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Elliptic curves

E(Fq) = {(x , y) : y2 = x3 + a1x + a2} ∪ {∞}, a1,a2 ∈ Fq

(E(Fp),+) is an Abelian group.

Adding: (xP , yP) + (xQ , yQ):

x =
(

yP−yQ
xP−xQ

)2
− xP − xQ

y = yP +
yP−yQ
xP−xQ

(xP − x)

Doubling: 2(xP′ , yP′):

x =

(
3x2

P′+A
2zP′

)2

− 2xP′

y = yP +
3x2

P′+A
2zP′

(xP′ − x)− yP′

Discrete logarithm problem: given P,nP ∈ E(Fp) find n!
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Elliptic curves

E(Fq) = {(x , y) : y2 = x3 + a1x + a2} ∪ {∞}, a1,a2 ∈ Fq

Applications:

Public key cryptosystem

Digital signature

Generating pseudorandom
sequences, . . .
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Sequences generated by elliptic curve

Let Pn ∈ E(Fq) be a sequence of points.
We study the distribution of points Pn = (xn, yn), (xn, yn ∈ Fq)

Importance:
We may get a good pseudorandom generator.

Helps us to trust the hardness of discrete logarithm problem.
A negative result would help us to attack this problem.
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Pseudorandomness of sequences - Discrepancy

Let (un) ⊂ [0,1) be a sequence.
For a positive integer s, the discrepancy Ds(N) of the points

(un, . . . ,un+s−1), n = 1, . . . ,N

is defined by

Ds(N) = sup
B⊆[0,1)s

∣∣∣∣N(B)

N
− |B|

∣∣∣∣ ,
where N(B) is the number of points which hit the box

B = [a1,b1)× · · · × [as,bs)

and the supremum is taken over all such boxes B.

We can apply the discrepancy to the sequence xn
p where

Pn = (xn, yn) ∈ E(Fp)
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Pseudorandomness of sequences -
Measures of pseudorandomness
Let EN = (e1, . . . ,eN) ∈ {+1,−1}N binary sequence.
The well-distribution measure W (EN) is

W (EN) = max
a,b,t

∣∣∣∣∣∣
t∑

j=1

ea+jb

∣∣∣∣∣∣

The correlation measure C`(EN) of order ` is

C`(EN) = max
M,d1,...,d`

∣∣∣∣∣
M∑

n=1

en+d1 . . . en+d`

∣∣∣∣∣
We can apply this measures by transforming Pn to a binary sequence:

Pn = (xn, yn) 7→
{

+1, if xn ∈ {0, 1, . . . , p−1
2 }

−1, otherwise

Pn = (xn, yn) 7→
(

xn
p

)
, (Here

(
·
p

)
is the Legendre symbol.)
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Sequences generated by elliptic curve

Elliptic curve linear congruential generator, EC-LCG:
Let P,P0 ∈ E(Fq) and the sequence Un (n ∈ N) generated by the rule

Un = Un−1 + P = nP + P0

Given consecutive elements Un,Un+1 one can easily compute P.
We can consider the sequence f (Un) ∈ Fq with secret f ∈ Fq(E).
Due to the simple structure, the generator is well-understood.

Elliptic curve power generator, EC-PG:
Let Q ∈ E(Fq) and fix an integer e. The sequence Wn (n ∈ N) generated by
the rule

Wn = eWn−1 = enQ

To compute e from consecutive elements Wn,Wn+1 one may need to solve the
discrete logarithm problem.
To compute an element Wn from the some previous ones one may need to solve
the Diffie-Helmann problem.
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Elliptic curve linear congruential generator, EC-LCG

Discrepancy bounds:

Hess, Shparlinski: Let un = x(nG)
p ∈ [0,1).

Then the discrepancy of (un+1, . . . ,un+s) is

Ds(t)� t−1p1/2+ε, (Here t is the order of G.)

Bounds on the pseudorandom measures of binary case:

Chen; Mérai: Let en =
(

f (nG)
p

)
∈ {+1,−1}, then

W (EN),C`(EN)� p1/2+ε.

Liu, Wang, Zhand; Mérai:

Let en =

{
+1, if f (nG) ∈ {0,1, . . . , p−1

2 }
−1, otherwise

, then

W (EN),C`(EN)� p1/2+ε.
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Elliptic curve power generator, EC-PG

Discrepancy bound:

Banks, Friedlander, Garaev, Shparlinski: Let un = x(enG)
p ∈ [0,1).

Then its discrepancy:

D1(N)� N−2/3T 5/9p1/18+ε

Here T is the multiplicative order of e modulo |G|.

Remarks:
There are no non-trivial bound on discrepancy even of

(
x(enG)

p , x(en+1G)
p

)
!

Except for some trivial examples, e.g. e = 2.
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Elliptic curve power generator, EC-PG

Discrepancy bound:

Main result: Let un = f (enG)
p for an f ∈ Fp(E).

Then

D1(N)� deg f N−2/3T 5/9p1/18+ε

Remarks:
Discrepancy bound on

(
f (enG)

p , f (en+1G)
p , . . . , f (en+s−1G)

p

)
can be also given just

small e:

Ds(N)� deg f e2(s−1)N−2/3T 5/9p1/18+ε
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Exponential sums over elliptic curves
The discrepancy bounds immediately follow from exponential sum estimates.

Kohel, Shparlinski: Let H ≤ E(Fq) and ψ be an additive character of Fq . If f is
not constant, then ∑

Q∈H

ψ(f (Q)) ≤ 2 deg f q1/2

Lange, Shparlinski: Let H ≤ E(Fq) and ψ be an additive character of Fq .
If 1 ≤ d1 < · · · < ds ≤ D, then∑

Q∈H

ψ

(
s∑

i=1

cix(diQ)

)
� s D2q1/2

Banks, Friedlander, Garaev, Shparlinski: Let Q ∈ E(Fp) and e be an integer of
order T modulo |G|, then

N∑
n=1

ep(x(enQ))� N1/3T 5/9p1/18+ε
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Exponential sums over elliptic curves

A new bound: Let H ≤ E(Fq), ψ be an additive character of Fq .
If f ∈ Fq(E) is not constant and 1 ≤ d1 < · · · < ds ≤ D, then

∑
Q∈H

ψ

(
s∑

i=1

ci f (diQ)

)
� s deg f D2q1/2

László Mérai (Budapest) On the elliptic curve power generator 26. 06. 2012. 14 / 16



Exponential sums over elliptic curves

Let

F (Q) =
s∑

i=1

ci f (diQ)

In order to prove the theorem it is enough to show:

F (Q) is not constant. It can be shown that there is at least one pole:

We can order the poles of f (diQ) by their orders, and there is an
(almost) unique maximum element.

deg F ≤ s deg f D2
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Thank you!
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