Asymptotic behavior of average L_p -discrepancies

Heidi Weyhausen Joint work with Aicke Hinrichs

Mathematical Institute, Friedrich-Schiller-University, Jena

UDT2012 June 28th Smolenice, Slovakia

seit1558

Outline

Introduction

Definitions Known results Goal

Results

Main result Proof Estimates

Examples for different types of discrepancies

Summary and Outlook

Introduction		
000		
Definitions		

Definition (discrepancy function)

Let $d, n \in \mathbb{N}$. For a point set $\{\mathbf{t}_1, \ldots, \mathbf{t}_n\} \subset [0, 1)^d$ and $\mathbf{x} \in [0, 1]^d$ we define the **discrepancy function**

$$D(\{\mathbf{t}_1,\ldots,\mathbf{t}_n\})(\mathbf{x}) = \lambda^d([\mathbf{0},\mathbf{x})) - \frac{1}{n} \sum_{i=1}^n \chi_{[\mathbf{0},\mathbf{x})}(\mathbf{t}_i), \qquad (1)$$

where $\lambda^{d}([0, \mathbf{x}))$ is the *d*-dimensional Lebesgue measure of the box

$$[\mathbf{0}, \mathbf{x}) = \left\{ \mathbf{y} \in [0, 1)^d : 0 \le y_i < x_i, i = 1, \dots, d
ight\}.$$

Introduction		References
000		/
Definitions		

Definition $(L_p$ -star discrepancy)

Let $d, n \in \mathbb{N}$. For $0 and a point set <math>\{\mathbf{t}_1, \ldots, \mathbf{t}_n\} \subset [0, 1)^d$ we define the L_p -star discrepancy as the L_p -norm of the discrepancy function

$$\operatorname{disc}_{p}^{*}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n}) = \|D(\{\mathbf{t}_{1},\ldots,\mathbf{t}_{n}\})\|_{p}$$
$$= \left(\int_{[0,1]^{d}} \left|\lambda^{d}([\mathbf{0},\mathbf{x})) - \frac{1}{n}\sum_{i=1}^{n}\chi_{[\mathbf{0},\mathbf{x})}(\mathbf{t}_{i})\right|^{p} \,\mathrm{d}\mathbf{x}\right)^{1/p}.$$
(2)

Introduction		References
000		
Definitions		
Demitions		

Definition (average L_p -star discrepancy)

Let $d, n \in \mathbb{N}$. We define the **average** L_p -star discrepancy as the expected value of the L_p -star discrepancy

$$\operatorname{av}_{p}^{*}(n,d) = \left(\mathbb{E} \left(\operatorname{disc}_{p}^{*}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n})^{p} \right) \right)^{1/p}$$
$$= \left(\int_{[0,1]^{nd}} \operatorname{disc}_{p}^{*}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n})^{p} \, \mathrm{d}\mathbf{t} \right)^{1/p}, \quad (3)$$

with $\mathbf{t} = (\mathbf{t}_1, \dots, \mathbf{t}_n)$. The points $\mathbf{t}_1, \dots, \mathbf{t}_n \in [0, 1)^d$ are independent and uniformly distributed.

Introduction OO O O		
Known results		

Theorem (Heinrich, Novak, Wasilkowski, Woźniakowski [2]) Assume that p is an even integer and $d \in \mathbb{N}$. Then

$$\operatorname{av}_{p}^{*}(n,d)^{p} = \sum_{r=p/2}^{p-1} C(r,p,d) n^{-r},$$
(4)

where the C(r, p, d) are known constants which depend on Stirling numbers of the first and second kind.

In particular we have

$$\lim_{n\to\infty}\operatorname{av}_p^*(n,d)^p n^{p/2} = C(p/2,p,d).$$

Introduction		References
00		
Known results		

Theorem (Steinerberger [5]) Let $p > 0, d \in \mathbb{N}$. Then $\lim_{n \to \infty} \operatorname{av}_{p}^{*}(n, d)^{p} n^{p/2} = C(p) \int_{[0,1]^{d}} \left[\lambda^{d}([\mathbf{0}, \mathbf{x})) (1 - \lambda^{d}([\mathbf{0}, \mathbf{x}))) \right]^{p/2} \mathrm{d}\mathbf{x},$ (5)

where

$$C(p)=\frac{2^{p/2}}{\pi^{1/2}}\Gamma\left(\frac{1+p}{2}\right).$$

Introduction		
00		
Goal		

Let $p > 0, d \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \operatorname{av}_p^*(n,d)^p n^{p/2} = C(p) \int_{[0,1]^d} \left[\lambda^d([\mathbf{0},\mathbf{x})) \left(1 - \lambda^d([\mathbf{0},\mathbf{x})) \right) \right]^{p/2} \mathrm{d}\mathbf{x}.$$

Goal

Introduction		
•		
Cool		

Let $p > 0, d \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \operatorname{av}_p^*(n,d)^p n^{p/2} = C(p) \int_{[0,1]^d} \left[\lambda^d([\mathbf{0},\mathbf{x})) \left(1 - \lambda^d([\mathbf{0},\mathbf{x})) \right) \right]^{p/2} \mathrm{d}\mathbf{x}.$$

Goal

Fill a gap in the proof.

Introduction		
00		
Cool		

Let $p > 0, d \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \operatorname{av}_p^*(n,d)^p n^{p/2} = C(p) \int_{[0,1]^d} \left[\lambda^d([\mathbf{0},\mathbf{x})) \left(1 - \lambda^d([\mathbf{0},\mathbf{x})) \right) \right]^{p/2} \mathrm{d}\mathbf{x}.$$

Goal

- Fill a gap in the proof.
- Obtain the Theorem of Steinerberger for different types of discrepancies.

Introduction		
00		
Cool		

Let $p > 0, d \in \mathbb{N}$. Then

$$\lim_{n\to\infty} \operatorname{av}_p^*(n,d)^p n^{p/2} = C(p) \int_{[0,1]^d} \left[\lambda^d([\mathbf{0},\mathbf{x})) \left(1 - \lambda^d([\mathbf{0},\mathbf{x})) \right) \right]^{p/2} \mathrm{d}\mathbf{x}.$$

Goal

- Fill a gap in the proof.
- Obtain the Theorem of Steinerberger for different types of discrepancies.
- Estimate the integral above for different types of discrepancies.

	Results ●00 ○0		
Main result			

Definition $(L_p$ -*B*-discrepancy)

Let $d, n \in \mathbb{N}$. For a probability space (Ω_d, μ_d) and for abstract sets $B(\mathbf{x}) \subset [0, 1]^d$, which are measurable for each $\mathbf{x} \in \Omega_d$, we define the L_p -B-discrepancy

$$\operatorname{disc}_{p}^{B}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n}) = \left(\int_{\Omega_{d}} \left| \lambda^{d}(B(\mathbf{x})) - \frac{1}{n} \sum_{i=1}^{n} \chi_{B(\mathbf{x})}(\mathbf{t}_{i}) \right|^{p} \, \mathrm{d}\mu_{d}(\mathbf{x}) \right)^{1/p}$$
(6)

This definition is similar to the L_p -B-discrepancy of Novak and Woźniakowski [4]. While they use densities we use measures.

	Results 0●0 00		
Main result			

Definition (average L_p -B-discrepancy)

Let $d, n \in \mathbb{N}$. We define the **average** L_p -*B*-discrepancy as the expected value of the L_p -*B* discrepancy

$$\operatorname{av}_{p}^{B}(n,d) = \left(\mathbb{E} \left(\operatorname{disc}_{p}^{B}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n})^{p} \right) \right)^{1/p}$$
$$= \left(\int_{[0,1]^{nd}} \operatorname{disc}_{p}^{B}(\mathbf{t}_{1},\ldots,\mathbf{t}_{n})^{p} \operatorname{d}\mathbf{t} \right)^{1/p}, \quad (7)$$

with $\mathbf{t} = (\mathbf{t}_1, \dots, \mathbf{t}_n)$. The points $\mathbf{t}_1, \dots, \mathbf{t}_n \in [0, 1)^d$ are independent and uniformly distributed.

Introduction Results ○○○ ○○ ○○ ○○ ○ ○ ○		
Main result		

Theorem (Hinrichs, W.)

Let $p > 0, d \in \mathbb{N}$, let further (Ω_d, μ_d) be a probability space and $\{B(\mathbf{x}) : \mathbf{x} \in \Omega_d\}$ the allowed sets. Then

$$\lim_{n \to \infty} n^{p/2} \operatorname{av}_{p}^{\mathcal{B}}(n, d)^{p} = C(p) \int_{\Omega_{d}} \left[\lambda^{d}(B(\mathbf{x})) (1 - \lambda^{d}(B(\mathbf{x}))) \right]^{p/2} d\mu_{d}(\mathbf{x}).$$
(8)

where

$$C(p) = \frac{2^{p/2}}{\pi^{1/2}} \Gamma\left(\frac{1+p}{2}\right).$$

How to proof the main result? - A helpful lemma

Lemma

Let (Ω_d, μ_d) be a probability space and p even. We have

$$\operatorname{av}_{p}^{B}(n,d)^{p} \leq c_{p} n^{-p/2}.$$
(9)

To proof the lemma we need

- Idea of symmetrization, first used in this context by Hinrichs and Novak [3],
- Estimation of $\operatorname{av}_p^B(n, d)^p$, idea of Gnewuch [1].

	Results ○○○ ○●		References
Proof			

switch the order of integration

	Results ○○○ ○● ○		References
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$

Proof	

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$

	Results ○○○ ○● ○		
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$
- the dominated convergence theorem gives convergence of characteristic functions

	Results ○○○ ○● ○		References
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$
- the dominated convergence theorem gives convergence of characteristic functions
- ► for the integral over x use characteristic functions and the Lévy-Cramér continuity theorem: pointwise convergence of characteristic functions ⇒ convergence in distribution for variable x

	Results ○○○ ○● ○		References
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$
- the dominated convergence theorem gives convergence of characteristic functions
- ► for the integral over x use characteristic functions and the Lévy-Cramér continuity theorem: pointwise convergence of characteristic functions ⇒ convergence in distribution for variable x
- ▶ our lemma yields: convergence in distribution ⇒ convergence of *p*th moments for all *p* > 0

	Results ○○○ ○● ○		References
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$
- the dominated convergence theorem gives convergence of characteristic functions
- ► for the integral over x use characteristic functions and the Lévy-Cramér continuity theorem: pointwise convergence of characteristic functions ⇒ convergence in distribution for variable x
- ▶ our lemma yields: convergence in distribution ⇒ convergence of *p*th moments for all *p* > 0

	Results ○○○ ○● ○		References
Proof			

- switch the order of integration
- interpretation as Bernoulli variables $X_i = \chi_{B(\mathbf{x})}(t_i)$
- ▶ apply the central limit theorem for convergence in distribution for fixed $\mathbf{x} \in \Omega_d$
- the dominated convergence theorem gives convergence of characteristic functions
- ► for the integral over x use characteristic functions and the Lévy-Cramér continuity theorem: pointwise convergence of characteristic functions ⇒ convergence in distribution for variable x
- ▶ our lemma yields: convergence in distribution ⇒ convergence of *p*th moments for all *p* > 0

	Results ○○○ ●		
Estimates			

Let $p > 0, d \in \mathbb{N}$, let further (Ω_d, μ_d) be a probability space and $\{B(\mathbf{x}) : \mathbf{x} \in \Omega_d\} \subset 2^{[0,1]^d}$ the allowed sets. Then we have for

$$I = \int_{\Omega_d} \left[\lambda^d(B(\mathbf{x})) (1 - \lambda^d(B(\mathbf{x}))) \right]^{p/2} \mathrm{d}\mu_d(\mathbf{x})$$

the estimates

$$I \leq \int_{\Omega_d} \left[\lambda^d(B(\mathbf{x})) \right]^{p/2} d\mu_d(\mathbf{x}),$$
(10)
$$I \geq \int_{\Omega_d} \left[\lambda^d(B(\mathbf{x})) \right]^{p/2} - (2^{p/2} - 1) \left[\lambda^d(B(\mathbf{x})) \right]^{p/2+1} d\mu_d(\mathbf{x}).$$
(11)

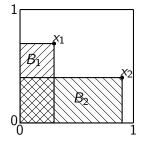
	Examples for different types of discrepancies •000	
Examples		

*L*_p-star discrepancy

$$\Omega_d = [0,1]^d, \mu_d = \lambda^d, B(\mathbf{x}) = [\mathbf{0}, \mathbf{x})$$

$$L^* = \lim_{n \to \infty} n^{p/2} \mathrm{av}_p^*(n, d)^p$$

Using our main result we get



$$C(p)\left[\left(\frac{1}{\frac{p}{2}+1}\right)^{d} - \left(2^{\frac{p}{2}}-1\right)\left(\frac{1}{\frac{p}{2}+2}\right)^{d}\right] \le L^{*} \le C(p)\left(\frac{1}{\frac{p}{2}+1}\right)^{d}$$
$$\implies L^{*} \in \Theta\left(\left(\frac{1}{p/2+1}\right)^{d}\right).$$

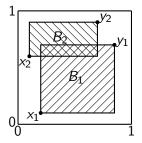
	Examples for different types of discrepancies ○●○○	
Examples		

Extreme *L_p*-discrepancy

$$egin{aligned} \Omega_d &= \left\{ (\mathbf{x}, \mathbf{y}) \in [0, 1]^d imes [0, 1]^d : \mathbf{x} < \mathbf{y}
ight\} \ \mu_d &= 2^d \lambda^{2d}, B((\mathbf{x}, \mathbf{y})) = [\mathbf{x}, \mathbf{y}) \ L &= \lim_{n o \infty} n^{p/2} \mathrm{av}_p(n, d)^p \end{aligned}$$

Using our main result we get

$$L \in \Theta\left(\left(rac{2}{\left(rac{p}{2}+1
ight)\left(rac{p}{2}+2
ight)}
ight)^{d}
ight)$$



	Examples for different types of discrepancies	
	0000	
Evamples		

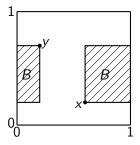
Periodic *L_p*-discrepancy

$$\Omega_d = [0, 1]^d \times [0, 1]^d, \mu_d = \lambda^{2d}$$
$$L^\circ = \lim_{n \to \infty} n^{p/2} \operatorname{av}_p^\circ(n, d)^p$$

Using our main result we get

 $n \rightarrow \infty$

$$L^{\circ} \in \Theta\left(\left(\frac{p}{2}+1\right)^{d}\right).$$

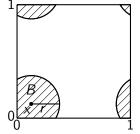


ntroduction Results **Examples for different types of discrepancies** Summary and Outlook 00 000 000 00 000 0 0

Periodic Ball L_p-discrepancy

$$\Omega_d = [0, 1]^d \times [0, 1/2]$$
$$\mu_d = 2 \cdot \lambda^{d+1}$$

$$L^{\bullet} = \lim_{n \to \infty} n^{p/2} \mathrm{av}_{p}^{\bullet}(n, d)^{p}$$



Using our main result we get

$$L^{\bullet} \in \Theta\left(\frac{\pi^{dp/4}(1/2)^{dp/2}}{\left(\Gamma\left(d/2+1\right)\right)^{p/2}\left(dp/2+1\right)}\right)$$

Examples

			Summary and Outlook		
			•		
Summary and Outlook					

Our result gives an expression for arbitrary p ∈ (0,∞) instead of known results for even p ∈ N.

			Summary and Outlook		
			•		
Summary and Outlook					

- Our result gives an expression for arbitrary p ∈ (0,∞) instead of known results for even p ∈ N.
- ▶ We have expressions for many known types of discrepancies.

			Summary and Outlook ●		
Summary and Outlook					

- Our result gives an expression for arbitrary p ∈ (0,∞) instead of known results for even p ∈ N.
- ▶ We have expressions for many known types of discrepancies.
- We can constitute, why the sum known from the work of Heinrich, Novak, Wasilkowski and Woźniakowski

$$\operatorname{av}_{p}^{*}(n,d)^{p} = \sum_{r=p/2}^{p-1} C(r,p,d)n^{-r}$$

has to start from r = p/2 instead of r = 1.

			Summary and Outlook ●		
Summary and Outlook					

- Our result gives an expression for arbitrary p ∈ (0,∞) instead of known results for even p ∈ N.
- ▶ We have expressions for many known types of discrepancies.
- We can constitute, why the sum known from the work of Heinrich, Novak, Wasilkowski and Woźniakowski

$$\operatorname{av}_{p}^{*}(n,d)^{p} = \sum_{r=p/2}^{p-1} C(r,p,d)n^{-r}$$

has to start from r = p/2 instead of r = 1.

It would be interesting to find convergence estimates for our main result.

		References

References

- Gnewuch M.: Bounds for the average L^p-extreme an the L[∞]-extreme discrepancy, Electronic Journal of Combinatorics, Vol.12, Research Paper 54, 11 pages, 2005.
- Heinrich S., Novak E., Wasilkowski G., Woźniakowski H.: The inverse of the star-discrepancy depends linearly on the dimension, Acta Arithmetica, Vol. 96 (2001), pp. 279-302.
- Hinrichs A., Novak E.: *New bounds for the star discrepancy*, Extended abstract of a talk at the Oberwolfach seminar "Discrepancy Theory and its Applications", Report No. 13/2004, Mathematisches Forschungsinstitut Oberwolfach.

Novak E., Woźniakowski: *Tractability of Multivariate Problems, Volume II: Standard Information for Functionals,* EMS Tracts in Mathematics, Vol.12, Eur. Math. Soc., Zürich 2010.

- Steinerberger S.: The asymptotic behavior of the average L^p -discrepancies and a randomized discrepancy, Electronic Journal of Combinatorics, Vol.17, Research Paper 106, 18 pages, 2010.
- Hinrichs A., Weyhausen H.: Asymptotic behavior of average L^p -discrepancies, J. Complexity Vol. 28 (2012), no. 4, 525-439.