On the Digits of Squares and the Distribution of Quadratic Subsequences of Digital Sequences¹

Heidrun Zellinger²

Institute for Financial Mathematics, University of Linz, Austria

June 25, 2012 UDT2012, Smolenice, Slovakia

²Recipient of a DOC-fFORTE-fellowship of the Austrian Academy of Science

¹joint work with R. Hofer and G. Larcher

2. Distribution of quadratic subsequences of digital sequences

Basic definitions

Definition

Let $m = m_0 + m_1 q + \cdots + m_r q^r$ be the *q*-adic representation of an integer *m* and let $\gamma = (\gamma_0, \gamma_1, \ldots) \in \mathbb{Z}_q^{\mathbb{N}_0}$ with $\gamma_i \in \{0, 1, \ldots, q-1\}$ be a weight sequence, then the weighted sum-of-digits function of *m* is given by

$$s_{q,\gamma}(m) := \gamma_0 m_0 + \gamma_1 m_1 + \dots + \gamma_r m_r.$$

We have analyzed distribution properties of $s_{q,\gamma}(n^2)$ in prime bases q for finite weight sequences.

Basic definitions

Definition

For prime bases q, digits $d \in \{0, 1, ..., q-1\}$ and nonnegative integers n and N we define

$$T_{\gamma,d,q} := \lim_{N \to \infty} T_{\gamma,d,q}(N), \text{ where}$$
$$T_{\gamma,d,q}(N) := \frac{1}{N} \cdot \# \left\{ 0 \le n < N | s_{q,\gamma}(n^2) \equiv d \pmod{q} \right\}$$

for finite weight sequences $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{l-1}, 0, 0, \dots)$ with $\gamma_i \in \{0, 1, \dots, q-1\}$ and $\gamma_{l-1} \neq 0$. $(l \in \mathbb{N}$ is the minimal index such that $\gamma_i = 0$ for all $i \geq l$.)

Question: For which γ , d and q is the distribution of $T_{\gamma,d,q}$ fair in the sense that $T_{\gamma,d,q} = 1/q$?

Formulas for $T_{\gamma,d,q}$ - Basic tools

Basic tools: Quadratic residues a and the number of solutions of $x^2 \equiv a \pmod{2^l}$ and $x^2 \equiv a \pmod{q^l}$ for odd primes q.

Lemma

Let L be the number of solutions of $x^2 \equiv a \pmod{2^l}$ with $x \in \{0, 1, \dots, 2^l - 1\}.$

(1) If l is even, then

$$L = 2^{\frac{l}{2}} \quad for \ a = 0, \qquad L = 2^{\frac{l-1}{2}} \quad for \ a = 0, \qquad L = 2^{\frac{l-1}{2}} \quad for \ a = 0, \qquad L = 2^{\frac{l-1}{2}} \quad for \ a = 0, \qquad L = 2^{\frac{l-1}{2}} \quad for \ a = 0, \qquad L = 2^{\frac{l-1}{2}} \quad for \ a = 2^{l-1}, \qquad L = 2^{v+2} \quad for \ a = 2^{2v} \cdot b \ with \qquad b \equiv 1 \ (\text{mod } 8) \ and \qquad v \in \{0, \dots, (l-4)/2\}, \qquad U = 0 \qquad otherwise. \qquad L = 0 \qquad otherwise.$$

Formulas for $T_{\gamma,d,q}$ - Basic tools

Lemma

Let q be an odd prime and let $C := \{c_1, \ldots, c_{(q-1)/2}\}$ be the set of the c_k with $0 < c_k < q$ and $c_k^{(q-1)/2} \equiv 1 \pmod{q}$. Let L be the number of solutions of $x^2 \equiv a \pmod{q^l}$ with $x \in \{0, 1, \ldots, q^l - 1\}$. Then

$$\begin{split} L &= q^{\lfloor \frac{l}{2} \rfloor} & \text{for } a = 0, \\ L &= 2q^i & \text{for } a = q^{2i}(c+qw), \\ & \text{with } c \in C, \\ & i \in \{0, 1, \dots, \lfloor (l+1)/2 \rfloor - 1\}, \\ & \text{and } w \in \mathbb{N}_0 \text{ such that } a < q^l, \\ L &= 0 & \text{otherwise.} \end{split}$$

6/12

Formulas for $T_{\gamma,d,q}$ - Idea of the proof

With the two lemmas we can derive formulas for

$$T_{\gamma,d,q} := \lim_{N \to \infty} \underbrace{\frac{1}{N} \cdot \# \left\{ 0 \le n < N | s_{q,\gamma}(n^2) \equiv d \pmod{q} \right\}}_{T_{\gamma,d,q}(N)}$$

Idea of the proof:

• For
$$n \equiv m \pmod{q^l}$$
 we have $s_{q,\gamma}(n^2) = s_{q,\gamma}(m^2)$, and
 $\left\lfloor \frac{N}{q^l} \right\rfloor \cdot q^l \cdot T_{\gamma,d,q}(q^l) \le N \cdot T_{\gamma,d,q}(N) \le \left(\left\lfloor \frac{N}{q^l} \right\rfloor + 1 \right) \cdot q^l \cdot T_{\gamma,d,q}(q^l).$

Therefore $T_{\gamma,d,q} = T_{\gamma,d,q}(q^l)$.

• Compute $T_{\gamma,d,q}(q^l)$ by identifying those quadratic residues a of the congruences from the lemmas, which are elements of the set

$$A_{\gamma,d,q,l} := \{ 0 \le a < q^l | s_{q,\gamma}(a) \equiv d \pmod{q} \}.$$

Formulas for $T_{\gamma,d,q}$

Theorem

If q = 2, then

$$for \ l \ even \qquad T_{\gamma,0,2} = \begin{cases} \frac{1}{2} & \text{if } \gamma_{l-2} = 1, \\ \frac{1}{2} + 2^{-\frac{l}{2}} & \text{if } \gamma_{l-2} = 0, \end{cases}$$

$$for \ l \ odd \qquad T_{\gamma,0,2} = \begin{cases} \frac{1}{2} & \text{if } l = 1, \\ \frac{1}{2} - 2^{-\frac{l+1}{2}} & \text{if } l \ge 3 \text{ and } \gamma_{l-3} = 1, \\ \frac{1}{2} + 2^{-\frac{l+1}{2}} & \text{if } l \ge 3 \text{ and } \gamma_{l-3} = 0. \end{cases}$$

If $q \geq 3$ prime, then

for
$$l$$
 even $T_{\gamma,d,q} = \frac{1}{q} - q^{-\frac{l}{2}-1} + \begin{cases} q^{-\frac{l}{2}} & \text{if } d = 0, \\ 0 & \text{else}, \end{cases}$
for l odd $T_{\gamma,d,q} = \begin{cases} \frac{1}{q} & \text{if } d = 0, \\ \frac{1}{q} + q^{-\frac{1+l}{2}} & \text{if } d \in C, \\ \frac{1}{q} - q^{-\frac{1+l}{2}} & \text{else.} \end{cases}$

Admissible weight sequences

Definition

We call a weight sequence $\gamma \in \mathbb{Z}_q^{\mathbb{N}_0}$ admissible for $(n^2)_{n\geq 0}$ if

$$T_{\gamma,d,q} = 1/q$$

for all $d \in \{0, 1, \dots, q-1\}$.

Corollary

The finite weight sequence $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_{l-1}, 0, 0, \dots)$ with $\gamma_{l-1} \neq 0$ is admissible for $(n^2)_{n\geq 0}$ if and only if q = 2, l even and $\gamma_{l-2} = \gamma_{l-1} = 1$ or if q = 2, $\gamma_0 = 1$ and $\gamma_i = 0$ for $i \geq 1$.

Example (Admissible finite weight sequences for $(n^2)_{n>0}$ in base 2)

$$\begin{aligned} \gamma &= (\mathbf{1}, 0, 0, \dots), \ \gamma &= (\mathbf{1}, \mathbf{1}, 0, \dots), \ \gamma &= (0, 0, \mathbf{1}, \mathbf{1}, 0, \dots), \\ \gamma &= (1, 1, \mathbf{1}, \mathbf{1}, 0,), \ \gamma &= (1, 0, 1, 0, \mathbf{1}, \mathbf{1}, 0, \dots) \end{aligned}$$

Construction of digital (\boldsymbol{T}, s) -sequences $(\boldsymbol{x}_n)_{n\geq 0}$ over \mathbb{Z}_q generated by matrices with finite rows

- Choose $s \mathbb{N}_0 \times \mathbb{N}_0$ -matrices $C^{(1)}, \ldots, C^{(s)}$ over \mathbb{Z}_q, q prime, with finite rows exclusively.
- To generate the *i*th coordinate $x_n^{(i)}$ of \boldsymbol{x}_n , represent the integer n in base q

$$n = n_0 + n_1 q + \dots + n_r q^r.$$

• Set

$$\boldsymbol{n} := (n_0, \ldots, n_r, 0, 0, \ldots)^T$$

and

$$C^{(i)} \cdot \boldsymbol{n} =: \boldsymbol{y}^{(i)} = (y_0^{(i)}, y_1^{(i)}, \dots)^T.$$

• Then

$$x_n^{(i)} := \frac{y_0^{(i)}}{q} + \frac{y_1^{(i)}}{q^2} + \dots$$

Classification of u.d. subsequences $(\boldsymbol{x}_{n^2})_{n\geq 0}$

Theorem

Let $(\mathbf{x}_n)_{n\geq 0}$ be a digital (\mathbf{T}, s) -sequence over \mathbb{Z}_q , q prime, generated by the matrices $C^{(1)}, \ldots, C^{(s)}$. Then the sequence $(\mathbf{x}_{n^2})_{n\geq 0}$ is uniformly distributed if and only if every nontrivial linear combination of any finite set of rows of $C^{(1)}, \ldots, C^{(s)}$ over \mathbb{Z}_q is admissible for $(n^2)_{n\geq 0}$.

Remark

Note that this result is valid for arbitrary $C^{(1)}, \ldots, C^{(s)}$ and not only for matrices with finite rows exclusively.

Examples of generating matrices

Example

The subsequence $(\boldsymbol{x}_{n^2})_{n\geq 0}$ of the digital (0,1)-sequence over \mathbb{Z}_2 generated by

is for example uniformly distributed.

Example

The subsequence $(\boldsymbol{x}_{n^2})_{n\geq 0}$ of the digital $(\boldsymbol{T},2)$ -sequence over \mathbb{Z}_2 generated by

is for example uniformly distributed.