne 0$$

$$N = \left[\frac{\log x}{\log q}\right]$$

Let
$$0 \le l_1 < \dots < l_h (\le rN), \ a_1, \dots, a_h \in A_q.$$

Let

$$B_F\left(x \middle| \begin{array}{c} l_1, \dots l_h \\ a_1, \dots, a_h \end{array}\right) = \#\{b \le x, \ b \in \mathbb{B}, \ \varepsilon_{l_j}(F(b)) = a_j \ j = 1, \dots, h\},$$

$$B_F(x) = B(x).$$

We say: $F(\mathcal{B})$ is a q-ary smooth sequence, if there exists $0 < \alpha < 1$, $\varepsilon(x) \to 0$, such that for every fixed $h \ge 1$:

$$\sup_{N^{\alpha} \leq l_1 < \dots < l_h \leq rN - N^{\alpha}} \left| \frac{q^h B_F\left(x \,\middle|\, \substack{l_1, \dots l_h \\ a_1, \dots, a_h}\right)}{B_F(x)} - 1 \right| \leq c(h)\varepsilon(x)$$

$$\xi_n = \overline{F(b_n)} = \varepsilon_0(F(b_n)) \dots \varepsilon_t(F(b_n)).$$

Theorem 2. Assume that $B(x) \geq c \frac{x}{\log x}$. Let $F(\mathcal{B})$ be a q-ary smooth sequence, $\mathcal{B} = \{b_1, b_2, \ldots\}, b_n < b_{n+1}, (n = 1, 2, \ldots)$

$$\eta = 0, \xi_1 \xi_2 \dots$$

Then η is a q-normal number.

Remarks. 1. If $P \in \mathbb{Z}[x]$, $r = \deg P(\geq 1)$, $P(x) \to \infty$ $(x \to \infty)$, then for $\mathcal{B} = \mathbb{N}$, and $\mathcal{B} = \mathcal{P}$, the corresponding η is normal.

Annales des sciences mathematiques du Quebec

2. **L. Germán - I. Kátai**: Let $\widetilde{\mathcal{P}}$ be a subset of the primes such that $\pi(x|\widetilde{\mathcal{P}}) = \#\{p \leq x, \ p \in \widetilde{\mathcal{P}}\} > c\frac{x}{\log x}$ if $x > x_0, \ c > 0$. Let $N(\widetilde{\mathcal{P}}) = \text{subgroup generated by } \widetilde{\mathcal{P}}$. $P \in \mathbb{Z}[x], \ P(x) \to \infty \ (x \to \infty), \ N(\widetilde{\mathcal{P}}) = \{n_1 < n_2 < \ldots\}$. Then $\eta = 0, \overline{P(n_1)} \ \overline{P(n_2)} \ldots$ is a normal number. (Annales Sectio Computatorica ELTE, **38** 2012))

III.
$$q \ge 2$$
, $n = p_1^{e_1} \cdots p_{k+1}^{e_{k+1}}$, $p_1 < \ldots < p_{k+1}$

$$H(n) = c_1(n) \cdots c_k(n)$$
, if $k \ge 1$

$$c_j(n) := \left[\frac{q \log p_j}{\log p_{j+1}} \right] \in A_q$$

 $H(p^{\alpha}) = \Lambda.$

$$\xi = 0, H(1)H(2)...$$

Theorem 3. ξ is a q-normal number.

Theorem 4. Let $R(x) \in \mathbb{Z}[x]$, R(m) > 0 if $m \ge m_0$ H(R(n) as earlier,

$$\xi = 0, H(R(m_0))H(R(m_0 + 1))...$$

Then ξ is a q-normal number. Assume further that $R(0) \neq 0$.

Let

$$\eta = 0, H(R(p_1))H(R(p_2))...$$

where $p_1 < p_2 < \dots$ is the whole sequence of the primes. Then η is a q-normal number. **IV.** $\mathcal{P} = \mathcal{R} \cup \mathcal{P}_0 \cup \mathcal{P}_1 \cup \ldots \cup \mathcal{P}_{d-1}$ disjoint

$$\pi([u, u+v]|\mathcal{P}_j) = \frac{1}{d}\pi([u, u+v]) + \mathcal{O}\left(\frac{u}{(\log u)^c}\right)$$

 $c \geq 5$, $2 \leq u \leq v$. Let

$$H(p) = \begin{cases} j & \text{if } p \in \mathcal{P}_j & j = 0, \dots, d-1 \\ \Lambda & \text{if } p \in \mathcal{R}. \end{cases}$$

If $n = p_1^{a_1} \cdots p_r^{a_r}$, then let

$$R(n) = H(p_1) \cdots H(p_r).$$

Let

$$\xi = 0, R(1)R(2)...$$

 $\eta_a = 0, R(2+a)R(3+a)...R(p+a)...$

Theorem 5. We have ξ is a d-normal number, furthermore η_a is a d-normal number, if $a \neq 0$.

Special case: $\{h_0,\ldots,h_{\varphi(D)-1}\}$ set of reduced residues mod D,

$$\mathcal{P}_j = \{p | p \equiv h_j \pmod{D}\}$$

 $j = 0, \dots, \varphi(D) - 1$
 $\mathcal{R} = \{p; \ p | D\}.$

Functiones et Approximatio 45, 2(2011), 231-253.

$$P(x) = e_k x^k + \dots + e_1 x \in \mathbb{R}[x], \quad P(x) \notin \mathbb{Q}[x].$$
 $I_0, I_1 \subset [0, 1), \lambda(I_0) = \lambda(I_1) > 0,$

intervals

$$\mathcal{P}_0 = \{p : \{P(p)\} \in I_0\}; \quad \mathcal{P}_1 = \{p : \{P(p)\} \in I_1\}$$

$$\mathcal{R} = \mathcal{P} \setminus (\mathcal{P}_0 \cup \mathcal{P}_1).$$

$$H(p) = \begin{cases} 0 & \text{if } p \in \mathcal{P}_0 \\ 1 & \text{if } p \in \mathcal{P}_1 \\ \Lambda & \text{if } p \in \mathcal{R}. \end{cases}$$

$$n = p_1^{\alpha_1} \cdots p_r^{\alpha_r}, \ H(n) = H(p_1) \dots H(p_r)$$

 $\xi = 0, H(2)H(3)...$

V.

Theorem 6. Let $F \in \mathbb{Z}[x]$, $r = \deg F$, the leading coefficient of F is positive. For some $n \in \mathbb{N}$ let $n = \sum_{j=0}^{t} \epsilon_j(n)q^j$, $\epsilon_t(n) \neq 0$, $\overline{n} = \epsilon_0(n) \dots \epsilon_t(n)$. For some nonpositive integer m, let $\overline{m} = \Lambda$. Let

$$\eta = 0, \overline{F(P(2+1))} \overline{F(P(3+1))} \dots \overline{F(P(p+1))} \dots$$

 $\xi = 0, \overline{F(P(2))} \overline{F(P(3))} \dots \overline{F(P(n))} \dots$

Then η and ξ are q-normal numbers.

J-M. D.K. - I.K.: On a problem of normal numbers raised by Igor Shparlinski, Bull. Austr. Math. Soc. **84** (2011), 337-349.

Remark. The assertion remains true by changing $P \rightarrow P_k$ = the k'th largest prime divisor.

VI. Problems on normal numbers

Let $q \geq 2$, $E_q := \{l_0, l_1, \ldots, l_{\varphi(q)-1}\}$, $l_{\nu} \pmod{q}$ are the reduced residues $\mod q$. $A_{\varphi(q)} := \{0, 1, \ldots, \varphi(q) - 1\}$. Let $\mathcal{P} = \{p_1, p_2, \ldots\}$ be the whole sequence of primes. $f_q : \mathcal{P} \rightarrow \{\Lambda, A_{\varphi(q)}\}$.

Let

$$f_q(p) = \begin{cases} j & \text{if } p \equiv l_j \pmod{q} \\ \Lambda & \text{if } (q, p) > 1. \end{cases}$$

Let

$$\mathcal{B}_q = \{ f_q(p_1), f_q(p_2), \ldots \} \in A_{\varphi(q)}^{\mathcal{N}}$$

 $\xi_q = 0, f_q(p_1) f_q(p_2) \ldots$

Conjecture 1. ξ_q is a $\varphi(q)$ -normal number, i.e.

$$x_n = \{\varphi(q)^n \xi_q\}$$

is UD mod 1.

Conjecture 2. Let $q \geq 3, k_1, k_2, \ldots, k_R \in A_{\varphi(q)}$. Then

$$p_{n+j} \equiv l_{k_j} \pmod{q} \quad (j = 1, \dots R)$$

holds for infinitely many n.

This seems to be open for $R \ge 2$ and for $R \ge 3$ in the case q = 3.

Knapowski-Turán wrote several papers on Ω_{\pm} estimations on

$$\pi(x, k, l_1) - \pi(x, k, l_2).$$

A. Rényi formulated a conjecture, namely that for every permutation π of $A_{\varphi(q)}$: $\pi:A_{\varphi(q)}\to A_{\varphi(q)}$ there exists a sequence $x_1,x_2\ldots,x_n\to\infty$ such that

$$\pi(x_{\nu}, q, \pi(0)) > \pi(x_{\nu}, q, \pi(1)) > \cdots > \pi(x_{\nu}, q, \pi(\varphi(q) - 1))$$

This seems to be very hard also.

Assume that the Hardy-Littlewood conjecture holds, namely that if 0 < b < q, $(b,q) = 1, a_1, \ldots, a_{k-1}$ be such positive numbers for which the number of solutions $\rho(p)$ of $F(m) \equiv 0 \pmod{p}$ is smaller than p, where

$$F(m) = (mq + b)(mq + b + a_1) \cdots (mq + b + a_1 + \cdots + a_{k-1}).$$

Then the number of $p_0 = p \le x$, for which $p \equiv b \pmod{q}$

$$p_j = p_0 + a_1 + \dots + a_j$$
 $(j = 1, \dots, k - 1)$

are primes satisfies

$$N_b(x, a_1, \dots, a_{k-1}) = (1 + o_x(1)) \times \prod_{\substack{\pi \le x \\ \pi \in \mathcal{P}}} \left(1 - \frac{\rho(\pi)}{\pi}\right).$$

From the Hardy-Littlewood conjecture one can obtain that large part of the primes (p_0, \ldots, p_{k-1}) counted in $N_b(x, a_1, \ldots, a_k)$ are consecutive primes, i.e. no primes exists in the intervals (p_j, p_{j+1}) $(j = 1, \ldots k-1)$.

From this not hard to deduce that for every $h_0, \ldots, h_{k-1} \in E_q$ there are infinitely many consecutive primes p_0, \ldots, p_{k-1} , such that

$$p_j \equiv h_j \pmod{q} \quad (j = 0, \dots, k-1).$$

Problem. Construct explicitly such a sequence of integers: $n_1 < n_2 \ldots$ for which in the notation $n_j \equiv \delta_j \pmod{q}, \ 0 \le \delta_i < q$, the number

$$\eta = 0, \delta_1 \delta_2 \dots$$
 (q-ary expansion)

is a q-ary normal number.

I can imagine that one can prove that it is impossible to define such a sequence explicitly, if we would like to use only "simple functions". The following theorem seems to be interesting.

Let ξ_1, ξ_2, \ldots be independent random variables in (Ω, \mathcal{A}, P) taking values 0 and 1, $P(\xi_n = 1) = \lambda_n$, $P(\xi_n = 0) = 1 - \lambda_n$.

Assume that $\lambda_1 = \lambda_2 = 0$, $\lambda_n = \frac{1}{\log n}$ $(n \ge 3)$.

For some $\omega \in \Omega$ let $S(\omega) := \{n_1, n_2, \ldots\}$ where n_1, n_2, \ldots are those indices for which $\xi_{n_j} = 1$.

Let $S(\omega) |_q = \{l_1, l_2, \ldots\}$, where $n_j \equiv l_j \pmod{q}$, $l_j \in A_q$. Theorem 7. Let

$$\theta_q := 0, l_1 l_2 \dots$$
 (q-ary exp.)

Then $heta_q$ is a q-ary normal number with probability 1.