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I. Basic definitions and examples

I.1 Skew product construction

• A set X

• A group (Γ, .)

• A map T : X → X

• A map ϕ : X → Γ

→ The (ϕ,Γ)-group extension of base T , or a skew product of T , with cocycle ϕ, is :

Tϕ : X × Γ → X × Γ

Tϕ(x, γ) = (Tx, γ.ϕ(x))
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In topological dynamics :

• X is a compact metrizable space,

• T is continuous,

• Γ is a locally compact metrizable group,

• ϕ is continuous.

In metric theory of dynamical systems :

• X is a standard Borel space (X,B), equipped with a probability measure µ,

• T is an endomorphism of (X,B, µ),

• Γ is a compact (eventually locally compact) metrizable group,

• ν is the Haar measure of Γ (eventually a right invariant measure),

• ϕ is measurable,

and the metric skew product is

(Tϕ, X × Γ, µ⊗ ν)

P. L. Smolenice, UDT 2012, June 25–29 3



Group extensions : from old to new results with various applications

I.2 Basic examples

(1) Group extension of a one point map : X := {p}, ϕ(p) = α.

Tϕ is naturally identified to the translation γ 7→ γ + α on Γ.

(2) Anzai skew product (the father of skew products (Anzai, 1951)) :

X := T (1-torus), Γ = T , ϕ is a measurable map.

(3) The Furstenberg tower extensions (related to polynomial sequences n 7→ P (n)

(mod 1) with dominant coefficient α)

X := Ts−1, Γ = T, ϕ(x1, . . . , xs−1) = xs−1

T (x1, . . . , xs) = (x1 + s!α, x2 + x1, . . . , xs + xs−1)

In fact, set Ps−i(X) = ∆iP (X), i = 1, . . . , s−1, with ∆Q(X) = Q(X+1)−Q(X), then

Tn(P1(0), . . . , Ps−1(0), P (0)) = (P1(n), . . . , Ps−1(n), P (n)) .

We may replace T by any compact abelian group Γ.
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I.3 Skew products from odometers

Let G be a scale 1 = G0 < G1 < G2 < · · ·.

The greedy extension of integer n ∈ N0 (= N ∪ {0}) is given by

n = e0(n)G0 + e1(n)G1 + · · · + eh(n)(n)Gh(n) and eh(n)+i(n) = 0 (i = 1, 2, 3, . . .)

with the constraints

(C) e0(n)G0 + e1(n)G1 + · · · + ek(n)Gk < Gk+1 (k = 0, 1, 2, . . .) .

• G-compactification of N0

KG = {e ∈ N∞
0 ; e0G0 + e1G1 + · · · + ekGk < Gk+1 for all k = 0, 1, 2, . . .}

endowed with the product topology.

→ N0 is identified into a part of KG by setting

ñ = e0(n)e1(n)e2(n) · · · .

We also use n̂ = e0(n)e1(n)e2(n) . . . eh(n)(n) called G-word of n , (0̂ = ∧).

→ By construction, Ñ0 is dense in KG.
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Definition. The G-odometer τ : KG → KG is built from the addition of 1 in N0,

computed in the scale G :

τ(e) = lim
k→∞

(e[k] + 1)̃ where e[k] = e0G0 + · · · + ekGk.

The set τ−1(0∞) plays an important role.

Theorem (G-L-T (1995)) τ is continuous if and only if for all k ≥ 1 the G-word Wk

of Gk − 1 is the prefix of at most finitely many G-words Wℓ of Gℓ − 1 with ℓ > k but

|Wℓ| = |Wk| + 1.

Classical examples.

(CE1) q-adic scale :

Gk = qk. One gets the classical q-adic odometer (adding 1 in the group of q-adic integers

Zq). Here τ is continuous and τ−1(0∞) = {(q − 1)∞}.

P. L. Smolenice, UDT 2012, June 25–29 6



Group extensions : from old to new results with various applications

(CE2) α-Ostrowski scale :

α is an irrational number in [1/2, 1]. The regular continued fraction expansion

α = [0; a1, a2, a3, . . .]

leads to convergents pn/qn ; we take Gn = qn.

Here

τ−1(0∞) = {0a20a40a6 · · · , (a1 − 1)0a30a5 · · ·},

τ is continuous and (KG, τ) is minimal, uniquely ergodic, quasi-conjugate to the

translation x→ x+ α mod 1 with conjugate map ϕ : KG → [0, 1[ given by

ϕ(e) = α+

∞∑

n=0

en(qnα− pn) .

P. L. Smolenice, UDT 2012, June 25–29 7



Group extensions : from old to new results with various applications

• For general results about G-odometers we refer to the following seminal papers :

P. Grabner, P.L. and R. Tichy : Odometers and systems of numeration, AA, 70 (1995),

103-123.

G. Barat, T. Downarovicz, A. Iwanik. and P. L. : Propriétés topologiques et combina-

toires des échelles de numération, Colloq. Math., 84-85, part 2 (2000), 285–306.

G. Barat, T. Downarovicz, and P. L. : Dynamiques associées à des échelles de

numération, AA, 103(1) (2002), 281-290.

•• Many papers investigate more or less exotic scales of less or more interests and more

or less untractable :=(

• • ⋄ The first goal is usually to decide if the G-odometer is uniquely ergodic.

• • ⋄⋄ If the answer is positive, the next goal should be a part of the subject of this

talk...
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G-multiplicative group extensions

Let G be a scale.

Definition. f : N0 → U (resp. f : N0 → R is G-multiplicative (resp. additive) if

f(n) =

h(n)∏

k=0

f(ek(n)Gk)
(
resp. f(n) =

h(n)∑

k=0

f(ek(n)Gk

)
;

in the additive case, f is called a weighted sum-of-digits if f(ek(n)Gk) = ek(n)f(Gk).

Usual multiplicative cases :

• For q-adic scale, we speak about q-multiplicative sequence.

• For α-Ostrowski scale, we speak about α-multiplicative sequence.

• Eventually replace U or R by Γ (locally compact metrizable group).

For other cases we also assume that the odometer is uniquely ergodic with invariant

measure µ such that µ(τ−1(0∞)) = 0.
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Definition. Discrete derivative ∆f of f : N0 → U is defined on KG \ τ−1(0∞) by

∆f(x) = lim
ñ→x
n∈N

f(n+ 1)/f(n)

On τ−1(0∞) put your favorite values if you cannot extend ∆f by continuity.

Now we have at least two options :

• Study the G-multiplicative group extension

(τ∆f ,KG × U, µ⊗ ν)

τ∆f (x, ζ) = (τ(x), ζ∆f(x))

• Look at f as a point in Ω := UN0 , then consider the shift σ : Ω → Ω, the orbit closure

K(f) := {σnf ; n ∈ N0}

and the continuous dynamical system (K(f), σ′) where σ′ is the restriction of σ on

K(f).

→ Find topological, ergodical properties (including spectral analysis) of such dynamical

systems.
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I.4 Skew products from Bernouilli shifts

With finite number q of states :

X is the compact space

Ωq = {0, 1, . . . , q − 1}N0

equipped with the infinite product ν∞q probability of the uniform distribution νq on

{0, 1, . . . , q − 1} and the shift σ.

Eventually, replace (Ωq, σ, ν
∞
q ) by ([0, 1), b∗, λ) :

b∗(x) := bx− ⌊bx⌋ , λ is the Lebesgue probability .

Γ = T and the cocycle ϕ is measurable.

With infinite number of states :

Here we are concerned with X := Ω(T) (= TN0) and the shift is still noted by σ.
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II. Minimality and distality

In this part we assume

• X compact metrizable

• Γ abelian, compact and metrizable

• T : X → X and ϕ : X → Γ continuous.

Theorem (Furstenberg). Assume that (T,X) is minimal, then Tϕ is minimal if and

only if for all non trivial character χ of γ, there is no continuous map F : X → C,

except the null map, such that

(∗) F ◦ Tx = (χ ◦ ϕ).F .

Notice that the set of characters χ such that (∗) has a non trivial continuous solution

F form a subgroup H of Γ̂.
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Fact : the map Θg : (x, γ) 7→ (x, γ.g) is an automorphisme of Tϕ.

Theorem (from Furstenberg). Assume T is minimal, then Tϕ is distal (i.e. for all

(u, v) ∈ (X × Γ)2, OTϕ×Tϕ
(u, v) is disjoint of the diagonal).

→→ In particular, for all (x, γ) ∈ X × Γ, Tϕ restreint to OTϕ
(x, γ) is minimal.
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III. Criteria for ergodicity and unique ergodicity

Suppose (T,X, µ) ergodic and let Γ be a compact metrizable group.

III.1 Ergodicity of Tϕ

The cocycle ϕ : X → Γ is said to be ergodic (uniquely ergodic) if (Tϕ, X × Γ, h ⊗ ν) is

ergodic (uniquely ergodic).

• There are essentially 2 criteria for the ergodicity of ϕ.

First Criterium :

Theorem. The following assertions are equivalent :

(i) ϕ is ergodic ;

(ii) for all irreducible nontrivial representation π of Γ in a Hilbert space Hπ of unit ball

Bπ, there exists no measurable map F : X → Bπ, except the null map, such that

F (Tx) = π(ϕ(x))(F (x)) µ− p.p.
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Second criterium (with X non atomic, T inversible, Γ Abelian metrizable and

compact) :

Define ϕn for n ∈ Z by

Tn
ϕ (x, γ) = (Tnx, γϕn(x)).

We need to introduce the notion of essential value of K. Schmidt (1977) :

Definition. α ∈ Γ is an essential value of ϕ with respect to T if for any Borel set B of

X with µ(B) > 0 and any neighborhood V of α in Γ, one has

µ

(
⋃

n∈Z

(
B ∩ T−n(B) ∩ ϕ−1

n (V )
))

> 0 .

Fracts :

(j) the set E(ϕ) of essential values of ϕ is a compact sub-group of Γ ;

(jj) multiplying ϕ by a coboundary, i.e. a measurable map of the form x 7→

g(Tx)g(x)−1, does not change the essential values ;

(jjj) ϕ is itself a coboundary if and only if E(ϕ) = {1Γ}.
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(jv) There is a measurable coboundary ϕ0 : x 7→ g(Tx)g(x)−1 such that ϕ′ =

g ◦ T.ϕ.(g)−1 is E(ϕ)-valued. In that case Tϕ is metrically isomorphic to Tϕ′ .

Theorem (K. Schmidt). (Tϕ, X × Γ, µ⊗ ν) is ergodic if and only if E(ϕ) = Γ.

Note : In the Abelian case the set of characters π of Γ such that the corresponding

functional equation

F (Tx) = π(ϕ(x))(F (x)) µ− p.p.

has a non-trivial measurable solution form a subgroup H of Γ̂ and

E(ϕ) is the annihilator of H.
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III.2 Weakly mixing

The cocycle ϕ : X → Γ is said to be weakly mixing if it is ergodic and the eigenvalues of

the unitary operator UTϕ
of L2(X × Γ, µ) associated to Tϕ are only those coming from

of the unitary operator UT .

Theorem. If ϕ is ergodic, the following assertions are equivalent :

(i) ϕ is weakly mixing ;

(ii) for all irreducible nontrivial representation π of Γ in U and for all complex numbers

ζ of modulus 1, there exists no measurable map F : X → U, except the null map, such

that

F (Tx) = ζπ(ϕ(x))(F (x)) µ− p.p.
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III.2 Genericity and unique ergodicity

We assume :

• X is metrizable compact, µ is a Borel measure of probability.

• T : X → X is measurable µ-continuous.

• ϕ : X → Γ is measurable, µ-continuous.

With these assumptions, the skew product Tϕ will be said regular.

Definition. x ∈ X is said to be T -generic if for all continuous functions f : X → C,

one has

lim
N

1

N

N−1∑

n=0

f(Tn(x)) =

∫

X

fdµ .

This definition has also a meaning if we replace T by Tϕ.
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Theorem (P.L. 1977). In the regular case, ϕ is ergodic if and only if for all T -generic

point x and all γ ∈ Γ, the point (x, γ) is Tϕ-generic.

In particular, this theorem says that if (Tϕ, X ×G, µ⊗ ν) is ergodic and x is T -generic,

then the sequence

n 7→ ϕn(x)

is ν-distributed in Γ.

The following theorem is well known in the continuous case.

Theorem (P.L. 1977). In the regular case, Tϕ is uniquely ergodic if and only if T is

uniquely ergodic and Tϕ ergodic.

To obtain uniform distribution of n 7→ ϕn(x) uniformly in x, we need additional

regularity on T and ϕ.
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IV. A worked example and a bit more

Take

X = Γ = [0, 1) (identified to the torus T = R/Z).

ϕ : [0, 1) → [0, 1), ϕ(x) = 1
x+1 ,

u = (un)n≥0 a sequence in [0, 1)

and

Σu : n 7→
1

u0 + 1
+

1

u1 + 1
+ · · · +

1

un−1 + 1
(mod 1)
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IV.1 Case of completely u.d. sequences

Theorem. If u is completely uniformly distributed the sequence Σu is uniformly

distributed.

A glance at the proof :

View ϕ as a map defined on Ω([0, 1)) by setting

ϕ(x0, x1, . . .) =
1

x0 + 1

and consider the skew product

(σϕ,Ω([0, 1))× [0, 1), λ∞ ⊗ λ) .

Ergodicity comes from a general result where we can replace this special cocycle ϕ by

any regular cocycle f depending on the first coordinate and its essential values generate

a dense subgroup of [0, 1) (P.L. (1981)).
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IV. Sequences nα

Theorem. Let α = [0; a1, a2, . . .] be an irrational number in [0, 1) and set un =

nα− ⌊nα⌋. Then the sequence Σu is uniformly distributed.

Key step in the proof (derived from P. Gabriel, M. Lemanczyk and P.L. (1991)).

We look at the n discontinuity points of

ϕm(x) = ϕ(x) + . . .+ ϕ(x+ (m− 1)α)

namely the points −kα (mod 1) k = 0, 1, . . . ,mn − 1 where ϕmn
has a jump 1/2.

For mn = qn + qn+1, the points −kα (mod 1), k = 0, . . . ,mn − 1 built a subdivision

of [0, 1) made of qn+1 intervals of length ||qnα|| and qn intervals of length ||qn+1α||.

The absolute value of the derivative of ϕn is bounded by mn. Classically qn+1||qnα|| +

qn||qn+1α|| = 1 and

1

2qn+1
≤ ||qnα|| ≤

1

qn+1
, ||qn−2α|| = an||qn−1α|| + ||qnα|| .

This analysis leads to the key lemma :
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Lemma. There exists two constants ε0 > 0 and η0 > 0 such that for mn := qn + qn+1

one has for all c ∈ [0, 1) :

λ({x ∈ [0, 1) ; ||ϕmn
− c|| ≥ ε0}) ≥ η0 .

End of the proof.

→ If k is even the cocycle ψk(·) = kϕ(·) is absolutely continuous with degré k/2 and

according to a theorem of Gabriel-Lemanczyk-Liardet (1991) ψk(·) is weak mixing.

→ If k is odd we can replace ϕ in the above lemma by ψk and look at the functional

equation

F (x+ α) = ζe2iπkϕ(x)F (x) λ− p.p.

with |F | = 1 = |ζ| ; that gives
∫

[0,1)

F (x+mnα)F (x)dx =

∫

[0,1)

ζmne2iπkϕmn(x)dx .

The left member of this equality tends to 1 hence by convexity argument, ζmne2iπkϕmn(·)

tend to 1 in measure. Contradiction with the lemma.
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Some open problems.

– Show that the sequence Σu is uniformly distributed mod 1 if un = qnθ− ⌊qnθ⌋ where

θ is q-normal.

– Use for u your favorite sequence, like the Van der Corput sequence.

– A lot. . .
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V. Results involving continued fractions

X = [0, 1)

T is the Gauss transformation T (x) = 1
x
−
⌊

1
x

⌋
(T (0) = 0)

µ(dx) = 1
log 2

dx
1+x

set :

a(x) =
⌊

1
x

⌋
, a(0) = ∞, Ma =

(
0 1
1 a

)
, J := M0,

then

x =
1

a(x) + Tx
=

1

a(x) +
1

a(Tx) + T 2(x)

= [0; a(x), a(Tx), a(T 2(x), . . .]

if x is irrational

x := [0; a1, a2, a3, . . .];

if x is rational :

x = [0, a1, . . . , ak,∞,∞, . . .] with ak > 1.
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Fondamental formula for x irrational :

Notation : ak(x) = a(T k−1(x)).

(
pn−1(x) pn(x)
qn−1(x) qn(x)

)
= Ma1(x) · · ·Man(x) , (p0 = 0, q0 = 1)

For integer m ≥ 2, set Γm = GL2(Z/mZ) (compact but not commutative). One has

also

Γm = GL2(Z)/G2,m

where

G2,m :=
{(

a b
c d

)
∈ GL2(Z ; a ≡ d ≡ 1 (mod m) & b ≡ c ≡ 0 (mod m)

}

Example with m = 2 :

Γ2 =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)}
.
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Cocycle : ϕ(x) = Mā(x) and Tϕ : [0, 1) × Γm → [0, 1)× Γm defined by

Tϕ(x, γMā(x))

where Mā is the class of Ma mod G2,m.

Theorem (H. Jager and P.L. (1988)) The skew product (Tϕ, [0, 1)×Γm, λ⊗ νm) is

ergodic.

Notice that #Γm = 2m3
∏

p|m

(
1 − 1

p2

)
and Tϕ is regular, hence for any matrix g in

GL2(Z) and all T -generic point x :

lim
n

1

N
#
{
n ≤ N ;

(
pn−1(x) pn(x)
qn−1(x) qn(x)

)
≡ g mod G2,m

}
=

1

#Γm

The above result has been extended to various continued fraction expansions, in

particular for the S-continued fractions introduced by C. Kraaikamp (K. Dajani and

C. Kraaikamp (1998)). It has been also adapted in multidimensional continued fraction

expansions (V. Berthé, H. Nakada and R. Natsui (2006)).
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More arithmetical structures of denominators qn(x) of converges pn(x)/qn(x)

Let πn denote the n-th prime number, consider a sequence c : N → N0 ∪ {∞} and

define

Ec = {n ∈ N ; ∀ k , πck

k 6 | n}

For example E2,2,2,... is the set of square-free integers.

Theorem. For any T -generic point x (here, T is the Gauss transformation or a suitable

analogous transformation) the limit

lim
N

1

N
#{n ≤ N ; qn(x) ∈ Ec}

exist (and is computable).

Example, for the Gauss transformation and Q := E2,2,2,... the limit is

∏

p

(
1 −

2

p(p− 1)

)
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About the proof (in the case of square free integers for example)

The group Γm is replaced by the projective limit

ΓQ := lim
←

q∈Q

Γq2 .

and let c : GL2(Z) → ΓQ be the canonical morphism.

Now, identify in ΓQ a compact KQ such that

(
r s
t u

)
) ∈ GL2(Z) & u ∈ Q ⇐⇒ c(

(
r s
t u

)
) ∈ KQ

then the cocycle y 7→ c(Mx) is ergodic.

Unfortunately, the interior of KQ is empty, so we cannot apply directly the theorem on

generic points. We need extra probabilistic arguments.
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