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Definitions

Definition (discrepancy function)

Let d , n ∈ N. For a point set {t1, . . . , tn} ⊂ [0, 1)d and x ∈ [0, 1]d

we define the discrepancy function

D({t1, . . . , tn})(x) = λd ([0, x)) −
1

n

n
∑

i=1

χ[0,x)(ti), (1)

where λd ([0, x)) is the d -dimensional Lebesgue measure of the box

[0, x) =
{

y ∈ [0, 1)d : 0 ≤ yi < xi , i = 1, . . . , d
}

.
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Definitions

Definition (Lp-star discrepancy)

Let d , n ∈ N. For 0 < p < ∞ and a point set {t1, . . . , tn} ⊂ [0, 1)d

we define the LpLpLp-star discrepancy as the Lp-norm of the
discrepancy function

disc
∗

p(t1, . . . , tn) = ‖D({t1, . . . , tn})‖p

=







∫

[0,1]d

∣

∣

∣

∣

∣

λd ([0, x)) −
1

n

n
∑

i=1

χ[0,x)(ti )

∣

∣

∣

∣

∣

p

dx







1/p

.

(2)
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Definitions

Definition (average Lp-star discrepancy)

Let d , n ∈ N. We define the average LpLpLp-star discrepancy as the
expected value of the Lp-star discrepancy

av
∗

p(n, d) =
(

E
(

disc
∗

p(t1, . . . , tn)
p
)

)1/p

=







∫

[0,1]nd

disc
∗

p(t1, . . . , tn)
p
dt







1/p

, (3)

with t = (t1, . . . , tn). The points t1, . . . , tn ∈ [0, 1)d are
independent and uniformly distributed.
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Known results

Theorem (Heinrich, Novak, Wasilkowski, Woźniakowski [2])

Assume that p is an even integer and d ∈ N. Then

av
∗

p(n, d)
p =

p−1
∑

r=p/2

C (r , p, d)n−r , (4)

where the C (r , p, d) are known constants which depend on Stirling

numbers of the first and second kind.

In particular we have

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p/2, p, d).
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Known results

Theorem (Steinerberger [5])

Let p > 0, d ∈ N. Then

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p)

∫

[0,1]d

[

λd([0, x))
(

1−λd ([0, x))
)

]p/2
dx,

(5)
where

C (p) =
2p/2

π1/2
Γ

(

1 + p

2

)

.
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Goal

Theorem (Steinerberger [5])

Let p > 0, d ∈ N. Then

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p)

∫

[0,1]d

[

λd([0, x))
(

1−λd ([0, x))
)

]p/2
dx.

Goal
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Goal

Theorem (Steinerberger [5])

Let p > 0, d ∈ N. Then

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p)

∫

[0,1]d

[

λd([0, x))
(

1−λd ([0, x))
)

]p/2
dx.

Goal

◮ Fill a gap in the proof.
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Goal

Theorem (Steinerberger [5])

Let p > 0, d ∈ N. Then

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p)

∫

[0,1]d

[

λd([0, x))
(

1−λd ([0, x))
)

]p/2
dx.

Goal

◮ Fill a gap in the proof.

◮ Obtain the Theorem of Steinerberger for different types of
discrepancies.
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Goal

Theorem (Steinerberger [5])

Let p > 0, d ∈ N. Then

lim
n→∞

av
∗

p(n, d)
pnp/2 = C (p)

∫

[0,1]d

[

λd([0, x))
(

1−λd ([0, x))
)

]p/2
dx.

Goal

◮ Fill a gap in the proof.

◮ Obtain the Theorem of Steinerberger for different types of
discrepancies.

◮ Estimate the integral above for different types of
discrepancies.
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Main result

Definition (Lp-B-discrepancy)

Let d , n ∈ N. For a probability space (Ωd , µd ) and for abstract sets
B(x) ⊂ [0, 1]d , which are measurable for each x ∈ Ωd , we define
the LpLpLp-BBB-discrepancy

disc
B
p (t1, . . . , tn) =







∫

Ωd

∣

∣

∣

∣

∣

λd (B(x))−
1

n

n
∑

i=1

χB(x)(ti )

∣

∣

∣

∣

∣

p

dµd(x)







1/p

.

(6)

This definition is similar to the Lp-B-discrepancy of Novak and
Woźniakowski [4]. While they use densities we use measures.
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Main result

Definition (average Lp-B-discrepancy)

Let d , n ∈ N. We define the average LpLpLp-BBB-discrepancy as the
expected value of the Lp-B discrepancy

av
B
p (n, d) =

(

E

(

disc
B
p (t1, . . . , tn)

p
))1/p

=







∫

[0,1]nd

disc
B
p (t1, . . . , tn)

p
dt







1/p

, (7)

with t = (t1, . . . , tn). The points t1, . . . , tn ∈ [0, 1)d are
independent and uniformly distributed.
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Main result

Theorem (Hinrichs, W.)

Let p > 0, d ∈ N, let further (Ωd , µd ) be a probability space and

{B(x) : x ∈ Ωd} the allowed sets. Then

lim
n→∞

np/2avBp (n, d)
p

= C (p)

∫

Ωd

[

λd (B(x))
(

1− λd(B(x))
)

]p/2
dµd(x). (8)

where

C (p) =
2p/2

π1/2
Γ

(

1 + p

2

)

.
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Proof

How to proof the main result? - A helpful lemma

Lemma

Let (Ωd , µd ) be a probability space and p even. We have

av
B
p (n, d)

p ≤ cpn
−p/2. (9)

To proof the lemma we need

◮ Idea of symmetrization, first used in this context by Hinrichs
and Novak [3],

◮ Estimation of avBp (n, d)
p , idea of Gnewuch [1].
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration

◮ interpretation as Bernoulli variables Xi = χB(x)(ti )
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration

◮ interpretation as Bernoulli variables Xi = χB(x)(ti )

◮ apply the central limit theorem for convergence in distribution
for fixed x ∈ Ωd
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How to proof the main result? - sketch of the proof

◮ switch the order of integration
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◮ the dominated convergence theorem gives convergence of
characteristic functions
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration

◮ interpretation as Bernoulli variables Xi = χB(x)(ti )

◮ apply the central limit theorem for convergence in distribution
for fixed x ∈ Ωd

◮ the dominated convergence theorem gives convergence of
characteristic functions

◮ for the integral over x use characteristic functions and the
Lévy-Cramér continuity theorem: pointwise convergence of
characteristic functions ⇒ convergence in distribution for
variable x
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration

◮ interpretation as Bernoulli variables Xi = χB(x)(ti )

◮ apply the central limit theorem for convergence in distribution
for fixed x ∈ Ωd

◮ the dominated convergence theorem gives convergence of
characteristic functions

◮ for the integral over x use characteristic functions and the
Lévy-Cramér continuity theorem: pointwise convergence of
characteristic functions ⇒ convergence in distribution for
variable x

◮ our lemma yields: convergence in distribution ⇒ convergence
of pth moments for all p > 0
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Proof

How to proof the main result? - sketch of the proof

◮ switch the order of integration

◮ interpretation as Bernoulli variables Xi = χB(x)(ti )

◮ apply the central limit theorem for convergence in distribution
for fixed x ∈ Ωd

◮ the dominated convergence theorem gives convergence of
characteristic functions

◮ for the integral over x use characteristic functions and the
Lévy-Cramér continuity theorem: pointwise convergence of
characteristic functions ⇒ convergence in distribution for
variable x

◮ our lemma yields: convergence in distribution ⇒ convergence
of pth moments for all p > 0 �
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Estimates

Theorem (Steinerberger)

Let p > 0, d ∈ N, let further (Ωd , µd ) be a probability space and

{B(x) : x ∈ Ωd} ⊂ 2[0,1]
d
the allowed sets. Then we have for

I =

∫

Ωd

[

λd (B(x))
(

1− λd (B(x))
)

]p/2
dµd(x)

the estimates

I ≤

∫

Ωd

[

λd (B(x))
]p/2

dµd(x), (10)

I ≥

∫

Ωd

[

λd (B(x))
]p/2

− (2p/2 − 1)
[

λd (B(x))
]p/2+1

dµd(x). (11)
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Examples

Lp-star discrepancy

Ωd = [0, 1]d , µd = λd ,B(x) = [0, x)

L∗ = lim
n→∞

np/2av∗p(n, d)
p

Using our main result we get

C (p)

[

(

1
p
2 + 1

)d

−
(

2
p
2 − 1

)

(

1
p
2 + 2

)d
]

≤ L∗ ≤ C (p)

(

1
p
2 + 1

)d

=⇒ L∗ ∈ Θ

(

(

1

p/2 + 1

)d
)

.

0
0

1

1

bx1

bx2
B1

B2
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Examples

Extreme Lp-discrepancy

Ωd =
{

(x, y) ∈ [0, 1]d × [0, 1]d : x < y
}

µd = 2dλ2d ,B((x, y)) = [x, y)

L = lim
n→∞

np/2avp(n, d)
p

Using our main result we get

L ∈ Θ





(

2
(

p
2 + 1

) (

p
2 + 2

)

)d


 .

0
0

1

1

b

b

x1

y1
b

b

x2

y2

B2

B1
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Examples

Periodic Lp-discrepancy

Ωd = [0, 1]d × [0, 1]d , µd = λ2d

L◦ = lim
n→∞

np/2av◦p(n, d)
p

Using our main result we get

L◦ ∈ Θ

(

(p

2
+ 1
)d
)

.

0
0

1

1

b

b

y

x

B B
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Examples

Periodic Ball Lp-discrepancy

Ωd = [0, 1]d × [0, 1/2]

µd = 2 · λd+1

L• = lim
n→∞

np/2av•p(n, d)
p

Using our main result we get

L• ∈ Θ

(

πdp/4(1/2)dp/2

(Γ (d/2 + 1))p/2 (dp/2 + 1)

)

.

0
0

1

1

B

r
b

x
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Summary and Outlook

◮ Our result gives an expression for arbitrary p ∈ (0,∞) instead
of known results for even p ∈ N.
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Summary and Outlook

◮ Our result gives an expression for arbitrary p ∈ (0,∞) instead
of known results for even p ∈ N.

◮ We have expressions for many known types of discrepancies.
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Summary and Outlook

◮ Our result gives an expression for arbitrary p ∈ (0,∞) instead
of known results for even p ∈ N.

◮ We have expressions for many known types of discrepancies.

◮ We can constitute, why the sum known from the work of
Heinrich, Novak , Wasilkowski and Woźniakowski

av
∗

p(n, d)
p =

p−1
∑

r=p/2

C (r , p, d)n−r

has to start from r = p/2 instead of r = 1.
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Summary and Outlook

◮ Our result gives an expression for arbitrary p ∈ (0,∞) instead
of known results for even p ∈ N.

◮ We have expressions for many known types of discrepancies.

◮ We can constitute, why the sum known from the work of
Heinrich, Novak , Wasilkowski and Woźniakowski

av
∗

p(n, d)
p =

p−1
∑

r=p/2

C (r , p, d)n−r

has to start from r = p/2 instead of r = 1.

◮ It would be interesting to find convergence estimates for our
main result.
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