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Distribution properties of weighted sums of digits of squares in prime bases

Basic definitions

Definition

Let m = m0 +m1q + · · ·+mrq
r be the q-adic representation of an

integer m and let γ = (γ0, γ1, . . . ) ∈ Z
N0
q with γi ∈ {0, 1, . . . , q − 1} be

a weight sequence, then the weighted sum-of-digits function of m is
given by

sq,γ(m) := γ0m0 + γ1m1 + · · ·+ γrmr.

We have analyzed distribution properties of sq,γ(n
2) in prime bases q

for finite weight sequences.
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Distribution properties of weighted sums of digits of squares in prime bases

Basic definitions

Definition

For prime bases q, digits d ∈ {0, 1, . . . , q − 1} and nonnegative integers
n and N we define

Tγ,d,q := lim
N→∞

Tγ,d,q(N), where

Tγ,d,q(N) :=
1

N
·#

{
0 ≤ n < N |sq,γ(n

2) ≡ d (mod q)
}

for finite weight sequences γ = (γ0, γ1, . . . , γl−1, 0, 0, . . . ) with
γi ∈ {0, 1, . . . , q − 1} and γl−1 6= 0. (l ∈ N is the minimal index such
that γi = 0 for all i ≥ l.)

Question: For which γ, d and q is the distribution of Tγ,d,q fair in
the sense that Tγ,d,q = 1/q?
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Distribution properties of weighted sums of digits of squares in prime bases

Formulas for Tγ,d,q - Basic tools

Basic tools: Quadratic residues a and the number of solutions of
x2 ≡ a (mod 2l) and x2 ≡ a (mod ql) for odd primes q.

Lemma

Let L be the number of solutions of x2 ≡ a (mod 2l) with

x ∈ {0, 1, . . . , 2l − 1}.

(1) If l is even, then

L = 2
l
2 for a = 0,

L = 2
l
2 for a = 2l−2,

L = 2v+2
for a = 22v · b with

b ≡ 1 (mod 8) and

v ∈ {0, . . . , (l − 4)/2},

L = 0 otherwise.

(2) If l is odd, then

L = 2
l−1

2 for a = 0,

L = 2
l−1

2 for a = 2l−1,

L = 2v+2
for a = 22v · b with

b ≡ 1 (mod 8) and

v ∈ {0, . . . , (l − 3)/2},

L = 0 otherwise.
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Distribution properties of weighted sums of digits of squares in prime bases

Formulas for Tγ,d,q - Basic tools

Lemma

Let q be an odd prime and let C :=
{
c1, . . . , c(q−1)/2

}
be the set of the

ck with 0 < ck < q and c
(q−1)/2
k ≡ 1 (mod q).

Let L be the number of solutions of x2 ≡ a (mod ql) with

x ∈ {0, 1, . . . , ql − 1}. Then

L = q⌊
l
2⌋ for a = 0,

L = 2qi for a = q2i(c+ qw),

with c ∈ C,

i ∈ {0, 1, . . . , ⌊(l + 1)/2⌋ − 1},

and w ∈ N0 such that a < ql,

L = 0 otherwise.
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Distribution properties of weighted sums of digits of squares in prime bases

Formulas for Tγ,d,q - Idea of the proof

With the two lemmas we can derive formulas for

Tγ,d,q := lim
N→∞

1

N
·#

{
0 ≤ n < N |sq,γ(n

2) ≡ d (mod q)
}

︸ ︷︷ ︸

Tγ,d,q(N)

Idea of the proof:

For n ≡ m (mod ql) we have sq,γ(n
2) = sq,γ(m

2), and

⌊
N

ql

⌋

· ql · Tγ,d,q(q
l) ≤ N · Tγ,d,q(N) ≤

(⌊
N

ql

⌋

+ 1

)

· ql · Tγ,d,q(q
l).

Therefore Tγ,d,q = Tγ,d,q(q
l).

Compute Tγ,d,q(q
l) by identifying those quadratic residues a of

the congruences from the lemmas, which are elements of the set

Aγ,d,q,l := {0 ≤ a < ql|sq,γ(a) ≡ d (mod q)}.
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Distribution properties of weighted sums of digits of squares in prime bases

Formulas for Tγ,d,q

Theorem

If q = 2, then

for l even Tγ,0,2 =

{

1
2

if γl−2 = 1,
1
2
+ 2−

l
2 if γl−2 = 0,

for l odd Tγ,0,2 =











1
2

if l = 1,
1
2
− 2−

l+1

2 if l ≥ 3 and γl−3 = 1,
1
2
+ 2−

l+1

2 if l ≥ 3 and γl−3 = 0.

If q ≥ 3 prime, then

for l even Tγ,d,q =
1

q
− q−

l
2
−1 +

{

q−
l
2 if d = 0,

0 else,

for l odd Tγ,d,q =















1
q

if d = 0,
1
q
+ q−

1+l
2 if d ∈ C,

1
q
− q−

1+l
2 else.
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Distribution properties of weighted sums of digits of squares in prime bases

Admissible weight sequences

Definition

We call a weight sequence γ ∈ Z
N0
q admissible for

(
n2

)

n≥0
if

Tγ,d,q = 1/q

for all d ∈ {0, 1, . . . , q − 1}.

Corollary

The finite weight sequence γ = (γ0, γ1, . . . , γl−1, 0, 0, . . . ) with γl−1 6= 0
is admissible for (n2)n≥0 if and only if q = 2, l even and

γl−2 = γl−1 = 1 or if q = 2, γ0 = 1 and γi = 0 for i ≥ 1.

Example (Admissible finite weight sequences for (n2)n≥0 in base 2)

γ = (1, 0, 0, . . . ), γ = (1,1, 0, . . . ), γ = (0, 0,1,1, 0, . . . ),

γ = (1, 1,1,1, 0, ), γ = (1, 0, 1, 0,1,1, 0, . . . )
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Distribution of quadratic subsequences of digital sequences

Construction of digital (T , s)-sequences (xn)n≥0 over Zq

generated by matrices with finite rows

Choose s N0 × N0-matrices C(1), . . . , C(s) over Zq, q prime, with
finite rows exclusively.

To generate the ith coordinate x
(i)
n of xn, represent the integer n

in base q
n = n0 + n1q + · · ·+ nrq

r.

Set
n := (n0, . . . , nr, 0, 0, . . . )

T

and
C(i) · n =: y(i) = (y

(i)
0 , y

(i)
1 , . . . )T .

Then

x(i)
n :=

y
(i)
0

q
+

y
(i)
1

q2
+ . . . .
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Distribution of quadratic subsequences of digital sequences

Classification of u.d. subsequences (xn2)n≥0

Theorem

Let (xn)n≥0 be a digital (T , s)-sequence over Zq, q prime, generated by

the matrices C(1), . . . , C(s). Then the sequence (xn2)n≥0 is uniformly

distributed if and only if every nontrivial linear combination of any

finite set of rows of C(1), . . . , C(s) over Zq is admissible for (n2)n≥0.

Remark

Note that this result is valid for arbitrary C(1), . . . , C(s) and not only

for matrices with finite rows exclusively.
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Distribution of quadratic subsequences of digital sequences

Examples of generating matrices

Example

The subsequence (xn2)n≥0 of the digital (0, 1)-sequence over Z2 generated

by

C(1) =







1 1 0 0 0 0 0 0 0 0 ...
0 1 1 1 0 0 0 0 0 0 ...
0 0 1 1 1 1 0 0 0 0 ...
0 0 0 1 1 1 1 1 0 0 ...

. . .







is for example uniformly distributed.

Example

The subsequence (xn2)n≥0 of the digital (T , 2)-sequence over Z2 generated

by

C(1) =





1 1 0 0 0 0 0 0 0 0 ...
0 0 0 0 1 1 0 0 0 0 ...
0 0 0 0 0 0 0 0 1 1 ...

. . .



 and C(2) =





0 0 1 1 0 0 0 0 0 0 0 0 ...
0 0 0 0 0 0 1 1 0 0 0 0 ...
0 0 0 0 0 0 0 0 0 0 1 1 ...

. . .





is for example uniformly distributed.
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