Some unsolved problems in the theory of distribution functions

O. Strauch - J.T. Tóth

Definitions

 $x_n, n = 1, 2, ..., x_n \in [0, 1).$ $\frac{\#\{n \le N_k; x_n \in [0, x)\}}{N_k} \to g(x) \text{ as } k \to \infty \text{ is a distribution function (d.f.) of } x_n.$ $G(x_n) \text{ is the set of all d.f.s of } x_n.$ $G(x_n) \text{ is non-empty, closed and connected in the metric}$ $d(g_1, g_2) = \sqrt{\int_0^1 (g_1(x) - g_2(x)^2 dx.)}$ Given a non-empty set H of distribution functions, there exists a sequence x_n in [0, 1) such that $G(x_n) = H$ if and only if H is closed

and connected.

Example. For $x_n = \log n \mod 1$ we have

$$G(x_n) = \left\{ g_u(x) = \frac{e^{\min(x,u)} - 1}{e^u} + \frac{1}{e^u} \frac{e^x - 1}{e^{-1}}; u \in [0,1] \right\}.$$

Method

Let $f : [0,1] \rightarrow [0,1]$ be given Jordan measurable function. To compute g(x) we use a map $x_n \rightarrow f(x_n)$ which induces $g(x) \rightarrow g_f(x)$, where

$$g_f(x) = \int_{f^{-1}([0,x))} 1.\mathrm{d}g(x).$$

Also, if $f^{-1}([0, x))$ is a sum of finitely many pairwise disjoint subintervals $I_i(x)$ of [0, 1] with endpoints $\alpha_i(x) \leq \beta_i(x)$, then $g_f(x) = \sum_i g(\beta_i(x)) - g(\alpha_i(x)).$

Method

In order to find d.f. g(x) of x_n by using $g_f(x)$ of the transforming sequence $f(x_n)$, we can solve e.g.

- $g_f(x) = g_h(x)$ for $x \in [0, 1]$ if $f(x_n)$ and $h(x_n)$ coincide.
- $g(x) = g_f(x)$ for $x \in [0, 1]$, if x_n and $f(x_n)$, n = 1, 2, ... have the same a.d.f.

Note that the d.f. $g_f(x)$ is characterized by: For every continuous $F: [0,1] \to \mathbb{R}$ and every d.f. g(x) we have

$$\int_0^1 F(f(x)) \mathrm{d}g(x) = \int_0^1 F(x) \mathrm{d}g_f(x).$$

Functional equations

In this note we consider:

$$g(x/2) + g((x+1)/2) - g(1/2)$$

= $g(x/3) + g((x+1)/3) + g((x+2)/3) - g(1/3) - g(2/3),$ (1)

$$g(x) = \sum_{n=1}^{\infty} g\left(\frac{1}{n}\right) - g\left(\frac{1}{n+x}\right),\tag{2}$$

$$x = \sum_{i=0}^{\infty} \left(g\left(\frac{1}{b^i}\right) - g\left(\frac{1}{b^{i+x}}\right) \right).$$
(3)

(1) is connected with the sequence x_n = ξ(3/2)ⁿ mod 1, n = 1, 2, ...
(2) is connected with Gauss-Kuzmin theorem.
(3) is connected with Benford law.
In all cases it is **not known** the general solution.

Equation (1)

Simple equations

$$\left\{3\xi\left(\frac{3}{2}\right)^n\right\} = \left\{2\xi\left(\frac{3}{2}\right)^{n+1}\right\} = \left\{3\left\{\xi\left(\frac{3}{2}\right)^n\right\}\right\} = \left\{2\left\{\xi\left(\frac{3}{2}\right)^{n+1}\right\}\right\}$$

Implies:

(I) Any distribution function g(x) of $\xi(3/2)^n \mod 1$ satisfies $g_f(x) = g_h(x)$ for all $x \in [0, 1]$, where $f(x) = 2x \mod 1$ and $h(x) = 3x \mod 1$. Here $g_f(x) = g(x/2) + g((x+1)/2) - g(1/2),$ $g_h(x) = g(x/3) + g((x+1)/3) + g((x+2)/3) - g(1/3) - g(2/3)$

Motivation

(II) The study of d.f.s in (I) is motivated by K. Mahler's conjecture (1968): There exists no $\xi \in \mathbb{R}^+$ such that $0 \leq \{\xi(3/2)^n\} < 1/2$ for $n = 0, 1, 2, \ldots$

(III) Mahler conjecture follows from the conjecture: If g(x) = constant for all $x \in I$, where I is a subinterval of [0, 1], then the length |I| < 1/2.

Chain of solutions

(IV) Let g_1 be an absolutely continuous d.f. satisfying $g_{1_h}(x) = g_{1_f}(x)$ for $x \in [0, 1]$. Then the absolutely continuous d.f. g(x) satisfies $g_f(x) = g_1(x)$ and $g_h(x) = g_1(x)$ for $x \in [0, 1]$ if and only if g(x) =

$$\begin{cases} \Psi(x), & \text{for } x \in [0, 1/6], \\ \Psi(1/6) + \Phi(x - 1/6), & \text{for } x \in [1/6, 2/6], \\ \Psi(1/6) + \Phi(1/6) + g_1(1/3) - \Psi(x - 2/6) & \\ + \Phi(x - 2/6) - g_1(2x - 1/3) + g_1(3x - 1), & \text{for } x \in [2/6, 3/6], \\ 2\Phi(1/6) + g_1(1/3) - g_1(2/3) + g_1(1/2) & \\ -\Psi(x - 3/6) + g_1(2x - 1), & \text{for } x \in [3/6, 4/6], \\ -\Psi(1/6) + 2\Phi(1/6) + g_1(1/3) - g_1(2/3) + g_1(1/2) & \\ -\Phi(x - 4/6) + g_1(2x - 1), & \text{for } x \in [4/6, 5/6], \\ -\Psi(1/6) + \Phi(1/6) + g_1(1/3) + \Psi(x - 5/6) & \\ -\Phi(x - 5/6) - g_1(2x - 5/3) + g_1(3x - 2), & \text{for } x \in [5/6, 1], \end{cases}$$

Cont.

where $\Psi(x) = \int_0^x \psi(t) dt$, $\Phi(x) = \int_0^x \phi(t) dt$, for $x \in [0, 1/6]$, and $\psi(t)$, $\phi(t)$ are Lebesgue integrable functions on [0, 1/6] satisfying $0 \le \psi(t) \le 2g'_1(2t), 0 \le \phi(t) \le 2g'_1(2t + 1/3),$ $2g'_1(2t) - 3g'_1(3t + 1/2) \le \psi(t) - \phi(t) \le -2g'_1(2t + 1/3) + 3g'_1(3t),$ for almost all $t \in [0, 1/6]$.

Putting $g_1(x) = x$ in (IV) we find a new solution $g_2(x)$ of $g_f(x) = g_h(x)$

$$g_2(x) = \begin{cases} 0 & \text{for } x \in [0, 2/6], \\ x - 1/3 & \text{for } x \in [2/6, 3/6], \\ 2x - 5/6 & \text{for } x \in [3/6, 5/6], \\ x & \text{for } x \in [5/6, 1]. \end{cases}$$

Example

Putting in (IV) $g_1(x) = g_2(x)$ we find the solution $g_3(x)$ of $g_f(x) = g_h(x)$:

	0	for $x \in [0, 1/6]$,
	2x - 1/3	for $x \in [1/6, 3/12]$,
	4x - 5/6	for $x \in [3/12, 5/18]$,
	2x - 5/18	for $x \in [5/18, 2/6]$,
	7/18	for $x \in [2/6, 8/18]$,
$g_3(x) = \langle$	x - 1/18	for $x \in [8/18, 3/6]$,
	8/18	for $x \in [3/6, 7/9]$,
	2x - 20/18	for $x \in [7/9, 5/6]$,
	4x - 50/18	for $x \in [5/6, 11/12]$,
	2x - 17/18	for $x \in [11/12, 17/18]$,
	x	for $x \in [17/18, 1]$.

Graphs

Their graphs are

Sets of uniqueness

(V) Let g_1, g_2 be any two distribution functions satisfying $g_{i_f}(x) = g_{i_h}(x)$ for i = 1, 2 and $x \in [0, 1]$. Denote

$$I_1 = [0, 1/3], \quad I_2 = [1/3, 2/3], \quad I_3 = [2/3, 1]$$

If $g_1(x) = g_2(x)$ for $x \in I_i \cup I_j$, $1 \le i \ne j \le 3$, then $g_1(x) = g_2(x)$ for all $x \in [0, 1]$. (IV) Denote

 $F(x,y) = |\{2x\} - \{3y\}| + |\{2y\} - \{3x\}| - |\{2x\} - \{2y\}| - |\{3x\} - \{3y\}|.$

The continuous distribution function g(x) satisfies $g_f(x) = g_h(x)$ on [0,1] if and only if

$$\int_0^1 \int_0^1 F(x, y) \mathrm{d}g(x) \mathrm{d}g(y) = 0.$$

New equation

$$\left\{3\left(\frac{3}{2}\right)^n\right\} = \left\{2\left(\frac{3}{2}\right)^{n+1}\right\} = \left\{\frac{9}{2}\left(\frac{3}{2}\right)^{n-1}\right\}$$

which gives

$$\left\{3\left\{\left(\frac{3}{2}\right)^n\right\}\right\} = \left\{2\left\{\left(\frac{3}{2}\right)^{n+1}\right\}\right\} = \left\{\frac{9}{2}\left\{\left(\frac{3}{2}\right)^{n-1}\right\} + \frac{9}{2}\left[\left(\frac{3}{2}\right)^{n-1}\right]\right\}$$

where

$$\begin{cases} \frac{9}{2} \left(\frac{3}{2}\right)^{n-1} \\ \frac{9}{2} \left\{\left(\frac{3}{2}\right)^{n-1}\right\} \end{cases} & \text{if } \left[\left(\frac{3}{2}\right)^{n-1}\right] \text{ is even,} \\ \frac{9}{2} \left\{\left(\frac{3}{2}\right)^{n-1}\right\} + \frac{1}{2} \end{cases} & \text{if } \left[\left(\frac{3}{2}\right)^{n-1}\right] \text{ is odd.} \end{cases}$$

Functional equation

Put $f(x) = 2x \mod 1$, $h(x) = 3x \mod 1$, $v(x) = \frac{9}{2}x \mod 1$, $u(x) = \frac{9}{2}x + \frac{1}{2} \mod 1$. For some sequence $N = N_k$, $k \to \infty$, we have

$$\begin{split} \frac{\#\{n \le N; \{(3/2)^n\} \in [0, x)\}}{N} \to g(x), \\ \frac{\#\{n \le N; \{(3/2)^n\} \in [0, x), [(3/2)^n] \text{ is odd}\}}{N} \to g^{(1)}(x) \\ \frac{\#\{n \le N; \{(3/2)^n\} \in [0, x), [(3/2)^n] \text{ is even}\}}{N} \to g^{(2)}(x) \end{split}$$

Every d.f. g(x) of the sequence $(3/2)^n \mod 1$ can be expressed as $g(x) = g^{(1)}(x) + g^{(2)}(x)$ for every $x \in [0, 1]$ such that $g_u^{(1)}(x) + g_v^{(2)}(x) = g_f(x) = g_h(x) = g_f^{(1)}(x) + g_f^{(2)}(x) = g_h^{(1)}(x) + g_h^{(2)}(x).$ (5)

example

For $x \leq \frac{1}{2}$ we have

$$g_v^{(2)}(x) = g^{(2)}\left(\frac{2}{9}x\right) + g^{(2)}\left(\frac{2}{9} + \frac{2}{9}x\right) - g^{(2)}\left(\frac{2}{9}\right) + g^{(2)}\left(\frac{4}{9} + \frac{2}{9}x\right) - g^{(2)}\left(\frac{4}{9}\right) + g^{(2)}\left(\frac{6}{9} + \frac{2}{9}x\right) - g^{(2)}\left(\frac{6}{9}\right) + g^{(2)}\left(\frac{8}{9} + \frac{2}{9}x\right) - g^{(2)}\left(\frac{8}{9}\right).$$

Generalization

The result (5) can extend to: Every d.f. g(x) of the sequence $(3/2)^n \mod 1$ can be expressed as

$$g(x) = \sum_{i=0}^{2^{k}-1} g_{i}(x),$$

$$\sum_{i=0}^{2^{k}-1} (g_{i})_{u_{i}}(x) = g_{f}(x) = g_{h}(x), \text{ where}$$

$$u_{i}(x) = 3\left(\frac{3}{2}\right)^{k} x + \frac{i}{2^{k}} \mod 1.$$

Gauss-Kuzmin theorem

Denote

$$f(x) = 1/x \mod 1,$$

$$g_f(x) = \int_{f^{-1}([0,x))} 1.dg(x),$$

$$(g_{f^n})_f(x) = g_{f^{n+1}}(x),$$

$$g_0(x) = \frac{\log(1+x)}{\log 2}.$$

The problem is to find all solutions g(x) of the functional equation $g(x) = g_f(x)$ for $x \in [0, 1]$ which is equivalent to

$$g(x) = \sum_{n=1}^{\infty} g\left(\frac{1}{n}\right) - g\left(\frac{1}{n+x}\right).$$
 (2)

- $g_0(x)$ satisfies (3).
- Gauss-Kuzmin theorem: If g(x) = x, then $g_{f^n}(x) \to g_0(x)$ and the rate of convergence is $O(q^{\sqrt{n}})$, 0 < q < 1.
- This Theorem was proved by R. Kuzmin (1928) and for a starting function g(x) for which (i) 0 < g'(x) < M and (ii) $|g''(x)| < \mu$. Thus, if g(x) satisfies (i), (ii), and $g_f(x) = g(x)$, then $g(x) = g_0(x)$.
- This Theorem was inspired by Gauss. He conjectured $m_n(x) \rightarrow g_0(x)$, where $m_n(x) = |\{\alpha \in [0,1]; 1/r_n(\alpha) < x\}|$ and for continued fraction expansion $\alpha = [a_0(\alpha); a_1(\alpha), a_2(\alpha), \dots]$, $r_n(\alpha) = [a_{n+1}(\alpha); a_{n+2}(\alpha), \dots,]$. In this case $m_n(x) = g_{f^n}(x)$ for g(x) = x, since $f(1/r_n(\alpha)) = 1/r_{n+1}(\alpha)$.

Example

• For starting point $x_0 \in [0, 1]$ we define the iterate sequence x_n as

$$x_1 = f(x_0), x_2 = f(f(x_0)), x_3 = f(f(f(x_0))), \dots$$

If $\{g(x)\} = G(x_n)$ then g(x) solve (2) for example, the sequence $x_1 = 1/r_1, x_2 = 1/r_2, \dots$ for $\frac{\sqrt{5}-1}{2} = [0; 1, 1, 1, \dots]$ produces solution $g(x) = c_{\frac{\sqrt{5}-1}{2}}(x).$

Example

Define a non-increasing g(x) on [0, 1/2) such that derivatives

$$g'\left(\frac{1}{1+x}\right) = g'(x)(1+x)^2 - \sum_{n=2}^{\infty} g'\left(\frac{1}{m+x}\right) \left(\frac{1+x}{n+x}\right)^2 \ge 0$$

and then complete g(x) on [1/2, 1] by $g\left(\frac{1}{x+1}\right) = 1 - g(x) + \sum_{n=2}^{\infty} g\left(\frac{1}{n}\right) - g\left(\frac{1}{n+x}\right).$

Using this method and putting g(x) = x on [0, 1/2] the following d.f.

$$g(x) = \begin{cases} x & \text{if } x \in [0, 1/2], \\ 2 - \frac{1}{x} + \sum_{n=2}^{\infty} \frac{1-x}{n(nx-x+1)} & \text{if } x \in [1/2, 1] \end{cases}$$

solve $g_f(x) = g(x)$ for $x \in [0, 1]$.

Sets of uniqueness

If d.f. $g_1(x)$ and $g_2(x)$ satisfy (1) and $g_1(x) = g_2(x)$ for $x \in [0, 1/2)$, then $g_1(x)$ and $g_2(x)$ coincide on the whole interval [0, 1]. Other sets of uniqueness are $[0, \frac{1}{n+1}) \cup (\frac{1}{n}, 1]$ for arbitrary positive integer n.

Other application. If $x_n \in [0,1)$ has a.d.f. $g_1(x)$, then $\left\{\frac{1}{x_n}\right\}$ has a.d.f. $g_2(x) = \sum_{n=1}^{\infty} g_1\left(\frac{1}{n}\right) - g_1\left(\frac{1}{n+x}\right)$.

R.O. KUZMIN: A problem of Gauss, Dokl. Akad. Nauk, Ser. A, 375–380, 1928.

Benford law

Let x_n , n = 1, 2, ..., be a sequence in (0, 1) and $G(x_n)$ be the set of all d.f.s of x_n .

• Assume that every d.f. $g(x) \in G(x_n)$ is continuous at x = 0. Then the sequence x_n satisfies strong Benford law in the base b if and only if for every $g(x) \in G(x_n)$ we have

$$x = \sum_{i=0}^{\infty} \left(g\left(\frac{1}{b^i}\right) - g\left(\frac{1}{b^{i+x}}\right) \right) \text{ for } x \in [0,1].$$
(3)

Examples of (3)

$$g(x) = \begin{cases} x & \text{if } x \in [0, \frac{1}{b}], \\ 1 + \log_b x + (1 - x)\frac{1}{b - 1} & \text{if } x \in [\frac{1}{b}, 1]. \end{cases}$$

$$\tilde{g}(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{b}], \\ 1 + \frac{\log x}{\log b} & \text{if } x \in [\frac{1}{b}, 1], \end{cases}$$

$$g^*(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{b^2}], \\ 2 + \frac{\log x}{\log b} & \text{if } x \in [\frac{1}{b^2}, \frac{1}{b}], \\ 1 & \text{if } x \in [\frac{1}{b}, 1] \end{cases}$$

$$g^{**}(x) = \begin{cases} 0 & \text{if } x \in [0, \frac{1}{b^3}], \\ 3 + \frac{\log x}{\log b} & \text{if } x \in [\frac{1}{b^3}, \frac{1}{b^2}], \\ 1 & \text{if } x \in [\frac{1}{b^2}, 1]. \end{cases}$$

Definition

Let $b \ge 2$ be an integer considered as a base, x > 0 and $x = M_b(x) \times b^{n(x)}$ with the mantissa $1 \le M_b(x) < b$.

A sequence x_n , n = 1, 2, ..., of positive real numbers satisfies Benford law (abbreviated to B.L.) of order r if for every r-digits number $K = k_1 k_2 ... k_r$ we have

$$\lim_{N \to \infty} \frac{\#\{n \le N; \text{ first } r \text{ digits of } M_b(x_n) \text{ are equal to } K\}}{N}$$
$$= \log_b(K+1) - \log_b K.$$

If a sequence x_n , n = 1, 2, ..., satisfies B.L. of order r, for every r = 1, 2, ..., then it is called that x_n satisfies strong B.L.

Criterion

A sequence x_n , $x_n > 0$, n = 1, 2, ..., satisfies strong B.L. if and only if the sequence $\log_b x_n \mod 1$ is u.d. in [0, 1).

V. BALÁŽ – K. NAGASAKA – O. STRAUCH: *Benford's law and distribution functions of sequences in* (0,1) (Russian), Mat. Zametki **88** (2010), no. 4, 485–501; (Anglish translation) Math. Notes **88** (2010), no. 4, 449–463.

Integral equations

Let F(x, y) be a real continuous function defined on $[0, 1]^2$. We discuss the following Riemann-Stieltjes integrals:

$$\int_{0}^{1} \int_{0}^{1} F(x, y) dg(x) dg(y) = 0,$$
(4)
$$\int_{0}^{1} \int_{0}^{1} F(x, y) dg(x, y), g(x, y) \text{ take copulas }.$$
(5)

(4) is used to estimate the set $G(x_n)$ of the set of all d.f.s of the sequence x_n , n = 1, 2, ...(5) we use to find extreme limit points of the sequence $\frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n)$, N = 1, 2, ..., where x_n and y_n both u.d. in [0, 1). Here d.f. g(x, y) is a copula, if the face d.f.s g(x, 1) = x and g(1, y) = y. Cont.

Let F(x, y) be a real continuous function defined on $[0, 1]^2$ and let G(F) be a set of all d.f.s g(x) satisfying

$$\int_{0}^{1} \int_{0}^{1} F(x, y) \mathrm{d}g(x) \mathrm{d}g(y) = 0.$$

The study of G(F) is motivated by the fact that for every sequence $x_n \in [0, 1)$ we have

$$G(x_n) \subset G(F) \iff \lim_{N \to \infty} \frac{1}{N^2} \sum_{m,n=1}^N F(x_m, x_n) = 0,$$

Application

For any sequence x_n in [0,1] we have

$$G((x_n)) \subset \{c_{\alpha}(x); \alpha \in [0,1]\} \iff \lim_{N \to \infty} \frac{1}{N^2} \sum_{m,n=1}^N |x_m - x_n| = 0.$$

Moreover, if $G((x_n)) \subset \{c_{\alpha}(x); \alpha \in [0, 1]\}$, then $G((x_n)) = \{c_{\alpha}(x); \alpha \in I\}$, where *I* is a closed subinterval of [0, 1] which can be found as

$$I = \left[\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n, \ \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} x_n \right],$$

and the length |I| of $I |I| = \limsup_{M,N\to\infty} \frac{1}{MN} \sum_{m=1}^{M} \sum_{n=1}^{N} |x_m - x_n|$.

$$G(x_n) = G(F)$$

Define

 $\underline{g}_{G(F)}(x) = \inf_{g \in G(F)} g(x)$ - lower d.f. with respect to G(F), $\overline{g}_{G(F)}(x) = \sup_{q \in G(F)} g(x)$ - upper d.f. with respect to G(F). Assume that (i) $\underline{g}_{G(F)}(x), \overline{g}_{G(F)}(x) \in G(F).$ (ii) $\underline{g}_{G(F)}(x) = \underline{g}_{G(x_n)}(x), \ \overline{g}_{G(F)}(x) = \overline{g}_{G(x_n)}(x).$ (iii) For every $g \in G(F)$ there exists a point $(x, y) \in Graph(g)$ such that $(x,y) \notin \operatorname{Graph}(\widetilde{g})$ for any $\widetilde{g} \in G(F)$ with $\widetilde{g} \neq g$. (iv) $G(x_n) \subset G(F)$. Then $G(x_n) = G(F)$.

Extension

Extension of (I): Define that $G(A \leq F \leq B)$ is the set of all d.f.s g(x) for which $A \leq \int_0^1 \int_0^1 F(x, y) dg(x) dg(y) \leq B$. Then as in (I) again $G(x_n) \subset G(A \leq F \leq B)$ is equivalent to $A \leq \liminf_{N \to \infty} \frac{1}{N^2} \sum_{m,n=1}^N F(x_m, x_n)$ and $\limsup_{N \to \infty} \frac{1}{N^2} \sum_{m,n=1}^N F(x_m, x_n) \leq B$.

Put

$$F_{\tilde{g}}(x,y) = \int_0^1 \tilde{g}^2(t) dt - \int_x^1 \tilde{g}(t) dt - \int_y^1 \tilde{g}(t) dt + 1 - \max(x,y).$$

Then

$$\int_0^1 (g(x) - \tilde{g}(x))^2 dx = \int_0^1 \int_0^1 F_{\tilde{g}}(x, y) dg(x) dg(y),$$

and we see that $\int_0^1 \int_0^1 F_{\tilde{g}}(x, y) dg(x) dg(y) = 0$ has the unique solution $g(x) = \tilde{g}(x)$.

Let $F : [0,1]^2 \to \mathbb{R}$ be a continuous and symmetric function. For every distribution functions g(x), $\tilde{g}(x)$ we have

$$\int_0^1 \int_0^1 F(x,y) \mathrm{d}g(x) \mathrm{d}g(y) = 0 \iff \int_0^1 \int_0^1 F(x,y) \mathrm{d}\tilde{g}(x) \mathrm{d}\tilde{g}(y)$$
$$= \int_0^1 (g(x) - \tilde{g}(x)) \left(2\mathrm{d}_x F(x,1) - \int_0^1 (g(y) + \tilde{g}(y)) \mathrm{d}_y \mathrm{d}_x F(x,y) \right)$$

• Especially, putting $\tilde{g}(x) = c_0(x)$, we have

$$\int_{0}^{1} \int_{0}^{1} F(x, y) dg(x) dg(y) = 0 \iff$$
$$F(0, 0) = \int_{0}^{1} (g(x) - 1) \left(2d_{x}F(x, 1) - \int_{0}^{1} (g(y) + 1)d_{y}d_{x}F(x, y) \right).$$

Putting

$$F(x,y) = \frac{1}{3} + \frac{x^2 + y^2}{2} - \frac{x + y}{2} - \frac{|x - y|}{2}$$

then we have

$$g(x) = x \iff \frac{1}{3} = \int_0^1 g(x)(2x - g(x)) \mathrm{d}x.$$

Copulas

D.f. g(x, y) is a copula, if the face d.f.s g(x, 1) = x and g(1, y) = y. A problem is to find extreme values of

$$\int_0^1 \int_0^1 F(x,y) \mathrm{d}_x \mathrm{d}_y g(x,y),$$

where

 $d_x d_y g(x, y) = g(x + dx, y + dy) + g(x, y) - g(x + dx, y) - g(x, y + dy).$

Motivation

Let $x_n, y_n \in [0, 1)$, n = 1, 2, ..., both u.d.sequences. For every continuous F(x, y) the set of limit points of $\frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n)$, N = 1, 2, ... coincides with

$$\bigg\{\int_0^1\int_0^1 F(x,y)\mathrm{d}_x\mathrm{d}_y g(x,y); g(x,y)\in G((x_n,y_n))\bigg\},\$$

where d.f. g(x, y) of (x_n, y_n) satisfies g(x, 1) = x, g(1, y) = y and it is called copula. Here we using Riemann-Stiltjes integration

$$\frac{1}{N}\sum_{n=1}^{N}F(x_n, y_n) = \int_0^1 \int_0^1 F(x, y) d_x d_y F_N(x, y)$$

and Helly theorem.

Let F(x, y) be a Riemann integrable function defined on $[0, 1]^2$. Assume that $d_x d_y F(x, y) > 0$ for $(x, y) \in (0, 1)^2$. Then

$$\max_{\substack{g(x,y)\text{-copula}\\g(x,y)\text{-copula}}} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(x,x) dx,$$
$$\min_{\substack{g(x,y)\text{-copula}\\g(x,y)\text{-copula}}} \int_0^1 \int_0^1 F(x,y) d_x d_y g(x,y) = \int_0^1 F(x,1-x) dx,$$

where the max is attained in $g(x, y) = \min(x, y)$ and \min in $g(x, y) = \max(x + y - 1, 0)$, uniquely. Here we have used the Fréchet-Hoeffding bounds

 $\max(x+y-1,0) \le g(x,y) \le \min(x,y)$

which holds for every $(x, y) \in [0, 1]^2$ and for every copula g(x, y).

Open problem

Find extremes of $\int_0^1 \int_0^1 F(x, y) d_x d_y g(x, y)$, for F(x, y), where differential $d_x d_y F(x, y)$ has no a constant signum on $[0, 1]^2$. For example, if

$$F(x,y) = \begin{cases} 2(y - \frac{1}{2})x, & \text{if } y \in \left[\frac{1}{2}, 1\right], \\ 2(\frac{1}{2} - y)x, & \text{if } y \in \left[0, \frac{1}{2}\right]. \end{cases}$$

then

$$\max_{g(x,y)\text{-copula}} \int_0^1 \int_0^1 F(x,y) \mathrm{d}_x \mathrm{d}_y g(x,y) = \frac{1}{3}$$

[1] PILLICHSHAMMER, F. – STEINERBERGER, S.: Average distance between consecutive points of uniformly distributed sequences, Uniform Distribution Theory **4** (2009), no. 1, 51–67.

[2] J. FIALOVÁ – O. STRAUCH On two-dimensional sequences composed by one-dimensional uniformly distributed sequences, Uniform Distribution Theory 6 (2011) no. 1, 101–125

Matrix game

Payoff matrix \mathbf{A}

$$\mathbf{A} = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ \dots & \dots & \dots & \dots \\ a_{m,1} & a_{m,2} & \dots & a_{m,m} \end{pmatrix}$$

Player I chooses the pure strategy as a row *i* represented as the vector $\mathbf{e}_i = (0, \dots, 0, 1, 0, \dots, 0)$, Similarly, the pure strategy for Player II is the *j*-th column may be represented by $\mathbf{e}_j = (0, \dots, 0, 1, 0, \dots, 0)$ and the payoff to I is

$$\mathbf{e}_i \mathbf{A} \mathbf{e}_j^T = a_{i,j}$$

Mixed strategy

Now, let Player I use a sequence $\mathbf{e}_n^{(I)}$, $n = 1, 2, \ldots$, of pure strategy and Player II a sequence $\mathbf{e}_n^{(II)}$, $n = 1, 2, \ldots$, of pure strategy. Then the mean-value of the payoff of I after N games is

$$\frac{1}{N}\sum_{n=1}^{N}\mathbf{e}_{n}^{(I)}\mathbf{A}(\mathbf{e}_{n}^{(II)})^{T}.$$

Assume that there exist densities $\lim_{N\to\infty} \frac{1}{N} \# \{n \le N; \mathbf{e}_n^{(I)} = \mathbf{e}_i\} = p_i, i = 1, 2, \dots, m$ $\lim_{N\to\infty} \frac{1}{N} \# \{n \le N; \mathbf{e}_n^{(II)} = \mathbf{e}_i\} = q_i, i = 1, 2, \dots, m$ The vector $\mathbf{p} = (p_1, p_2, \dots, p_m)$ is called a mixed strategy for Player I. Similarly $\mathbf{q} = (q_1, q_2, \dots, q_n)$ is a mixed strategy for Player II.

Mean-value of the payoff

If the sequences $\mathbf{e}_n^{(I)}$ and $\mathbf{e}_n^{(II)}$ are statistically independent, then we have

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{e}_n^{(I)} \mathbf{A} (\mathbf{e}_n^{(II)})^T = \mathbf{p} \mathbf{A} \mathbf{q}^T = \sum_{i,j=1}^{m} p_i a_{i,j} q_j.$$

For zero-sum matrix game the mixed strategies ${\bf p}$ and ${\bf q}$ can be computed optimally such that

$$\mathbf{pAq}^T = 0$$

, but independence of $\mathbf{e}_n^{(I)}$ and $\mathbf{e}_n^{(II)}$ is a **problem**. Player with better sequence can be found payoff positive.

 $I_{i,j} = [p_1 + p_2 + \dots + p_{i-1}, p_1 + p_2 + \dots + p_i) \times [q_1 + q_2 + \dots + q_{j-1}, q_1 + q_2 + \dots + q_j]$

Define F(x, y) on $[0, 1]^2$ such that

$$F(x,y) = a_{i,j}$$
 if $(x,y) \in I_{i,j}, i, j, = 1, 2, \dots, m$.

Let Player I be use u.d. sequence x_n and Player II u.d. sequence y_n , n = 1, 2, ... If $(x_n, y_n) \in I_{i,j}$ the Player I choice pure strategy e_i and Player II pure strategy e_j . Then mean value of the payoff of the Player I is

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} F(x_n, y_n) = \int_0^1 \int_0^1 F(x, y) \mathrm{d}g(x, y),$$

where g(x, y) is a d.f. of the sequence (x_n, y_n) , n = 1, 2, ...

Example: Odd or Even

Players I and II simultaneously call out one of the numbers one or two. Player I wins if the sum of the numbers is odd. Player II wins if the sum of the numbers is even. The payoff matrix A is

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & 1\\ 1 & -1 \end{array}\right)$$

and the function F(x, y) corresponding to (1) is

$$\begin{array}{c|c}
F(x,y) \\
1 & -1 \\
-1 & 1
\end{array}$$

Examples

Let x_n and y_n , n = 1, 2, ... be u.d. sequences such that (x_n, y_n) has a.d.f. g(x, y). (i) If g(x, y) = xy then $\int_0^1 \int_0^1 F(x, y) dx dy = 0$. (ii) If $g(x, y) = \min(x, y)$ then $\int_0^1 \int_0^1 F(x, y) d\min(x, y) = \int_0^1 F(x, x) dx = -1.$ (iii) If $q(x, y) = \max(x + y - 1, 0)$ then $\int_{0}^{1} \int_{0}^{1} F(x, y) d\max(x + y - 1, 0) = \int_{0}^{1} F(x, 1 - x) dx = 1.$ (iv) If $(x_n, y_n) = (\gamma_q(n), \gamma_q(n+1))$, where $\gamma_q(n)$ is the van der Corput sequence in the base q, then $\int_0^1 \int_0^1 F(x,y) dg(x,y) = \frac{4}{a} - 1$. Thus for q = 2 Player I wins prize 1 and in the case q > 5 he loses.