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Basic definitions and known results
®00

Basics

For fixed s € N and (x,)nen C [0,1]° let

D;;IS(le'”aXN) = S[Up] Z]l[o,y (X,-, _)‘([an)) , NeN,
y€[0,1]°

denote the star discrepancy of the point sequence (xp)nen-
Y2 y2
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Basic definitions and known results
oeo

@ (Xn)nen C [0, 1]° is called uniformly distributed (modulo 1) iff

jim Zn[oy W) =A([0.y)  Vye[o1p

N—oco N
iff
lim DN (Xl,...,XN):O
N—oco
iff
lim — f(x / f(x)dx Vf:[0,1]° — R cont.
Jim Z [ 0.1]

@ The decay of Dy} controls the error of certain numerical
integration schemes
(see Koksma-Hlawka inequality, Quasi-Monte Carlo (QMC)
methods).
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Basic definitions and known results
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@ (xn)nen C [0,1] is called completely uniformly distributed
(c.u.d.) iff for all s € N

((Xny -+ - s Xnts—1))nen C [0,1]° is uniformly distributed,
or equivalently iff for all s € N
((X(n—1)s+15 - - - » Xns) )neny C [0,1]° is uniformly distributed.
@ example for s = 3:
(x1, X2, X3, Xa, X5, X6, X7, X8, X9, X10, - - -) C [0, 1]
(x1, X2, x3),
(x2, X3, Xa),

(X3a X4, X5)7 s

(X17X27X3): (X47X57X6)7 (X77X87X9)7 RIS [Oa 1]3
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Basic definitions and known results
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Survey of known results

@ Heinrich, Novak, Wasilkowski, Wozniakowski 2001:

n*(g,s) < Cups S 2

o n*(g,s) is the minimal cardinality for a point set in [0, 1]°
having star discrepancy not exceeding ¢ > 0.
(inverse of the discrepancy)

o Hinrichs 2004:  n*(s,8) > caps st
(= dependence on s is sharp)

@ equivalent: For all N and s there exists a point set such that

D;'(/S < Cabs\\//%-

e probabilistic approach; proof uses deep theoretical results
e constant unknown
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Basic definitions and known results
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o Aistleitner 2011:
For all N and s there exists a N-point set in [0, 1]° such that

NG

Dif <102

VN

e more direct, probabilistic proof
based on a discretization via 1
5-(bracketing-) covers | >

e probability estimates for
exceptional sets using
Hoeffding-type inequalities, e.g.

'

where Z, = 1,(X,) — A(/)

e unknown final success probability

0 — Y1
N

>z,

n=1

> t) < 2exp(—2t%/N),
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Basic definitions and known results
fele] To)

e Dick 2007:
If the discrepancy bound is slightly enlarged the probabilities
of the exceptional sets in the proof of Heinrich et al. are
summable over s and N.

That is, all the (N x s)-dim. projections X1, ..., X(N) of the
random double infinite matrix (X ;) icn satisfy

D < o VInNYE with positive probability.
N = abs \/N p p y

(here all X, ; are independent Uniform[0, 1] distributed)

Xi1 oo Xis o -ee XM = (Xy1,...,X16) €[0,1]°

X2’1 X2,s X(z) = (X2 1,...,X25)
P = ’ ’

Xni .or Xne

) )
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Basic definitions and known results
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@ Doerr, Gnewuch, Kritzer and Pillichshammer 2008:
improvement of Dick’s result for matrices
(essentially In N is replaced by In(c + N/s))

e point set extendable with respect to N and s
e again completely probabilistic
e unknown constants and/or success probabilities

@ Chen, Dick, Owen 2011:
Dick's proof can also be used for c.u.d. sequences
(applications for Markov Chain Quasi-Monte Carlo)

@ Aistleitner 2012:
hybrid construction that satisfies the bound of Heinrich et al.
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Main result

Theorem (Aistleitner, W. 2012)

Let v > ¢~1(2) ~ 1.73 be fixed and X(") as before.
Then with probability strictly larger than 1 — ({(7) — 1)2 > 0 we
have for all s € N and every N > 2

Inlog, N
Dy (XW,..., xM) < /5. \/1165+178”°5g2 : 1/%.

In particular, there exists a positive probability that the
(N x s)-dim. projections of a random matrix (Xp,i)n icn Satisfy

Inln N S

Dif < ¢2130 +308

for all s € N and every N > 2.
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Our contribution
oce

Advantages:
@ simple structure: i.i.d. Uniform[0,1] random variables

@ explicit constants and probability estimate
@ +/Cabs + '"'”N \*; is close to cabs%
and improves CabsVIn N% (Dick)

@ arguments also applicable for c.u.d. sequences

(Heinrich et al.)
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Our contribution
.

Optimality

@ Law of the iterated logarithm yields:
For any sequence (X("),ey C [0,1]% of independent uniformly
distributed vectors

. VNDE(X® o x(Ny
| u = —
N—>oop Vinin N V2

(= factor VInIn N is necessary for random constructions)
For fixed s and large N our bound reads

Vinin N

Di < c(s) Y

almost surely.

>

@ On the other hand, if N < exp(exp(s)) then we obtain

(Otherwise known low-discrepancy sets do much better)
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|deas of the proof

probabilistic approach (see Heinrich et al. '01)
summable exception probabilities (see Dick '07)
J-(bracketing-) covers (see Gnewuch '08 and Aistleitner '11)

additional parameter v to control the success probability
(inspired by Doerr et al. '08)

maximal Bernstein inequality to replace vIn N by vInIn N
@ connection to c.u.d. sequences (see Chen et al. '11)

@ straightforward calculation
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