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Definitions

xn, n = 1, 2, . . . , xn ∈ [0, 1).
#{n≤Nk;xn∈[0,x)}

Nk
→ g(x) as k → ∞ is a distribution function (d.f.) of xn.

G(xn) is the set of all d.f.s of xn.
G(xn) is non-empty, closed and connected in the metric

d(g1, g2) =
√∫ 1

0
(g1(x)− g2(x)2dx.

Given a non–empty set H of distribution functions, there exists a
sequence xn in [0, 1) such that G(xn) = H if and only if H is closed
and connected.
Example. For xn = logn mod 1 we have

G(xn) =

{
gu(x) =

emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
;u ∈ [0, 1]

}
.



Method

Let f : [0, 1] → [0, 1] be given Jordan measurable function. To compute
g(x) we use a map
xn → f(xn) which induces
g(x) → gf (x), where

gf (x) =

∫

f−1([0,x))

1.dg(x).

Also, if f−1([0, x)) is a sum of finitely many pairwise disjoint
subintervals Ii(x) of [0, 1] with endpoints αi(x) ≤ βi(x), then
gf (x) =

∑
i g(βi(x))− g(αi(x)).



Method

In order to find d.f. g(x) of xn by using gf (x) of the transforming
sequence f(xn), we can solve e.g.
- gf (x) = gh(x) for x ∈ [0, 1] if f(xn) and h(xn) coincide.
- g(x) = gf (x) for x ∈ [0, 1], if xn and f(xn), n = 1, 2, . . . have the same
a.d.f.
Note that the d.f. gf (x) is characterized by: For every continuous
F : [0, 1] → R and every d.f. g(x) we have

∫ 1

0

F (f(x))dg(x) =

∫ 1

0

F (x)dgf (x).



Functional equations

In this note we consider:

g(x/2) + g((x+ 1)/2)− g(1/2)

= g(x/3) + g((x+ 1)/3) + g((x+ 2)/3)− g(1/3)− g(2/3), (1)

g(x) =
∞∑

n=1

g

(
1

n

)
− g

(
1

n+ x

)
, (2)

x =
∞∑

i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
. (3)

(1) is connected with the sequence xn = ξ(3/2)n mod 1, n = 1, 2, . . .
(2) is connected with Gauss-Kuzmin theorem.
(3) is connected with Benford law.
In all cases it is not known the general solution.



Equation (1)

Simple equations

{
3ξ

(
3

2

)n
}

=

{
2ξ

(
3

2

)n+1
}

=

{
3

{
ξ

(
3

2

)n}}
=

{
2

{
ξ

(
3

2

)n+1}}

Implies:
(I) Any distribution function g(x) of ξ(3/2)n mod 1 satisfies
gf (x) = gh(x) for all x ∈ [0, 1], where f(x) = 2x mod 1 and
h(x) = 3x mod 1. Here
gf (x) = g(x/2) + g((x+ 1)/2)− g(1/2),
gh(x) = g(x/3) + g((x+ 1)/3) + g((x+ 2)/3)− g(1/3)− g(2/3)



Motivation

(II) The study of d.f.s in (I) is motivated by K. Mahler’s conjecture
(1968):
There exists no ξ ∈ R

+ such that 0 ≤ {ξ(3/2)n} < 1/2 for
n = 0, 1, 2, . . .

(III) Mahler conjecture follows from the conjecture:
If g(x) = constant for all x ∈ I , where I is a subinterval of [0, 1], then
the length |I | < 1/2.



Chain of solutions

(IV) Let g1 be an absolutely continuous d.f. satisfying g1h
(x) = g1f

(x)

for x ∈ [0, 1]. Then the absolutely continuous d.f. g(x) satisfies
gf (x) = g1(x) and gh(x) = g1(x) for x ∈ [0, 1] if and only if g(x) =




Ψ(x), for x ∈ [0, 1/6],

Ψ(1/6) + Φ(x− 1/6), for x ∈ [1/6, 2/6],

Ψ(1/6) + Φ(1/6) + g1(1/3)−Ψ(x− 2/6)

+Φ(x− 2/6)− g1(2x− 1/3) + g1(3x− 1), for x ∈ [2/6, 3/6],

2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)

−Ψ(x− 3/6) + g1(2x− 1), for x ∈ [3/6, 4/6],

−Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)

−Φ(x− 4/6) + g1(2x− 1), for x ∈ [4/6, 5/6],

−Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)

−Φ(x− 5/6)− g1(2x− 5/3) + g1(3x− 2), for x ∈ [5/6, 1],



Cont.

where Ψ(x) =
∫ x

0
ψ(t)dt, Φ(x) =

∫ x

0
φ(t)dt, for x ∈ [0, 1/6], and ψ(t),

φ(t) are Lebesgue integrable functions on [0, 1/6] satisfying
0 ≤ ψ(t) ≤ 2g′1(2t), 0 ≤ φ(t) ≤ 2g′1(2t+ 1/3),
2g′1(2t)− 3g′1(3t+ 1/2) ≤ ψ(t)− φ(t) ≤ −2g′1(2t+ 1/3) + 3g′1(3t),
for almost all t ∈ [0, 1/6].

Putting g1(x) = x in (IV) we find a new solution g2(x) of gf (x) = gh(x)

g2(x) =





0 for x ∈ [0, 2/6],

x− 1/3 for x ∈ [2/6, 3/6],

2x− 5/6 for x ∈ [3/6, 5/6],

x for x ∈ [5/6, 1].



Example

Putting in (IV) g1(x) = g2(x) we find the solution g3(x) of gf (x) = gh(x):

g3(x) =





0 for x ∈ [0, 1/6],

2x− 1/3 for x ∈ [1/6, 3/12],

4x− 5/6 for x ∈ [3/12, 5/18],

2x− 5/18 for x ∈ [5/18, 2/6],

7/18 for x ∈ [2/6, 8/18],

x− 1/18 for x ∈ [8/18, 3/6],

8/18 for x ∈ [3/6, 7/9],

2x− 20/18 for x ∈ [7/9, 5/6],

4x− 50/18 for x ∈ [5/6, 11/12],

2x− 17/18 for x ∈ [11/12, 17/18],

x for x ∈ [17/18, 1].



Graphs

Their graphs are
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Sets of uniqueness

(V) Let g1, g2 be any two distribution functions satisfying gif (x) = gih(x)

for i = 1, 2 and x ∈ [0, 1]. Denote

I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1].

If g1(x) = g2(x) for x ∈ Ii ∪ Ij , 1 ≤ i 6= j ≤ 3, then g1(x) = g2(x) for all
x ∈ [0, 1].
(IV) Denote

F (x, y) = |{2x}− {3y}|+ |{2y}− {3x}| − |{2x}− {2y}| − |{3x}− {3y}|.

The continuous distribution function g(x) satisfies gf (x) = gh(x) on
[0, 1] if and only if

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0.



New equation

{
3

(
3

2

)n
}

=

{
2

(
3

2

)n+1
}

=

{
9

2

(
3

2

)n−1
}

which gives

{
3

{(
3

2

)n}}
=

{
2

{(
3

2

)n+1}}
=

{
9

2

{(
3

2

)n−1}
+

9

2

[(
3

2

)n−1]}
,

where
{
9

2

(
3

2

)n−1
}

=

{{
9
2

{(
3
2

)n−1}}
if
[(

3
2

)n−1]
is even,{

9
2

{(
3
2

)n−1}
+ 1

2

}
if
[(

3
2

)n−1]
is odd.



Functional equation

Put f(x) = 2x mod 1, h(x) = 3x mod 1, v(x) = 9
2x mod 1,

u(x) = 9
2x+ 1

2 mod 1.
For some sequence N = Nk, k → ∞, we have

#{n ≤ N ; {(3/2)n} ∈ [0, x)}

N
→ g(x),

#{n ≤ N ; {(3/2)n} ∈ [0, x), [(3/2)n] is odd}
N

→ g(1)(x)

#{n ≤ N ; {(3/2)n} ∈ [0, x), [(3/2)n] is even}
N

→ g(2)(x)

Every d.f. g(x) of the sequence (3/2)n mod 1 can be expressed as
g(x) = g(1)(x) + g(2)(x) for every x ∈ [0, 1] such that

g(1)u (x)+g(2)v (x)=gf (x)=gh(x)=g
(1)
f (x)+g

(2)
f (x)=g

(1)
h (x)+g

(2)
h (x). (5)



example

For x ≤ 1
2 we have

g(2)v (x) = g(2)
(
2

9
x

)
+g(2)

(
2

9
+

2

9
x

)
− g(2)

(
2

9

)

+g(2)
(
4

9
+

2

9
x

)
− g(2)

(
4

9

)

+g(2)
(
6

9
+

2

9
x

)
− g(2)

(
6

9

)

+g(2)
(
8

9
+

2

9
x

)
− g(2)

(
8

9

)
.



Generalization

The result (5) can extend to: Every d.f. g(x) of the sequence
(3/2)n mod 1 can be expressed as

g(x) =
2k−1∑

i=0

gi(x),

2k−1∑

i=0

(gi)ui
(x) = gf (x) = gh(x), where

ui(x) = 3

(
3

2

)k

x+
i

2k
mod 1.



Gauss-Kuzmin theorem

Denote

f(x) = 1/x mod 1,

gf (x) =

∫

f−1([0,x))

1.dg(x),

(gfn)f (x) = gfn+1(x),

g0(x) =
log(1 + x)

log 2
.

The problem is to find all solutions g(x) of the functional equation
g(x) = gf (x) for x ∈ [0, 1] which is equivalent to

g(x) =
∞∑

n=1

g

(
1

n

)
− g

(
1

n+ x

)
. (2)



Results

• g0(x) satisfies (3).

• Gauss-Kuzmin theorem: If g(x) = x, then gfn(x) → g0(x) and the

rate of convergence is O(q
√
n), 0 < q < 1.

• This Theorem was proved by R. Kuzmin (1928) and for a starting
function g(x) for which
(i) 0 < g′(x) < M and
(ii) |g′′(x)| < µ.
Thus, if g(x) satisfies (i), (ii), and gf (x) = g(x), then g(x) = g0(x).

• This Theorem was inspired by Gauss. He conjectured
mn(x) → g0(x), where mn(x) = |{α ∈ [0, 1]; 1/rn(α) < x}| and for
continued fraction expansion α = [a0(α); a1(α), a2(α), . . . ],
rn(α) = [an+1(α); an+2(α), . . . , ]. In this case mn(x) = gfn(x) for
g(x) = x, since f(1/rn(α)) = 1/rn+1(α).



Example

• For starting point x0 ∈ [0, 1] we define the iterate sequence xn as

x1 = f(x0), x2 = f(f(x0)), x3 = f(f(f(x0))), . . .

If {g(x)} = G(xn) then g(x) solve (2) for example, the sequence

x1 = 1/r1, x2 = 1/r2, . . . for
√
5−1
2 = [0; 1, 1, 1, . . . ] produces solution

g(x) = c√

5−1

2

(x).



Example

Define a non-increasing g(x) on [0, 1/2) such that derivatives

g′
(

1

1 + x

)
= g′(x)(1 + x)2 −

∞∑

n=2

g′
(

1

m+ x

)(
1 + x

n+ x

)2

≥ 0

and then complete g(x) on [1/2, 1] by

g

(
1

x+ 1

)
= 1− g(x) +

∞∑

n=2

g

(
1

n

)
− g

(
1

n+ x

)
.

Using this method and putting g(x) = x on [0, 1/2] the following d.f.

g(x) =

{
x if x ∈ [0, 1/2],

2− 1
x
+
∑∞

n=2
1−x

n(nx−x+1) if x ∈ [1/2, 1]

solve gf (x) = g(x) for x ∈ [0, 1].



Sets of uniqueness

If d.f. g1(x) and g2(x) satisfy (1) and g1(x) = g2(x) for x ∈ [0, 1/2), then
g1(x) and g2(x) coincide on the whole interval [0, 1]. Other sets of
uniqueness are [0, 1

n+1 ) ∪ ( 1
n
, 1] for arbitrary positive integer n.

Other application. If xn ∈ [0, 1) has a.d.f. g1(x), then
{

1
xn

}
has a.d.f.

g2(x) =
∑∞

n=1 g1
(
1
n

)
− g1

(
1

n+x

)
.

R.O. KUZMIN: A problem of Gauss, Dokl. Akad. Nauk, Ser. A, 375–380,
1928.



Benford law

Let xn, n = 1, 2, . . . , be a sequence in (0, 1) and G(xn) be the set of all
d.f.s of xn.

• Assume that every d.f. g(x) ∈ G(xn) is continuous at x = 0. Then the
sequence xn satisfies strong Benford law in the base b if and only if for
every g(x) ∈ G(xn) we have

x =

∞∑

i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1]. (3)



Examples of (3)

g(x) =

{
x if x ∈

[
0, 1

b

]
,

1 + logb x+ (1− x) 1
b−1 if x ∈

[
1
b
, 1
]
.

g̃(x) =

{
0 if x ∈

[
0, 1

b

]
,

1 + log x
log b

if x ∈
[
1
b
, 1
]
,

g∗(x) =





0 if x ∈
[
0, 1

b2

]
,

2 + log x

log b
if x ∈

[
1
b2
, 1
b

]
,

1 if x ∈
[
1
b
, 1
]

g∗∗(x) =





0 if x ∈
[
0, 1

b3

]
,

3 + log x
log b

if x ∈
[

1
b3
, 1
b2

]
,

1 if x ∈
[

1
b2
, 1
]
.



Definition

Let b ≥ 2 be an integer considered as a base, x > 0 and
x =Mb(x)× bn(x) with the mantissa 1 ≤Mb(x) < b.

A sequence xn, n = 1, 2, . . . , of positive real numbers satisfies Benford
law (abbreviated to B.L.) of order r if for every r-digits number
K = k1k2 . . . kr we have

lim
N→∞

#{n ≤ N ; first r digits of Mb(xn) are equal to K}

N

= logb(K + 1)− logbK.

If a sequence xn, n = 1, 2, . . . , satisfies B.L. of order r, for every
r = 1, 2, . . . , then it is called that xn satisfies strong B.L.



Criterion

A sequence xn, xn > 0, n = 1, 2, . . . , satisfies strong B.L. if and only if
the sequence logb xn mod 1 is u.d. in [0, 1).

V. BALÁŽ – K. NAGASAKA – O. STRAUCH: Benford’s law and distribution
functions of sequences in (0, 1) (Russian), Mat. Zametki 88 (2010), no.
4, 485–501; (Anglish translation) Math. Notes 88 (2010), no. 4,
449–463.



Integral equations

Let F (x, y) be a real continuous function defined on [0, 1]2. We discuss
the following Riemann-Stieltjes integrals:

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0, (4)

∫ 1

0

∫ 1

0

F (x, y)dg(x, y), g(x, y) take copulas . (5)

(4) is used to estimate the set G(xn) of the set of all d.f.s of the
sequence xn, n = 1, 2, . . . .
(5) we use to find extreme limit points of the sequence
1
N

∑N

n=1 F (xn, yn), N = 1, 2, . . . , where xn and yn both u.d. in [0, 1).
Here d.f. g(x, y) is a copula, if the face d.f.s g(x, 1) = x and g(1, y) = y.



Cont.

Let F (x, y) be a real continuous function defined on [0, 1]2 and let G(F )
be a set of all d.f.s g(x) satisfying

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0.

The study of G(F ) is motivated by the fact that for every sequence
xn ∈ [0, 1) we have

G(xn) ⊂ G(F ) ⇐⇒ lim
N→∞

1

N2

N∑

m,n=1

F (xm, xn) = 0,



Application

For any sequence xn in [0, 1] we have

G((xn)) ⊂ {cα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

1

N2

N∑

m,n=1

|xm − xn| = 0.

Moreover, if G((xn)) ⊂ {cα(x);α ∈ [0, 1]}, then
G((xn)) = {cα(x);α ∈ I}, where I is a closed subinterval of [0, 1] which
can be found as

I =

[
lim inf
N→∞

1

N

N∑

n=1

xn, lim sup
N→∞

1

N

N∑

n=1

xn

]
,

and the length |I | of I |I | = lim supM,N→∞
1

MN

∑M

m=1

∑N

n=1 |xm − xn|.



G(xn) = G(F )

Define
g
G(F )

(x) = infg∈G(F ) g(x) - lower d.f. with respect to G(F ),

gG(F )(x) = supg∈G(F ) g(x) - upper d.f. with respect to G(F ).
Assume that
(i) g

G(F )
(x), gG(F )(x) ∈ G(F ).

(ii) g
G(F )

(x) = g
G(xn)

(x), gG(F )(x) = gG(xn)(x).

(iii) For every g ∈ G(F ) there exists a point (x, y) ∈ Graph(g) such that
(x, y) /∈ Graph(g̃) for any g̃ ∈ G(F ) with g̃ 6= g.
(iv) G(xn) ⊂ G(F ).
Then G(xn) = G(F ).



Extension

Extension of (I): Define that G(A ≤ F ≤ B) is the set of all d.f.s g(x) for

which A ≤
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) ≤ B. Then as in (I) again

G(xn) ⊂ G(A ≤ F ≤ B) is equivalent to

A ≤ lim infN→∞
1

N2

∑N

m,n=1 F (xm, xn) and

lim supN→∞
1

N2

∑N

m,n=1 F (xm, xn) ≤ B.



Result

Put

Fg̃(x, y) =

∫ 1

0

g̃2(t)dt−

∫ 1

x

g̃(t)dt−

∫ 1

y

g̃(t)dt+ 1−max(x, y).

Then ∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0

Fg̃(x, y)dg(x)dg(y),

and we see that
∫ 1

0

∫ 1

0
Fg̃(x, y)dg(x)dg(y) = 0 has the unique solution

g(x) = g̃(x).



Result

Let F : [0, 1]2 → R be a continuous and symmetric function. For every
distribution functions g(x), g̃(x) we have

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0 ⇐⇒

∫ 1

0

∫ 1

0

F (x, y)dg̃(x)dg̃(y)

=

∫ 1

0

(g(x)− g̃(x))

(
2dxF (x, 1)−

∫ 1

0

(g(y) + g̃(y))dydxF (x, y)

)
.

• Especially, putting g̃(x) = c0(x), we have

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0 ⇐⇒

F (0, 0) =

∫ 1

0

(g(x)− 1)

(
2dxF (x, 1)−

∫ 1

0

(g(y) + 1)dydxF (x, y)

)
.



Result

Putting

F (x, y) =
1

3
+
x2 + y2

2
−
x+ y

2
−

|x− y|

2

then we have

g(x) = x⇐⇒
1

3
=

∫ 1

0

g(x)(2x− g(x))dx.



Copulas

D.f. g(x, y) is a copula, if the face d.f.s g(x, 1) = x and g(1, y) = y.
A problem is to find extreme values of

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y),

where

dxdyg(x, y) = g(x+ dx, y + dy) + g(x, y)− g(x+ dx, y)− g(x, y + dy).



Motivation

Let xn, yn ∈ [0, 1), n = 1, 2, . . . , both u.d.sequences. For every

continuous F (x, y) the set of limit points of 1
N

∑N

n=1 F (xn, yn),
N = 1, 2, . . . coincides with

{∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y); g(x, y) ∈ G((xn, yn))

}
,

where d.f. g(x, y) of (xn, yn) satisfies g(x, 1) = x, g(1, y) = y and it is
called copula. Here we using Riemann-Stiltjes integration

1

N

N∑

n=1

F (xn, yn) =

∫ 1

0

∫ 1

0

F (x, y)dxdyFN (x, y)

and Helly theorem.



Result

Let F (x, y) be a Riemann integrable function defined on [0, 1]2.
Assume that dxdyF (x, y) > 0 for (x, y) ∈ (0, 1)2. Then

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (x, x)dx,

min
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (x, 1− x)dx,

where the max is attained in g(x, y) = min(x, y) and min in
g(x, y) = max(x+ y − 1, 0), uniquely.
Here we have used the Fréchet-Hoeffding bounds

max(x+ y − 1, 0) ≤ g(x, y) ≤ min(x, y)

which holds for every (x, y) ∈ [0, 1]2 and for every copula g(x, y).



Open problem

Find extremes of
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y), for F (x, y), where

differential dxdyF (x, y) has no a constant signum on [0, 1]2. For
example, if

F (x, y) =

{
2
(
y − 1

2

)
x, if y ∈

[
1
2 , 1
]
,

2
(
1
2 − y

)
x, if y ∈

[
0, 12

]
.

then

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =
1

3
.
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Distribution Theory 4 (2009), no. 1, 51–67.
[2] J. FIALOVÁ – O. STRAUCH On two-dimensional sequences composed
by one-dimensional uniformly distributed seqiuences, Uniform
Distribution Theory 6 (2011), no. 1, 101–125.



Matrix game

Payoff matrix A

A =




a1,1 a1,2 . . . a1,m

a1,1 a1,2 . . . a1,m

. . . . . . . . . . . . . . . . . . . . . . .

am,1 am,2 . . . am,m




Player I chooses the pure strategy as a row i represented as the vector
ei = (0, . . . , 0, 1, 0, . . . , 0),
Similarly, the pure strategy for Player II is the j-th column may be
represented by ej = (0, . . . , 0, 1, 0, . . . , 0) and the payoff to I is

eiAeTj = ai,j .



Mixed strategy

Now, let Player I use a sequence e
(I)
n , n = 1, 2, . . . , of pure strategy

and Player II a sequence e
(II)
n , n = 1, 2, . . . , of pure strategy. Then the

mean-value of the payoff of I after N games is

1

N

N∑

n=1

e(I)n A(e(II)n )
T
.

Assume that there exist densities
limN→∞

1
N
#{n ≤ N ; e

(I)
n = ei} = pi, i = 1, 2, . . . ,m

limN→∞
1
N
#{n ≤ N ; e

(II)
n = ei} = qi, i = 1, 2, . . . ,m

The vector p = (p1, p2, . . . , pm) is called a mixed strategy for Player I.
Similarly q = (q1, q2, . . . , qn) is a mixed strategy for Player II.



Mean-value of the payoff

If the sequences e
(I)
n and e

(II)
n are statistically independent, then we

have

lim
N→∞

1

N

N∑

n=1

e(I)n A(e(II)n )T = pAqT =
m∑

i,j=1

piai,jqj .

For zero-sum matrix game the mixed strategies p and q can be
computed optimally such that

pAqT = 0

, but independence of e(I)n and e
(II)
n is a problem. Player with better

sequence can be found payoff positive.



Transform of matrix game

Ii,j = [p1+p2+· · ·+pi−1, p1+p2+· · ·+pi)×[q1+q2+· · ·+qj−1, q1+q2+· · ·+qj

Define F (x, y) on [0, 1]2 such that

F (x, y) = ai,j if (x, y) ∈ Ii,j , i, j,= 1, 2, . . . ,m.

Let Player I be use u.d. sequence xn and Player II u.d. sequence yn,
n = 1, 2, . . . If (xn, yn) ∈ Ii,j the Player I choice pure strategy ei and
Player II pure strategy ej . Then mean value of the payoff of the Player I
is

lim
N→∞

1

N

N∑

n=1

F (xn, yn) =

∫ 1

0

∫ 1

0

F (x, y)dg(x, y),

where g(x, y) is a d.f. of the sequence (xn, yn), n = 1, 2, . . . .



Example: Odd or Even

Players I and II simultaneously call out one of the numbers one or two.
Player I wins if the sum of the numbers is odd. Player II wins if the sum
of the numbers is even. The payoff matrix A is

A =

(
−1 1

1 −1

)

and the function F (x, y) corresponding to (1) is

-1 1

1 -1

F (x, y)



Examples

Let xn and yn, n = 1, 2, . . . be u.d. sequences such that (xn, yn) has
a.d.f. g(x, y).

(i) If g(x, y) = xy then
∫ 1

0

∫ 1

0
F (x, y)dxdy = 0.

(ii) If g(x, y) = min(x, y) then∫ 1

0

∫ 1

0
F (x, y)dmin(x, y) =

∫ 1

0
F (x, x)dx = −1.

(iii) If g(x, y) = max(x+ y − 1, 0) then∫ 1

0

∫ 1

0
F (x, y)dmax(x+ y − 1, 0) =

∫ 1

0
F (x, 1− x)dx = 1.

(iv) If (xn, yn) = (γq(n), γq(n+ 1)), where γq(n) is the van der Corput
sequence in the base q, then∫ 1

0

∫ 1

0
F (x, y)dg(x, y) = 4

q
− 1. Thus for q = 2 Player I wins prize 1 and

in the case q > 5 he loses.
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