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An asymmetric divisor problem with weights

Lattice point problems −→ Divisor problems −→ corresponding
arithmetic functions

The general r -dimensional weighted divisor problem:

d(a1, . . . , ar ; b1, . . . , br ; n) =
∑

m
a1
1 ···m

ar
r =n, mj∈Z>0

mb1
1 · · ·m

br
r

r ≥ 2, aj ∈ Z>0, bj ∈ R≥0

We focus on the special case

f1(n) = d(1, 1, 2; 0, 0, 1; n) =
∑

m1m2m2
3=n

m3

=
∑
m | n

σ
(
gcd

(
m,

n

m

))
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A class of arithmetic functions

Generating Dirichlet series:

∞∑
n=1

f1(n)n−s = ζ2(s)ζ(2s − 1) (<(s) > 1)

More generally, consider the class C of arithmetic functions fH(n) with
a generating Dirichlet series

∞∑
n=1

fH(n)n−s = ζ2(s)ζ(2s − 1)(ζ(2s))M H(s) (<(s) > 1) ,

where M ∈ Z fixed and H(s) has an Euler product absolutely
convergent in a half-plane <(s) ≥ σ0 for some σ0 < 1

2 .
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Example I

f ∗(n) :=
∑
m | n

gcd
(
m,

n

m

)

If n is square-free, f ∗(n) = d(n) = d(1, 1; 0, 0; n).

Thus f ∗(n)− d(n) measures the ”aberration” of n from the property
to be square-free.

The function f ∗(n) is multiplicative, with a generating Dirichlet series

∞∑
n=1

f ∗(n)

ns
=

ζ2(s)ζ(2s − 1)

ζ(2s)
(<(s) > 1)
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Example II

Pillai’s function of the second kind:

p2(n) =
1

n

n∑
k=1

gcd(k2, n)

Generating Dirichlet series:

∞∑
n=1

p2(n)

ns
=

ζ2(s)ζ(2s − 1)

(ζ(2s))2
Hp2(s) (<(s) > 1) ,

where Hp2(s) converges absolutely in <(s) > 1
3 :

Hp2(s) :=
∏

p prime

(
1− 1

ps+1
− 2

p2s
+

1

p2s+1
+

1

p3s

)
(1− p−2s)−2

=
∏

p prime

(
1 + p−3s − p−s−1 + p−2s−1 − p−4s − 2p−3s−1 + . . .

)
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Upper estimates

For every arithmetic function fH ∈ C,∑
0<n≤x

fH(n) = Res
s=1

(
ζ2(s)ζ(2s − 1)(ζ(2s))M H(s)

x s

s

)
+RH(x)

= x PH(log x) +RH(x) ,

where PH is a quadratic polynomial whose coefficients depend on H
and M.
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Upper estimates

Upper bounds for the remainder term

RH(x) � x2/3(log x)2 by complex integration & properties of
the zeta-function,

RH(x) � x925/1392 by Krätzel’s method (fractional part sums →
exponential sums) & classic exponent pairs

[
925
1392 = 0.6645 . . .

]
,

RH(x) � x547/832(log x)26947/8320 by Huxley’s Discrete
Hardy-Littlewood method

[
547
832 = 0.65745 . . .

]
,

RH(x) � x5/8(log x)4 by the whole toolkit of multiple exponential
sums including monomials (Kolesnik, Sargos, Bhowmik & Wu).
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Schinzel’s question

On the basis of the article by E. Krätzel, L. Tóth & N. entitled
”On certain arithmetic functions involving the greatest common
divisor”, Cent. Eur. J. Math. 10 (2012),
these result were presented by the speaker at the 20th Czech and
Slovak Conference on Number Theory in Stará Lesná in September
2011.

At the end of this talk Professor Schinzel asked the question:

”What can you say about Omega estimates?”

We are now able to give a fairly general answer, based on a method
which can be traced back to work by R. Balasubramanian,
K. Ramachandra & M.V. Subbarao (1988) and A. Schinzel (1991) (!).
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Lower estimate for the error term

Theorem. For every arithmetic function fH ∈ C∗ with a generating
Dirichlet series

FH(s) = ζ2(s)ζ(2s − 1)(ζ(2s))M H(s) ,

where M ∈ Z fixed and H(s) has an Euler product absolutely
convergent in a half-plane <(s) ≥ σ0 for some σ0 < 1

2 , it follows that,
as x →∞,∑

n≤x

fH(n) = Res
s=1

(
FH(s)

x s

s

)
+ Ω

( √
x (log x)2

(log log x)|M+1|

)
.
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A very special case

The special case M = 3

G. Bhowmik & J. Wu, On the asymptotic behaviour of the number of
subgroups of finite abelian groups, Arch. Math (Basel) 69 (1997),
95-104:

For M = 3 , RH(x) = Ω
(√

x (log x)2
)

Observe that, for M = 3, F (s) has a triple pole at s = 1
2 , hence

RH(x) � Res
s=1/2

(
F (s)

x s

s

)
� x1/2(log x)2

Of course this is not true for general M.
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Proof of the Theorem

By an elementary convolution argument, it suffices to consider the
case of H(s) = 1(s) = 1 throughout.

For this case, the Omega bound is an easy consequence of the
following (localized) mean value estimate:

Proposition. There exist positive constants B and C0, such that

∞∫
T

|R1(u)|2

u2
e−u/TB

du ≥ C0 (log T )5

(log log T )|2M+2|

for all T sufficiently large.
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Proof of the Theorem

Starting from Perron’s formula in the shape

∞∑
n=1

f1(n)

ns
e−n/y =

1

2πi

2+i∞∫
2−i∞

F1(s + w)ywΓ(w) dw ,

a suitable modification of the classic method gives

∞∫
T

|R1(u)|2

u2
e−u/TB

du �
∫

U(T )⊆[T 9/10,T ]

∣∣∣∣∣F1(
1
2 + it)

1
2 + it

∣∣∣∣∣
2

dt .

Here the exceptional set [T 9/10,T ] \ U(T ) takes care of possible
zeros of ζ(2s) close to <(s) = 1

2 .
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Proof of the Theorem

By the functional equation of the ζ-function,∣∣F1

(
1
2 + it

)∣∣ =
∣∣∣ζ2

(
1
2 + it

)
ζ(−2it) (ζ (1 + 2it))M

∣∣∣
�

∣∣∣ζ2
(

1
2 + it

)
(ζ (1 + 2it))M+1

∣∣∣ |t|1/2

Therefore, ∫
U(T )

∣∣∣∣∣F (1
2 + it)

1
2 + it

∣∣∣∣∣
2

dt

� (log log T )−2|M+1|
∫

U(T )

∣∣ζ (
1
2 + it

)∣∣4 dt

t
.

Smolenice, June 2012 Nowak & Kühleitner, On a question of A. Schinzel



Proof of the Theorem

By the functional equation of the ζ-function,∣∣F1

(
1
2 + it

)∣∣ =
∣∣∣ζ2

(
1
2 + it

)
ζ(−2it) (ζ (1 + 2it))M

∣∣∣
�

∣∣∣ζ2
(

1
2 + it

)
(ζ (1 + 2it))M+1

∣∣∣ |t|1/2

Therefore, ∫
U(T )

∣∣∣∣∣F (1
2 + it)

1
2 + it

∣∣∣∣∣
2

dt

� (log log T )−2|M+1|
∫

U(T )

∣∣ζ (
1
2 + it

)∣∣4 dt

t
.

Smolenice, June 2012 Nowak & Kühleitner, On a question of A. Schinzel



Proof of the Theorem

For the whole interval [T 9/10,T ] the fourth power moment is used:∫
[T 9/10,T ]

∣∣ζ(1
2 + it)

∣∣4 dt � T (log T )4 .

On the exceptional set [T 9/10,T ] \ U(T ), which is of measure O(T ε),
the pointwise bound

ζ(1
2 + it) � t1/6 log t .

suffices. It follows that∫
U(T )

∣∣∣∣∣F (1
2 + it)

1
2 + it

∣∣∣∣∣
2

dt � (log T )5

(log log T )|2M+2|
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Special arithmetic functions

For the examples mentioned the result reads in particular:

∑
m1m2m2

3≤x

m3 = Res
s=1

(
F1(s)

x s

s

)
+ Ω

(√
x (log x)2

log log x

)
,

∑
n≤x

∑
m | n

gcd
(
m,

n

m

)
= Res

s=1

(
FH0(s)

x s

s

)
+ Ω

(√
x (log x)2

)
,

∑
n≤x

1

n

n∑
k=1

gcd(k2, n) = Res
s=1

(
FH∗(s)

x s

s

)
+ Ω

(√
x (log x)2

log log x

)
.
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