On the distribution of the elliptic curve power generator

László Mérai

Eötvös Loránd University
Budapest

26. 06. 2012.
Elliptic curves

\[\mathcal{E}(\mathbb{F}_q) = \{(x, y) : y^2 = x^3 + a_1 x + a_2\} \cup \{\infty\}, \quad a_1, a_2 \in \mathbb{F}_q \]

\((\mathcal{E}(\mathbb{F}_p), +)\) is an Abelian group.
Elliptic curves

\[\mathcal{E}(\mathbb{F}_q) = \{(x, y) : y^2 = x^3 + a_1 x + a_2\} \cup \{\infty\}, \quad a_1, a_2 \in \mathbb{F}_q \]

\((\mathcal{E}(\mathbb{F}_p), +)\) is an Abelian group.

Adding: \((x_P, y_P) + (x_Q, y_Q)\):

\[
\begin{align*}
x &= \left(\frac{y_P - y_Q}{x_P - x_Q} \right)^2 - x_P - x_Q \\
y &= y_P + \frac{y_P - y_Q}{x_P - x_Q} (x_P - x)
\end{align*}
\]
Elliptic curves

\[E(\mathbb{F}_q) = \{(x, y) : y^2 = x^3 + a_1 x + a_2\} \cup \{\infty\}, \quad a_1, a_2 \in \mathbb{F}_q \]

\((E(\mathbb{F}_p), +)\) is an Abelian group.

Adding: \((x_P, y_P) + (x_Q, y_Q)\):

\[
\begin{align*}
 x &= \left(\frac{y_P - y_Q}{x_P - x_Q} \right)^2 - x_P - x_Q \\
 y &= y_P + \frac{y_P - y_Q}{x_P - x_Q} (x_P - x)
\end{align*}
\]

Doubling: \(2(x_{P'}, y_{P'})\):

\[
\begin{align*}
 x &= \left(\frac{3x_{P'}^2 + A}{2z_{P'}} \right)^2 - 2x_{P'} \\
 y &= y_P + \frac{3x_{P'}^2 + A}{2z_{P'}} (x_{P'} - x) - y_{P'}
\end{align*}
\]
Elliptic curves

\[\mathcal{E}(\mathbb{F}_q) = \{(x, y) : y^2 = x^3 + a_1 x + a_2\} \cup \{\infty\}, \quad a_1, a_2 \in \mathbb{F}_q \]

Applications:
- Public key cryptosystem
- Digital signature
- Generating pseudorandom sequences, ...
Elliptic curves

\[\mathcal{E}(F_q) = \{ (x, y) : y^2 = x^3 + a_1 x + a_2 \} \cup \{ \infty \}, \quad a_1, a_2 \in F_q \]

Applications:

- Public key cryptosystem
- Digital signature
- Generating pseudorandom sequences, …

Discrete logarithm problem: given \(P, nP \in \mathcal{E}(F_p) \) find \(n \)!
Sequences generated by elliptic curve

Let $P_n \in \mathcal{E}(\mathbb{F}_q)$ be a sequence of points.
We study the distribution of points $P_n = (x_n, y_n), \ (x_n, y_n \in \mathbb{F}_q)$
Let \(P_n \in \mathcal{E}(\mathbb{F}_q) \) be a sequence of points. We study the distribution of points \(P_n = (x_n, y_n), (x_n, y_n \in \mathbb{F}_q) \).

Importance:

- We may get a good pseudorandom generator.
- Helps us to trust the hardness of discrete logarithm problem.
Sequences generated by elliptic curve

Let $P_n \in \mathcal{E}(\mathbb{F}_q)$ be a sequence of points. We study the distribution of points $P_n = (x_n, y_n), (x_n, y_n \in \mathbb{F}_q)$

Importance:
- We may get a good pseudorandom generator.
- Helps us to trust the hardness of discrete logarithm problem.
 A negative result would help us to attack this problem.
Pseudorandomness of sequences - Discrepancy

Let \((u_n) \subset [0, 1)\) be a sequence. For a positive integer \(s\), the discrepancy \(D_s(N)\) of the points

\[(u_n, \ldots, u_{n+s-1}), \quad n = 1, \ldots, N\]

is defined by

\[D_s(N) = \sup_{B \subseteq [0,1)^s} \left| \frac{N(B)}{N} - |B| \right|,\]

where \(N(B)\) is the number of points which hit the box

\[B = [a_1, b_1) \times \cdots \times [a_s, b_s)\]

and the supremum is taken over all such boxes \(B\).
Let \((u_n) \subset [0, 1)\) be a sequence. For a positive integer \(s\), the discrepancy \(D_s(N)\) of the points
\[
(u_n, \ldots, u_{n+s-1}), \quad n = 1, \ldots, N
\]
is defined by
\[
D_s(N) = \sup_{B \subseteq [0,1)^s} \left| \frac{N(B)}{N} - |B| \right|
\]
where \(N(B)\) is the number of points which hit the box
\[
B = [a_1, b_1) \times \cdots \times [a_s, b_s)
\]
and the supremum is taken over all such boxes \(B\).

We can apply the discrepancy to the sequence \(\frac{x_n}{p}\) where \(P_n = (x_n, y_n) \in \mathcal{E}(\mathbb{F}_p)\)
Pseudorandomness of sequences - Measures of pseudorandomness

Let \(E_N = (e_1, \ldots, e_N) \in \{+1, -1\}^N \) binary sequence. The well-distribution measure \(W(E_N) \) is

\[
W(E_N) = \max_{a,b,t} \left| \sum_{j=1}^{t} e_{a+jb} \right|
\]

We can apply this measure by transforming \(P_n \) to a binary sequence:

\[
P_n = (x_n, y_n) \mapsto \begin{cases} +1, & \text{if } x_n \in \{0, 1, \ldots, p-1\}^2 \\ -1, & \text{otherwise} \end{cases}
\]

(Laszlo Merai (Budapest))
Pseudorandomness of sequences - Measures of pseudorandomness

Let \(E_N = (e_1, \ldots, e_N) \in \{+1, -1\}^N \) binary sequence. The well-distribution measure \(W(E_N) \) is

\[
W(E_N) = \max_{a, b, t} \left| \sum_{j=1}^{t} e_{a+jb} \right|
\]

The correlation measure \(C_\ell(E_N) \) of order \(\ell \) is

\[
C_\ell(E_N) = \max_{M, d_1, \ldots, d_\ell} \left| \sum_{n=1}^{M} e_{n+d_1} \ldots e_{n+d_\ell} \right|
\]
Pseudorandomness of sequences - Measures of pseudorandomness

Let $E_N = (e_1, \ldots, e_N) \in \{+1, -1\}^N$ binary sequence. The well-distribution measure $W(E_N)$ is

$$W(E_N) = \max_{a,b,t} \left| \sum_{j=1}^{t} e_{a+jb} \right|$$

The correlation measure $C_\ell(E_N)$ of order ℓ is

$$C_\ell(E_N) = \max_{M,d_1,\ldots,d_\ell} \left| \sum_{n=1}^{M} e_{n+d_1} \cdots e_{n+d_\ell} \right|$$

We can apply this measures by transforming P_n to a binary sequence:

- $P_n = (x_n, y_n) \mapsto \begin{cases} +1, & \text{if } x_n \in \{0, 1, \ldots, \frac{p-1}{2}\} \\ -1, & \text{otherwise} \end{cases}$
- $P_n = (x_n, y_n) \mapsto \left(\frac{x_n}{p} \right), \quad (\text{Here } \left(\frac{\cdot}{p} \right) \text{ is the Legendre symbol.})$
Sequences generated by elliptic curve

Elliptic curve linear congruential generator, EC-LCG:
Let \(P, P_0 \in \mathcal{E}(\mathbb{F}_q) \) and the sequence \(U_n \ (n \in \mathbb{N}) \) generated by the rule

\[
U_n = U_{n-1} + P = nP + P_0
\]
Sequences generated by elliptic curve

Elliptic curve linear congruential generator, EC-LCG:
Let \(P, P_0 \in \mathcal{E}(\mathbb{F}_q) \) and the sequence \(U_n (n \in \mathbb{N}) \) generated by the rule
\[
U_n = U_{n-1} + P = nP + P_0
\]

- Given consecutive elements \(U_n, U_{n+1} \) one can easily compute \(P \).
- We can consider the sequence \(f(U_n) \in \mathbb{F}_q \) with secret \(f \in \mathbb{F}_q(\mathcal{E}) \).
- Due to the simple structure, the generator is well-understood.
Sequences generated by elliptic curve

Elliptic curve linear congruential generator, EC-LCG:
Let \(P, P_0 \in \mathcal{E}(\mathbb{F}_q) \) and the sequence \(U_n \ (n \in \mathbb{N}) \) generated by the rule
\[
U_n = U_{n-1} + P = nP + P_0
\]

- Given consecutive elements \(U_n, U_{n+1} \) one can easily compute \(P \).
- We can consider the sequence \(f(U_n) \in \mathbb{F}_q \) with secret \(f \in \mathbb{F}_q(\mathcal{E}) \).
- Due to the simple structure, the generator is well-understood.

Elliptic curve power generator, EC-PG:
Let \(Q \in \mathcal{E}(\mathbb{F}_q) \) and fix an integer \(e \). The sequence \(W_n \ (n \in \mathbb{N}) \) generated by the rule
\[
W_n = eW_{n-1} = e^n Q
\]
Sequences generated by elliptic curve

Elliptic curve linear congruential generator, EC-LCG:
Let $P, P_0 \in \mathcal{E}(\mathbb{F}_q)$ and the sequence $U_n \ (n \in \mathbb{N})$ generated by the rule

$$U_n = U_{n-1} + P = nP + P_0$$

- Given consecutive elements U_n, U_{n+1} one can easily compute P.
- We can consider the sequence $f(U_n) \in \mathbb{F}_q$ with secret $f \in \mathbb{F}_q(\mathcal{E})$.
- Due to the simple structure, the generator is well-understood.

Elliptic curve power generator, EC-PG:
Let $Q \in \mathcal{E}(\mathbb{F}_q)$ and fix an integer e. The sequence $W_n \ (n \in \mathbb{N})$ generated by the rule

$$W_n = eW_{n-1} = e^n Q$$

- To compute e from consecutive elements W_n, W_{n+1} one may need to solve the \textit{discrete logarithm problem}.
- To compute an element W_n from the some previous ones one may need to solve the \textit{Diffie-Helmann problem}.
Elliptic curve linear congruential generator, EC-LCG

Discrepancy bounds:

- Hess, Shparlinski: Let \(u_n = \frac{x(nG)}{p} \in [0, 1) \).
 Then the discrepancy of \((u_{n+1}, \ldots, u_{n+s})\) is
 \[D_s(t) \ll t^{-1} p^{1/2+\varepsilon}, \quad \text{(Here } t \text{ is the order of } G.\)
Elliptic curve linear congruential generator, EC-LCG

Discrepancy bounds:

- **Hess, Shparlinski**: Let \(u_n = \frac{x(nG)}{p} \in [0, 1) \).

 Then the discrepancy of \((u_{n+1}, \ldots, u_{n+s})\) is

 \[D_s(t) \ll t^{-1} p^{1/2+\varepsilon}, \quad \text{(Here } t \text{ is the order of } G.\) \]

Bounds on the pseudorandom measures of binary case:

- **Chen; Mérai**: Let \(e_n = \left(\frac{f(nG)}{p} \right) \in \{+1, -1\} \), then

 \[W(E_N), C_\ell(E_N) \ll p^{1/2+\varepsilon}. \]
Elliptic curve linear congruential generator, EC-LCG

Discrepancy bounds:

- **Hess, Shparlinski**: Let \(u_n = \frac{x(nG)}{p} \in [0, 1) \).

 Then the discrepancy of \((u_{n+1}, \ldots, u_{n+s})\) is
 \[
 D_s(t) \ll t^{-1} p^{1/2+\epsilon}, \quad \text{(Here } t \text{ is the order of } G.\text{)}
 \]

Bounds on the pseudorandom measures of binary case:

- **Chen; Mérai**: Let \(e_n = \left(\frac{f(nG)}{p} \right) \in \{+1, -1\} \), then
 \[
 W(E_N), C_\ell(E_N) \ll p^{1/2+\epsilon}.
 \]

- **Liu, Wang, Zhand; Mérai**:

 Let \(e_n = \begin{cases}
 +1, & \text{if } f(nG) \in \{0, 1, \ldots, \frac{p-1}{2}\} \\
 -1, & \text{otherwise}
 \end{cases} \), then
 \[
 W(E_N), C_\ell(E_N) \ll p^{1/2+\epsilon}.
 \]
Elliptic curve power generator, EC-PG

Discrepancy bound:

- **Banks, Friedlander, Garaev, Shparlinski**: Let \(u_n = \frac{x(e^nG)}{p} \in [0, 1) \).
 Then its discrepancy:

\[
D_1(N) \ll N^{-2/3} T^{5/9} p^{1/18+\epsilon}
\]

Here \(T \) is the multiplicative order of \(e \) modulo \(|G|\).
Elliptic curve power generator, EC-PG

Discrepancy bound:

- Banks, Friedlander, Garaev, Shparlinski: Let $u_n = \frac{x(e^n G)}{p} \in [0, 1)$. Then its discrepancy:

$$D_1(N) \ll N^{-2/3} T^{5/9} p^{1/18} \varepsilon$$

Here T is the multiplicative order of e modulo $|G|$.

Remarks: There are no non-trivial bound on discrepancy even of $\left(\frac{x(e^n G)}{p}, \frac{x(e^{n+1} G)}{p} \right)$! Except for some trivial examples, e.g. $e = 2$.

Elliptic curve power generator, EC-PG

Discrepancy bound:

- **Main result:** Let \(u_n = \frac{f(e^nG)}{p} \) for an \(f \in \mathbb{F}_p(E) \).

Then

\[
D_1(N) \ll \deg f \ N^{-2/3} \ T^{5/9} \ p^{1/18 + \varepsilon}
\]
Elliptic curve power generator, EC-PG

Discrepancy bound:

- **Main result:** Let $u_n = \frac{f(e^nG)}{p}$ for an $f \in \mathbb{F}_p(\mathcal{E})$. Then

$$D_1(N) \ll \deg f \ N^{-2/3} \ T^{5/9} \ p^{1/18} + \varepsilon$$

Remarks:

Discrepancy bound on $\left(\frac{f(e^nG)}{p}, \frac{f(e^{n+1}G)}{p}, \ldots, \frac{f(e^{n+s-1}G)}{p} \right)$ can be also given just small e:

$$D_s(N) \ll \deg f \ e^{2(s-1)} \ N^{-2/3} \ T^{5/9} \ p^{1/18} + \varepsilon$$
Exponential sums over elliptic curves

The discrepancy bounds immediately follow from exponential sum estimates.

Kohel, Shparlinski: Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$ and ψ be an additive character of \mathbb{F}_q. If f is not constant, then

$$\sum_{Q \in \mathcal{H}} \psi(f(Q)) \leq 2 \deg f \ q^{1/2}$$
Exponential sums over elliptic curves

The discrepancy bounds immediately follow from exponential sum estimates.

- **Kohel, Shparlinski:** Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$ and ψ be an additive character of \mathbb{F}_q. If f is not constant, then
 \[
 \sum_{Q \in \mathcal{H}} \psi(f(Q)) \leq 2 \deg f \, q^{1/2}
 \]

- **Lange, Shparlinski:** Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$ and ψ be an additive character of \mathbb{F}_q. If $1 \leq d_1 < \cdots < d_s \leq D$, then
 \[
 \sum_{Q \in \mathcal{H}} \psi \left(\sum_{i=1}^{s} c_i x(d_i Q) \right) \ll s \, D^2 \, q^{1/2}
 \]
Exponential sums over elliptic curves

The discrepancy bounds immediately follow from exponential sum estimates.

- **Kohel, Shparlinski**: Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$ and ψ be an additive character of \mathbb{F}_q. If f is not constant, then
 \[\sum_{Q \in \mathcal{H}} \psi(f(Q)) \leq 2 \deg f \frac{q^{1/2}}{2} \]

- **Lange, Shparlinski**: Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$ and ψ be an additive character of \mathbb{F}_q. If $1 \leq d_1 < \cdots < d_s \leq D$, then
 \[\sum_{Q \in \mathcal{H}} \psi \left(\sum_{i=1}^{s} c_i x(d_i Q) \right) \ll s D^2 q^{1/2} \]

- **Banks, Friedlander, Garaev, Shparlinski**: Let $Q \in \mathcal{E}(\mathbb{F}_p)$ and e be an integer of order T modulo $|G|$, then
 \[\sum_{n=1}^{N} e_p(x(e^n Q)) \ll N^{1/3} T^{5/9} p^{1/18 + \varepsilon} \]
A new bound: Let $\mathcal{H} \leq \mathcal{E}(\mathbb{F}_q)$, ψ be an additive character of \mathbb{F}_q. If $f \in \mathbb{F}_q(\mathcal{E})$ is not constant and $1 \leq d_1 < \cdots < d_s \leq D$, then

$$\sum_{Q \in \mathcal{H}} \psi \left(\sum_{i=1}^s c_i f(d_i Q) \right) \ll s \deg f \ D^2 q^{1/2}$$
Exponential sums over elliptic curves

Let

\[F(Q) = \sum_{i=1}^{s} c_i f(d_i Q) \]

In order to prove the theorem it is enough to show:

\[F(Q) \] is not constant. It can be shown that there is at least one pole:

We can order the poles of \(f(d_i Q) \) by their orders, and there is an \((almost) unique maximum element.\]
Exponential sums over elliptic curves

Let

\[F(Q) = \sum_{i=1}^{s} c_i f(d_i Q) \]

In order to prove the theorem it is enough to show:

- \(F(Q) \) is not constant. It can be shown that there is at least one pole:
Exponential sums over elliptic curves

Let

\[F(Q) = \sum_{i=1}^{s} c_i f(d_i Q) \]

In order to prove the theorem it is enough to show:

- \(F(Q) \) is not constant. It can be shown that there is at least one pole:

- \(\deg F \leq s \deg f \) \(D^2 \)
Exponential sums over elliptic curves

Let

\[F(Q) = \sum_{i=1}^{s} c_i f(d_i Q) \]

In order to prove the theorem it is enough to show:

- \(F(Q) \) is not constant. It can be shown that there is at least one pole:

 We can order the poles of \(f(d_i Q) \) by their orders, and there is an (almost) unique maximum element.

- \(\deg F \leq s \deg f \ D^2 \)
Thank you!