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Definition of Discrepancy 
(A measure for uniform distribution)

For points in 

is the subinterval 
is the number of points in 
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2-Dimensional Example
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Discrepancy and Numerical 
Integration

Koksma-Hlawka Theorem (1961)

: function variation and 
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Low-Discrepancy Sequences

Definition
• an infinite sequence of points in 
• For any           , the discrepancy of the first        

points of the sequence satisfies
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Elementary Box with base b

A b-ary box is an interval of the form

with integers                 and integers
for 
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(t,m,k)-nets and (t,k)-sequences
A (t,m,k)-net with base b is a point set of       
points         such that every b-ary box of 
volume             contains exactly        points
A sequence of points                          is a 
(t,k)-sequence if for all integers             
and               , the point set, 

form a (t,m,k)-net with base b.
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Discrepancy of (t,k)-sequences

Niederreiter Theorem (1987)
For any          , the discrepancy of the 
first        points of the sequence satisfies

If t is constant or dependent only on k, it 
is a low-discrepancy sequence
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Construction of (t,k)-sequences
Denote                                                   
and 

Then

are called generator matrices
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Example of (0,1)-sequences

(t,k)-sequences with t=0 and k=1
Van der Corput sequence: p(z)=z, i.e.,             
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Polynomial Analogue

An integer is replaced by a polynomial 
over finite fields

A real number is replaced by a formal 
Laurent series over finite fields

The arithmetic is done over finite fields



Polynomial analogue of 
Weyl sequences 

The original Weyl sequences is defined by 

Their polynomial analogue is obtained by 
replacing n by a polynomial, and          by
a formal Laurent series, then mapping it to a 
real number by substituting b into z
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Polynomial analogue of 
Weyl sequences (continued)

Analogue of Weyl sequences with respect to 
polynomial arithmetic over finite fields is (t,1)-
sequences whose generator matrices are Hankel.      

(0,1)-sequences are obtained by the continued 
fraction expansion whose partial quotients are all 
of degree one, i.e., Fibonacci polynomials of 
degree going to infinity.



Polynomial analogue of 
van der Corput sequences

Analogue of van der Corput sequence with 
respect to polynomial arithmetic over finite 
fields includes the original van der Corput
sequences and another (0,1)-sequence 
whose generator matrix is given by                          

where P is the Pascal matrix.
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Generalized van der Corput 
sequences
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Definition of polynomial analogue
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Theorem
The polynomial analogue of generalized van
der Corput sequences defined before is a
strict (t,1)-sequence with

where  H(q/p) is the Hankel matrix obtained 
by the formal Laurent series of q(z)/p(z).
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Corollary

If p(z) and q(z) are consecutive Fibonacci 
polynomials, i.e., (q,p)=(Fe-1 ,Fe ), then the 
polynomial analogue of generalized van 
der Corput sequences defined before is 
a (0,1)-sequence, where e=deg(p).



Discussions
Polynomial analogue introduced here can be
viewed as a hybridization of van der Corput
sequences and polynomial Weyl sequences
because  the special case (q,p)=(1,z) 
produces van der Corput sequences, and 
another special case deg(p)=∞

 
produces 

polynomial Weyl sequences.



Discussions (continued)

Thanks to Mesirov-Sweet theorem that any
irreducible polynomial over GF(2) is a
Fibonacci polynomial, we can construct the
polynomial analogue of generalized Halton
sequences over GF(2), whose coordinates 
are all (0,1)-sequences.
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