Some unsolved problems in the theory of distribution
functions

O. Strauch - J.T. Toth



Definitions

Tn,n=12,...,x, €[0,1).

#{”SN%Z”E[O@)} > g(x) as k — oo is a distribution function (d.f.) of z,,.

G(xy) is the set of all d.f.s of z,,.
G(x,) Is non-empty, closed and connected in the metric

d(g1,92) \/fo (g1(z (x)2dz.

Given a non—empty set H of distribution functions, there exists a
sequence x,, in |0, 1) such that G(z,,) = H if and only if H is closed
and connected.

Example. For z,, = logn mod 1 we have

min(z,u) 1 1 e — 1
G(xy,) = {gu(x) _C y = ° u € |0, 1]} :

el et e—1




Method

Let f :[0,1] — [0, 1] be given Jordan measurable function. To compute

g(x) we use a map
xr, — f(x,) which induces
g(z) — gr(x), where

9 (@) = / 1 ),
f=1([0,x))

Also, if f~1([0,2)) is a sum of finitely many pairwise disjoint
subintervals I;(x) of [0, 1] with endpoints a;(z) < 3;(z), then
I

g9r(@) = 32, 9(Bi(z)) — g(ai(z)).



Method

In order to find d.f. g(z) of z,, by using g((z) of the transforming
sequence f(x,), we can solve e.g.

- gf(z) = gn(x) for x € |0, 1] if f(x,) and h(z,) coincide.

- g(z) = g¢(x) for x € |0, 1], if x,, and f(x,), n =1,2,... have the same

a.d.f.
Note that the d.f. g(x) is characterized by: For every continuous

F :0,1] — R and every d.f. g(z) we have

/ F(f(e))dg(z) = / F(2)dg; ().
0 0



Functional equations

In this note we consider:

9(x/2) +g((z +1)/2) — g(1/2)
=g(z/3) +9((z +1)/3) + 9((z +2)/3) — g(1/3) — 9(2/3), (@)

539(%) <n+a: @

f;< ( ) (bz+x)> 3)

(1) is connected with the sequence z,, = £(3/2)" mod 1, n =1,2,...
(2) is connected with Gauss-Kuzmin theorem.

(3) is connected with Benford law.

In all cases it is not known the general solution.




Equation (1)

Simple equations

te(3) {2 ) 7 - () - )T

Implies:

(I) Any distribution function g(x) of £(3/2)™ mod 1 satisfies
gr(x) = gn(x) for all z € [0, 1], where f(z) = 22 mod 1 and
h(x) = 3z mod 1. Here

g9r(2) = g(x/2) + g((z +1)/2) — 9(1/2),

gn(x) = g(x/3) + g((z +1)/3) + 9((z +2)/3) — g(1/3) — 9(2/3)



Motivation

(1) The study of d.f.s in (I) is motivated by K. Mahler’s conjecture
(1968):

There exists no £ € R such that 0 < {£(3/2)™} < 1/2 for
n=20,1,2,...

(111) Mahler conjecture follows from the conjecture:
If g(x) = constant for all x € I, where I is a subinterval of |0, 1], then

the length |7| < 1/2.



Chain of solutions

(IV) Let g; be an absolutely continuous d.f. satisfying g1, () = g1,(z)
for x € [0, 1]. Then the absolutely continuous d.f. g(z) satisfies
gr(x) = g1(x) and gp(z) = g1(x) for x € [0, 1] if and only if g(z) =

(U (), for z € [0,1/6],
U(1/6) + ®(x —1/6), for x € [1/6,2/6],
U(1/6) 4+ ®(1/6) + g1(1/3) — ¥(z — 2/6)
+®(x —2/6) — g1(22 — 1/3) 4+ g1 (3z — 1), for z € [2/6,3/6],

: 29(1/6) + g1(1/3) — 91(2/3) + 91(1/2)

—\I!(:v—3/6)+gl(2x—1) for x € [3/6,4/6],
—U(1/6) +2®(1/6) + 91(1/3) — 91(2/3) + 91(1/2)
—®(x —4/6) + g1 (2x — 1), for x € [4/6,5/6],
—W¥(1/6) + ®(1/6) + 91(1/3) + ¥(z — 5/6)

 —P(x —5/6) — g1(2x — 5/3) + g1 (3x — 2), for x € [5/6,1],



Cont.

where U (z) = [ ¢(t)dt, ®(z) = [ ¢(t)dt, for z € [0,1/6], and (¢),
¢(t) are Lebesgue mtegrable functlons on [0, 1/6] satisfying

0 < P(t) < 2g}(28), 0 < p(t) < 29 (2t + 1/3),

291(2t) — 3¢5 (3t + 1/2) < 0(t) — (t) < —2¢} (2t + 1/3) + 3¢} (31),
for almost all ¢t € [0, 1/6].

Putting g1 (z) = « in (IV) we find a new solution g2(x) of g¢(z) = gn(x)

(0 for z € [0,2/6],
r—1/3 forxzc[2/6,3/6],
2¢x —5/6 forz € [3/6,5/6],
| % for x € [5/6,1].

g2(x) = <




Example

Putting in (IV) g1(z) = g2(z) we find the solution gs(z) of g¢(x) = gn(x):

g3()

/

0

2¢ —1/3
4z — 5/6
2 — 5/18
7/18
r—1/18
8/18

21 — 20/18
4z — 50/18
20 — 17/18

X

for x €
for x €
for x €
for x €
for x €
for x €
for x €
for x €
for x €
for x €
for x €

0,1/6],
1/6,3/12],
3/12,5/18],
5/18,2/6],
2/6,8/18],
8/18,3/6],
3/6,7/9],
7/9,5/6,
5/6,11/12],
11/12,17/18],

17/18,1].



Graphs

Their graphs are
T

92()

g3()

1




Sets of uniqueness

(V) Let g1, g2 be any two distribution functions satisfying g; . (z) = g, ()
fori =1,2and z € [0, 1]. Denote

L =1[0,1/3], L, =1[1/3,2/3], I5=1[2/3,1].

If g1(z) = go(z) forz e ;U I;, 1 <i#j <3, then g (x) = g2(x) for all
x € [0, 1].
(IV) Denote

F(z,y) = {22} — {3y + {2y — {3z} — {22} — {2y}] — [{3z} — {3y}

The continuous distribution function g(x) satisfies g¢(z) = gn(x) on
0, 1] if and only if

/o1 /01 F(x,y)dg(z)dg(y) = 0.



New equation




Functional equation

Put f(z) = 22 mod 1, h(z) = 3z mod 1, v(z) = 2 mod 1,
u(z) = 2z + 2 mod 1.
For some sequence N = Ng, k — oo, we have

#{n < N;{(3/2)"} € [0,z)} (z)
N 7 g\x),
#{n < N;{(3/2)"} € [0, x),[(3/2)"] is odd}
N
#{n < N;{(3/2)"} € [0,2),[(3/2)"] is even}
N

g (z)

— g (z)

Every d.f. g(x) of the sequence (3/2)™ mod 1 can be expressed as
g(z) = gW(x) + ¢ (x) for every = € [0,1] such that

gD (@) +9P () = g5 (x) = gn(z) =g} (2) 4¢P (2) = gV () +9 (z). (5)



example

For z < % we have
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Generalization

The result (5) can extend to: Every d.f. g(z) of the sequence
(3/2)™ mod 1 can be expressed as

oa) = Y ila),
Z_: (9i)u; () = g¢(x) = gn(x), Where



Gauss-Kuzmin theorem

Denote

f(x) =1/z mod 1,

gf(z) = / 1.dg(x),
F=1([0,x))

(ggn)f(x) = gpnia (),

~ log(1+ )
- log2

go()

The problem is to find all solutions ¢g(x) of the functional equation
g(x) = gs(x) for x € [0, 1] which is equivalent to

g(z) =§:lg(%> —g(nix)




Results

e go(x) satisfies (3).

e Gauss-Kuzmin theorem: If g(z) = z, then g (z) — go(x) and the
rate of convergence is O(¢v"), 0 < ¢ < 1.

e This Theorem was proved by R. Kuzmin (1928) and for a starting
function g(x) for which

()0 < ¢'(xr) < M and

(ii) |g" ()| < p.

Thus, if g(z) satisfies (i), (i), and g¢(z) = g(x), then g(x) = go(x).

e This Theorem was inspired by Gauss. He conjectured

my(x) — go(x), where m, (z) = [{a € [0,1];1/r,(a) < x}| and for
continued fraction expansion a = [ag(«); a1 (@), az(a), .. .],

rp(@) = |[ant1(@); apya(a),...,]. Inthis case m, (x) = gsn(x) for

g(x) = 7, since f(1/ra(a)) = 1/rn1(a).



Example

e For starting point zq € [0, 1] we define the iterate sequence z,, as

r1 = f(x0), x2 = f(f(®0)), 23 = f(f(f(20))),- ..

If {g(x)} = G(z,) then g(x) solve (2) for example, the sequence
1 =1/r1, 20 = 1/ry,... for @ —=[0;1,1,1,...] produces solution
9(z) = cv5a (2).



Example

Define a non-increasing g(x) on [0, 1/2) such that derivatives

2
1 1+ =x
M- — 1 >O
g(l—i—a:) g _HE Zg(m—l—x)(n—i—x) —

n=2

and then complete g(x) on [1/2,1] by

o(7) =1 ae e So(5) o)

Using this method and putting g(x) = x on |0, 1/2] the following d.f.

if z € [0,1/2],
g(x) = 2——+Zn 2 me—ry T2 € [1/2,1]

solve g¢(z) = g(z) for x € [0, 1].



Sets of uniqueness

If d.f. g1(z) and g2 (x) satisfy (1) and g, (x) = g2(x) for € [0,1/2), then
g1(x) and gs(x) coincide on the whole interval [0, 1]. Other sets of
uniqueness are |0, #Q U (%, 1] for arbitrary positive integer n.

Other application. If z,, € [0,1) has a.d.f. g1(z), then {.-} has a.d.f.
g2() = 221 01(5) — 91 (%)

R.O. Kuzmin: A problem of Gauss, Dokl. Akad. Nauk, Ser. A, 375-380,
1928.



Benford law

Letz,,n=1,2,..., be asequencein (0,1) and G(z,,) be the set of all
d.f.s of z,,.

e Assume that every d.f. g(x) € G(«x,) is continuous at x = 0. Then the
sequence z,, satisfies strong Benford law in the base b if and only if for

every g(x) € G(x,) we have

T = ‘Oo (g (%) —g (bix)> for x € [0, 1]. (3)

1=0




Examples of (3)

x If x € [O,%],
9T =91 116 )l ifze [l
g+ (l—z)= ifze|f1].
- 0 If x € [O,%},
g(f): log x : 1
e S LS 5:1]
0 if z € [0, %] ,
g*(x) = ¢ 2+112§:g if ¢ € _b%,%},
: 1
|1 if € |3,1]
0 if z € [0, %],
g (x) = X 3—|—112§:g if x € :big,b%],
1 If z € :b%,l}.




Definition

Let b > 2 be an integer considered as a base, + > 0 and
r = My(z) x b™*) with the mantissa 1 < M,(x) < b.

A sequence z,, n = 1,2,..., of positive real numbers satisfies Benford
law (abbreviated to B.L.) of order r if for every r-digits number
K = kiks ...k, we have

. #{n < N; first r digits of M,(z,,) are equal to K}
Ngnoo N
= log, (K + 1) — log, K.

If a sequence x,,, n = 1,2, ..., satisfies B.L. of order r, for every
r=1,2,...,thenitis called that x,, satisfies strong B.L.



Criterion

A sequence z,, x, > 0,n=1,2,..., satisfies strong B.L. if and only if
the sequence log, =, mod 1 is u.d. in [0, 1).

V. BALAZ — K. NAGASAKA — O. STRAUcCH: Benford’s law and distribution
functions of sequences in (0, 1) (Russian), Mat. Zametki 88 (2010), no.

4, 485-501; (Anglish translation) Math. Notes 88 (2010), no. 4,
449-463.



Integral equations

Let F'(x,y) be a real continuous function defined on [0, 1]%. We discuss
the following Riemann-Stieltjes integrals:

1 1
/0 /0 F(z,y)dg(z)dg(y) = 0, (4)
1 1
/ / F(z,y)dg(x,y), g(z,y) take copulas . (5)
0 0

(4) is used to estimate the set G(z,,) of the set of all d.f.s of the
sequence x,,n=1,2,....

(5) we use to find extreme limit points of the sequence

+ S F(zn,yn), N=1,2,..., where z, and y, both u.d. in [0,1).
Here d.f. g(z,y) is a copula, if the face d.f.s g(x,1) = x and g(1,y) = v.



Cont.

Let F'(x,y) be a real continuous function defined on [0, 1]* and let G(F)
be a set of all d.f.s g(x) satisfying

/01 /01 F(z,y)dg(x)dg(y) = 0.

The study of G(F') is motivated by the fact that for every sequence
r, € [0,1) we have

N
, 1
G(zn) C G(F) &= lim —; ZlF(xm,xn) =0,



Application

For any sequence z,, in [0, 1] we have

G((xzy)) C {ca(z);a € ]0,1]} <~ 11_I>Iloo ﬁ Z |z — x| = 0.

m,n=1

Moreover, if G((z,,)) C {ca(z); a € [0,1]}, then
G((z,)) = {ca(x);a € I}, where [ is a closed subinterval of [0, 1] which
can be found as

I = l}\rfrilglof—z::vn, hmsup—an :

and the length |I| of I |I| = limsupy; x—o0 775 Z%:l Zf:f:l | T, — 0.



Define
QG(F)(x) = inf cq(r) g(7) - lower d.f. with respect to G(F'),

9er)(T) = sup e r 9(x) - upper d.f. with respect to G(F).

Assume that

) 965 (@) = 90 (@) TaF) (2) = Ta(z,)(T):

(ii) For every g € G(F’) there exists a point (z,y) € Graph(g) such that
(x,y) ¢ Graph(g) for any g € G(F') with g # g.

(iv) G(z,) C G(F).

Then G(z,) = G(F).



Extension

Extension of (1): Define that G(A < F' < B) is the set of all d.f.s g(x) for
which A < fol fol F(x,y)dg(x)dg(y) < B. Then as in (l) again

G(x,) C G(A < F < B)is equivalent to

A <Hminfn_oo 12 Yom et F(Tm, 2) and

: N
lim suppy_, o % me:l F(z,,,x,) < B.



Result

Put

Fy(z,y) = /0 g (t)dt —/ g(t)dt —/ g(t)dt + 1 — max(x, y).

/(( ~§(@ dx—//F~xydg \dg(y),

and we see that fo fo (x,y)dg(x)dg(y) = 0 has the unique solution

g(z) = g(z).

Then



Result

Let I : [0,1]? — R be a continuous and symmetric function. For every
distribution functions ¢(z), g(x) we have

// (z,y)dg(z)dg(y —O<:>// (z,y)dg(x

/0 (o) = 3(a)) (2., 1) - / (9(9) + §(0))dyd F (a, y>).

0

e Especially, putting g(z) = co(x), we have

/o1 /01 F(z,y)dg(z)dg(y) = 0 <=

F(0,0) = / (g(@) 1) (2de<9@, 1) - / (9() + D)dyd, Pz, y>) .



Result

Putting

then we have



Copulas

D.f. g(x,y) is a copula, if the face d.f.s g(z,1) =z and g(1,y) = y.
A problem is to find extreme values of

/01 /01 F(z,y)dydyg(z,y),

d.dyg(z,y) = g(z + dz,y + dy) + g(z,y) — g(z + dz,y) — g(z,y + dy).

where



Motivation

Let x,,y, € [0,1),n=1,2,..., both u.d.sequences. For every

continuous F'(z,y) the set of limit points of ij:l F(xn,yn),
N =1,2,... coincides with

{/01/01F(%dedyg(w,y);g(%y) € G((xn,yn))}7

where d.f. g(z,y) of (z,,y,) satisfies g(x,1) =z, g(1,y) =y and itis
called copula. Here we using Riemann-Stiltjes integration

N 1 1

1

N Z F(wna yn) — / / F(:C, y)dxdyFN(l’, y)
— 0 0

and Helly theorem.



Result

Let F'(x,y) be a Riemann integrable function defined on [0, 1]2.
Assume that d,d, F(z,y) > 0 for (z,y) € (0,1)%. Then

1,1 1
max / / F(x,y)d,dyg(z,y) :/ F(z,z)dx,
0o Jo 0

g(z,y)-copula

1 1 1
min / / F(x,y)d,dyg(z,y) = / F(z,1— z)dx,
0 Jo 0

g(z,y)-copula

where the max is attained in g(z,y) = min(x, y) and min in
g(x,y) = max(x +y — 1,0), uniquely.
Here we have used the Fréchet-Hoeffding bounds

max(z +y —1,0) < g(z,y) < min(z,y)

which holds for every (z,y) € [0, 1]? and for every copula g(z, y).



Open problem

Find extremes of fol fol F(z,y)d.d,g(x,y), for F(z,y), where
differential d.d, F'(z, y) has no a constant signum on [0, 1]*. For

example, if
7 B 2<y—%)aﬁ, If y € [%,1],
(337 y) — 1 : 1
2(§—y):1:, If y € [O, 5]
then
1 pl 1
max / / F(xvy)diﬁdyg(x:y) — 9
g(z,y)-copula Jo Jo 3

[1] PiLLICHSHAMMER, F. — STEINERBERGER, S.: Average distance between
consecutive points of uniformly distributed sequences, Uniform
Distribution Theory 4 (2009), no. 1, 51-67.

[2] J. FiaLovA — O. STRAUCH On two-dimensional sequences composed

by one-dimensional uniformly distributed seqgiuences, Uniform
Nictribiitinn Thanryvs A (929011 o 1 101 .19



Matrix game

Payoff matrix A

(&1,1 aj 2 a1, m \
ai,1 aj 2 a1, m
A =
K Am,1 QAm,2 Qm,m )

Player | chooses the pure strategy as a row i represented as the vector
e; = (0,...,0,1,0,...,0),

Similarly, the pure strategy for Player Il is the j-th column may be
represented by e; = (0,...,0,1,0,...,0) and the payoff to | is

T _
eiAej = Q4,5 -



Mixed strategy

Now, let Player | use a sequence e( ) ,n=1,2,...,of pure strategy

and Player Il a sequence e(”) n=1,2,..., of pure strategy. Then the
mean-value of the payoff of | after NV games is

Z (D A (eUDY"

=

Assume that there exist densities
lim oo N#{n < N; el =et=pi,t=1,2,...,m

limpy o0 N#{n < N; eﬁf” =e}=¢q,i=1,2,...,m

The vector p = (p1,p2, - .., pm) IS called a mixed strategy for Player I.
Similarly q = (g1, ¢2, - - ., g») IS @ mixed strategy for Player II.



Mean-value of the payoff

If the sequences e% ) and e(I ) are statistically independent, then we
have

lim — Z e(I)A (H) =pAq’ = Z Di@; g5

N—soo N —
1,7=1

For zero-sum matrix game the mixed strategies p and q can be
computed optimally such that

pAq’ =0

, but independence of e( ) and e%”) IS a problem. Player with better
sequence can be found payoff positive.



Transform of matrix game

I;j = [p1tp2+- - ~+pi—1,p1tPp2+ - ~+ps) X [q1+g2+ - - +gi—1, (1 +qa+- - ~+g,
Define F'(x,y) on [0, 1] such that
F(x,y) =a;; if(x,y) € I; j,i,5,=1,2,...,m.

Let Player | be use u.d. sequence z,, and Player Il u.d. sequence y,,,

n=12,... If (z,,y,) € I; ; the Player | choice pure strategy e; and
Player Il pure strategy e;. Then mean value of the payoff of the Player |
IS

N—=oco IV

1 N 1 1
lim —ZF(mn,yn)Z/ / F(z,y)dg(z,y),
n—1 0 0

where g(x,y) is a d.f. of the sequence (z,,,y,), n =1,2,....



Example: Odd or Even

Players | and Il simultaneously call out one of the numbers one or two.
Player | wins if the sum of the numbers is odd. Player Il wins if the sum
of the numbers is even. The payoff matrix A is

—1 1
A =
and the function F'(x,y) corresponding to (1) is
F(z,y)

1 -1




Examples

Letz, and y,, n =1,2,... be u.d. sequences such that (z,,,y,) has
a.d.f. g(z,y).

(i) If g(x,y) = xy then fol fol F(x,y)dzdy = 0.

(i) If g(x y) = min(x, y) then

fo fo (x,y)d min(z, y) fo — —1.

(iii) If g(x,y) = max(z +y — 1 O) then

fofo (z,y)dmax(zx +y —1,0) = fo (z,1 —x)dz = 1.

(V) If (1, yn) = (74(n), v4(n + 1)), where ~,(n) is the van der Corput
sequence In the base q, then

fO fo (x,y)dg(z,y) = = — 1. Thus for ¢ = 2 Player | wins prize 1 and
In the case ¢ > 5 he Ioses.
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