

Ziegler

w-NAFs

w-NAFs wit imaginary quadratic base

Finding non-optima w-NAFs

A Diophantine Inequality

Optimality of the Width-*w* Non-adjacent Form - A Diophantine inequality

Volker Ziegler

Institute for Analysis and Computational Number Theory Graz University of Technology

> Uniform Distribution Theory 25th June- 29th June 2012 Smolenice

Frobenius and add

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Question

Given an Elliptic curve E defined over a finite field \mathbb{F}_q , a point P on $E(\mathbb{F}_{q^l})$ and an integer n. How can we compute nP efficiently?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Frobenius and add

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Question

Given an Elliptic curve E defined over a finite field \mathbb{F}_q , a point P on $E(\mathbb{F}_{q^l})$ and an integer n. How can we compute nP efficiently?

Let ϕ be the Frobenius endomorphism $\phi((x, y)) = (x^q, y^q)$ then ϕ fulfills

$$\phi^2 - p\phi + q = 0.$$

Therefore we identify ϕ with an quadratic algebraic integer τ which fulfills the same equation.

Ziegler

w-NAFs

w-NAFs witl imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality The fastest way to compute qP for some $P \in E(\mathbb{F}_{q'})$ is to compute

$$qP = p\phi(P) - \phi^2(P).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality The fastest way to compute qP for some $P \in E(\mathbb{F}_{q'})$ is to compute

$$qP = p\phi(P) - \phi^2(P).$$

Now, let us represent the integer *n* as $n = \sum_{j=0}^{\ell} \eta_j \tau^j$ for η_j from a suitable digit set \mathcal{D} , then

$$nP = \sum_{j=0}^{\ell} \eta_j \phi^j(P),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where the ηP for $\eta \in \mathcal{D}$ are precomputed.

Ziegler

w-NAFs

w-NAFs witl imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Consider an expansion $n = \sum_{j=0}^{\ell} \eta_j \tau^j$ as a sequence $(\eta_j) \in \mathcal{D}^{\mathbb{N}_0}$ with $\eta_j \in \mathcal{D}$. If each block $(\eta_j, \ldots, \eta_{j+w})$ contains at most one non-zero digit, we call this expansion an width-*w* non adjacent form (*w*-NAF for short).

w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Consider an expansion $n = \sum_{j=0}^{\ell} \eta_j \tau^j$ as a sequence $(\eta_j) \in \mathcal{D}^{\mathbb{N}_0}$ with $\eta_j \in \mathcal{D}$. If each block $(\eta_j, \ldots, \eta_{j+w})$ contains at most one non-zero digit, we call this expansion an width-*w* non adjacent form (*w*-NAF for short). Let $\eta \in \mathcal{D}^{\mathbb{N}_0}$ and let $|\eta|$ be the number of non-zero digits. We call a *w*-NAF η optimal, if for any expansion ξ representing the same integer as η we have $|\eta| \leq |\xi|$.

w-NAF

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Consider an expansion $n = \sum_{j=0}^{\ell} \eta_j \tau^j$ as a sequence $(\eta_j) \in \mathcal{D}^{\mathbb{N}_0}$ with $\eta_j \in \mathcal{D}$. If each block $(\eta_j, \ldots, \eta_{j+w})$ contains at most one non-zero digit, we call this expansion an width-*w* non adjacent form (*w*-NAF for short). Let $\eta \in \mathcal{D}^{\mathbb{N}_0}$ and let $|\eta|$ be the number of non-zero digits. We call a *w*-NAF η optimal, if for any expansion ξ representing the same integer as η we have $|\eta| \leq |\xi|$.

Question

For which basis τ and digit sets D are w-NAF expansions optimal?

(ロ) (同) (三) (三) (三) (三) (○) (○)

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality ■ For base 2 and digit set {-1,0,1} the 2-NAF are optimal (Reitwiesner 1960).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ziegler

w-NAFs

w-NAFs wit imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

- For base 2 and digit set {-1,0,1} the 2-NAF are optimal (Reitwiesner 1960).
- For base 2 and digit set consisting of 0 and all odd numbers with absolute value < 2^{w-1} the w-NAF are optimal (Muir, Stinson 2006).

Ziegler

w-NAFs

w-NAFs witl imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality ■ For base 2 and digit set {-1,0,1} the 2-NAF are optimal (Reitwiesner 1960).

- For base 2 and digit set consisting of 0 and all odd numbers with absolute value < 2^{w-1} the w-NAF are optimal (Muir, Stinson 2006).
- For base b ≥ 2 and digit set consisting of 0 and all integers with absolute value < ¹/₂b^w and not divisible by b the w-NAF expansion is optimal (Heuberger, Krenn 2011).

Voronoi cells

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optima w-NAFs

A Diophantine Inequality Let $\tau \in \mathbb{C}$ be a solution to $x^2 - px + q = 0$, with $p, q \in \mathbb{Z}$ such that $q - p^2/4 > 0$. We set

$$V = \{z \in \mathbb{C} : \forall y \in \mathbb{Z}[\tau] | z| \le |z - y|\}$$

and call it Voronoi cell.

Figure: Voronoi cell with $\tau = (3 + \sqrt{-3})/2$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Digit sets

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optima w-NAFs

A Diophantine Inequality Let *w* be an integer with $w \ge 2$. Then we choose the Digit set $\mathcal{D} \subset \mathbb{Z}[\tau]$ that consists of 0 and exactly one representative $\in \tau^w V$ of each residue class of $\mathbb{Z}[\tau]$ modulo τ^w which is not divisible by τ . This digit set is called minimal norm representatives digit set.

Figure: Digit set for $\tau = (1 + \sqrt{-13})/2$ and w = 2.

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optima w-NAFs

A Diophantine Inequality

Theorem (Heuberger, Krenn 2011)

The w-NAF exists and are unique for base τ with the minimal norm representatives digit set modulo τ^w .

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Theorem (Heuberger, Krenn 2011)

The w-NAF exists and are unique for base τ with the minimal norm representatives digit set modulo τ^w .

Let τ be a root of $x^2 - px + q = 0$. Then the *w*-NAFs are optimal if

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• $w \ge 4$ and $|p| \ge 3$,

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Theorem (Heuberger, Krenn 2011)

The w-NAF exists and are unique for base τ with the minimal norm representatives digit set modulo τ^w .

Let τ be a root of $x^2 - px + q = 0$. Then the *w*-NAFs are optimal if

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

•
$$w \ge 4$$
 and $|p| \ge 3$

• w = 3 and $|p| \ge 5$,

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Theorem (Heuberger, Krenn 2011)

The w-NAF exists and are unique for base τ with the minimal norm representatives digit set modulo τ^w .

Let τ be a root of $x^2 - px + q = 0$. Then the *w*-NAFs are optimal if

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

•
$$w \ge 4$$
 and $|p| \ge 3$

• w = 3 and $|p| \ge 5$,

•
$$w = 3$$
 and $|p| = 4$ and $5 \le q \le 9$.

Question

. . .

What is with p small, in particular $p = \pm 1$.

The general idea

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Suppose we have an expansion of the form $\alpha = a + \tau^{w-1}b$, such that *b* lies near the border of the expanded Voronoi cell $\tau^{w}V$.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The general idea

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Suppose we have an expansion of the form $\alpha = a + \tau^{w-1}b$, such that *b* lies near the border of the expanded Voronoi cell $\tau^w V$.

We take a new $a' = a + d\tau^{w-1} \in \tau^w V$ such that $\alpha = a' + (b+d)\tau^{w-1}$ and $\tau | b + d$, i.e. we have

$$\alpha = \mathbf{a}' + \frac{\overbrace{\mathbf{b}}^{:=\mathbf{b}'}}{\tau} \tau^{\mathbf{w}}.$$

The general idea

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Suppose we have an expansion of the form $\alpha = a + \tau^{w-1}b$, such that *b* lies near the border of the expanded Voronoi cell $\tau^w V$.

We take a new $a' = a + d\tau^{w-1} \in \tau^w V$ such that $\alpha = a' + (b+d)\tau^{w-1}$ and $\tau | b + d$, i.e. we have

$$\alpha = \mathbf{a}' + \frac{\overbrace{\mathbf{b}+\mathbf{d}}^{:=\mathbf{b}'}}{\tau} \tau^{\mathbf{w}}.$$

If $b' \notin \tau^w V$, then b' has weight at least two and because *w*-NAF expansions exist and are unique the *w*-NAF of α would have weight \geq 3 and is therefore not optimal.

Figure: Digit set in $\tau^{w} V$.

・ロン ・ 四 と ・ 回 と ・ 回 と

æ

The corridors

Optimality of w-NAÉ

Finding non-optimal w-NAFs

	Л°Д		Ţ.Ţ	с Д.	\int_{\times}^{∞}
pho o p ×	l . after .	$\frac{1}{1} \cdot \frac{1}{1}$		° offo ° q	
l_{T} l_{T}	• • • • • • • • • • • • • • • • • • •	$\int_{\mathcal{F}} \int_{\mathcal{F}} \int$		$\int_{x} \int_{y} \int_{y$	$\int_{P}^{\circ} \int_{0}^{\circ}$
× l fl	· ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$- \circ \circ$	· A · ·	$\frac{1}{2}$	° ° ° ×
			$\int_{q-\tau}^{x} \circ \circ \sigma$		Д°.
° th ° i	$\frac{1}{2}$ \circ \circ \times δ	° - ff ° j	$\frac{1}{12} \cdot \frac{1}{12}$	o o s II o o	the second
\sim	L°.L°.	$\int_{-\infty}^{\infty} \circ \circ \circ \times$	L° L	؞ؿڷڷ؞؞	$\int_{-\infty}^{-\infty}$

Figure: Corridors.

Some notations

Let us fix the following notation:

w-NAF

Optimality of

w-NAFs

w-NAFs wit imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

$$\tau^{2} - p\tau + q = 0 \qquad \tau = \frac{p}{2} + i\sqrt{q - \frac{1}{4}}$$

$$R = -\frac{1}{2} + \frac{i}{2\sqrt{4q - 1}} \qquad S = -\frac{1}{2} - \frac{i}{2\sqrt{4q - 1}}$$

$$T = i\frac{2q - 1}{\sqrt{4q - 1}}$$

$$\sigma_{I} = 2\sqrt{q - \frac{1}{4}} + \sqrt{q} \qquad \sigma_{II} = |q + 1 - 2\tau| + \sqrt{q}$$

$$d_{I} = \frac{\tau}{\sqrt{q}} \qquad d_{II} = p - \frac{\tau}{q}$$

$$W_{I} = (q - 2)\sqrt{1 - \frac{1}{4q}} \qquad W_{II} = \frac{\sqrt{4q - 1}}{q}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Relation to a Diophantine inequality

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Theorem (Krenn, Z. 2012)

If w and q do not satisfy the inequality

$$\left|\operatorname{Im}\left(\tau^{w} E d_{c}^{-1}\right)\right| < W_{c}\left(1 - 2\frac{\sigma_{c}}{|\tau|^{w}|E|}\right)^{-1}$$

with $E \in \{R, S, T\}$ and $c \in \{I, II\}$. Then we can construct a counter example of the kind described above

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Relation to a Diophantine inequality

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality

Theorem (Krenn, Z. 2012)

If w and q do not satisfy the inequality

$$\left|\operatorname{Im}\left(\tau^{w} E d_{c}^{-1}\right)\right| < W_{c} \left(1 - 2 \frac{\sigma_{c}}{|\tau|^{w} |E|}\right)^{-1}$$

with $E \in \{R, S, T\}$ and $c \in \{I, II\}$. Then we can construct a counter example of the kind described above

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conjecture (Krenn, Z. 2012)

The inequality has no solution if $w \ge 12$ and $q \ge 2$.

The inequality

Optimality of w-NAF

Ziegler

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Considering the original inequality and dividing it through $\bar{\tau}^w \overline{Ed_c^{-1}/2}$ we obtain

$$\left|\frac{\tau^w E d_c^{-1}}{\bar{\tau}^w \overline{E} d_c^{-1}} - 1\right| < \frac{8(2+\sqrt{2})q}{q^{w/2}} < \frac{28q}{q^{w/2}}.$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The inequality

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs wit imaginary quadratic base

Finding non-optima w-NAFs

A Diophantine Inequality Considering the original inequality and dividing it through $\overline{\tau}^w \overline{Ed_c^{-1}/2}$ we obtain

$$\left|\frac{\tau^w Ed_c^{-1}}{\bar{\tau}^w \overline{Ed_c^{-1}}} - 1\right| < \frac{8(2+\sqrt{2})q}{q^{w/2}} < \frac{28q}{q^{w/2}}.$$

 $\frac{d_l}{\bar{d}_l} = \frac{\tau}{\bar{\tau}},$

 $\frac{d_{II}}{\bar{d}_{II}} = \frac{\tau^2}{\bar{\tau}^2}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

and

 $\frac{T}{\overline{\tau}} = 1,$

Linear forms in logarithms

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs wit imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Therefore we have to consider the following form in two logarithms:

$$\left| (w+l)\log\frac{\tau}{\bar{\tau}} - k\log(-1) \right| < \frac{42q}{q^{w/2}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where $|I| \leq 3$.

Linear forms in logarithms

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Therefore we have to consider the following form in two logarithms:

$$\left| (w+l) \log \frac{\tau}{\overline{\tau}} - k \log(-1) \right| < \frac{42q}{q^{w/2}}$$

where $|I| \leq 3$.

We can compute asymptotic expansions of the logarithms and obtain

$$\frac{1}{i}\log\frac{\tau}{\bar{\tau}} = \pi \pm \frac{1}{\sqrt{q}} + \frac{1}{24q^{3/2}} + O\left(\frac{1}{q^{5/2}}\right),$$

where the "+" sign holds if and only if p = 1.

Bou

Bounds for *q* and *w*

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Therefore the inequalities for the linear forms in logarithms yield

$$\left|(w+l-k)\pi+\frac{\pm(w+l)}{\sqrt{q}}+O\left(\frac{w+l}{q^{3/2}}\right)\right|<\frac{42q}{q^{w/2}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Bounds for *q* and *w*

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs witl imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Therefore the inequalities for the linear forms in logarithms yield

$$\left|(w+l-k)\pi+\frac{\pm(w+l)}{\sqrt{q}}+O\left(\frac{w+l}{q^{3/2}}\right)\right|<\frac{42q}{q^{w/2}}$$

Therefore we have $q \leq (w/\pi)^2$. Using lower bounds for linear forms in two logarithms due to Laurent, et.al. we get an absolute upper bound for *w* provided *q* is not too small. In particular we obtain $w \leq 241747$ and therefore $q > 5.926 \cdot 10^9$.

TU Completing the proof of the conjecture Optimality of w-NAF Notet that we also have $\left|\frac{k}{w+l} - \frac{\log \frac{\tau}{\bar{\tau}}}{\pi}\right| < \frac{42q}{(w+l)\pi q^{w/2}}$

A Diophantine Inequality i.e. that implies k/(w + l) is a continued fraction to $\delta = \frac{\log \frac{1}{r}}{\pi}$ and we can easily check for each q (large enough) whether a solution exists.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Completing the proof of the conjecture

Optimality of w-NAF

Ziegler

w-NAFs

w-NAFs with imaginary quadratic base

Finding non-optimal w-NAFs

A Diophantine Inequality Notet that we also have

$$\left|\frac{k}{w+l} - \frac{\log \frac{\tau}{\bar{\tau}}}{\pi}\right| < \frac{42q}{(w+l)\pi q^{w/2}}$$

i.e. that implies k/(w+l) is a continued fraction to $\delta = \frac{\log \frac{\pi}{2}}{\pi}$ and we can easily check for each *q* (large enough) whether a solution exists. This is work in progress.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの