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Frobenius and add

Question

Given an Elliptic curve E defined over a finite field Fq, a
point P on E(Fql ) and an integer n. How can we compute
nP efficiently?

Let φ be the Frobenius endomorphism φ((x , y)) = (xq, yq)
then φ fulfills

φ2 − pφ+ q = 0.

Therefore we identify φ with an quadratic algebraic integer τ
which fulfills the same equation.
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The fastest way to compute qP for some P ∈ E(Fql ) is to
compute

qP = pφ(P)− φ2(P).

Now, let us represent the integer n as n =
∑`

j=0 ηjτ
j for ηj

from a suitable digit set D, then

nP =
∑̀
j=0

ηjφ
j(P),

where the ηP for η ∈ D are precomputed.
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w-NAF

Consider an expansion n =
∑`

j=0 ηjτ
j as a sequence

(ηj) ∈ DN0 with ηj ∈ D. If each block (ηj , . . . , ηj+w ) contains
at most one non-zero digit, we call this expansion an
width-w non adjacent form (w-NAF for short).

Let η ∈ DN0 and let |η| be the number of non-zero digits. We
call a w-NAF η optimal, if for any expansion ξ representing
the same integer as η we have |η| ≤ |ξ|.

Question

For which basis τ and digit sets D are w-NAF expansions
optimal?
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Examples

For base 2 and digit set {−1,0,1} the 2-NAF are
optimal (Reitwiesner 1960).

For base 2 and digit set consisting of 0 and all odd
numbers with absolute value < 2w−1 the w-NAF are
optimal (Muir, Stinson 2006).
For base b ≥ 2 and digit set consisting of 0 and all
integers with absolute value < 1

2bw and not divisible by
b the w-NAF expansion is optimal (Heuberger, Krenn
2011).
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Voronoi cells

Let τ ∈ C be a solution to x2 − px + q = 0, with p,q ∈ Z
such that q − p2/4 > 0. We set

V = {z ∈ C : ∀y ∈ Z[τ ] |z| ≤ |z − y |}

and call it Voronoi cell.

V

0 1

1+i
√
3

2

1−i
√
3

2

τ

Figure: Voronoi cell with τ = (3 +
√
−3)/2.
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Digit sets

Let w be an integer with w ≥ 2. Then we choose the Digit
set D ⊂ Z[τ ] that consists of 0 and exactly one
representative ∈ τwV of each residue class of Z[τ ] modulo
τw which is not divisible by τ . This digit set is called minimal
norm representatives digit set.

Figure: Digit set for τ = (1 +
√
−13)/2 and w = 2.
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Existence and Uniqueness

Theorem (Heuberger, Krenn 2011)

The w-NAF exists and are unique for base τ with the
minimal norm representatives digit set modulo τw .

Let τ be a root of x2 − px + q = 0. Then the w-NAFs are
optimal if

w ≥ 4 and |p| ≥ 3,
w = 3 and |p| ≥ 5,
w = 3 and |p| = 4 and 5 ≤ q ≤ 9,
. . .

Question

What is with p small, in particular p = ±1.
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The general idea

Suppose we have an expansion of the form α = a + τw−1b,
such that b lies near the border of the expanded Voronoi cell
τwV .

We take a new a′ = a + dτw−1 ∈ τwV such that
α = a′ + (b + d)τw−1 and τ |b + d , i.e. we have

α = a′+

:=b′︷ ︸︸ ︷
b + d
τ

τw .

If b′ 6∈ τwV , then b′ has weight at least two and because
w-NAF expansions exist and are unique the w-NAF of α
would have weight ≥ 3 and is therefore not optimal.
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Digit set

Figure: Digit set in τw V .
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The corridors
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q − τ
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Figure: Corridors.
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Some notations

Let us fix the following notation:

τ2 − pτ + q = 0 τ =
p
2

+ i

√
q − 1

4

R =− 1
2

+
i

2
√

4q − 1
S =− 1

2
− i

2
√

4q − 1

T =i
2q − 1√
4q − 1

σI =2

√
q − 1

4
+
√

q σII =|q + 1− 2τ |+√q

dI =
τ√
q

dII =p − τ

q

WI =(q − 2)

√
1− 1

4q
WII =

√
4q − 1

q
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Relation to a Diophantine inequality

Theorem (Krenn, Z. 2012)

If w and q do not satisfy the inequality∣∣∣Im(τwEd−1
c

)∣∣∣ < Wc

(
1− 2

σc

|τ |w |E |

)−1

,

with E ∈ {R,S,T} and c ∈ {I, II}. Then we can construct a
counter example of the kind described above

Conjecture (Krenn, Z. 2012)

The inequality has no solution if w ≥ 12 and q ≥ 2.
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The inequality

Considering the original inequality and dividing it through
τ̄wEd−1

c /2 we obtain∣∣∣∣∣τwEd−1
c

τ̄wEd−1
c

− 1

∣∣∣∣∣ < 8(2 +
√

2)q
qw/2 <

28q
qw/2 .

Note that

R =τ
i√

4q − 1
, S =τ̄

i√
4q − 1

if p =1,

R =τ̄
−i√

4q − 1
, S =τ

−i√
4q − 1

if p =− 1,

and

T
T̄

= 1,
dI

d̄I
=
τ

τ̄
,

dII

d̄II
=
τ2

τ̄2 .
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Linear forms in logarithms

Therefore we have to consider the following form in two
logarithms: ∣∣∣(w + l) log

τ

τ̄
− k log(−1)

∣∣∣ < 42q
qw/2

where |l | ≤ 3.

We can compute asymptotic expansions of the logarithms
and obtain

1
i

log
τ

τ̄
= π ± 1√

q
+

1
24q3/2 + O

(
1

q5/2

)
,

where the “+” sign holds if and only if p = 1.
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Bounds for q and w

Therefore the inequalities for the linear forms in logarithms
yield ∣∣∣∣(w + l − k)π +

±(w + l)√
q

+ O
(

w + l
q3/2

)∣∣∣∣ < 42q
qw/2

Therefore we have q . (w/π)2. Using lower bounds for
linear forms in two logarithms due to Laurent, et.al. we get
an absolute upper bound for w provided q is not too small.
In particular we obtain w ≤ 241747 and therefore
q > 5.926 · 109.
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Completing the proof of the conjecture

Notet that we also have∣∣∣∣ k
w + l

− log τ
τ̄

π

∣∣∣∣ < 42q
(w + l)πqw/2

i.e. that implies k/(w + l) is a continued fraction to δ =
log τ

τ̄
π

and we can easily check for each q (large enough) whether
a solution exists.

This is work in progress.
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