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Distribution properties of weighted sums of digits of squares in prime bases

Basic definitions

Let m = mg +miq+ --- + m,.q" be the g-adic representation of an
integer m and let v = (y0,71,...) € Z§° with v; € {0,1,...,¢ — 1} be
a weight sequence, then the weighted sum-of-digits function of m is
given by

8q,y(m) == yomo + 11 + - - - + Yy

We have analyzed distribution properties of sqﬁ(n2) in prime bases ¢
for finite weight sequences.



Distribution properties of weighted sums of dig

Basic definitions

Definition

For prime bases ¢, digits d € {0,1,...,q — 1} and nonnegative integers
n and N we define

Ty.dq:= lim T, q4,(N), where

N —oc0

Ty,4,4(N) := % #{0<n < N|sg,(n®) =d (mod q)}

for finite weight sequences v = (y0,71,---,%-1,0,0,...) with
vi €{0,1,...,¢g—1} and ;,—1 # 0. (Il € N is the minimal index such
that v; = 0 for all ¢ > [.)

Question: For which v, d and ¢ is the distribution of T, 4 4 fair in
the sense that T 44, = 1/q7



Distribution properties of weighted sums of digits of squares in prime bases

Formulas for T’ 4, - Basic tools

Basic tools: Quadratic residues a and the number of solutions of
22 =a (mod 2') and 22 = a (mod ¢') for odd primes g.

Lemma

Let L be the number of solutions of > = a (mod 2!) with
r€{0,1,...,2t — 1}.

(1) Ifl is even, then (2) Ifl is odd, then
L
=2t fora=o L=2% forano
L _
L=22 fora=2" L=27 fora=2"",
L=2"" fora=2" b with

L=2"" fora=2" b with
b=1 (mod 8) and
ve{0,...,(l—3)/2},

L=0 otherwise.

b=1 (mod 8) and
ve{0,...,(1—4)/2},

L=0 otherwise.




Distribution pro

Formulas for T’ 4, - Basic tools

Lemma

Let q be an odd prime and let C' := {01, ey C(q_l)/g} be the set of the
cx with 0 < ¢ < q and céq_l)p =1 (mod q).

Let L be the number of solutions of x> = a (mod ¢') with
r€{0,1,...,¢" —1}. Then

L:qL%J fora:(),
L=2¢ for a = g% (c + qu),
with ¢ € C,

1€{0,1,...,|(l+1)/2] =1},
and w € Ny such that a < ¢,
L=0 otherwise.




Distribution pro

Formulas for T’ 4, - Idea of the proof

With the two lemmas we can derive formulas for

.1
Tydq = A}E)noo N #{0<n< Nlsg~(n?*)=d (mod q)}

Ty,d,q(N)
Idea of the proof:
@ For n =m (mod ¢') we have s, (n?) = s,(m?), and

N N

leJ qTyag(d) SN -Tyge(N) < QJ + 1) 4" Ty a,4(d").

Therefore T’ 4,4 = T«/,d,q(ql)-

o Compute T, 4,4(q") by identifying those quadratic residues a of
the congruences from the lemmas, which are elements of the set

A g ={0<a< ql|sq77(a) =d (mod q)}.



Distribution prop

s in prime bases

Formulas for T’ 4,

Theorem

If q = 2, then
1 Zf Yi-2 = 17
for 1 even Tyo2=192 L
5-1—2 2 ’Lf’yl_zzo,
1 ifl =1,
for l odd Tyo,2= % _o if 1 >3 and v—3 =1,
Ly~ ifl>3 andv_3=0.
If q > 3 prime, then
l
Loifd—
for I even T = 1_ q7%71 4397 if 0,
q 0 else,
% ifd=0,
for 1 odd Tyaq=41+q % ifdeC,
% = qf% else.



Distribution pro

Admissible weight sequences

We call a weight sequence v € ZI;IO admissible for (nZ)nZO

Tydq= 1/q

for all d € {0,1,...,q — 1}.

Corollary

The finite weight sequence ¥ = (Yo,V1,---,%-1,0,0,...) with v;—1 # 0
is admissible for (n?),>o if and only if ¢ = 2, | even and
Yi—e=Y-1=1orifg=2,v=1and~; =0 fori>1.

Example (Admissible finite weight sequences for (n?),>¢ in base 2)
v =(1,0,0,...), v =(1,1,0,...), v = (0,0,1,1,0,...),
’y:(]"1’1’1707)’PY:(]"O’]‘?O?l?]"O"")




Distribution of quadratic s s of digital sequences

Construction of digital (T, s)-sequences (x,,),>0 over Z,
generated by matrices with finite rows

@ Choose s Ny x Ny-matrices CV, ..., C®) over Zq, q prime, with
finite rows exclusively.

@ To generate the ¢th coordinate J:sf ) of x,, represent the integer n
in base ¢
n=mng+nqg+---+n.q.
@ Set
n:=(ng, ..., ny, 0,0,...)"
and ) .
O n =y =y, 91”7
@ Then @ i
z® ::yLer%jL....

q q



Distribution of quadratic s eq nces of digital sequences

Classification of u.d. subsequences (&,2),>0

Theorem

Let (@y,)n>0 be a digital (T, s)-sequence over Z,, q prime, generated by
the matrices CV, ..., C). Then the sequence (Tp2)n>0 s uniformly
distributed if and only if every nontrivial linear combination of any
finite set of rows of C ... . C®) over Zq is admissible for (n?),>o.

Remark

Note that this result is valid for arbitrary CY), ..., C®) and not only
for matrices with finite rows exclusively.

A,

b



Distribution of quadra quence

Examples of generating matrices

Example

The subsequence (x,2)n>0 of the digital (0, 1)-sequence over Zs generated
by

o® —

is for example uniformly distributed.

The subsequence (€,,2)n>0 of the digital (T, 2)-sequence over Zz generated
by

is for example uniformly distributed.
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