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Abstract

In this book we develop the theory of distribution of sequences
which we shall identify it with the theory of distribution functions of

sequences. 1
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1 Preface

Let f(x) be a measurable function defined on [0,00). In the probabilistic
theory f(z) is called random variable and g(x) = |f~*([0,z))| is a uniquely
defined distribution function of f(x). Here | X]| is the Lebesgue measure of the
set X. In the uniform distribution theory a random variable is replaced by
a sequence x,, n=1,2,..., z, € [0,1). The sequence x,, can have infinitely
many distribution functions defined as all possible limits

#{n < Np;x, € [0,2)}
Ny

as k — oo. The set of all such g(x) we shall denote by G(x,,) and the notion
of the distribution of z,, we shall identify with G(x,,), i.e. the distribution of
x,, is known if we known the set G(z,,). The importance of the set G(x,,) is
reflected in the fact that most properties of a sequence z,, expressed in terms
of limiting processes may be characterized using G(x,). For example, the
fundamental Weyl’s limit relation

— g(x)

holding for any continuous function f(z) defined on [0, 1] and any uniformly
distributed sequence x,,, can be generalized to the relation

]gngmn - [ ngte



which is true for every g(z) € G(z,) if an appropriate index sequence Ny
is used. For multi-dimensional sequences x,, the set G(x,) can be used in
the correlation analysis of co—ordinate sequences of x,, which yields different
results from those obtained by the statistical analysis.

Thus the main objects in the present monograph are;

a) Infinite sequence x,, n =1,2,...,in [0,1).

b) The set G(z,,) of distribution functions of x,.

The study of the set of distribution functions of a sequence, still unsatis-
factory today, was initiated by J.G. van der Corput [186]. The one-element
set of G(x,) corresponds to the notion of asymptotic distribution function
of a sequence mod1 was introduced by I.J. Schoenberg [148]. In the mono-
graph L. Kuipers and H. Niederreiter [92] to distribution functions is devoted
Chapter 7, pp. 53-68, in M. Drmota and R.F. Tichy Part 1.5, pp. 138-153.
Some authors, see R. Winkler [194], instead of distribution functions g(x) use
measures ¢ induced by the interval (z,y) measure u((z,y)) = g(y) — g(z). 2

This book is meant as a supplement to the previous monograph of the
author and S. Porubsky [172] which is an encyclopedia of distribution of
sequences but it does not contain proofs of theorems. The basis of the book
are results published in [156], [159], [157], [160], [162], [163], [167], [174],
[175], [165], [130], [105] and in Doctor Thesis [164].

This book is only attempt to the theory of distribution functions.

The outline of our conception is as follows.

In the Section 2 we remember definitions and notations and summarize
results for singleton G(z,,), i.e., for asymptotic distribution function. The list
of the applications of the theory of distribution functions will be discussed
in following sections.

In the Section 4 we summarize search methods for distribution functions
(d.f.s) of sequences. We shall see that the main part is solving of some
functional equations.

The main part of the Section 5 is a statistical independence of sequences
r, and y,, the uniform distribution of z, + ¥, mod 1, x,, + logp, mod 1,
where p,, are primes.

The Section 6 details results of the applications in the Section 3, specially

2 For a sequence x = (x,),>1 in [0,1) they define the measure px, by pxn =
% 25:1 0z, , where d,, denotes the point measure in x. The set of accumulation points of
the sequence pix n, n =1,2,..., is denoted by M (x) an is called the set of limit measures
of the sequence x = (2 )n>1.



functional equations for d.f.s of £(3/2)" mod 1, ratio block sequences, the
sequence ¢(n)/n, generalized Benford’s law, multidimensional Benford’s law
and Gauss-Kuzmin theorem.

The main part of the Section 7 is a study of d.f.s g(z,y), g(z,1) = =z,
g(1,y) = y called copulas.

In the Section 9 we study extremes of fol fol F(z,y)d,d,g(x,y) over cop-
ulas.

In the Section 10 we start to study the solution fol fol F(x,y)dg(z)dg(y) =
0 over d.f.s g(z). It is the main parts of this book.

Note that we shall not cover metric aspects of the theory of distribution
functions.

Notes 1. From a technical point of view in this book we only use Theorems, Examples
and Notes. Numbering of Figures is only local, from case to case. Throughout this book
we shall use the shorthand notation x,, n = 1,2,..., for sequences, instead of the more
common ones (z,), or (Z,)n>1. Consequently, the symbol G(z,) will stand for G((z)),
while f(x,) may denote either the value of the function f(z) at = x,, or the sequence

f(xn), n=1,2,.... The meaning will be clear from the context.

2 One-dimensional case

2.1 Basic notations and properties, distribution func-
tions (d.f.s)

We follow the monograph [92], [73], [38] and [172].

Let x,, n =1,2,... be a sequence from the unit interval [0, 1). Denote:
o #{n < N;z, € [0,2)} is the number n < N for which z,, € [0,z). It is
occasionally writing as the counting function A([0,z); N;z,,).
([ ]

FN(l') _ #{n < N?Jffn € [Oax)} (1>

is the step distribution function (step d.f.) of the finite sequence xq,...,zy
in [0,1), while Fy(1) =1, e.g.



F4(33')

0 T T3 Ty T 1

Figure: Step d.f. of 1, x9, 23, 24.

If c4(z) is the characteristic function of the set A, we can write

1 — 1
Fy(z) = + > o (n) = N > Clan (). (2)
n=1 n=1

If f:1]0,1] — R is continuous then by Riemann-Stieltjes integration

¥ f) = [ r)ry), 3)

e A g:[0,1] — [0,1] is a distribution function (d.f.) if

(i) g(x) is nondecreasing;

(ii) g(0) = 0 and ¢(1) = 1.
We shall identify any two d.f.s g;, go satisfying ¢i1(x) = go(x) for every
common continuity point z € [0, 1], or equivalently, if g,(z) = g2(z) a.e. on
[0, 1].
e D.f. g(x) is called a d.f. of the sequence x,, n = 1,2,... if an increasing
sequence of positive integers Ny, N, ... exists such that limy_,. Fy, (z) =
g(z) a.e. on [0,1]. 3
e Df. g(x) is called an asymptotic d.f. (a.d.f.) of the sequence x,, n =
1,2,... if imy_0 Fy(z) = g(z) a.e. on [0, 1].
e The existence of the limit limj_,o, F, () = g(z) a.e. on [0, 1] for a given
sequence Ny, is equivalent to the existence of the limit

Ny, 1

tiw = fw) = [ Syl 0

3Note that the a.e. convergence (almost everywhere conference) is the same as the weak
convergence since every monotone function is almost everywhere continuous.

10



for every continuous f : [0,1] — R. This is called the Weyl limit relation. *
e (G(x,) denotes the set of all d.f.s of the given sequence x,, n =1,2,....
e The lover g(z) and the upper g(x) d.f.s are

liNHLior(l)f Fy(z) = g(z), limsup Fy(x) = g(z). (5)

N—oo

It is equivalent to

g(z) = inf g(z), glz)= sup g(z).
g€G(zn) g€G(zn)
Note that either the lower or the upper d.f. assigned to a given sequence x,,
need not be a d.f. of x, in general, i.e. they do not necessarily belong to
G(x,). ?
e Define two-dimensional set Q(z,,) in the unit square [0, 1] as

Qz,) = {(z,y) € [0,1]*3g € G(x)(y = g(z) or y € [g(x —0),g(x + 0])2'(-3)

e For any non-zero set H of d.f.s define lower g and upper g d.f.s of H as

95(®) = inf 9(@), Gu(w) = supg(x)

e For given d.f. g(z) define the Graph(g) as a continuous curve in [0, 1]?
formed by all the points (z, g(z)), € [0, 1], and the all line segments con-
necting the points of discontinuity (z,g(x — 0)) and (x, g(z + 0)). ©
e ¢,(7) is one-step d.f. for which

(i) ca(z) =0 for z € [0, al;

(ii) co(z) =1 for x € (a, 1].
e h,(x) is a constant d.f. for which

(i) ho(x) = a for z € (0,1);

(ii) ha(0) = 0 and hy(1) = 1.
e If A C N, then we denote by #A the cardinality of A. The numbers

d(A) = lim inf ik < nik € A}, d(A) = lim sup #ik s nik € A}

n—00 n n—00 n

(7)

4The Riemann — Stieltjes integration with limits f01_+00 is understood in this case, see
Section 2.1.1.

5Using notation in footnote in page 8, then for x = (@n)n>1 and any interval I C [0, 1]
we define i, (I) = sup{p(I); n € M(x)}. It cannot be no defined by g(x).

6Here g(z — 0) = liminf, ., g(2’) and g(z + 0) = limsup,,_,, g(z’).

11

eq281



are called the lower and upper asymptotic density of A, respectively. If there
exists the limit lim,, w = d(A), then d(A) = d(A) = d(A) is said
to be the asymptotic density of A. It is easy to see that if A is ordered to
the increasing sequence ky < ky < ..., then

d(A) = lim inf M d(A) = lim sup i

n—oo ky’ n—oo  Kn
and we write d(A) = d(k,) and d(A) = d(k,).
Example 1. The sequence
rp=lognmodl, n=12...,
has the set of d.f.s
1e—1 emin(z.u) _ 1

6o = {ao) = 25+ e path, ®) [

and {log Ny} — w implies Fy, (z) — gu(x).
The lower and the upper d.f. of logn mod 1 are

e —1 _1—6*3”

Q(I):e_la g(a:)_l—e—l’

and g € G(z,) but g ¢ G(z,). This set G(z,) was found by A. Wintner

0
Figure: G(logn mod 1)

[195] and it also follows from Theorem 48.
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Example 2. The following sequences z,, n =1,2,...,
(1) x, = log(nlog” n) mod 1,
(II) z,, = logp, mod 1 (Y. Ohkubo [122]),
(II) x,, = log(p,log p,) mod 1 (Y. Ohkubo [122]),

(IV) 2, = 2= mod 1 ([170]),
have the same d.f.s as logn mod 1. Here p, by the nth prime.

In the theory of d.f.s the following well-known Helly theorems are sys-
tematically used:

Theorem 1 (First Helly theorem). Fvery sequence g,(x) of d.f.s contains
a subsequence gy, () such that lim, . g, () = g(x) for every x € [0,1].
Furthermore, the point limit g(x) is d.f. again.

Theorem 2 (Second Helly theorem). Let gn( ), n=12 ... be a sequence
of d.f.s for which lim, - gn(z) = g(x) a n [0,1]. Then for every s—
dimensional continuous function f : [0,1]° — R we have

lim / / Flt1, o 1) dgaty) . dga(t,) =
/ /ftl,... Ddg(t) . dg(t.).

Occasionally, the First Helly theorem is also called Helly selection prin-
ciple and the Second Helly theorem is also called the Helly — Bray theorem
(see [96, p. 135, Th. 3.1.3., ]). One of the most important applications of
this theorem is a following result:

Theorem 3. Let f : [0,1]° — R be a continuous function and let =, be a
sequence in [0,1). If for an increasing sequence of indices Ny, k =1,2,...,
we have limy_,» Fin, (x) = g(x) a.e., then

N, 1 1

’Z flai, . z)= | .. | flta,... t)dg(ty) ... dg(ts).

0 0

Ny 1 1

1
Nks . zi:_l f(xil’ e "xiS) = 0 ce 0 f(th . 7ts)dFNk(t1) R dFNk(ts)
and the rest follows from the Second Helly theorem. ]

13



Also we need

Theorem 4 (Lebesgue’s Dominated Convergence Theorem). Let f,(z) be a
sequence of measurable functions on [0,1]. Suppose that the sequence con-
verges pointwise to a function f(x) and is dominated by some integrable func-
tion g(x) in the sense that

for allm and all z € [0,1]. Then f(x) is integrable and

1

lim fn(x)dx:/o f(z)dex.

n—o0 0

nol| Theorem 5 (Lebesgue’s Decomposition Theorem). Any d.f. g(z) can be uniquely
expressed as

9(x) = a194(x) + a2gs(7) + azgac(T),

where aq,as,a3 are non—negative constants, oy + as + a3 = 1, and

® ga(x) is a discrete (or atomic) d.f., i.e. go(r) = >, _ hn, wheret,
is a sequence of points of discontinuity of g(x) with jumps h,, at these
points,

o g.(x) is a purely singular d.f. (also called singular continuous d.f.), i.e.
continuous, strictly increasing and having zero derivative a.e.,

e and g..(x) is an absolutely continuous d.f., i.e. gac(T) = fox h(t)dt for

some non-negative Lebesque integrable function h(t) such that fol h(t)dt =
1. Punction h(t) is called the density of gac(T).

2.1.1 Riemann-Stieltjes integral

ss7
Let f(x) be a function defined on [0,1], 0 = uy < w3 < -+ < uy = 1 be

a division of [0, 1] and let g(z) be a d.f. If for every choice &, € [uy—1, un],
n=20,1,..., N the Riemann-Stieltjes sum

N

> F(E9(un) = g(un-1)

n=1

14



has a limit as (un Up—1) = 0, N — o0, then this limit is unique and denoted
fo . If f(z) is continuous and

g(fL‘) = Oflgd(x> + O-/Qgs(x) + QSgac(I)
is the Lebesgue decomposition of g(x) (se Theorem 5) then

/f pgaa) = 3 S0 n,/f e /f 2)ghla

/O f(x)dga(z) =0, (9)

where ¢, is a sequence of points of discontinuity of g(z) with jumps h,, at
these points and g4(z) is a singular part of g(x) having (gs(x)) =0 a.e.

e In one-dimensional case in the uniform distribution theory the main appli-
cation of Riemann-Stieltjes integration is the fundamental

1 !
N 2o = [

In H. Riesel [136, Appendix 9, p 358] there are other interesting examples

(1) Zp prime<N f fl

e The familiar formula for 1ntegrat10n by parts of an ordinary Rieman integral
is valid without any change also for Riemann-Stieltjes integrals

/f(x)dg(év)Z[f(ﬂf)g(iv)]Z—/ g(x)df(z).

e The Mean Value Theorem for Riemann-Stieltjes integrals: If f(z) is a
continuous and g(z) a non-decreasing function, then

[ st = 1 [0t = 10060) - gfa)
where £ is a number between a and b.
See [71]:
o If [ fdg exists for every f(z) continuous on a < z < b, then g(x) must be

of bounded variation.

e The necessary and sufficient condition that F'(z,y) should possess a Riemann-
Stieltjes integral with respect to a function g(x,y) of bounded variation, is
that the variation of g(x,y) over the set of points at which F(z,y) is discon-
tinuous must be zero.

15



2.2 Basic properties of the set G(z,) of all d.f.s of z,
sse2
th26| Theorem 6. For every sequence x,, € [0,1) we have

(i) G(zn) is non—empty, and it is either a singleton or has uncountable
many elements.

(ii) G(zn) is closed.

(i) G(z,) is connected in the weak topology defined by the metric

d(g1,92) = \//0 (91(x) — go(z)?dz. (10)

(iv) For given a non—empty set H of d.f.s there exists a sequence x,, in [0, 1)
such that G(x,) = H if and only if H is closed and connected.

Proof. The (i) follows from the first Helly theorem 1 (cf. [92, p. 54, Th.
7.1]).
The (ii) was proved by van der Corput:

Theorem 7 (J.G. van der Corput (1935-36, Satz 10)[186]). If
g1(x), go(x), g3(x), . ..

are d.f.s of x, mod 1 and lim,_, g,(z) ezists at every common point x of
continuity, then the corresponding limit function is also a d.f. of x, mod 1.

The (iii) follows from the theorem of H.G. Barone

Theorem 8 (H.G. Barone (1939)[16]). Ift,, n=1,2,... is a sequence in a

metric space (X, p) and

- any subsequence of t, contains a convergent subsequence;

- limy, oo p(tnat, tn) = 0;
then the set of all limit points of t, is connected in (X, p).

Now we put X= the set of all d.f.s defined on [0,1], ty = Fxn(z) and
p(tns1,tn) = d(Fnya(x), Fx(x)). The limit d(Fyii(x), Fn(x)) — 0 follows
directly from the definition Fy(z) by using the identity (see (33))

/01(91(:6) — go(z))*dr = /01 /01 |z — y|dgi (z)dga(y)—

16



—%/01 /Ol\x—y\dgl(x)dgl(y)—%/01/01 |z — yldga(z)dga(y)

which holds for every d.f.s g;(z) and go(x) and putting ¢;(x) = Fy.1(x) and
g2(z) = Fy(z) we find exactly

1
| (Fra(@) = Fta) e =
0
1 N 1 l
R YZN R S) m ~ 4n TNT T ANO AT — dn|, 11 2
s e 2 o ol gy e — k(1) e

where the right-hand side of (11) tends to zero as N — oo. The proof of
(33) is given in Theorem 23.
Now, we return to (iv) of Theorem 6. It was proved by van der Corput:

Theorem 9 (J.G. van der Corput (1935-36, Satz 5)). Let H be a non-empty
set of d.f.s. Then there exists a sequence x,, € [0,1) with G(x,) = H if and
only if there exists a sequence of d.f.s g,(x), n=1,2,..., in H such that

(1) Iflimg—yoo gn,, () = g() at common points x of continuity, then g € H,
and conversely, there is such a subsequence for any g € H.

(i1) limy, oo gna1(x) — gu(x) = 0 at any common point x of continuity of
gn(x), n=1,2,....

]

A purely topological characterization of G(x,) with a short history can
be found in R. Winkler (1997). Since the weak topology is metrisable by the
metric d in (10)

e a non—empty closed set H is connected if and only if, for any two g,g € H
and every € > 0 there exist finitely many g¢i,...,¢9, € H such that g; = g,
gn =g and d(gi, giv1) <efori=1,...,n— 1.

th7| Theorem 10. Let x,, and y, be two real sequences. Assume that all d.f.s in
G(x, mod 1) are continuous at 0 and 1. Then the zero limit of fractional
parts

lim (z, — y,) mod 1 =0

n—oo

implies G(x,, mod 1) = G(y, mod 1). The same implication follows from the
continuity of d.f.s in G(y, mod 1) at 0 and 1.

17



P?“OOf. Since {xn - yn} = Tn — Yn — [In - yn] = (‘Tn - [l‘n - yn]) — Yn and
Ty — [Ty — yn] = x, mod 1, we can assume that |z,, — y,| — 0. For common
increasing sequence of positive integers Ni, k=1,2,..., let

P o) = 5 zcm () = g0 (o) = 53 (o) 360)

for every continuity point z € [0, 1] Because, for every h = +1,£2, ..., the
limit |2, —y,| — 0 implies limy,_, oo & o Zn 1 62””“”" = limy,_,o A} Zn 1 ethyn
and since

1 1 1
627rzhzn — / e27rzh:chNk (1:)’ § 627rzhyn — / eszhz dFNk (.I‘),
Nk; ne1 0 Nk; — 0

the well-known second Helly theorem implies fol e?mihedg(x) = fol e?mihzdg(x)
for every h = +1,42,.... This gives

[ 1w = [ @, e [ s = [ oware

for every continuous f : [0,1] — R, f(0) = f(1).

For two common points 0 < 27 < x5 < 1 of continuity of g(x) and g(z)
and for sufficiently small A > 0, define

f(z) =0 for z € 0,21 — A],

f'(z) =1/A for x € (x1 — A, 1),

f(z) =1for z € [x1,20 — A],

f'(z) = —1/A for x € (xg — A, 25), and

f(z) =0 for x € [x9,1]. Then

[ s@as@) = Fote0a-Foa, [ i@ase) ~ Zaea-gitm)a

and A — 0 gives

g(x1) — g(w1) = g(x2) — g(2).
Now, we assume that g(z1) # g(x1) and g(zs) # g(x2). Fixing x; and letting
x9 — 1 we have that one of g, § must be discontinuous at 1, and fixing x»,

letting 1 — 0, one of g, g must be discontinuous at 0. This gives Theorem
10. O

18



Theorem 10 has the following modifications:

Theorem 11. (i) If all d.f.s in G({z,}) and G({y,}) are continuous at 0,
then

{zn —yn} = 0= G({zn}) = G{yn})-

The same follows from the continuity at 1.
(ii) The limit {x, — y,} — 0 also implies

{9 € G({x,}); g is continuous at 0,1} = {g € G({yn}); g is continuous at 0, 1}.
(i) Assume that all d.f.s in G({x,}) are continuous at 0. Then
{Tn —yn} = 0=1{9 € G{yn}); § is continuous at 0} C G({x,}).
(iv) If xp,yn € 10,1), n=1,2,..., then
T = Yn| = 0= G(z4) = G(yn)

i.e. the continuity assumption can be omitted.
(v) If xp,yn €10,1), n=1,2,..., then

N

1
5 2 |En = vl = 0 = G(a) = G(un)
n=1

i.e. the continuity assumption can be omitted.

Proof. (v). Put F\(w) = § L () and FyY (@) = § 5,4 o ()
and applying (33) we find

1 1 N
| @ - @ - 5 Z [t~ il
m,n=1

mnl m,n=1

l\')lr—t

From z,, —y, = Ty, — Tpn+Tp —Yp and T, — Yo = Y — Yn + Ton — Yn it follows
< 1 1 1 1 13
| Tm — Ynl 2’ _xn’+§|ym_yn|+§|xn_yn‘+§’xm_ym" (13)

19



Substituting (13) to (12) we find

1 1 N
/ (F(z) — FP(2))%dz < ~ > Jyn — xal. (14)
0 n=1

re5| Notes 2. Putt v, = |e?™(#n=¥n)| ] is an integer. Then

Vo < 27| h(zn — yn);

Yn < 27r(‘h|{1'" - yn})7

Y < 2w ([hl{zn} — {yn}),
Y < 27 ([R[|zn = ynll),
(

Y < 2(|Bl[n — yn — Al), (15) [eql29

for v, — 0 it can be used not only assumptions from Theorems 10 but also arbitrary
zero-convergence of right-hands of (15). (Compare with (500).)

Example 3. [124, p. 257, Ex. 5.37]: For any sequence z,, € [0,1), n =
0,1,2,..., we can associate a real number « such that lim, . ({nla} —
xn) = 0. Thus by Theorem 11 G({nla}) = G(x,), if every g(z) € G(z,) is
continuous at 0 and 1.

Proof. [124, p. 297, Solution 5.37]: We require « in the form

[ee]
Qn
azza, where |a,| <1,n=0,1,2,...
n=0
Then | — Y o & < ﬁ and thus
" onl 1
lov — _ _
nlo ;akk! < o (16)
Now we compute sequences a, and A,, n =0,1,2,... by recurrences

(1) ap = To, AO = 0,
(ii) ap =z, — {An}, Apri = (n+ 1)(A, +an), n=1,2,...
Then by induction we can see

n

ZakZ—::an—i—An, n=0,1,2,... (17)

n=0
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sse3

th3

From (ii) we have a, + A,, = x,, + [A4,] and (16) gives
Inlo — [A,] — 2| <

If ¢ > L the inequality (18) implies
z, € (6,1 —¢) = nla — [A,] = {nla}

and thus the limit lim,, . ({n!a} — z,) = 0 need not hold over full sequence
n=0,1,2,.... But for proof of G({nla}) = G(z,) we can use Theorem 10
with respect to Notes 2 and (15). O

2.3 Continuity points of g(x) € G(z,)

The Wiener-Schoenberg theorem (see [92, p. 55, Th. 7.5]) has a following
generalization.

Theorem 12. For given sequence x,, € [0,1) and any integer h define wy, as

2
I

. N 1
wp = limsupy_, % Doy €T

LA
A g7 2 =0
then every d.f. g(x) € G(x,) is continuous on [0, 1].

Proof. We adapt [92, pp. 55-56]. For g(x) € G(x,), let limg_o Fy, (z) =
g(x) for every point = € [0,1] of continuity of g(z). By the second Helly
theorem the following limit wy(g) exists

1 Ny, 2 1 Ny
Wh(g) :kh_{go _k Z 627rzh;tn _ kll_{go Fg Z 627rzh(acm—xn)
n=1 m,n=1
1 1 ]
= [ [ ememagiayagiy) (19)
0 0

Since

H .
1 , 1 ifr—yeZ
lim 627rzh(x—y) _ )
Z 0 others

%, n=12 .. (18)

eq3



Th4

by applying Lebesgue dominance theorem we have

- - 27rih(:1:—y)
Jim th / / <f}gnoo 3 )dg(fv)dg(y)

_ / /X Ldg(z)dg(y), (20)

where X = {(z,y) € [0,1]*};x —y € Z}. Since X has zero measure the
continuity of ¢g(z) implies zero value of (20) and if zo € [0, 1] is discontinuity
point of g(z) then (20) is bounded by (g(z¢ + 0) — g(zo — 0))? from below.

From the other hand (19) gives wy, > wi(g). O
Example 4. For x,, = tlogn mod 1, t # 0 we have (see [124, p. 281, Solution
5.18])
1
Wp = —o——.
T AR 41

Theorem 12 implies that every g(z) € G(tlogn mod 1) is continuous on [0, 1].
Discontinuity points of d.f. have the following characterization.

Theorem 13. The g € [0, 1] is a discontinuity point for some g(x) € G(z,,)
if and only if there exists a subsequence xy, of x, such that

(1) limg_y00 T, = To,

(i) d(k,) >0,
where d(k,) is the upper asymptotic density of k,, n =1,2,....

For proof cf. Theorem 37.

A generalization of the van der Corput Difference Theorem (cf. [92, Th.
3.1, p. 26]) is a difficult problem. We present here only the following partial
result.

Theorem 14. If for every k = 1,2, ... the set G(x,x — x,) contains only
continuous d.f., then the same holds also for G(xy).

Proof. Let F ( ) be Fn(z) defined for x,,x — x, mod 1. Let N, be a
sequence of 1ndlces such that lim,_, Fy,(z) = g(z). From N,, we can select
a subsequence N; such that lim, .. F ](\[1 ) (x) = g1(x). Step by step we can
find the same for £ = 2,3,... and then b} the diagonal method we can find
a sequence M, for which the following limits exists:

lim Fy, (x) = g(z) and lim F]E/’;) (x) = gx(x) for every k =1,2,....
n—00 n

n—o0

22
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Wiener-Schoenberg Theorem [92, Th. 7.5, p. 55] yields

H—oco

H
. . . 1 (k)
gr(x) is continuous <= lim T 521 w2 =0,

where
w _ [ ' (k) 1 ZMi ( )
2mihx : 2mihx : 2mih(x —x
h /o ‘ 9+(7) e 0 ‘ w, () oo M; 4= )

In the next step we can use the van der Corput inequality (cf. [92, Th. 3.1,
p. 26))

2

N
. TNy <
N nzle =" NM
M—1 N—k
(N + M — 1>(M — k)(N B k) 1 2mh (T —Tn
+2 REVE N—k;ze @nir=za) | (21) [eq354
k=1 n=1

for every z, and 0 < M < N. Putting N = M; and keeping M fixed and
then getting ¢ — oo, we find

M-1

1 M-k

’Wh‘QSM—i‘ZZ 2 ’W;(l)‘a
k=1

where again w, = fol e?™hzdg(x). Summing up this inequalities for h =
1,..., H and then getting H — oo and using the fact [92, Ex. 7.17, p. 68§]

that
H

H
. (k)2 1 (k)
a7 2= 0 Jim ) el =0

we find that

. 1es, , 1
lim sup T Z |own |* < i
h=1

H—oo

for every positive M which implies the continuity of g(z). O]
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th44

col

co2

2.4 Lower and upper d.f. of x,

Theorem 15. For every sequence x,, € [0,1) we have g(v),g(z) € G(z,) if
and only if

/0 (9(7) — g(x))dr = limsup — Z Ty — 11]V12101<1)f — Z Ty

N—oo

Proof. Helly’s theorems imply

1
lim sup — an liminf — an = max )/0 (91(x) — go(x))d.

N—o00 N—00 g1, gQGG In
Assume that this maximum is appeared in g, = ¢* and go = g.. Since

g*(z) < g(x) and g(z) < g.(x) we have

/0 (3(2) — gla))dz > / (¢"(2) — g (2))da (22)

If 9,9 € G(x,), then in (22) we have an equality, and if e.g. § ¢ G(x,), then

g(x) > g*(x) for some common continuity point x € (0,1) which implies

strong inequality in (22). O

Theorem 16. Assume that for the sequence x,, € [0,1) there exists the first
moment

Then either G(x,) is singleton or g & G(x,) or g & G(x,).

Proof. We have fol zdFy(z) = & 25:1 x, and by Helly Theorem 2, if the first
moment is constant, then for every g(z) € G(:Un) we have fol xdg(z) = a.

Thus if g(z),g(x) € G(x,), then fol zdg(r) = f xdg(z) = « and from
g(z) < g(z) for all x € [0,1] it follows g( ) g(z) for common continuity
points z € [0, 1]. O

Theorem 17. Assume that for every nonzero closed H C G(x,) we have
9y, 9n € H. Then every d.f. g € G(xy,) is characterized by the first moment,

i.e. if fo zdg (x fo xdgs(x) then gi(x) = go(z) a.e. 7

TAnother limy,_, o Fy, (7) = g(z) a.e. <= limg_,00 ~ 7S ZNE Ty = fol zdg(x), for ev-
ery sequence N; < No < ...

24
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Proof. Let H is the set of all g € G(X,,) such that fol xzdg(xz) = const. Then
fol zdg,, (z) = fol xdgy(z) = const. implies that H is a singleton. O

Theorem 18. (i) If the lower g and upper g d.f.s of the sequence x,, € [0, 1]
are of the type cq(z) then g,G € G(z,).

(i) If g(x) has a point xo € [0, 1] of discontinuity, then there exists g(x) €
G(z,,) with the same point of discontinuity and g(xy — 0) = g(xg — 0) and
g(xo 4+ 0) = g(xo + 0). Similarly to g(x).

(iii) The following holds B

limsup IS = 1= (gla) = 1(x) and () = aol)).

m=1 n=1

Proof. (iii) Assume that limy_, m Zn]‘ﬁl gil |z, — x,] = 1 and that
Fuy () = ¢g1(x) and Fy, () — g¢2(z) for z € (0,1). By the second Helly
theorem (Theorem 2) we have fol fol |z —y|dgi(z)dg2(y) = 1 and the equation

(33) implies fol fol |z —y|dg; (x)dgi(y) = 0 and fol fol |z — y|dga(x)dga(y) = 0.
This is possible only if {g;(z), g2(2)} = {co(x), c1(x)}.

The opposite implication in (iii) follows from (i). O
2.5 Everywhere dense sequence z,, in [0, 1]

Theorem 19. The sequence x, € [0,1), n = 1,2,..., is everywhere dense
in [0,1] if

(1) Ty o0 52 Dot [T — Tn| = 0;
(i) liminf, oo & SN @, = 0;
(ifi) limsup, oo & S0 T, = 1

Proof. From (i) it follows
G(zy,) C {ca(z), € [0,1]} and
(ii) and (iii) implies co(x), c1(x) € G(xy,).
Finally we use the connectivity of G(x,,). O

The connectivity of G(z,) also implies
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Theorem 20. For every sequence z,, € [0,1), n=1,2,... and an arbitrary
Riemann integrable f : [0,1] — R the sequence

1 N
NZf(xn), N=1.2...
n=1

15 everywhere dense in the interval

{m—genéliln/f )dg(z —genéaii/f )dg(z ]
2.6 Singleton G(z,) = {g(x)}

In this case g(x) is also called asymptotic distribution function (a.d.f.) of the
sequence z,, € [0, 1).

Theorem 21. (I) The sequence x,, mod 1 has a given a.d.f. g(x) if and only
if for every continuous function f:[0,1] — R we have

and x, mod 1 has an a.d.f. if and only if the limit on the left hand side exists
for every continuous f. Note that it is sufficient to take the polynomials
xr,x?, 23, ... for f(x).

(H) [n or’der to x, mod 1 has an a.d.f., it is both necessary and sufficient
that the limat

N
1 .
ﬂk — AP_{%QN E e?mlmn (23>
n=1

exists for every integer k. This a.d.f. then will be continuous if and only if

lim inf

N
.. 2
Noo 2N+ Z 6" =0, (24)

and absolutely continuous with the derivative belonging to L*(0,1) if and only
of
> 1B < oo (25)

k=—o00
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(III) Let g(x) be continuous at x = 0 and v = 1. Then the sequence x,, mod 1
has a.d.f. g(x) if and only if

N

1 . v
li il 2mihen 2mhxd 1 int h 0.
Jim ;e /0 e g(x)  for all integers h #
(IV) For a given a d.f. g(x) the sequence z,, mod 1 has a.d.f. g(x) if and only

if

N 1
: 1 o2mil{z,} _ 2mile .
Nhinoo ¥ Zl 72 = /0 e“™2%dg(x) for all integers h # 0.

(V) In order to the sequence z, € [0,1) has an a.d.f., it is both necessary
and sufficient that the limit

1 N
= Jim x> (26)

exists for every integer k.

Proof. (I) This is a modification of the Weyls limit relation. The sec-
ond Helly theorem 2 (saying that + SN f({z,}) = fo r)dFy(z) —
fol f(x)dg(x)) implies the necessary condltlon in (I). The sufficiency follows
from the first Helly theorem 1.

The reduction to f(z) = z, 2% 23, ... is clear, it follows, for instance,
from the approximation of f(z) by Berstein polynomial of degree n

Bu(z; f) = Zf()() f1 =)

(II) The assertlon (24) involving the continuity of the a.d.f. is due to N.
Wiener (1924)[193] and I.J. Schoenberg (1928)[146], and is called Wiener —
Schoenberg theorem (see Section 2.3, Theorem 12) (cf. [KN, p. 55, Th.
7.5]). The case (25) involving the absolute continuity is due to R.E. Edwards
(1967), cf. P.D.T.A. Elliott [1979, Vol. 1, p. 67, Lemma 1.46][43]. Note that
the conditions in (II) are equivalent to the following ones: (1) the coefficients
By exist for k = 1,2,..., (2) limyeo & Sohe, 182 = 0, and (3) 3552, Be]? <
0.

(IIT) The Weyl criterion cannot be modified immediately, for instance because
co(), c1(z), hg(z) cannot be distinguished by e?™® with h = 0, +1,£2,. ...
(IV) Note that every continuous f : [0,1] — R can be approximated by
polynomials in 25T with h = 0,+1,£2,... (cf. [p. 34, Th. 1,2][164)),
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because such polynomials approximate continuous f : [0,2] — R, f(0) = f(2)
by arbitrary accurate.
(V) By the Hausdorff moment problem: Let sg = 1,s9,83,... be a given
sequence in [0, 1]. Then there exists a d.f. g(x) such that

1

(i) s, = [2"dg(z), n=0,1,2,...,if and only if
0

(i) Y (=1)(")sipk =0 for m,k=0,1,2,...,
i=0
and the solution function g(z) is unique (cf. N.I. Achyeser (1961), J.A.
Shohan and J.D. Tamarkin (1943) and see also Section 4.9).

Since G(x,) is non-empty, for a g(x) € G(x,) there exists N1 < Ny <

such that
— E k
Sk = th N, zk / dg(z).

Thus s, in (26) satisfies (i) and thus G(z,) = {g(x)}. O
Theorem 22. The sequence x, in [0,1) has an a.d.f. g(x) if and only if

1
: 2 _ _
1\;5%0 (1—1—/0 g (z)dx 2/ dx+ g /0 x)dz

1 1
—NZ]?H—W Z |ZL’m—ZEn|) :07 (27>
n=1

m,n=1
or equivalently, if and only if
(1) impy 0o % 25:1 Ty = fol zdg(x)

(il) lmpy_eo Nzn L 0 x)dr = fo (fo dt) dg(z),

(ifi) limpy e %Zﬁm:l [m = 2 = Jy Jo |2 = yldg()dg(y).
Proof. This is an L? discrepancy criterion in [159, p. 176, Th. 1]. For proof
we use:

Theorem 23. For every polynomial 1 (y) = a(x)y? + b(x)y + c(x) with con-

tinuous coefficients the one-dimensional integral of the form fol (Fy(z))dx
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can be expressed as the double integral
1 1,1 | X
/0 Y(Fy(z))dz = /0 /0 F(x,y)dFx(2)dFy(y) = 1 > F(wp, )

where

1 1 1 1 1 1
F(:c,y):/ ( )a(t)dt+§/ b(t)dt+§/ b(t)dt+/0 c(t)dt, (29)
max(x,y T Yy

and furthermore

[ wta@nas = [ [ Pepagaase (30)

for every d.f. g.
Proof. We compute

(ﬁ > (@ ) +b(x) (% > Cann (1‘)> +e(o) | de

/ B(Fy (o
n=1 n=1

=/0
Z /maxxmxn) x)dr + — Z/gﬁ dx—i—/ c(x)dx

mnl

and thus we find F(x,y) of the form (29). ® Then using Lebesgue theorem
in the left and the Helly theorem in the middle of (28) we find (30). O

hNew, putting ¢(Fy(z)) = (Fx(z) — g(x))* we find F(z,y) = F,(x,y),

Fg(x,y)zl—max(x,y)—/ g(t)dt—/ g(t)dt+/0 g*(t)dt. (31)

Bearing in mind max(z,y) = %‘x_y‘ and (28) we find limy_, o, fol(FN(x) -
g(z))?dz = 0 in the form (27).

Finally, from (i), (ii), (iii) follows (27), and in opposite case, if limy_,o Fn(x) =
g(x) a.e. then the second Helly theorem implies (i), (ii), and (iii). O

8Similarly, for any polynomial v (y) of the nth order there exists F(x1,...,z,) such
that fol W(g(z))dr = fol ... fol F(z1,...,2,)dg(x1) ... dg(z,).
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Theorem 24. The sequence x,, € [0,1) possesses an a.d.f. if and only if °

1 y m=1 n=1 1 N
B SYWE Z |{Em xn‘ o N2 Z |xm xnl) =0 (32)
m,n=1 m,n=1

Proof. We prove generally

/Ol(gl(x) — go(z))*dr = /01 /01 |z — y|dgi (z)dga(y)—

_ %/0 /0 |z — y[dgi(x)dgi(y) — %/0 /0 | = yldga(2)dgz(y)  (33)

for every two d.f.s g1(z) and go(x).

For given gi(x) and go(x), let x, € [0,1), n = 1,2,..., be a sequence
such that for index sequence N; < Ny < ... and M; < My < ... we have
limy o Fin, (2) = ¢1(z) and limy_, o Fiy, (x) = g2(z). Such sequence x,, exists
by Theorem 6. Putting N, = N and M, = M, express step d.f.s Fy(z) and
Fy(z) by (2) and compute

n=1 m=1
1 o !
- N2 > ; Clan, 1) (T) (e, ( dx+ Z / (1) (T) (1) (2)d
m,n=1 m,n=1
1 M M 1
_Q—MNZZ /0 Can1] (£) (e, 1) () d. (34)
m=1 n=1

1
/ Clan1](X)C(a 1) (2)dx = 1 — max (2, 2,,)
0

9The multi-dimensional case is in (525).
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from (34) we find

<FN<x Fys(w))da (35)

/o (1 — max(z,y))dFy(z)dFx(y)

\

CJ

_|_

/ / (1 — max(z, 5))d Far (2)dF ()

0 0
1 1

-2 (1 — max(z,y))dFy(x)dFy(y)

= [ [ 0= maxe @) = Fu)a(Fe) - Fut). 66

Computing the limit of (35) by Lebesgue theorem of dominant convergence
and the limit of (36) by the second Helly theorem (see Theorem 2) and for
M = My, N = N, k — oo we find

/0 (61 (2)—g2(x))?dz = / / (1—max(z, 1))d (g2 (2) — g2(2)) (g1 (5)— 92 (3).
g

Since
z+y+ |z —yl

2 )

max(z,y) =
/ / Ld(g1(2) — 92(2))A(g1(y) — g2(y)) = O,

// z+y)d(g1(z) — g2(2))d(91(y) = 92(y)) = 0,

we find (33) in the form

/0 (91(2) —gz(w))Qdﬂf:/O /0 ——'x;md(gl(w) — g2(2))d(g1(y) — g2(y)).
(38) |eq51
)

Example 5. Put z, = £, n=1,2,.... Then |[1/m —1/n| = |m —n|mn and
]\}2 >t [ — rl < el

N2 Zmn 1|1L'm—l'n| <C

— 0,

log M 0.
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Thislimplg/?s -

32 Lomaet [Tm — 20| =[5 fo 12 = yldgi(2)dgi(y) = 0 = g1(z) = calz),

N2 Dot [ =@l = [ [y 1o = yldga(2)dgaly) = 0 = ga(x) = e5(x).
Assuming (32), then

M N

ﬁ Zm:l Zn:l |.fEm - $n| - O

and then X
N 1

% Zm,n:1 |xm - xnl — fo fo ‘x - y‘dgl(x)dg2<y) =0

which gives « = 3. Then z,, has an a.d.f., concretely co(x).

Another criterion for singleton G(z,,).

Theorem 25. The sequence x,, € [0,1) possesses an a.d.f. g(x) if and only
if the sequence of functions

| X
_ itxy,
on(t) = N ; e

converges point-wise on R to a function ¢(t) which is continuous at 0. In
this case ¢(t) is a characteristic function of g(x).

Proof. See [178, p. 287, Th. 4]. O
178, p. 283, Th. 2]: 10

Theorem 26. Let x,, n =1,..., be a sequence in € [0,1). Suppose that for
any € > 0 there exists a function f. : N — N having the following properties:
(i) lim. o d({n; |7, — yn| > €}) = 0, where y,, = T, and d(X) denotes
the upper asymptotic density of X.
(ii) For each a € N the asymptotic density d({n; fe(n) = a}) exists.
Then x,, has an a.d.f.

Proof. Denote
A(a) ={n € N; f.(n) = a};
Ala)y = #{n < N; f-(n) = a}.
By assumption (ii) there exists limit

lim AX(@) _ d(a,<). (39)

19Tn original theorem there is also assumption (i) lim._,o lim supy_, . d{n; f-(n) > T} =
0; which is by our proof superfluous.
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For 1
N#{” < N;y, <} (40)

we have

1 1 1
N#{n < Nyy, <z} = N#{n < Nyxp(n) <z} = N Z An(a).  (41)

Ta<T

By (39) and since the sum in (41) is finite, then the following limit exists

o1 .1
g(x,e) == lim N#{n < Nyy, <z} = ]\}1_13;0 N Z An(a) = Z d(a,¢)

N—o0
Ta<T Ta<x
(42)
In the following we compare d.f.s. of y, and x,,.
19,
1 #{n < N;y, < z}
—4#n Yy, < X
N > INV3Y
1
:N#{n§N> ’mn_yn‘ <€ayn<x} (43>
1
+N#{"§ Ni|@n — yn| > €,y <z} (44)
Since

Ty —yn| <cand y, <x = Ty —Yn| + Y <x+e = x, < T +5¢,
then (43) can be bounded by
1 1
N#{nSN;\xn—yd<€,yn<x}§ﬁ#{n§]\7;xn<a¢+e}. (45)
Furthermore (45) can be bounded by upper d.f. g(z + ¢) of z,, defined as
1
glx +¢e) =limsup —#{n < N;z, <z +¢€}.
N—o0 N

The part (44) is bounded by

1 1
N#{n SNz — Y| 2 6,yn <2} < N#{" < Nilzn —yn| > €} (46)
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If N = oo in (45) and (46) and using (42) we have
g(w,e) <glz+e) +d({n € Ni [z, — yu| 2 €}) (47)
for every e > 0 and = € [0,1).
20,
i#{n < N;z, <z}
N — Y n
1
:N#{TLSN, |xn_yn| <&, Ty <JZ} (48>
1
—l—N#{ng N;|zy — yn| > €, 2, < x}. (49)
Similarly as in (45) and (47) we have
1 1
= # S Nl gl < <o} < A< Ny <z b} (50)
1 1
= 5 S Nilon —yal > 220 <} < {0 < Nilow —unl 2 €} (51)

Let N — oo in (50) and (51) and bearing in mind that
1
h]{]glorif N#{n < N;y, <z} = g(v);

1
lim —#{n < Niyp <@ +e}p=glr+ee)

N—oo

1 _
lim sup N#{n < Ns|zp —yn| > €} =d({n; |20 — yn| > €})

N—oo

then we have

9(z) < gl +e,e) + d({n;|zn — yu| > €}) (52)

for every z € [0,1) and every € > 0. Putting = x — ¢ then (52) is
transformed to

g(z —¢€) < gz, ) + d({n; |rn — yu| = €}) (53)

for every x > € and every € > 0. Combining (47) and (53) we have

g(z —e) < gl +e) +d({n; o, —ya| 2 €}) (54)

for every x > ¢ and every € > 0. Then the upper and the lower d.f. of the
sequence x,, are arbitrary close, thus are identical. O
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2.7 Uniform distribution (u.d.) of z,

For completeness, we add a part of the G(z,) = {g(x)}, where g(z) = =.
e The sequence z, is said to be uniformly distributed modulo one (abbreviated
u.d. mod1) if for every subinterval [z,y) C [0, 1] we have

lim (Fy(y) — Fy(2)) =y — .
N—o00
This convergence is uniformly with respect to N.

Theorem 27 (Weyl limit relation). The sequence x, mod 1 is u.d. if and
only if for every continuous f : [0,1] — R we have

hm —Zf {z,}) = / f(z

Theorem 28 (Weyl criterion). The sequence x,, mod 1 is u.d. if and only if

N
1 .
lim N E: e?mhan — () for all integers h > 0.

N—oo

Theorem 29 (van der Corput’s difference theorem). Let z,, be a sequence
of real numbers. If for every positive integer h the sequence ., — x, mod 1
18 u.d., then x, mod 1 is also u.d.

Theorem 30 (L? discrepancy criterion). The sequence x,, in [0,1) is u.d. if

and only if
1 1 al
N ERE SERED SRS S R B

or equivalently, if and only if

, and

N =

(i) imy_eo & SN a, =
(ii) Imy_eo ~ SN a2 = 5, and

(i) Hmy—oo 1z 3 e [2m — Tal = 3
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The notion of discrepancy was introduced to measure the distribution
deviation of sequences from the expected ideal one, cf. [92, Chap. 2|, 38,
Chap. 1].
e Let z1,...,zn be a given sequence of real numbers from the unit interval
[0,1). Then the number

A(la, B); N ay)
N

—(B—a)

DN:DN(‘Ila"'?xN): sup
0<a<p<1

&

is called the (extremal) discrepancy of this sequence. The number

Dy = sup
xz€[0,1]

A([0,2); i) _x‘
N

is called star discrepancy, and the number

1 N 2
0

is called its L? discrepancy. The above discrepancies are mutually related by
the following inequalities

Dy < Dy < 2Dy, [92,p.91],
(Dy)? <3DY) < (Dy)?  [117),

These inequalities hold for the arbitrary sequence xy,...,zy in [0,1) hav-
ing N terms. The following theorem demonstrate the role of the discrepancy
notions:

Theorem 31 (H. Weyl (1916)). A sequence x,, € [0,1) is u.d. if and only if

lim Dy(z,) = 0.

N—o0

Theorem 32 (P. Erdés and P. Turn (1948)). Ifxy,...,zy mod 1 is a finite
sequence and m a positive integer, then

Do < 6 +4’” 1 1
N_m+1 T h m-+1

Theorem 33 (Fejér’s difference theorem). Let x,, be a sequence such that
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(i) x, — o0, and

(ii) Az, |0, where Ax,, = Tpi1 — Tp.
Then x, mod 1 is u.d. if and only if
(iil) limy, 0o nAx, = 0.

Theorem 34 (H. Weyl (1916)). An s—dimensional sequence x, mod 1 is u.d. if
and only if for every integral vector (hy, ..., hs) # (0,...,0) the one—dimensional

sequence
hixpi+---+hsx,smodl, n=12 ...,

18 u.d.

The following briefly lists some various results:
(I) If x,, n =1,2,..., is a monotone sequence that is u.d.mod1, then

See H. Niederreiter [120].
(IT) If x,, is a sequence that is u.d.mod1, then

lim sup n|z,4+1 — x,| = 0.
n—oo

See P.B. Kennedy [84], cf. [92, p. 15, Th. 2.6].

(III) Let P be a set of primes such that > _,1/p diverges. If the sequence

peEP
Tpomodl, n=12,...,
is u.d. for every h composed only from primes taken from P then

rpomodl, n=12 ...,

is u.d. See G. Myerson and A.D. Pollington [110].
(IV) Define spectrum of z,, sp(z,) as

sp(z,) = {a € [0,1]; z,, — na mod 1 is not u.d.}.

M. Mendes France [103] proved: Necessary and sufficient condition that every
subsequence ., will be u.d. for every integer @ > 1 and b > 0 is that

sp(rn) NQ = 0.
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(V) Let z,, n =1,2,..., be a sequence in [0, 1) such that
#{n < N;z, €1}
N —

for all intervals I C [0, 1] of the fixed length |I| = a. Then z,, may not be
u.d., see following example.

1|

Example 6. Assume that all g(x) € G(z,,) satisfy

g(x+a)=g(x)+afor z €[0,1—al. (56)
The following d.f. g(z) satisfies (56) but g(z) # x.

g9()

a 1
Fig.: Solution of (56).

Note that A. Voléi¢ [190] proved that the limits
< .
#{n < N;z,€l} _}L
N 27
for family of all arcs C' on the unit circle of a constant length [ implies u.d.

of z,, in the unit circle if % is irrational.
(VI) If =, is a sequence that is u.d. in [0, 1), then

' | V-l 1
h]IVn—>Solip N nZ:O |Tpi1 — 2p| < 5
See F. Pillichshammer and S. Steinerberger [127] and our Theorem 214.
(VII) In [124, Ex. 5.11, p. 249-250] is proved:
Ty —Yp =log(n+1),n=12...
= ((z, mod 1 is u.d. ) < (y, mod 1 is u.d. )).

See also Theorem 92 in this book.
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2.7.1 Examples of u.d. sequences

(1) The sequence

[an|fnmod 1, n=1,2,... (57)
is u.d. in [0,1] if and only if either o, 3 ¢ Q or o € Q and 1, o, 3 are linear
independent over Q. This proved I1.J. Hgaland [76, Prop. 5.3]. He gave
similar examples: [v/2n]?v/2 mod 1 is u.d. but the sequence [v/2n]?v/2n mod
1 is not.

(2) The sequence

logn!mod 1, n=1,2,... (58)

is u.d. in [0, 1]. This proved K. Goto and T. Kano [62, Th. 3].
(3) Let F,,, n =1,2,... be the sequence of Fibonacci numbers. Then the

sequence
logF,, n=1,2,... (59)
is u.d.mod1 (see [92, Ex. 3.3, p. 31]). A similar result for log, £}, mod 1 is

not known, but it is everywhere dense in [0, 1].
(4) Let a # 0, 3, 7, 0 be real numbers and denote

z, = an”log” nlog’ (logn) mod 1 (60)

for n = 2,3,.... Then the sequence x, is u.d. if and only if it satisfies one
of the following conditions:

(i) B is a positive non-integer;
(i)
(iii)
(iv)
This proved M.D. Boshernitzan [23].

(5) Denote the nth nontrivial root of Riemann’s dzeta funkcion ((s) =
S L in critical zone 0 < Rs < 1 as o(n) = B(n) + 2y(n). Then for every

n=1 ns
x # 0 the sequence

zy(n), n=1,2... (61)
is u.d modl. After partial results of H. Rademacher and E. Hlawka this
general result proved J. Kaczorowski [82].

[ is a positive integer and either « is irrational, or v # 0, or ¢ # 0;
S=0and vy >1;
B=0,vy=1and § > 0;
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(6) Let p,, n =1,2,... be an increasing sequence of all primes and o > 0
an arbitrary non-integer.Then

po, n=12 ...

is u.d. mod1. For o > 1 this proved .M. Vinogradov [189].

3 Examples of applications of d.f.s

The purpose of this section is a preliminary illustration of applications of
G(z,). Some known classes of sequences x,, originally defined by properties
of z,,, we characterize by using the set G(x,,) of all d.f.s of x,,.

For example:

e (A, \)-distribution;

e Statistically independent sequences;
e Statistically convergent sequences;
e Statistical limit points;

e Uniform maldistributed sequences;
e &(3/2)"mod 1, n=1,2,...;

e Benford’s law;

e Copulas;

e Ratio sequences.
This section lists basic characteristics of these sequences. Additional features
with proofs will be given in Section 6.

3.1 (A, XN)—distribution

e J. Chauvineau (1967/68) [26]: Let A and X" be two real numbers such that
0 < A <1< )N. The sequence z, mod 1 is said to be (A, \')-distributed if
for every non—empty proper subinterval I C [0, 1] we have both

and

(1) lim ian—wo #{nSN;x;\,[mod 1el} > /\|]|’

#{nﬁN;x;LVmod 1el} < )\/|I’

(i) limsupy_, o
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If only (i) is satisfied, the sequence z,, mod 1 is said to be (A, oco)-distribu-
ted or positively distributed (cf. [154, p. 234]). On the other hand, if only
(ii) is true the sequence x, mod 1 is said to be (0, \')-distributed. These
distributions can be characterized using d.f.s as follows (cf. [162]):

Theorem 35. A sequence x, mod 1 is (A, X')—distributed if and only if every
g(x) € G(x, mod 1) has the lower derivative > X\ and the upper derivative
< X at every point x € (0,1).

Example 7. G. Pélya and G. Szegé (1964, Part 2, Ex. 179)[129] proved
that the derivative (density) ¢’'(x) of any g(x) € G(clogn mod 1), ¢ > 0, has
the form

logg grotL, if 0 <z <a,
g'(x) = ?_1

84 T ifa<ax<1,

q—1 B

where ¢ = e'/¢ and a € (0,1). If @ = 0 or a = 1 then

log g
/ . T
g@ﬁ—q_lq

and clogn mod 1 is (A, N)-distributed with A = {%q and \ = q%q. Also
see Example 21, p. 76.

3.2 Statistically independent sequences

Preliminary definitions to Section 5.1:
e Let (2, X, P) be a probability space. For the random vector (X,Y") we
define:

distribution function F(z,y) = P(X < z,Y <y);

marginal distribution functions Fi(z) = P(X < z), Fa(y) = P(Y < y);

density function f(x,y) = %F(m,y};

marginal density functions fi(x) = Fi(z), fo(y) = Fa(y)'.
e The pair X and Y of random variables are independent if F(z,y) =
Fi(z)Fy(y) or f(z,y) = fi(z)fs(y) for every relevant x,y. This definition
for random variables is Theorem 36 for sequences.

Definition 1. G. Rauzy [135, p. 91, 4.1. Def.]: Let z,, and y,, be two infinite
sequences from the unit interval [0, 1). The pair of sequences (x,, y,) is called

41



statistically independent if

AP_{{;( Zfl Tn f2 yn ( Zfl T ) (%Zﬁ(gn))) =0 (62> eq86

for all continuous real functions fi, fo defined on [0, 1]. In other words, the
double sequence (z,,y,) is called statistically independent if the coordinate
sequences x, and y, are statistically independent.

Theorem 36 ([135, p. 92, 4.2. par.]). For an arbitrary (z,,y,) € [0,1)?,
n=1,2,..., we have (x,,y,) statistically independent if and only if

Vo gle,y) =gz, Dg(ly) a.e on0,1] (63)

QGG(xruyn)

Proof. For given two-dimensional sequence (z,,y,) put

#{n < N; (25, yn) € 0,2) X [O,y)}‘

FN(xvy): N

By Riemann-Stieltjes integration and by Helly theorem, there exists a se-
quence of indices N7 < Ny < ... and d.f. g(z,y) such that

Zfl Ty) f2(Yn) / / fi(x) f2(y)dFy, (7, y)

_>/0 /0 fi() fo(z)dg(z, y),

Nikzlfl<xn):/0 fl(x)dFNk($,1)—>/0 fi(z)dg(x, 1),

Nikifg(yn)z/o fz(y)dFNk,(l,y)%/o F2(y)dg(L,y)

as k — o00.
1°. Assuming statistical independence (62) we have

//,ﬁ ) fo(@)dg(z,y) = (/f dgxl)(/fg dgly).<64>
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Applying on the left (64) the (563) we find

[ [ @i =aa 500 - [ ot van@ - [ o)
/ gz, 9)dfi()d fo(y)

and mtegratlon by parts
fo fl dg z, 1) fl(l) - f() (ZE, 1)df1(l‘)7
Jy fi@)dg(z,1) = fo(1) = [) g(L,y)dfa(y).
Then from (64) follows

[ [ stananean = ([ steninw) ([ swnirnm)

©)

for arbitrary differentiable functions fi(z) and fa(y). Now for a continuity
point (zg,y) of g(x,y) we select fi(z) and fo(y) such that [dfi(2)]s=z, = 1
and [df2(y)]y=y, = 1 and others dfi(z) = 0 and dfz(y) = 0. Then (65)
implies g(xo, y0) = g(0,1)g(1, yo)-

29, On the other hand (63) implies that in every sequence N; < Ny <
there exists subsequence N < Nj < ... such that such that the limit (62)
holds for N = NN and thus it holds for arbitrary N. m

(I) Theorem 36 can also be found in P.J. Grabner, O. Strauch and R.F. Ti-
chy (1999) [64] where it is used (p. 109) to give the following s-dimensional
generalization of statistical independence: Let x, = (Zp1,...,%ns) N =
1,2,..., be an s—dimensional sequence in [0,1)* formed from s sequences
Tn1,Tn2s---,Tns. Lhen x, is called statistically independent (or that x,
has statistically independent co-ordinates x, 1, ..., T, ) if every d.f. g(x) €
G(x,,) can be written as a product g(x) = g1(z1) . .. gs(x5) of one-dimensional
d.f.s. Here g;, i =1,...,s, can depend on g. Another

gz, y,z,...)=g(x,1,1,...)g(L,y,1,...)g(1,1,2,...)....

As an example in [64] (see Example 191 in this book):

X, = <(_1)Hlog(j)n]l/m][log(j) n]l/pl’ — (_1)[[10g(j>n]l/ps][log(j) n]l/p5> mod 17
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where log”) n denotes jth iterate logarithm log...logn and py,...,ps are
pairwise coprime positive integers. Then for j > 1 the G(x,,) is the set of all
Ca(x) where

() = 1 forxe€ o, 1] (66)
« )0 otherwise.

Thus x,, has statistically independent coordinates.

(IT) Grabner and Tichy (1994) [31] proved that the extremal discrepancy does
not characterize statistical independence, but the limit limy_ D](\?) =0 of
the L? discrepancy provides a characterization.

(IIT) J. Coquet and P. Liardet (1987) call two multi-dimensional sequences
x, and y,, statistically independent if for every (complex valued) continuous

fis fa

]\}I_I}éo( ZflxanYn ( Zflxn><%2f2(yn)>>:0'

If for an integer s > 1 the s—dimensional sequences X, = (Tpi1,- .-, Tnts)
and ¥, = (Ynt1, - - -, Ynss) are statistically independent, then the one-dimen-
sional sequences z,, and y, are said to be statistically independent at rank
s. If they are statistically independent at rank s for all integers s, they are
called completely statistically independent.

For an example in [30]:

Example 8. For a given integer ¢ > 2, a real number § and a real polynomial

p(z), let
(i

) x, = 6¢™ mod 1,
(ii) y, = p(n) mod 1,
) x

(iii = (Tpi1s s Tnrs) A0A Y = (Yna1y - s Ynts)-

If z,, is u.d. (i.e. # is normal in the base ¢), then for every s = 1,2,... the
sequence

(X, ¥n), n=12,...,
has d.f.s g(x,y) € G((Xpn,yn)) only of the form g(x,y) = ¢1(x)g2(y) for
some ¢1(x) € G(x,,) and ¢2(y) € G(yn), i.e. the sequences x,, and y, are
completely statistically independent.
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(IV) Coquet and Liardet (1987) [30] defined (following Rauzy (1976) [135])
the statistical independence for a family of sequences H using the limit

1Y 1w
1\}5%0 (N;fl(xn,l Sre(Xng) ( Zfl an)---(ﬁ%fk@nk)))

provided that this limit vanishes for any subfamily x,,1,...,%, % of H and
for every continuous fi, ..., fx. The equivalent reformulation in terms of the
decomposition of any g € G(x,1,...,X,) into the product of d.f.s from
G(Xn1),- .-, G(Xnx) they call independence criterion. Cf. also Coquet and
Liardet (1984) [29].

(V) Liardet (1990) [100] also defined the statistical independence of a se-
quence x, with respect to a set ¥ of mappings v : N — N such that
lim,, o0 1(n) = oo provided the family of sequences ), ¥ € VU, is sta-
tistically independent. Along parallel lines to those of the previous note
he defined the notion of U-independence at rank s and the complete W—
independence.

(VI) Examples of statistical dependence are copulas in Section 8. For further
properties see also Section 5.1.

3.3 Statistical limit points

Following the concept of a statistically convergent sequence, J. A. Fridy [58]
introduced the notion of a statistical limit point of a given sequence x,,
n = 1,2,... of real numbers: A real number x is said to be a statistical
limit point of the sequence x,, if there exists a subsequence xy, , n =1,2,...,
such that lim,,_,. xy, = = and the set of indices k, has a positive upper
asymptotic density (see Definitions and Notations). Fridy studied the set
A(z,,) of all such points. In the paper [90] is proved the following Theorem
37 that the set A(z,,), for z,, € [0,1) n = 1,2,..., coincides with the set of all
discontinuity points of d.f.s of z,,. This is inspired by I.J. Schoenberg [148]
who noted that the sequence z,, is statistically convergent to « if and only if
x, admits a.d.f. cjo1)(2)(= ca(2) see p. 11).

Theorem 37. For every sequence x,, € [0,1) we have

A(z,) = {a € R;3(g(x) € G(x,)) g(x) is discontinuous at a}.
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Proof. 1°. Let a be a discontinuity point of g(z) € G(z,) with a jump of
size h. Let «; and (3; be two sequences satisfying 5, — a; — 0 as 1 — o0,
a; < a < f; and «; and f; are continuity points of g(x) for every i. From Ny
(using the definition of g(x)) we can select a subsequence Ny, such that

TR
N_k. Z C[O‘iwgz‘)(xn) >h—¢
" n=Np,_,+1

for some € € (0,h). Ordering elements of U2 {n € N, Ny, , <n < N} to
an increasing sequence n;, then we have x,, — « and d(nl) 2 h —e.
2°. Assume that x,,, — a for i — oo, d(n;) = h >0, and € € (0, h). Then
there exists a sequence Ny such that for every k =1,2,...,
{i € N;n; < N} -
Nk -
By Helly selection principle from N, we can select a subsequence Ny, such
that

h—e.

hm—ZcOm x,) = g(x)

1— 00 Nk‘

for every point x of continuity of g( ). Clearly, g(x) has at o a jump of size

>h—e>0and g(x) € G(x,). O
Theorem 38. Let x,, be a sequence of real numbers. If for everyk =1,2, ...
the difference sequence Ty — Tn, n=1,2,... has AN(Tpix — xn) = 0, then
A(x,) = 0.

Proof. Van der Corput difference theorem in the form Theorem 14 gives that
if G((zpyr — ) mod 1), k = 1,2,..., contains only continuous d.f.s, then

the same holds for G(z,, mod 1). Thus we have the implication
A(zpix —xp) mod 1) =0,k =1,2,... = Az, mod 1) =0

O
Theorem 39. For any two sequences x,, and y, we have
dim Z [T = Yol = 0 = Az,) = Alyn)-
Proof. For x,,y, € 0, 1] in Theorem 11 we have
iy oo N7 20 — yn] = 0 = G(2,) = G(yn)
and thus A(z,) = A(y,) is applying Theorem 37. O
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3.3.1 Examples

Example 9. Assume G(z, mod 1) = {g(x)} and g(z) = z, thus the se-
quence x, is u.d. mod1. Applying Theorem 37 and the continuity of g(z) =

x we find
A(z,, mod 1) = 0.

E.g. A-set is empty for the following sequences:
nf mod 1 with irrational 6 (cf. [172, 2.8.1]);
n?0 + sin(2m+/n) mod 1 with irrational @ (cf. [172, 2.13.2]);

log F}, mod 1 with Fibonacci numbers F, 1 = F,, + F},_1,
Fy=F,=1 (cf. [172, 2.12.21]);

nloglog...logn mod 1 (cf. [172, 2.12.5]);
etc.

Example 10. By Example 1 (cf. [172, 2.12.1])

1e*—1 6min(gc,u) -1
+

et e—1 ev

G(logn mod 1) = {gu(x) = ;u € [0, 1]} ,

Since all distribution functions in G(logn mod 1) are continuous, we have
A(logn mod 1) = 0.

Another proof follows from Theorem 12 because for x,, = logn mod 1, we
have

1
RURNRCT IR
More generally, for z,, = tlogn mod 1, t # 0, we have
1
Wwp = ————
M Arzh2e 4 1

which implies limpy o 7 Zlewh = 0 and thus by Theorem 12 we have
A(tlogn mod 1) = ) for any ¢t # 0. For computing w, we have used a
method described in [124, Solution 5.18, p. 281].
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Example 11. It is proved in Example 20 (cf. [161], [172, 2.12.2]) that start-
ing with loglogn mod 1 all the sequences loglog...logn mod 1 have

G(loglog...logn mod 1) = {c,(x);a € [0, 1]} U {ha(z); a0 € [0, 1]}.

Here ¢, : [0,1] — [0,1] is a one-jump distribution function

ealz) = 0, ifze€|0,a),
N, ifae (a0

ca(0) =0, co(1) = 1, and co(a) = 0if 0 < o < 1 :
constant distribution function, where h,(0) = 0, ho(1) = 1, and h,(z) = «
if z € (0,1).

Applying Theorem 37 we have

A(loglog...logn mod 1) = [0, 1].

Example 12. Let a = %’W, where p and ¢ are positive integers and g.c.d.
(p,q) = 1. It is proved in [20] that the sequence

x, =ncos(ncosna) mod 1, n=172...
has G(z,) = {g(x)}, where

X if ¢ is odd
g(z) = (1 _ %> v+ leg(z) if g is even

and co(x) is introduced in Example 11 for @ = 0. Theorem 37 implies

Azy) = 0 if ¢ is odd ,
" {0} if ¢ is even .

(I) Fridy has shown that the set A(z,) need not be closed or open in R. In
[90] is proved that the set A(xz,) is an F,-set in R for an arbitrary sequence

x, and vice-versa for any given F-set X there exists a sequence x,, such that
X = A(z,).
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3.4 Statistically convergent sequences

Let z,, n =1,2,..., be a sequence of real numbers, it may be unbounded.
e The sequence x, is said to be statistically convergent to the number o
provided such that for each € > 0,

lim %#{n < N:ilon—a| > e} = 0. (67)
The definition of statistical convergence was given by H. Fast [50] and I.J.
Schoenberg [148], independently. Schoenberg gives the concept of statistical
convergence from the viewpoint of d.f.s. For z € (—o0, 00) he define

o Fy(z) = +#{n < N;z, < z}. The sequence z, is said to have the a.d.f.
g(x) if the limiting relation limy_, Fy(z) = g(x) holds for every point z of
continuity of g(x) and define one-jump function in z € (—o00, 00)

if x <
ca(x):{o’ if x < q,

1, ifx>a.

Schoenberg [148] proved the following results (I) and (II).
(I) The sequence z,, is statistically convergent to the number « if and only
if the sequence x,, admits the a.d.f. ¢, (z).
(IT) The sequence z,, is statistically convergent to the number « if and only
if limy o0 & 27]:[:1 e2mitn — e2mia for every real t.

For bounded sequence x,, the claim (II) can be extended to:
(IIT) The sequence x, in [a,b] is statistically convergent to « if and only if
for every real-valued continuous function f(z,y, z,...) defined on the closed
multi-dimensional [a, b]® cube we have

M N K

M’N}}({g._}mmZZZ...f(xm,xn,a:k,...):f(a,a,a...).

m=1n=1 k=1
(IV) The sequence x,, in [a, b] possesses a statistical limit if and only if
| Mo
M,lli\f%oo UN mZ::l ; | Ty, — x| = 0.
(V) The sequence x,, in [a, b] is statistically convergent to « if and only if
1 1 ¢
d g 2o = i 5 2 fon =] =0

m,n=1
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(VI) The sequence x, in [a,b] is statistically convergent to zero, or equiva-
lently, x,, has the limiting distribution ¢o(x) if and only if

N

) 1
Jim gy 2 leal =0

n=1

(VII) the L? discrepancy related to c,(x) becomes the form

! 1 & -
2
JRGEEE) o=y D len—al = gy O fom =l

m,n=1

In addition, for & = 0 we have the equality

/01 (Fy(z) — colz))* dz = /01 (Fy(z) — 1)>de =

1w 1 !
= — 23(:”—1:%——)—1—/ Fy(z) — z)* d,
w2 )+ [ -

with the classical L? discrepancy fol (Fy(z) — ) de.

(VIII) Let f :[0,1] — R be a function with continuous derivation on [0, 1],
and let x1, s, ..., zx be the finite sequence of points in [0, 1]. Then for any
a € [0, 1] we have

1 & jR—
i (3ol 54 3 o) <o

n=1 m,n=1

50



3.4.1 Examples

(I) For a positive integer n and a prime number p, let ord,(n) = k denotes
that the prime-power p* divides n but p**' does not divide n. Then the
sequence

ord,(n)
logn

T, = logp

, n=23,... (68)
is dense in [0, 1] and statistically convergent to the zero-limit.

Proof. To see a density, choose n with n = p®¢®, where ¢ is also prime. Then

ord,(n) 1
logp . - Blogg”
logn 1+ TS

By passing to a suitable sequence of rational numbers (3;/q;, one can guar-
ordp(n) f .
oty = for a given z € [0, 1].

The statistical convergence of (68) can be shown by using (VI). To deal

with the sum + SN odp(n) e apply Cauchy’s inequality

n=2 logn

antee the existence of a limit lim; .., logp

N+1 N+1 N+1

1 d,(n) 1 1
D R\ E DL HONE DS

n=2 n=2 n=2

1

log?n’

(69)

The last term on the right of (69) is convergent to zero since 1/log®n — 0

as n — oo. To estimate S0 ord’(n) we take ord,(n) = k and

i\n) =
Xp (n) 0 in other cases.

{1 if p' divide n
Since k* < #{(4,7);0 <4,5,1 <i+j <k}, we have the estimate

N+1 N+1

Z ord’(n) < Z Z Xpi+i (1)

n=2 << loslitl)

= > []\;:jl}S(N+1)(1+%+i2+...>2

Y%
. _log(N+1)
IS+ < = o

51



Combining this with (69) we find that

and (VI) implies the zero statistical limit for the sequence (68). O

Another proof can be found in T. Salat [141].
The example concludes with an estimation of the L? discrepancy. By
virtue of the expression (VII)

1 1 & 1 &
2
/0 (Fn(z) — co(x)) da = N;xn— ngzlmm—xn,

we obtain

1 ) 1 N
/0 (Fy(z) — co(z))? dz < N;xn

P 1T 1SR 1
< logpy/1+ — | — .
_p_logp +N Nzlogzn

n=2

(IT) For every positive integer n = p{* ... pa* let us denote h(n) = min(ayq, ..., o)
and H(n) = max(ay,...,ag). A. Schinzel and T. Salét proved that the fol-
lowing sequences

log2———=, n=2,3,...

’ logn’

log

are everywhere dense in [0, 1] and statistically convergent to 0.

(III) In [68, p. 356] is defined that x,, > 0 has the normal order y, if x,, is
approximately v, for almost all values of n. More precisely, for every positive
¢ and almost all values of n we have

(1 —=8)yn < xp < (14 €)yy.

Clearly, as in [68] we mentioned that for y, > 0 the sequence z,, has the
normal order y, if and only if x,, /y, statistically converges to 1. Here we list
some known examples:
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(i) The normal order of w(n) is loglogn. Here w(n) denotes the number
of different prime factors of n [68, pp. 356-359].

(ii) The normal order of ©(n) is loglogn. Here Q(n) denotes the total
number of prime factors of n [68, pp. 356-359].

(iii) The normal order of logd(n) is log 2loglogn. Here d(n) denotes the
number of divisors of n [68, pp. 356-359].

(iv) The normal order of w(¢(n)) is (loglogn)?/2 [106, p. 36].

(v) The normal order of w(oy(n)) is d(k)(loglogn)?/2, where o(n) =
> djn d* and d(n) = > 1 [106, p. 96].

(vi) w(p £ 1) has the normal order loglog p, where p is a prime [106, p.
171].

3.5 Diophantine approximation generalized

See [105]. ' Let x, be a sequence in [0,1], and z, > 0 be a monotone
sequence, z, — 0. The method 3.3 of statistical limit points can be using to
study the set x € [0, 1] for which

|z — x,| < 2y,

holds for infinitely many n. The asymptotic density d(n) of such n can be
computed.
From Theorem 37 follows:

Theorem 40. Let z,, be a sequence in [0,1) such that the set G(x,) of all
d.f.s of x, contains only continuous d.f.s. Then for every sequence z, > 0,
zn — 0, and every x € [0,1] we have: If |x — x| < 2y, k =1,2,..., then
the asymptotic density of indices d(ny) = 0.

For every u.d. sequence z,, we have G(z,) = {g(x)}, g(z) = x, and thus
d(ng) = 0. Another example:

Example 13. As we see in Example 1, the sequence
rp,=lognmodl, n=12,...,
has the set of d.f.s

6le) = { o) = we .},

emin(z,u) -1 1e*—1 ‘

eu et e—1"

HOther types of results can be found in D. Berend and A. Dubickas (2009) [21].
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and {log N} — w implies Fy, () — gu(x). Thus, by Theorem 40, if
|z — {logng}| < zn,, k=1,2,...
then nﬁk — 0 for every sequence z, > 0, 2z, — 0.

The so called uniformly maldistributed sequences (u.m.) x, are charac-
terized by that the set G(z,) containing all one-step d.f.s ¢, (z). They were
introduced by G. Myerson (1993) [109], see the following Section 3.7. For
such sequences we have

Theorem 41. Let x, be a u.m. sequence in [0,1). Then there exists a
decreasing sequence z, > 0, z, — 0, such that for every x € [0,1]: The
sequence of all indices ng, |v — x| < zn,, k = 1,2,..., has the upper
asymptotic density d(ny,) = 1.

G. Myerson [109], gave the following example of a maldistributed se-
quence:

Example 14. The sequence
z, = {loglogn}, n=2,3,...
has the set of d.f.s, by [61] (see Example 20 in Section 4.1)
G(an) = {calr);a € [0,]} U {hg(x); B € 0, 1]}

where Fi, (x) — ¢,(x) if and only if {loglog Ny} — « and Fi, (z) — hg(z)
if and only if {loglog N} — 0 and

ee[log log Ny |

—1-p5.

ee[log log Ni]+{loglog Ny }

In the following, for such sequence x,, we find a concrete example of z,
satisfying Theorem 41: Let

(i) @ = {loglogn},

(ii) 2, = Zy for n € (eek,eekﬂ), k=0,1,2,...,

(iii) Zx = = where ¢ > 0 is an arbitrary large constant, and

(iv) Ng = [66K+x+zK], for K =1,2,....
Then, for every z € [0, 1], the sequence of all indices ng, |z — z,, | < 2n,,
k=1,2,..., has the upper asymptotic density d(n;) = 1. Precise,

. #{TLSNKa |$-£L’n| <Zn}
lim =
K—oo NK

1 (70)

for every x € [0, 1].
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Proof. We have
|z —x,| < 2n <= 2, € (T — 2p, T + 21). (71)

Now, define z, as a constant z, = Z for all integers n € (eek, eekH), k =
0,1,2,.... Then by (71)

{ne (e

k

ek, eek+1);xn € (x—Zy,x+ Zy)}.
(72)
Let Nk be an integer from (eeK,e ) and assume that the sequence Zj,
k=0,1,2,... is non-increasing. Then by (72)
{n < Ng;l|lr—x,| < 2z} D{n < Ni;x, € (v — Zg,x + Zk)}- (73)
Thus
#{n < Ng; |z — x,| < 2.} - #{n < Ng;x, € (v — Zg, v+ Zk)}

e€k+1); 2 — x| < 2,} ={n € (e

eK+1

NK - Nk
#{nE k“);xne (x — Zg,x+ Zk)}
#{TLSNK,'HE (66K766K+1)7$n€(x_ZK7x+ZK)}
+ N ) (75)

K—-1
As K — oo, then “—4— — 0 and thus the sum (74) also tends to zero. Since

n e (66K763K+1) and T, € (I . ZK,I + ZK) —nec (66K+Z_ZK,66K+Z+ZK)
(76)
and putting Ng = [eeK“HZK], then the term (75) can be expressed as
[66K+x+ZK:| _ [66K+x7ZK:| + 1
|:€eK+z+ZK] ° (77>
Omitting the integer parts in (77) leads to the form
1
1-— : (78)

eeK+z+ZK (1—6_221{)

By Lagrange theorem (1 — e 225) > 27 .e 245 and the lower bound of (78)

converge to

1
L= e Zpzn ! (79)
if 7 = Kw a constant ¢ > 0 is an arbitrary large. O
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All the above results follows from the following two general theorems of
limit points of x,, n =1,2,....

Theorem 42. Let xy € [0,1] be a discontinuity point of d.f. g(z) € G(z,,)
with a jump of size h. Then there exists a subsequence x,, of x,, such that
(1) 11mk—>oo Ty, = Zo,

(i) d(ng) = h,
where d(ny) is the upper asymptotic density of ny, k = 1,2,.... In the
opposite case, (1) and (ii) imply that there exists g(x) € G(x,,) such that g(x)

has at o a jump of size > h.

Theorem 43. For every sequence x, € [0,1) there exists a decreasing se-
quence z, — 0 such that

sup{d(ng); 7, =z} =d({n €N; |z —1,| < 2,}
for every x € [0, 1].

Example 15. Let I C [0,1] be an interval with length 0 < |I| < 1. By
Theorem 49, part (iv), there exists sequence z,, € [0, 1) such that G(z,) =
{ca(z); 0 € I}. By Theorem 42 and 43 there exists a positive monotonic
sequence z,, z, — 0 such that if x € I then for all ng, |z — x,,| < 25, we

have d(ny) = 1. If z € I, then d(n;) = 0.

3.6 The classical Diophantine approximation

For completeness we attaches: The Duffin-Schaeffer conjecture (D.S.C.) is
one of the most important unsolved problems in metric number theory until
now, cf. Encyclopaedia of Mathematics, M. Hazewinkel ed.:

Define that a class of sequences ¢, n = 1,2,..., of distinct positive inte-
gers and a class of functions f(q) are said to satisfy D.S.C. if the divergence
> ¢(gn) f(gn) implies that for almost all x € [0, 1] there exist infinitely
many n such that the diophantine inequality

p
x__

n

< flqn), ged(p,gn) =1 (80)

has an integer solution p. The inequality |r — z,| < 2, covers (80) in the
form that we consider z,, composed by blocks A,

1 a
dn dn an
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and if we put z, = f(g,,) for terms x; € A,,.
There are tree types of results of ¢,, f(q) satisfying D.S.C.:

(i) any one-to-one sequence g, and special f(q), for example f(q) = ¢/q?
(P. Erdés 1970);

(ii) any f(g) > 0 and a special ¢, for example % > ¢ >0 (R. J. Duffin
and A. C. Schaeffer 1941 [199]);

(iii) special ¢, f(q), for example f(g,)qn > c1(¢(qn)/qn)® for some ¢y, co >
0 (G. Harman (1998) [41].
Almost complete known results can be found in Unsolved Problems [167, p.

217).

(iv) For L? discrepancy of A, see Section 6.2.19, for uniformly quick
sequences in D.S.C. see Section 11.9.

3.7

Uniformly maldistributed sequences

Here we mention some representative results, but complete are in section 6.6.
Let x,, n=1,2,..., be a given sequence in [0, 1).

()

(I1)

(I11)

The sequence z,, is said to be uniformly maldistributed (u.m.) if for
every nonempty proper subinterval I C [0, 1] we have both

1 1
liminfﬁ#{nﬁ N;z, € I} =0 and limsupﬁ#{ngN;xn el =1

N—oo N—oo

The definition of uniform maldistribution is due to G. Myerson [109] ,
who mentioned that the first condition is superfluous, and he showed
that:

The sequence x, = {loglogn} of fractional parts of the iterated loga-
rithm is u.m. The following results are from [161].

By Theorem 183: The sequence x,, is u.m. if and only if

{ca(x); 0 € [0,1]} C G(xy,).

Thus, in the theory of uniform maldistribution we need not consider
d.f.s other than one-jump d.f. ¢,(z) which has a jump of size 1 at a.
This suggests the following definition.
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(IV) The sequence x,, is said to be wuniformly maldistributed in the strict
sense (um.s.) if G(x,) = {ca(x); a0 € [0, 1]}.

(V) By Theorem 184: The sequence x,, € [0,1) is u.m.s. if and only if

]\}ﬂom Z |Tm — 25| = 0 and limsup MNZZ\xm Tn| =1,

m,n=1 M,N—o0 m=1 n=1

: : N - N
or alternatively imsupy_,o % Don_y Tn — Iminfy_ oo & D0 T = 1.

(VI) By Example 103: Let z,, n = 1,2,... be defined as

{1+ oWV ol H

were [z] denotes the integral part and {z} the fractional part of x.

Then G(x,) = {ca(z); a € [0,1]}.

(VII) R. Winkler [194] extended definition (I) such that z,, n =1,2,..., is
called maldistribution if G(z,) is the set of all d.f.s. Such sequences
form residual set in the space of all sequences, but in this space almost
all sequences are u.d.

3.8 The sequence £(3/2)" mod 1

The question about distribution of (3/2)" mod 1 is a most difficult. Here we
listed a selection of known conjectures. Some proofs and other results are
given in Section 6.1.

(I) (3/2)" mod 1 is uniformly distributed in [0, 1].
(IT) (3/2)™ mod 1 is dense in [0, 1].

(IT) (T. Vijayaraghavan [188]) lim sup,,_,..{(3/2)"} —liminf, ,.{(3/2)"} >
1/2, where {x} is the fractional part of .

(IV) (K. Mahler [102]) There exists no & € Rt such that 0 < {£(3/2)"} <
1/2forn=0,1,2,....12

12Guch ¢, if exists, are called Mahler’s Z-numbers.
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(V) (G. Choquet [27]) There exists no & € Rt such that the closure of
{{£(3/2)"}; n=0,1,2,...} is nowhere dense in [0, 1].

Few positive results known, for instance:

(VI) L. Flatto, J. C. Lagarias and A. D. Pollington [56] stated that

lim sup{¢(3/2)"} — ligg}f{é(?»/?)”} > 3

n—oo

for every & > 0.
(VII) G. Choquet [27] gave infinitely many £ € R for which

= <{B/2)" <1 -5 forn=0,1,2,....

(VIII) R. Tijdeman [180] showed that for every pair of integers k and m with
k > 2 and m > 1 there exists £ € [m,m + 1) such that

0<{&((2k+1)/2)"} < g5 forn=0,1,2,....

(IX) There are connection between (3/2)" mod 1 and Waring’s problem (cf.
M. Bennett [19]), and Mahler’s conjecture (IV) and 3z + 1 problem (cf.
[56]).

(X) A. Dubickas [39] proved that for any & # 0 the sequence of fractional
parts {£(3/2)"}, n =1,2,..., has at least one limit point in the interval

[0.238117...,0.761882...] of the length 0.523764 .. ..

(X)* S. Akiyama, C. Frougny and J. Sakarovitch (2006): There is & # 0
such that [|£(3/2)"|] < 1/3 for n = 1,2,... The bound is equivalent

{€(3/2)"} < 1/3 or 2/3 < {£(3/2)"}

(XI) H. Helson and J.-P. Kahane [70] established the existence of uncount-
able many £ such that the sequence £0™ does not have an a.d.f. mod1,
where 6 is some fixed real numbers > 1.

In this Section and Section 6.1 we study the set of all d.f.s of sequences
£(3/2)" mod 1, £ € R, see [163]. It is motivated by the fact that some conjec-
tures involving a d.f. g(z) of £(3/2)" mod 1 may be formulated strongly as in
()—(IV). For example, the following conjecture implies Mahler’s conjecture

(IV):
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(XII) If g(z) = constant for all « € I, where [ is a subinterval of [0, 1], then
the length |/] < 1/2. Except hy/s(x), co(z), ci(x).

(XII)* Precisely, does not exist g(x) € G(£(3/2)" mod 1) such that g(z) =1
for x € (1/2,1] except co(z).

(XIII) Pjateckii-Sapiro [128], by means of the ergodic theory, proved that a
necessary and sufficient condition that the sequence £¢" mod 1 with
integer ¢ > 1 has a distribution function g(z) is that g;(z) = g(x) for
all z € [0, 1], where f(z) = gz mod 1 (also see Notes 20).

The following mapping g — ¢ is the main tool for the study of G(£(3/2)™ mod
1):

Let f:[0,1] — [0,1] be a function such that, for all x € [0,1], f~1([0,))
can be expressed as a sum of finitely many pairwise disjoint subintervals I;(x)
of [0, 1] with endpoints a;(x) < B;(z). For any distribution function g(x) we
put 13

g9r(z) = Z 9(Bi(x)) — glai(x)).

A basic property of g¢(z) is expressed by the following statement, but com-
plete results and proofs are in Section 6.1.

(XIV) Let x,, mod 1 be a sequence having g(x) as a distribution function asso-
ciated with the sequence of indices Ny, No, . ... Suppose that any term
x, mod 1 is repeated only finitely many times. Then the sequence
f({zn}) has the distribution functions gs(z) for the same Ny, No, ...,
and vice-versa any distribution function of f({z,}) has this form (The-
orem 106).

In this part we consider f(x) and h(z) as

f(z) =2z mod 1, and h(x) = 3z mod 1.
In this case, for every x € [0, 1], we have

g¢(@) = g(fi (@) + g(fy " (2)) — 9(1/2),

gn(x) = g(hy" (@) + g(hy ' (@) + g(hs ' () — 9(1/3) — g(2/3),

13Generally gf(z) = Jr-1(0.2y) 1-d9(@).
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with inverse functions

and

@) ==/2, fy'(e)=(x+1)/2,

hi'(x) =z/3, hy'(z)=(z+1)/3, hy'(z)=(z+2)/3.

For £(3/2)™ mod 1 we have the following necessity similar to (XIII).

(XV)

(XVI)

(XVII)

(XVIII)

Any distribution function g(z) of £(3/2)" mod 1 satisfies g¢(z) = gn(z)
for all € [0,1] (Theorem 107).

Let g1, 92 be any two distribution functions satisfying ¢; (z) = g;, ()
for i = 1,2 and « € [0, 1]. Denote

L =100,1/3], Ib=][1/3,2/3], I=[2/3,1].

If g1(x)

= go(z) for . € [; UI;, 1 < i # j <3, then ¢;(z) = go(x) for
all z € [0, 1]

(Theorem 108).
Here we give an integral formula for testing g; = g5. Denote
Fz,y) = {22} = {3y} + {2y} — {32} — {20} — {2y} — {32} — {3y}|.

The continuous distribution function g satisfies g; = g5, on [0, 1] if and
only if (Theorem 111)

/01 / F(x,y)dg(x)dg(y) = 0.

The d.f:s ¢o(x), c1(z), and z solve gf(z) = gn(x) for all x € [0,1].
Putting ¢;(z) = x, a next solution of gy = g, we found by Theorem
114 in Example 49:

0 for x € [0,2/6],

r—1/3  forx € [2/6,3/6],
gs(x) = 2 —5/6 for x € [3/6,5/6],

x for x € [5/6, 1].
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Again applying Theorem 114 to starting gs(x) we find in Example 50

(0
20 —1/3
4xr —5/6
2r —5/18
7/18

ga(z) =< x—1/18
8/18
21 — 20/18
4z — 50/18
21 — 17/18
(@

Thus our solution gy = g, are

x g3(x)

for z € [0,1/6],
for x € [1/6,3/12],
for x € [3/12,5/18],
for x € [5/18,2/6],
for x € [2/6,8/18],
for x € [8/18,3/6],
for x € [3/6,7/9],
for x € [7/9,5/6],
for z € [5/6,11/12],
for € [11/12,17/18],
for x € [17/18,1].

ga()

co(x)

c1(x)

h1, 2()

0 1

1 0 1

In Example 55 is constructed next solution g; = gy
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g5(x)

T+
1
20— 3
T
0 1 2 3 4 5 1
6 6 6 6 6

G. Choquet’s result (VII) gives the existence of infinitely many gg(z)
which solve gy = g, with a graph similar to

g6(x)

1/19 18/19

S. Akiyama, C. Frougny and J. Sakarovitch (2006) result (X)* gives a
solution g7(x) of gy = gj, of the form

gz(x)

Q

/3 2/3 !
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(XIX) Since zy = xp, Theorem 108 gives the following example of d.f. g(z),
which is not d.f. of the sequence £(3/2)" mod 1, for every £ € R

- . for x € ]0,2/3],
g\r) = x> — (2/3)r+2/3 for x € [2/3,1].

See Example 56.

(XX) Mabhler’s conjecture (IV) follows from:
Does not exist d.f. g(z) such that
gs(x) = gn(x) for x € [0,1] and
g(x) =1for x € [1/2,1].
(XXI) Since [2£(3/2)"] = 2[£(3/2)"] if and only if {£(3/2)"} < 1/2 (otherwise
2£(3/2)™] = 2[£(3/2)"]+1) Mahler’s problem (IV), p. 58, can be refor-

mulated as follows: Prove that, for any £ > 0, the sequence [2£(3/2)"],
n = 1,2,..., contains infinitely many odd numbers (see A. Dubickas

[40].)

(XXII) Any d.f. of the linear combination of solutions gy = g, also solve

gr = Gn-
By Theorem 112 d.f. g(z) and 1—g(1—x) solve gy = gj, simultaneously.

If g1(x) solve gy = gy, then go(z) = g17(z) also solve gy = gp.

3.9 Benford’s law

The first digit problem: An infinite sequence x,, > 1 of real numbers sat-
isfies Benford’s law, if the frequency (the asymptotic density) of occur-
rences of a given first digit a, when xz, is expressed in the decimal form
is given by log;, (1 + %) for every a = 1,2,...,9 (0 as a possible first digit
is not admitted). Since z, has the first digit « if and only if log,, z, mod
1 € [logyya,logyg(a + 1)) , Benford’s law for x, follows from the u.d. of
log,y 2, mod 1. It was S. Newcomb (1881) who firstly noted ” That the ten
digits do not occur with equal frequency must be evident to anyone making
use of logarithm tables”. F. Benford (1938) compared the empirical fre-
quency of occurrences of a with log;,((a + 1)/a) in twenty different tables
having lengths running from 91 entries (atomic weights) to 5000 entries in
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a mathematical handbook which led him to the conclusion that "the loga-
rithmic law applies particularly to those outlaw numbers that are without
known relationships ...” For the asymptotic density of the second-place digit

b he found 37_, log,, (1 + Toutt 10a+b

Notes 3. If x,, satisfies B.L., then the asymptotic density of n for which z, has in the
rth place the digit a is

-1 b—1 b—1
Z Z v Y logy(kykoks .. ey (a + 1)) — logy (ky.kaks . . ky_1a)
1=1k2=0 kr—1=0

kikoks ... ky_1(a+ 1)
=lo ng klkgkg kr 1a

F. Benford rediscovered Newcomb’s observation from (1881).
In the following we apply to the first digit problem theory of d.f.s. A.L

Pavlov [124] was the first who applied this theory however Theorem 170 offers
new results.

3.9.1 Basic results

Precise: let b > 2 be an integer considered as a base for the development
of positive real number z > 0 and M,(z) be a mantissa of x defined by
r = My(x) x b™®) such that 1 < My(x) < b holds, where n(x) is a uniquely
determined integer. Let K = kiky ...k, be a positive integer expressed in
the base b , that is

K=k xb ' 4hyxt 24 4k xb+k,,

where k1 # 0 and at the same time K = kjks...k, is considered as an
r—consecutive block of integers in the base b . It is clear that the following
basic equivalences hold:

K<Mb(:): xbV 1< K+1 e (81) [beql]

) X
br TS My(r) < =
> log, (Mo( ))<logb([2+11> —
=

52)

65



Note that for = of the type x = 0.00...0k1ky ...k, ..., the first zero digits
we shall omit and My(z) = ky.ky. .. Ky ...

Definition 2. A sequence x,,, n = 1,2,..., of positive real numbers satisfies
Benford law (abbreviated to B.L.) of order r if for every r-digits number
K = Kkiky ...k, we have

i #{n < N;leading block of r digits (beginning with # 0) of x,, = K
im
N—oo N

K+1 K
— o, (5550 ) ~tom (5 ) 83

Theorem 44. Let G(log,(z,) mod 1) be the set of all d.f.s of the sequence
logy(z,) mod 1, n =1,2,.... Then xz, satisfies B.L. of order r if and only if
for every g(x) € G(log,(x,) mod 1) we have

K K
o (1om (55 ) ) =1om (55 ). (54)

for every r-digits positive integer K = kiko ... k,.

Proof. Let ©, > 0, n = 1,2,..., g(x) € G(log,(z,) mod 1) and g(z) =
lim; o Fy, (), where

_ #{n < N;;log,(x,) mod 1 € [0,2)}

P (2) 2 . (85)

Using equivalent inequalities (81) and (82), then for fixed NNV; we have

#{n < N;; first r digits of M,(x,,) are equal to K}

N;
_ #{n < Nj;log, (%) <log,z, mod 1 < log, (££1)}
= N,

K K+1
- FNi <b7“1) - FNi ( pr—1 )

and (83) can be rewritten as

. K K+1
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Thus

K+1 K K+1 K
g ( log, = log,, 1)) = log,, o) log,, 1)
)

Summing up (87) over all r-digits integer numbers K', K’ < K, we find
(84). O

Definition 2 and Theorem 44 can be found implicitly in [126].

Example 16. For every » = 1,2, ... there exists a sequence z,, n =1,2,...
such that z,, satisfies B.L. of order r, but does not satisfy B.L. of order r + 1
in the base b > 2.

Proof. Let
A, = {logb(klkgk’gkr),kﬁl € {0,1,...,()— ]_},Z = 1,2,...,7“,]{31 7é 0},

where, in this case, ki.koks ... k. = ML_I and K is a positive integer expressed
in the base b, ie. K =k xb ' +kyxb 24+ +k._1 xb+k,. Define a d.f.
g(x) such that g(z) = « for every z € A,, but g(z) # z for some x € A,;;.
Now, by the well known theorem stating that for every d.f. g(z) there exists
a sequence y, € [0,1), n = 1,2,..., such that g(x) is the a.d.f of the sequence
Yn , cf. [92, p. 138]. Then let us define a sequence z,, as x, = b¥ , that is
logy, xy, =y , forn=1,2,.... Applying Theorem 44 we see that x,, satisfies
B.L. of order r and does not satisfy B.L. of order r + 1. O

Directly from the proof of Example 16 we obtain the following: If the
sequence x,, n = 1,2,... satisfies B.L. of order r, then it satisfies of order
r’ < r, simultaneously.

Definition 3 (P. Diaconis (1977)[34]). If a sequence x,, n = 1,2,..., satis-
fies B.L. of order r, for every r = 1,2,..., then it is called that x,, satisfies
strong B.L. in base b. In the following we shall write strong B.L. again as
B.L., i.e. the word strong is omitted.

From Theorem 44 it leads directly to: 4

Theorem 45. A sequence x,, x, > 0, n = 1,2,..., satisfies B.L. if and
only if the sequence log, x, mod 1 is u.d. in [0, 1).

14Well known Theorem 45 can also be found in [37] and [126]. In the following u.d. of
logy, ©, mod 1 we characterize by G(x,,), see [13].
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Proof. Let g(z) € G(log,(x,) mod 1). Theorem 44 implies that g(x) = z for
all z = log, (br%) Since the set of such z are dense for K = kiky...k,,
k1#0,0<k;<b r=1,2,..., then we have g(z) =z for all x € [0,1]. O

Example 17. Fibonacci numbers F,, n! ([93]), n”, n", satisfy B.L.

Many authors think that if the sequence z, does not satisfy B.L., then
the relative density of indices n for which the b-expansion of z, start with
leading digits K = kiks ...k,

1 K K+1
N#{TL S N, logb (bT_]-) S {logb l‘n} < logb ( b’f’*]. > }

do not follow any distribution in the sense of natural density, see S. Eliahou,
B. Massé and D. Schneider (2013) [42]. These authors as an alternate re-
sult shown that the sequence log,,n" mod 1, n =1,2,..., and the sequence
log,op; mod 1 n=1,2,..., p, are all prime numbers, have the discrepancy
O(r~1). Thus, for r — oo, these sequences tends to u.d. and thus n" and p!,
tends to B.L. We propose the following solution:

3.9.2 General scheme of solution of the First Digit Problem
Theorem 46. Let g(z) € G(log, x, mod 1) andlim;_,o, Fn,(x) = g(z). Then

i #{n < N;; first r digits (starting a non-zero digit) of x, = K}
im

o (552)) o 5).

Proof. Using step d.f.
Fy(z) = ~#{n < N;log,z, mod 1 € [0,z)} we have

p s (824) ) = (o (557
= %#{n < Nj; first r digits (starting a non-zero digit) of z, = K}. O

This is the general scheme of solution of the First Digit Problem for the
sequence z,, n = 1,2, ..., for which log, z,, mod 1 is not u.d. sequence. This
approach is also presented in [13] and [123].
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Example 18. As it is well known that the increasing sequence of all positive
integers 1,2, 3, ... does not satisfy B.L. (simple B.L. also) in every base b > 2.
It follows from the fact that log, n mod 1 is not u.d. For a density of n for
which 7 initial digits are K = kiks ... k., A.I. Pavlov [126] proved that

.. #{n < N;n has the first r digits = K} 1
lin Inf N T Kb-1) (89)
#{n < N;n has the first r digits = K} b

li = . (90) |beg36
e 7 wreon @

We give the following extension: By G. Pdlya and G. Szego [129] the d.f. of
log,n mod 1 is of the form (cf. Theorem 48 and (102))

1b —1 bmin(x,u) -1

@) = my Tt (91) [peq32]

where the parameter v runs [0, 1]. By [61], for increasing sequence N;, i =
1,2,..., we have (see def. (85))

log, N; mod 1 — u = Fy,(z) = gu(x) (92)

and thus
#{n < N;;n has the first r digits = K}

N, = gu(®2) = gulz1)  (93)

as ¢ — oo, where x1 = log,(ky.koks ... k.) and zo = log (k1.k2ks ... (k. +1)).
Now, the Pavlov results (89) and (90) follow from

#{n < N;n has the first r digits = K}

hNHi)lo%f N = urél[[lfll](gu(@) — gu(r1)),
) n < N;n has the first r digits = K

lim sup 7 N & J = max (gu(2) — gu(r1)),
N—oo UE[Ovl]

where the minimum is appeared in v = x; and maximum in v = zo. Fur-
thermore, if N; = [b"™*], then log, N; mod 1 — u as i — o0o.

Note that Pavlov formulated his result for more general sequence an®,
n=1,2,..., where a and « are fixed positive real numbers. Putting f(x) =

c1 + ¢ logx, where ¢ = i‘;ﬁ‘; and ¢y = we have log, z,, = f(n) and

_a
logb?’
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applying Theorem 1 in [61] then we find that every d.f. g,(z) € G(log, z,)
has the form

1ba—1 b o —1
W(T) = & — + = : 94
gule) = gz (94)

where the parameter u runs [0, 1] and for an increasing sequence N, i =
1,2,..., we have

log a . alog N;
log b log b

mod 1 — u = Fy,(z) = gu(x). (95)

Now, computing derivative (g, (22) — gu(z1)) in (93) we can see that its
signum is equal — for u € [0,z1), a constant (+ or —) in (x1,22) and — in
(22,1). Thus the min,e,1](gu(22) — gu(21)) can be appeared in u = 1, 22, 1
and maxye(0,1](gu(22) — gu(®1)) in u = 0, z5. Directly by computation we find
Pavlov’s result

1 (K+1)a —Ka

i (0a(03) — 9u01)) = g1, (2) = g ) = LT (g
0% (90(2) — Gu(21)) = goa(72) — s (22) = 0BTV ZHE gy

ue(0,1] Cbe—1  (K+1)a

P. Diaconis [37] and A.I. Pavlov [126] have been the first, who applied
u.d. theory to B.L. For instance:

(i) P. Diaconis by using the criterion of P.B Kennedy, see [172, p. 2-13,
2.2.9], proved: If a sequence x, >0, n=1,2,..., satisfies B.L. in the
base b, then

xn—i—l

limsupn
n—oo

log = 0. (98)

n

(ii) A.L Pavlov by means of van der Corput difference theorem [92, p. 26,
Th.3.1] proved: Assume x, >0, n=1,2,.... If for every k = 1,2, ...

the ratio sequence ‘T;*k, n=1,2,..., satisfies B.L. in the base b, then
the original sequence x,, n =1,2,... also satisfies B.L. in the base b.
(iii) In [13] we have: The positive sequences x, and xl, n=1,2,... satisfy

B.L. in the base b simultaneously.

Proof. Both two sequences u,, and —u,, are u.d. mod 1 simultaneously,
since their Weyl’s sums are complex conjugate each other. O
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(iv) The positive sequences z, and nx,, n = 1,2,... satisfy B.L. in the base
b stmultaneously.

Proof. Both two sequences u,, and u, + logn are u.d. modl simulta-
neously, see [172, p. 2-27, 2.3.6.] and Theorem 91. ]

(v) Assume that a sequence 0 < x1 < x9 <

< ... satisfies B.L. in the integer
base b > 1. Then

log z,,

I @

Proof. 1t follows from the theorem of H. Niederreiter [172, p. 2-
12, 2.2.8] that every monotone u.d. sequence u, mod 1 must satisfy

[un|

limn_mo@ = oo. Here, it suffices to put u, = logz,, instead of
U, = logy, x,. O
(vi) For a sequence x, >0, n=1,2 ..., assume that

(1) limy, 00 , = 00 monotonically,
(i) lim, . log x;—:l = 0 monotonically.
Then the sequence x,, satisfies B.L. in every base b if and only if

. Tp+1 o
nhl&nbg = (100)

n

Proof. 1t follows from Fejér’s difference theorem in the form in [172; p.
2-13, 2.2.11]. O

(vii) [172, p. 2-14, 2.2.12] implies: Let x,, > 0 be a sequence, which satisfies
lim,, o log, x;—:l = 0 with 0 s irrational. Then x, satisfies B.L. in the
base b.

Example 19. J.L. Brown, Jr. and R.L. Duncan (1970) [24]: Let z, be a
sequence generated by the recurrence relation
Tptk = Op—1Tptk—1 T T Q1 Tpp1 + ATy, N = 17 27 DR

where ag, ay, ..., a,_1 are non-negative rationals with ag # 0, k is a fixed
integer, and 1, s, ..., xy are starting points. Assume that the characteristic
polynomial

af — a1 2* "t — = — ag
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has k distinct roots 1, fBs, . . ., B satisfying

0<[Bi] <+ < Byl
and such that none of the roots has magnitude equal to 1.
Then log x, mod 1 is u.d.

Proof. The general solution of the recurrence x,, is

k

n

Ty = E ;B3]
j=1

Let [ is the largest value of j for which «; # 0. Then z,, = 2321 a;f; and

!
‘ v %y — 0
oy = by
Thus lim,, o ‘Of;—glnl =1 and thus

lim (log z,, — log |y 5| = 0.

n—oo
Since f; # 1 is algebraic, then log || is irrational and then log |y S| and
then also log x,, are u.d. modl1. If log, 3 is irrational, then also

log, z,, mod 1

is u.d., i.e. x, satisfies B.L. in the base b. This implies that Fibonacci and
Lucas numbers obey B.L. what rediscovered L.C. Washington (1981)[191].
O

In Section 6.4 the B.L. continue.

Selected informations from 6.4:

By Theorem 170: Let z,, n = 1,2,..., be a sequence in (0,1) and G(zx,) be
the set of all d.f.s of x,,. Assume that every d.f. g(x) € G(x,) is continuous
at x = 0. Then the sequence z,, satisfies B.L. in the base b if and only if for
every g(x) € G(z,,) we have (451)

=3 (o (3) o () e

1=
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For example d.f. (460)
T if z € [0, %],
g(x> — . . [1 b}
1+log,z+ (1—2)s ifze[i1]

is a solution of (451).
By Theorem 175: For a sequence x, € (0,1), n = 1,2,..., assume that
every d.f. g(x) € G(x,) is continuous at © = 0. Then there exist only
finitely many different integer bases b for which the sequence x,, satisfies
B.L. simultaneously.
In the contrary by [172, p. 2-117, 2.12.14], the sequence

anlog"nmod 1, a#0,0<71<1,

is u.d. From this follows that z, = n" satisfies B.L. for an arbitrary integer

n __ 1
base b, because log, n" = nlog Niggs-

3.10 D.f.s of a two dimensional sequence (z,,y,), both
z, and y, are u.d. (copulas)

See Section 8.5:
Let F(x,y) be a continuous function. The limit points of (558)

1 N
N Z F(xna yn)7
n=1

where x,, and y, are u.d. in [0,1) can be studied by using d.f.s g(x,y) of
(Zn, Yn). These d.f.s satisfies g(z,1) = z, ¢g(1,y) = y and called copulas. As
we shall see in the Section 8.5 each copula meets (568)

max(x + Yy — 170) S g(xuy) S mm(:z:,y)

then, assuming d,d, F'(x,y) > 0, for an arbitrary u.d. z, and y,, we have in
Theorem 214, inequalities (564) and (565)

1 1 X
/ F(x,1—z)de gliminf—ZF(xn,yn)
0 =1

N—oo N
n

N—o0

N 1
1
limsupﬁ ZF(asn,yn) < / F(z,z)dz.
n=1 0

Here the left boundary is attained in the sequence (x,, 1 — x,) and the right
in (x,,x,) where x, is u.d.
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3.11 Ratio block sequences

More is described in Section 6.2. Here we present an application of Theorem
143:

Let 21 < x5 < ... be an increasing sequence of positive integers and
consider a sequence of blocks X,,, n =1,2,..., with blocks

and denote by F(X,,,x) the step d.f.

F(X,.2) = #{i <n; I < [E}’
n

for z € [0,1) and F(X,,1) = 1. A d.f. g¢isa d.f. of the sequence of single
blocks X,,, if there exists an increasing sequence of positive integers nq, no, . . .
such that limy_,o F(X,,,2) = g(x) a.e. on [0,1]. Denote by G(X,,) the set
of all d.f. of the sequence of single blocks X,,. Using boundaries of d.f.s of
G(X,,) in [11] we have proved in Theorem 143: For every increasing sequence
r1 < x9 < ... of positive integers with lower and upper asymptotic densities
0 < d < d we have (303)

—= < liminf — =,
2d n—oo M = Tn
and (304)
hmsupl &§1+1<1_mm(\/@ad)> <1_ ' d _>>
nooo M T 22 1—d min(\/d, d

Here the equations in (303) and (304) can be attained.

4 Calculation of G(x,)

4.1 G(f(n)mod 1) directly from definition of d.f.s
556

ex4| Example 20. Starting with x,, = {loglogn} all the sequences {loglog...logn}
have

G(an) = {ca(2);a € [0,1]} U {ha(z); € [0, 1]}
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Proof. For the first iterated logarithm we chose an index-sequence N as
N = [expexp(k + «)]. Then we have klim Fn, () = co(x). For N =
— 00

lexp exp(k +€y)], where g — 0 such that (expexp(k+¢g))/(expexp k) — S,
we have klim Fy,(z) = ho(x), where a = (8 — 1) /5.
—00

On the other hand, let lim Fy, (z) = g(z). Then N,, = expexp(k, +¢€n),
n—oo

where k, = [loglog N,|, e, = {loglog N,,}, and the sequence (£,)%; cannot
have different limit points.

The same d.f. are of course obtained if we replace loglogt by log...logt
and expexpt by exp...expt in the above limits. O

The following theorem proved Koksma [87], [88, Kap. 8] (cf. [92, p. 58,
Th. 7.7)):

Theorem 47. Let the real-valued continuous function f(x) be strictly in-
creasing and let f~1(z) be its inverse function. Assume that, for k — oo,

(i) f7Hk+1) = fH(k) = oo,

. . -1 x)— -1 .

(i) limg—eo HﬁE—M = g(x) exists for x € [0,1],

(iii) lim infj_ o Ji(—,ﬁ) = x(z).
Then the sequence

f(n)mod1, n=12...

has the lower d.f. g(x) and the upper d.f.

g(x) =1 —x(z)(1 - g(x)), forz €0,1].

Using this we find the lower and the upper d.f. of log(nlogn) mod 1 as

e —1 e—e

go) = ===, gl) =

and they are the same as for logn mod 1, c¢f. [92, pp. 58-59]. This gives an
impulse to the following generalization, cf. [170] and [61]:
In the following Theorems 48, 49 and 50 we assume that

(I) f(x) be a real-valued function defined for x > 1 such that f(x) is
strictly increasing with its inverse function f~!(z).

Assume that the following limits exist:
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: L ota)—f 1 (k)
(D) Hmnyeso0 T =18y

of g(x);

= g(x) for each = € [0, 1], of point of continuity

(III) limygseo f}l_(fk(:)“) = ¢(u) for each u € [0, 1], point of continuity of ¢ (u),

or ¥(u) = oo for u > 0;
(IV) limy oo fH(k+1) — f71(k) = c0.
To calculate G(f(n) mod 1) we use the following three theorems.

Theorem 48. If 1 < (1) < oo and f'(z) - 0 as x — oo, then

1 min(e) ) — 1
G(f(n) mod 1) = {gu(x) = wu)g(x) + ) cu € [0,1] ¢,
(101)
where §(z) = iﬁg—;__i and Fy,(z) — gu(z) as i — oo if and only if
f(Ni) mod 1 — u. The lower d.f. g(z) and the upper d.f. g(x) of f(n) mod 1

are
1

g(x) =g(x), gla)=1- e (1= g(x))-

Furthermore g(x) = go(x) = g1(x) belongs to G(f(n) mod 1) but g(x) =
g=(x) does not.

In the first, Theorem 48 gives the following generalization of Ex. 1.

ex9| Example 21. For every base b > 1 the sequence logy,n mod 1, n =1,2,...,
has the set of d.f.s
10 —1 bmin(:v,u) -1

G(z,) = {gu(x) = W1 + 7 ;u € [0, 1]}, (102)

where {log, Ny} — w implies Fy, () = gu(x). The lower and upper d.f. of
log, n mod 1 are

b —1 b

g(z) = R g(z) = 11 (103)

and g € G(x,) but § ¢ G(z,). In this case f(z) = log,z, f~(z) = V",

g(z) = 5= and ¢(u) = b*. Note that G. Pélya and G. Szegé (1964) [129]

firstly gave all densities (i.e. derivatives) of g(z) € G(log, n mod 1) but

{log Ni.} — u = Fy,(z) = gu(z) (104)

in their result absent. ]
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Theorem 49. If (1) = 1, then the sequence f(n) mod 1, n =1,2,... has

a.d.f. g(z), i.e.
G () mod 1) = {3(a)}. (105)

Theorem 50. Let ¢(u) = oo, for every u > 0 and for u = 0 the limit ¥ (u)
is not defined in the way that for every t € [0,00) there ezists a sequence

u(k) = 0 such that (i) limy_, f_}(++(z)(k))

G(f(n) mod 1) = {e,(x)u € [0, U} U{hs(a): B € [0,1]},  (106)

where Fy, — ¢,(x) if and only if f(N;) mod 1 — u > 0 and Fy, — hg(z) if
and only if f(N;) mod 1 — 0 and w —1-7.

=1t. Then we have

Proofs of Theorems 48, 49 and 50
For a positive integer N define

e K =K(N)=[f(N)],
o u(N) ={f(N)},
e Sn([z,y)) = Zgzl,f(n)e[x,y) L
Clearly f~'(K + u(N)) = N and for every z € [0,1] define d.f. Fy(z) as '

K Sn (R k +2) + Sn([K, K +2) N [K, K + u(N)))
N

FN(I') =

NEENE]

From the monotonicity of f(z) (assumption (I)) it follows that Sy ([z,v)) =

27]:7:1,716[,0*1(95),]071(?,)) 1, and N = Sy([0, K 4+ u(N)) and we have

o Sn(lz,y))=f"y) — f (@) +0(f(z), f(y)), where |0] <1,
o N=f"HK+u(N))+0(f~1(0), f~H(K +u(N)))
and thus

Pu(e) = Ta U™+ )= 1720

15Without loss of generality we assume that f(1) € [0,1).
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L min(f (K ), N+ u(N)) — ()
N
O(Sicg O k), [k +2)) | OO (K, /(K + u(N)))
N N '

Assumption (IV) implies that 1/(f~'(k+1)— f~'(k)) — 0; this in turn yields
that K/f~'(K) — 0 by the Cauchy-Stolz lemma, which gives

O py 0(f 1 (k), fH(k+2)))  O(K)

N =N — 0
Thus
Fy(x) = F\)(z) + F{(z) + o(1),
where
() — fol( (k+) = (k)
Fy () (K+u(N)) ’

@, :min(f <K+x>,f (K +u(N)) — f(K)
i) K + () |

We shall express the first term F ]S,l )(:L') as

F](V1)< )_ k 0 (f 1(k+x) [~ 1(k)> ] f71<K) _fil(o)
o (k1) = fUR) U +u(N)

and by the Cauchy-Stolz lemma ¢ and assumption (1),

i i (Mt 2) — f(R))
Koo SOk + 1) — f1(k))

Now, let Fy,(x) — g(x). Then there exists a subsequence N/ of N; such
that u(N]) = u, — «' for some v’ € [0,1]. Thus, in the following we can
assume that

Fn,(z) — g(x), and

16Cauchy-Stolz lemma: Let z,, and y,, n = 1,2,..., be the real-valued sequences.

If y,, is strictly monotone, |y,| — oo, and if the limit (finite or infinite) lim, oo 2"117:3”
Tyt1—Tn

Ynt+1—Yn

= i(x).

exists, then the limit of the sequence gy”—" also exists and lim,, Z—” = lim, .o
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K; = [f(N;)], and u(V;) = u; — u, simultaneously.
We shall prove Theorems 48, 49, and 50 one by one.

Proof of Theorem 48. In this case g(z) = Y@-1 " and the relation U — U

w1
implies 17
RGO () 1
=4 (Kitw) 7 o(w)
(1) P(x)—1 1
Fy (%) = 50—t 3y

FQ(z) — mols)v()
Thus the d.f. g(z) has the form g(x) = gu(x). On the other hand, for
every u € [0,1] there exists an increasing sequence of indices N; such that
u(N;) = u; — u. It follows from the assumption f’'(z) — 0 because for some
g; — 0 we can find N; € f7H(K; +u —¢e;, K; +u+ ).

Now, we find the lower and upper d.f. by computing g,(x) for fixed
z €10,1] and u € [0, 1]

1—L<1—W>:1) ifu <,
gu(z) = { (u) \ P(1)—1 .
ifu>uw,

we have g(z) = go(z) = gi(x) = qﬁ? i Similarly, sup, <, gu(z) = g.(),
(

thus lnfuﬁxgu(x) = g( )7 infu>3cgu( ) - gl(aj) and since 90(33) = 91(37)
) =

SUPy >, Gu(®) = go(), and thus g(z) = g.(x) ¢ G(f(n) mod 1). O
Proof of Theorem 49. In this case we cannot use the relation g(z) = mj
and moreover ¢ (u) = 1 for all u € [0, 1]. Then

N (@) = (o)1

F]S[QZ)(I) N min(ll,l)fl,
and thus g(z) = g(z) for z € [0,1). O

1"Note that if u is a point of continuity of ¢ (u), the monotonicity of f L(z) implies

e g g —1 “
the relation ff,(#(};“)“) — (), because L f(fl(}?j) £) ff,(f(('}:;“) < f(jf(+ )+E) for

u; € (u—¢g,u+e).

IN
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Proof of Theorem 50. In this case

By . [Nk x)— (k)
=1
9@) = B T~ )
for every x € [0,1), thus FJ(VI)(x) — 0. To compute the limit of F](VZZ,) (x) we

distinguish the two followingl cases, where u; — u.
19 If w > 0, then

=0

@ , 4o )
Zlgilo P/ (x) = K, + ) = cu(2).
20 If u = 0, then
1 K)
POy =1 )
(@) JHEG + w)
From K; we select K] (i.e. from N; we select a subsequence N;) such that

N e 0O B

where again K| = [f(N/)] and u; = {f(N})}. Then we have F(%) () = hg(x),
where f = 1 — ¢ and hg(z) = g for x € (0,1). On the other hand (by
assumptions (i)) for any given ¢ € [0, 1] there exists a sequence of positive
integers K; and real numbers u; — 0 such that lim; % =t. Then
there exist integers K| (K| = K; for almost all i) and real numbers u} € (0, 1)
such that N/ = f~!(K! + u}) is an integer and

|G 4 w) — fH K] +ug)] < 1
Thus we have (107) again. O

rel| Notes 4. In the case ¢(1) = 1 in Theorem 49, the limit (II) it my be some d.f. g(z). To
check this, put H(z) = f~1(x) and H(k + ) = k + g(z) for x € [0,1] and k = 1,2,...
Then

(I11) H,g’“(;;) =5l 41 and

k
H(k+z)—H(k
() ST

T g(z). Similarly, for H(k + z) = (k + (x))%.

Notes 5. The situation is different if we replace the limit
: “kda)—f (K ~
(I0) im0 P4} = §(x) for z € 0,1] by the
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re3

(I7) limg— oo % = g(z) for z € [0, 1], where t is a real variable.

This limit was introduced by J. Cigler [32], generalizing J.F. Koksma’s [88, p. 88] result
on lower and upper d.f.s of f(n) mod 1. J.H.B. Kemperman [85, Th. 11] proved that in
(IT’) exactly one of the following relations must hold:

(a) g(z) ==z for z € [0,1];

(b) §(x) = =t for x € [0,1];

(¢) g(x) =0 for z € (0,1).

Furthermore he remarked that
(a) In the case g(z) = x, the sequence f(n) mod 1 is u.d.
(b) In the case j(z) = &=L the set G(f(n) mod 1) is described by the following The-

ec—1
orem 51, where t = 1/c.

(¢) The case g(z) = 0 is equivalent to lim;_, f}l,(f(t)x) = oo and the set G(f(n) mod 1)

contains only one-step d.f.s ¢, (z), where Fy,(z) — ¢, (z) if and only if f(N;) mod
1= u.

Notes 6. For the sequence f(n) mod 1 with increasing f(z) Kemperman [85] proved '®
the following two theorems which are different in nature from our Theorems 48, 49 and
50.

Theorem 51 (Kemperman [85, Th.9]). Assume that
(3) limp oo f(n+1) = f(n) = 0;
(33) limp oo n(f(n+1) = f(n)) =t.

Then G(f(n) mod 1) contains only d.f.s of the type

c(te—u)/t _ (1—u)/t .
if 0 <z <,
() = { R == (108)

1 el s a1
Here the density g, (x) of g.(x) has the form
{a—u}/t
Mgy = S °
gu(x) t(el/t _ 1)
Furthermore Fn,(x) — gu(z) if and only if f(N;) mod 1 — w.

Theorem 52 (Kemperman [85, p. 148, Coroll. 1]). Assume that
() limp oo f(n+1) = f(n) = 0;
(i) lmyoeen(f(n+1) — f(n)) = +o0.

18In Theorem 51 and 52 we put weights w(n) = 1.
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ex6

(Gii) f(n+1) — f(n) is monotone in n.
Then the sequence f(n) mod 1, n=1,2,... is u.d.
Example 22. We apply Theorem 48 to the function f(z) = log(x log® ),

where log(i) x is the ¢th iterated logarithm log...logx.
We prove that, for £k — oo,

log® £ (k + u(k) _
log®” f=1(k)

for every sequence u(k) € [0,1]. Proof: we start with

0<logf'(k+1)—logf ' (k) <log f'(k+1)—logf '(k)+
_|_10g(i+1) f_l(k’ + 1) _ log(iJrl) f_l(k> -1

what implies % — 1, and this implies log® = (k+1)—log® f~1(k)—

g log®) f (k1)
0, what implies 10z® T-1(k)

Now, every u(k) can be expressed as

u(k) = f(f 7 (k4 u(k)) = (7 (k) =
:bg<f4%+U%»_béWf%k+U%D>‘

— 1, e.t.c.

f=HE) log" f=L(k)

Assuming that u(k) — u as k — 0o, we have (iii) in the form ¢(u) = e*.
To prove (ii) we see that f(f~'(k+1)) — f(f~'(k)) = 1 and by mean-value
theorem (f~'(k+1)—f~1(k))f'(z) = 1 for some = € (k, k+1), where f'(z) —
0 as k — co. As summary, G(log(nlog™” n) mod 1) = G(logn mod 1).

In 2011 Y. Ohkubo [122] proved that in Theorem 48 f(n) mod 1 can be
replaced by f(p,) mod 1, where p, is the increasing sequence of all primes.
He proved:

Theorem 53. Let the real-valued function f(x) be strictly increasing for x >
1 and let f~Y(z) be its inverse function. Assume that

(1) limy oo fTHE+ 1) — fH(K) = o0,

(ii) limk%m%&gk) = (u) for every sequence ur € [0,1] for which

limy o0 ug = u, where this limit defines the function 1 : [0,1] — [1,¢(1)],
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(iii) (1) > 1. Then

L glo) =1 min(e).(u) - 1

G () mod 1) = {a(0) = e,

h(u) (1) =1 ()
The lower d.f. g(x) and the upper d.g. g(x) of f(p,) mod 1 are
oY) -1 =1 1 ola

gere g(z) = go(z) = g1(v) € G(f(pn) mod 1) and g(z) = g.(x) ¢ G(f(pn) mod

Proof. Let K be an integer and express an N € [f~Y(K), f7Y(K + 1)) as
N = f"YK+u),u€0,1). Since

k< fpn) <k+a— [T (R) <pn < [Nk +2)

then we have

#{n < w(n); {f(pa)} <} _ g 7(f ' (k+2)) —w(f (k)

(V) (f1 (K +u) (109)
7(fH (K 4+ min(z,u))) — 7(f~H(K))
m(f 71K + ) ' (110)
Furthermore,

r(f T E +u) =) a(f Tk + 1) —x(f (k) + 7 (f7(0))

0

R(f7UK i) - 7 (f7F). (1)

To compute (109) via Stoltz lemma

=7

Sl k) = a(f k) S w (T (k1) — w(f N (R)
SETR(f Ak + 1) — 7(f1 (k) (F (K + ) (112)

we need find a limit of

2)) = n(f k) _ St 1
Ak 1) — (/1) | 2 (113)

m(f (k)




Using prime number theorem in the form

if + — oo and expressing

w(f*ll(krﬂr)) f*l(lk+x)
_ “—l(k+z) log f~1(k+=x
n(f Mkt w)) it

-1 o n(fr k) _fHR)
W(f (k)) =1k log f~1(k)
log f~1(k)
and using (ii) limg oo f;l_(fk(z)z) = 9Y(z) as k — oo we see that for proof of

theorem we need proved

log f~1(k +1)

1. 114 117
log [1(k) (114) [eqts7]

Ohkubo proved (114) using the following succession

g fk+ 1) _ (g (k1) — log S (R)) + 1

log f~1(k)  log f~(k)
B (M
‘bgﬁ%mlg(.ﬁwm )+1%1

. . -1 niz)=
since by assumption ff_(lk(z)l) — (1) > 1. Thus (109) has the form ﬁi%lg—i

Similarly for (110). O

Example 23. Theorem 53 implies that the following sequences log p,, mod 1,
log(p, log pp,) mod 1 have the same d.f.s as logn mod 1. This solve Open
problem 1.3 in [167].

4.2 Proof of G(z,) = H using the connectivity of G(z,)

The connectivity of G(z,) implies the following simple theorem: Define

e For the d.f. g the Graph(g) is continuous curve formed with all the points
(x,g(x)) for z € [0, 1], and the all line segments connecting points of discon-
tinuity (z,liminf,/ ., g(2’)) and (z,limsup,,_,, g(z’)).

e Denote g, (v) = infyep g(x) and gy (x) = supyey g(x).

84



th:St97-2

Theorem 54 ([162]). Let H be a non—empty, closed, and connected set of
d.f.s. Assume that for every g € H there exists a point (x,y) € Graph(g)
such that (x,y) ¢ Graph(g) for any g € H with g # g. If

(i) G(x,) C H, and

(i) g = g,, and g = gy for the lower d.f. g and the upper d.f. g of the
sequence x,, € [0,1),
then G(z,) = H.

4.3 Proof of G(x,) C H using L? discrepancy

For proving G(x,,) C H it can be used limy_,oo Dﬁ)(:ﬂn, H) =0, where

e the L? discrepancy D](\?) (@, H) of x,, with respect to H is defined as

D@z, H) = min /0 (Fy(z) — g(z))2dz. (115)

geH
We prove the following theorem:

Theorem 55. For every sequence x, € [0,1) we have

G(x,) CH <~ lim Dﬁ)(xn,H) =0.
N—o00

Proof. ==. Suppose limy_, Fin, () = g(z) a.e. and § € H. Then we have
limg o0 fol(FNk(x) — g(z))*dz = 0 by the Lebesgue theorem of dominated
convergence and because D](\%z < fol(FNk () —g(z))*dz, we get limy_, o0 D](\%z =
0, for every increasing Nj.

<. Suppose that limy_, D](\?) = 0. Let gv € H be a point of the
minimum of fol(F w(z) — g(x))?dz with g € H. The Helly selection principle
guarantees a suitable sequence Ny, k = 1,2, ..., such that limy_,o Fi,(2) =
g1(z) and limg_,o0 gn, () = g2(z) a.e. on [0,1]. Then g, € H and then using
the Lebesgue theorem of dominated convergence we get

1

lim [ (F(2) - gw, (2))%dz = / (31(x) — Ga(x))?dz = 0.

k—o0 0

Thus g, € H, and the same is true for every partial limit of Fiy. To complete
the proof we have to shown that the existence of such gy. To do this note that
there exists a sequence g, € H, n = 1,2,..., such that inf cpy fOI(FN(x) —
g(2))’dz = lim, ,u fol(FN(x) — gn(z))*dx, and again, by Helly theorem,
limy s g, () = gn(z) for suitable ny, and thus gy € H. O
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Notes 7. It should be noted that that the L? discrepancy can be expressed as

1
D}?(xn,H)_/ (Fy () dx—/ / Fy(z,y)dgn (2)dgn (y),
0
and applying (31) we have Fi(z, y) Fy(z,y) putting g(x) = gn(z) and
f01~2 dt—flg fg )dt + 1 — max(z,y), and
I (9(@) = g(@)*dx = [y Jy Fa(e,y)dg(x)dg(y).

e Let F': [0, 1]2 — [0, 1] by symmetric function and G(F') be a set of all d.f.

g(x) satisfying o
/O/OF(:v,y)dg(flr)dg(y)ZO-

Define g is the lower and g is the upper d.f of G(F') and

Q(F) gEG Graph( )

4.4 Proofof G(x,) C H solving fol fol F(x,y)dg(z)dg(y) = 0

Theorem 55 we reformulate to

ths] Theorem 56. Let F(z,y) be a continuous function defined on [0,1]2. Then
for every sequence x,, € [0,1) we have

N

1
G(an) C G(F) = lim > F(ap,z,) =0. (116)

m,n=1

Proof. Using the definition of the Riemann-Stieltjes integral, we have

/O /0 F(z,y)dFy(z)dFy(y) = % > Flam, x,).

Suppose that limy_,o, Fy, () = g(z) for all continuity points x of g(x). Then,
applying the Helly-Bray lemma, we find

klim/ / (2,y)dFy, (z)dFy, (y / / (z,y)dg(x)dg(y),
—00

and the implication <= follows immediately.
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In order to show the implication =, assume

Ny

) 1

By the Helly selection principle (Theorem 1), there exists a subsequence Nj,

of N, such that limj_, FN]/€<£L‘) = g(x) € G(x,). Again, by Helly-Bray

lemma (Theorem 2) we find fol fol F(z,y)dg(z)dg(y) = . We conclude

g(x) & G(F). O
Define

e G(F = A) is the set of all d.f.s g(z) for which fo fo (z,y)dg(z)dg(y) = A,
e G(A<FL B) is the set of all d.f.s g(z) for which

A< fo fo (z,y)dg(x)dg(y) < B.
Then again:

Theorem 57.

N
1
G(r,) C G(F = A) = lim — ZIF(a:m,:cn) = A,
1 N
<F< < liminf —
G(xn) C G(A< F < B) <= A <liminf — Zl F(Zp, )
N
and limsup — F(zp,z,) < B.
N_mop mzn:l )

An application of Theorem 56:

Theorem 58. For any sequence x,, in [0, 1] we have

G(xy) C {ca(z);a € [0,1]} = 113100m Z 2 — 0| = 0. (117)

m,n=1

Moreover, if G(x,) C {cq(x); a0 € [0,1]}, then G(x,) = {ca(x); a0 € I}, where
I is a closed subinterval of [0, 1] which can be found as

I= lﬂlgf—an, hmsup—an , (118)

N—oo
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and the length |I| of I can also be found as

|| —llmsup—ZZ|mm— T (119)

MN—)oo me1 n—1

Proof. First observe that G(|z — y|) = {ca(z);a € [0,1]}, and (117) follows
from Theorem 56.

Suppose, in order to show the connectivity of I, that limy_,o, Fi, () =
Co(x), imy oo Fiv (z) = cp(x), and o < . If @ < v < f3, then we can
construct a sequence Kj such that limy o Fi, (7) = 1/2. By the Helly
selection principle there exists a subsequence K, such that limy_, . Fi (x) =

ey ().
In order to find the length of subinterval of such «, one observes that

[ [ 1o sldcatoyiests = la—

implies (119) in the usual way. O
Example 24. Let the sequence x,, n = 1,2,... be defined as

_ {H(_l)[w@ﬂ Ww@]}}

Then G(z,) = {ca(x); 0 € [0,1]}.

Proof. Let x, be the sequence constructed as follows. Assume that we have a
dense sequence y,, in [0, 1] with (i) limg_eo (Yx+1 — yx) = 0, and an increasing
sequence of positive integers M;, with (ii) hmk_,oo(z "L M) /My, = 0. Now
form the sequence z, by setting x,, = y, if Zi:l M; § n < Zle M;. We
shall use Theorem 58 which gives that Tn has ¢, (), € [0,1], as its d.fs.
For a detailed proof, first take N = Z ' M + 0, M, where 0 < 6, < 1. It
is not difficult to calculate

N
1 My 10 My |yr — yp—1|
— § =0 .
N2 Lo [m T | ( (My_1 + 6, M,)?

Hence, the limit in Theorem 58 follows immediately. In order to compute
the lim sup, one observes, for N;, = > % M; and N;, = > M;, that

iy 223 bl

m=1 n=1
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Ny, N,
1

2. fvw -

m=N¢k—1 m:Njk,l

= lim sup

= limsup |y;, — y;,| =1 (120)

k—oo

holds if y;, — 0 and y;, — 1 as k — oo. Applying the above construction

with
Yk = {1 + (—UW{\/E}}
and
Mk — 2(k+1)2 o 2k2
for k =1,2,... we thus have the desired property of z,, n =1,2,.... n

In Section 4.10 ([160]) is studied 3-dimensional body € formed by points
(Xl, XQ, Xg) where

Xi=1—[ xdg fol (z)dx)
X2:§—§ Jo @ dg< )= fy o <>dx> and

Xy =X1—3 fo fo |z — yldg(z fo
and g(x ) run all d.f.s. The pomts (X]_,XQ,X?,) for g( ) = colz) or g(x) =

ho(x), a € [0, 1], lies on the contour of the body € and for such (X, X, X3)
the d.f. g(x) is given uniquely. This implies:

Theorem 59.
2

/01 2?dg(z) = (/01 xdg(x)) — Facpo19(z) = cal2),

| aagte) = [ adoto) = Fuconata) = hao)

(1—/01:Udg(1:)) (/ledg ) //|x—y|dg )dg(y)

<:>3a€01}g( )_h ( )

and also we have

G(z,) C {ca(z); € 10,1]} <= lim (%Zm,) —%in =0,

N—oo
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N—o0

Glan) C {ha(x);a € 0,1]} <= lim %Z(zn—:ﬁ) 0,

C(a,) € {ha(z):a € [0.1]} < lm (%an— (%Z@J

n=1 n=1
1 N
- > \xm—xn|> =0,
N m,n=1

respectively.
It is well known that the sequence x, € [0, 1] statistically converges to
a € [0,1] if and only if G(z,) = {ca(x)}. Theorem 58 implies:

Theorem 60. The sequence x,, in [0,1] possesses a statistical limit if and

only if
li LSy =0
SRR 2 D)

m=1 n=1

This is condition of Cauchy type different as in [57]. Also see Section 3.4
Theorem 61. Let F'(x,y) be continuous and G(F') be the set of all solutions
of fol fol F(z,y)dg(r)dg(y) = 0. Assume that g,,Gr € G(F) and that for
every g € G(F) there exists a point (x,y) € Graph(g) such that (z,y) ¢
Graph(g) for any g € H with g # g. Then for every sequence x, € [0,1) we
have G(x,) = G(F) if and only if

(1) Hmy—oo 705 om et F(@ms 20) =0,

(if) Hm supy o & Son ) @ —liminfy oo + 300 @, = fol (Gr(2)—g,(x))dz.
Proof. From (i) Theorem 56 implies G(z,) C G(F). The (ii) similar to
Theorem 15 gives gp(z), g, (x) € G(z,). Thus Q(z,) = Q(F) and if (z,y) €
Q(F) then the unique g € Q(F) for which (x,y) € Graph(g) gives g € G(x,).
See also Theorem 54. ]

4.5 Linear combination G(x,) = {tg1(z) + (1 —t)ga2(x);t €
[0, 1]}

Definition 4. Let g; # g2 be two d.f.s. Denote
T Y 1
Fy () = / ga(t)dt + / ga(t)dt — max(z, y) + / (1— galt))2dt,
0 0 0
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S (ga(8) — u ()t — [1(L — ga(8)) (g2(t) — g1 (1))dlt
Jo(g2(t) — gu(t))2dt

fmaaw:&mwaQM@&m@yL@ﬁwwﬁWw

Fy .90 (x) =

Y

Theorem 62. For given sequence x, € [0,1) we have
G(an) = {tgi(x) + (1 = t)ga(w); t € [0,1]}

if and only if

(1) mpy o0 % Zfr\i,nzl Fgl,g2 (l’m, In) =0,

(i) Hminfy oo & o0 Fyy ga(@0) =0,

(iii) imsupy_,e0 & Zf:[:l Fy, g0 (z,) = 1.
Proof. For any two d.f.s g1, g the set H = {tg,(z) + (1 — t)g2(x); t € [0,1]}
is nonempty, closed, connected and satisfies the assumption of Theorem 54.

In order to compute the L? discrepancy (115) we shall consider the following
quadratic polynomial

Py (t) = /0 (Fn(z) — (tgr(z) + (1 — t)gg(x)))2da: = Ant? + 2Byt + Cl;,

where

The minimum mingeg Py(t) = (ACy — B%)/A is attained in t = ty =
— By /A. Therefore

PN(tN) for 0 < tN < 1,
for ty <0,
for ty > 1,



and thus
lim D (2, H) = 0 <>(i) lim Py (ty) =0,
(ii") liminfty >0,
N—o0
(iii’) limsupty <1
N—oo
what is equivalent to G(z,,) C H by Theorem 55.
Now assume (i),
(ii) iminfy 0ty = 0 and
(iii) imsupy_,o tny = 1.
Passes to a suitable sequence NN}, guarantees that limj_, ty, = 0 and
limy o0 Fiv, () = g(x) a.e. on [0, 1].
The Lebesgue theorem yields

0= lim Py, (ty,) = lim | (Fy,(2) = (bnygn(e) + (1 — ta,)ga()) d

- / (§(2) — gala))da

and thus g € G(x,,). Similarly, g; € G(z,). Since Gy (z) = max(g;(x), g2(x))
and g, (z) = min(gi(z), g2(2)) we have ¥ g = g, and § = gy. Thus, by
Theorem 54, we have G(x,) = H. On the other hand, (i), (ii) and (iii)
immediately follows from G(z,) = H. Finally we express

Pn(ty) = /01 /01 Fy g(x,y)dFn(2)dFN(y), ty = /01 Fy g (2)dFn(2)

by using Theorem 23 from which for every polynomial ¥ (y) = a(z)y* +
b(x)y + c(x) we have

N

@)= [ [ PR @A) = g S Fla ),
/ [ k

m,n=1

where

Flz,y) :/1 a(t)dt+%/; b(t)dt+%/yl b(t)dt+/01 ().

max(z,y)

YHere g and g lower and upper d.f. of z,, n =1,2,... respectively.
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Example 25. For control of Theorem 62 we give:
1
) [ P ()t () + (1 = 0g2(a)) = ¢ because
0

/01 (/Ox(g2(u> - gh(u)du))dgl(:c) = /01(1 — 1(2))(g2(2) — g1(z))d.

Furthermore

(H)/o /0 Fy (@, y)d(tgr(z) + (1 — t)g2(2))d(tg1(y) + (1 —t)g2(y))
:AA%@W%@HFWMWMWMﬁmm
- t2/0 (g2(z) — g1(z))*dx = 0.

4.6 Other characterization of {tg(x) + (1 — t)go(z);t €

[0,1]}
Some other theorem similar to Theorem 62:

Definition 5. Denote

Fl(fr)z/ (gz(t)—gl(t))dt—/o 92(t)(92(t) — g1(t))dt,

Fi(z,y) =Fi(x)Fi(y) — Fg2(9‘3>y)~/0 (ga(t) — g1(t))*dt,

P y) =~ =)

&mwzlwwwwwwa—ﬂ@w.

Theorem 63. Let gi(z), g2(x) be a given d.f.s such that, g(z) < go(x) on
the interval [0, 1]. For a sequence x,, n=1,2,... in [0,1) we have

G(an) ={tgi(x) + (1 = t)g2(x);t € [0, 1]} =

(121)
1
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N
1
(if) lim inf < > Fy(tm,x,) 20,

N—o0

m,n=1
| N
(iii) lim inf Zng(:cm,:L‘n) >0,
(iv) hgljolip—an hNni)lolgf—an—/ (x) — g1(x))dz.

Proof. Express

/o (9(z) — (tgr(z) + (1 — t)g2(x)))2da7 = P(t) = At* + 2Bt + C,

where

A= / (02(2) — g1(2))2da
B= / (9(2) — ga(2)) (95 () — g1())dlz,
C = / (9(2) — go())?de.

Since P(t) > 0, the polynomial P(t) has a real root if and only if B2—AC = 0
and it is equal tg = —B/A. Simultaneously t, € [0, 1] if and only if, =B > 0
and —B < A. Together

3(t € [0,1])g(x) = tgi(x) + (1 — t)ga(x) ae. <=(i) B> — AC =0,
(i) — B >0,
(ii) A+ B >0.
Then by using Theorem 23 we have

1 1

_ACI/O / Fi(z,y)dg(x)dg(y), —B = ) Fy(z,y)dg(x)dg(y),

A+ B = //Fg,xydg )dg(y).

and putting g(x) = Fy(z) we find (121) without (iv). The condition (iv) we
add for all possible g(z) = tgi(z) + (1 — t)g2(z), t € [0, 1]. O
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Example 26. Putt g2(z) = ¢y(z) and ¢1(x) = ¢1(z). Then tei(x) + (1 —
t)ca(x) = hy—¢(x) is a constant d.f. Theorem 63 implies

G(zn) ={ha(z);a € [0,1]} <=

- T + Ty, — | T, — T
0 Jim s 32 (- ) =0

m,n=1
N
1 T + Tp
) it > () 20
N
e 1 1 T + T,
— E _om T )
(iii) hNHigéf N 2 (1 5 > >0,
) limsup — T, — liminf — T, = 1.
) s S, s 15

See Example 29. Note that if x,, = 0 or z,, = 1 then the assumption (i)
vanished since xy — HWTM = 0 indentically.

Example 27. Denote gi(z) = z, g2(x) = ci1(2), g3(x) = hija(x), Hi =
{txr + (1 = t)cr1(2);t € [0,1]}, and Hy = {tz + (1 — t)hy2(x);t € [0,1]}. We
can visualize the sets Hy, Hy, and H; U Hy as follows

H, H, H, U Hy
g
g3
0 1 0 1/2 1 0 921

Applying the general method described in Theorem 54 we get

G(l’n) =H UH; <—



(ii) hmmf— E o (T, ) = 0,
N—o00
m,n=1

(iii) hmlnf E s (T, Tn) = 0.

mnl

Proof. The maximal interval of reals ¢ for which tx + (1 —t)c;(z) is a d.f. is
equal to [0, 1]. Similarly, for tx + (1 — t)hy/2(x). Therefore, by Theorem 56
(cf. Note 1), the inclusion G(x,) C Hy U H, is characterized by the limit (i).
If g2,95 € G(x,) then G(z,) = Hy U Hy, since, according to the page 17, it
can be seen that the graph g, can be continuously transformed into the graph
g3 over Hy U Hy only if the graph g, can be continuously transformed into
the graph ¢, over H; and the graph ¢, into the graph g3 over Hy. To prove
92,93 € G(x,) we use Fy,(z,y), i = 2,3, since fol fol Fy,(z,y)dFy(x)dFn(y) =
fol(FN(x) — gi(z))*dz. Tt should be noted that it is possible to replace (ii) by

) lim mf — E
N 500 g1, 92

because
1
0
1 ) ;
Fyy go(x)d(tr + (1 — t)hl/Q(:L‘)) = Zt + T
0
These integrals and G(x,) C H; U Hy together with (ii’) yield that ¢;(z) €
G(z).

To finish the example we give explicit formulae of our functions:

3
Forgo(,y) = 1 = max(w, y) — 7(1 = ) (1 —y?),

T +y 1
thga(x?y) = 9 _maX($ay) + Z —3(:E—x2)(y—y2),
Fy,(xz,y) =1 —max(z,y),
T+y 1
Fo(x,y) = — max(x,y) + 7

3
Fpaslw) = 5(1 = 2%)
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ex2

Notes 8. Some extension of Theorem 62 can be found in Example 105.

Example 28. Let us again write H = {tg;(z)+(1—t)g2(x);t € [0,1]}. Let y,
and z, be two sequences in [0, 1] having limit laws ¢; and g9, respectively. Let
x, be a sequence mixed from g, and z,. Given N, let N; and N, denote the
number of terms of y,, and z,, respectively, in the initial segment z1,..., zy.

Then )
2 Nt [ Ny 2
DEV)(xm H) < (W D](\Tl)(ynagl) + N DJ(VQ)(ng2)) .

It follows from this that G(z,,) C H and

N N.
G(z,) = H <= limsup — = limsup — = 1.
N—o00 N—o00 N

Proof. Let F ](\,1 )(z) and F ](\,2 )(x), respectively, denote the Fy(z) (defined pre-
viously for x,,) applied to y,, and z,. It follows from the definition of the L®
discrepancy that

Dt < [ (o)~ M) - 2u(o)) ar

Substituting Fn(z) = %F](Vll)(x) + %F](V? () and then using the Cauchy-
Schwarz inequality we get the desired upper bound. Now,

lmy oo DO (2, H) = 0
which by Theorem 55 implies G(x,,) C H and to prove that G(z,) = H we
can use Theorem 54. O

Example 29. The 0V 1 sequence
1+ (_1)[loglogn]
2

has G(x,) = {ha(x); a € [0,1]}, where h,(x) = a for x € (0,1) (see Example
26) and the sequence

Tpn =

1 n 1+(_1)[10glogi]
== 5

i=2
is dense in [0, 1] with a dispersion
1
1
Ne e

dN(Z/%) <

w"“
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Proof. Since for integer part
[loglogn| =k <= e <n< e

the sequence z,, is a block sequence constructed with blocks (0,...,0) and
(1,...,1). Then, by Example 28, G(z,) = {tco(x) + (1 — t)c1(x)} and the
density of v, follows from Theorem 20. Putting Ny = [¢*" '] and Ny = [e¢"]
for even [loglog N| = K (similarly for the odd case) and applying Theorem
5 we can find the desired estimation of dy(y,). ]

4.7 Computing G(h(z,,y,)) by f{h(x,y)}<t 1.dg(z,y), where
9(z,y) € G((wn, yn))
We starting with h(z,y) =  + y mod 1.

Theorem 64. Let x,, and y, be two sequences in [0,1) and G((xn,yn)) de-
note the set of all d.f.s of the two-dimensional sequence (xy,yy,). If

Zpn = Tp, + Y, mod 1,

then the set G(z,) of all d.f.s of z, has the form

Glen) — {g<t> _ / .dg(z,y) + / Ldg(z, y):
0<z+y<t 1<z4y<l+t

gla,y) € G((mn,ym}

assuming that all the used Riemann-Stieltjes integrals exist.

Proof. For bounded f(z,y) and d.f. g(z,y) the Riemann-Stietjes integral

f(z,y)dg(z,y)

[0,1]2

exists if and only if the set of all discontinuity points of f(x,y) has a zero
intersection with discontinuity of g(z,y). Denoting by

X(t)=A{(z,y) €[0,1130<z+y <t} U{(z,y) €[0,1]31 <z +y < 1+t}
XO) ={(z,y);y =t —z,2 € [0,1]},
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X(Q)(t) = {(x,y);y =t+1l—z,0¢€ [O’ 1]}7

X ={(z,y)iy=1-=z,2€0,1]},
in the case f(z,y) = cx@)(z,y) the discontinuity points form the line seg-
ments XV (¢), X@(¢) and X©.

Let (xp,yn), n = 1,2,..., be asequence in [0,1)? and 2, = x,, +y, mod 1.
Denote

N N
1 1
FN(t) = N Z C[O,t)('zn)a FN($> y) = N Z C[O,x)x[O,y)((xna yn))'
n=1 n=1

0<{z+yl<t<—= 0<z+y<t)or(l1<z+y<l+t),

we have Fy(t) = & Ziv:l cx() (7, yn)) and by means of Riemann-Stieltjes
integration

FN(t):/ cxy(z,y)dFn(z,y),
[0,1]2

assuming that none of the points (z,,y,), 1 < n < N, is a point of discon-
tinuity of cx(z,y). It is true that (z,,y,) & XV (1) U XA (¢) for almost
all t € [0,1]. By assumption the adjoining diagonal X® of [0,1]? has zero
measure with respect to every g(z,y) € G((zn,yn)), and thus the set of in-
dices n for which (z,,,y,) € X® has zero asymptotic density and so it can
be omitted.

Now, we assume that Fiy, (x) — g(z) € G(z,). Then by the first Helly
theorem there exists subsequence Ny of Ny such that Fy; (z,y) — g(7,y) €
G((xn,yn)) and by the second Helly theorem we have

g(t):/[()l)2 cxw (@, y)dg(z, y). (122)

Vice-versa, we assume that Fy, (z,y) — ¢g(z,y) € G((zn,y,)). Then
by the first Helly theorem we can select subsequence N, of N such that
Fn; — g(x). For such g(z), the (122) is true, again. O

In the following we suppose that the sequence z,, and y,, in [0, 1) has the
asymptotic d.f. gi(z) or gs(x), respectively. Let ¥ : [0,1]*> — [0,1] be a
continuous function and let z, be the sequence consisting of all the values
U (Zpm, Yn), myn = 1,2,... and which are linear ordered such that the first
N? term are U (2, yn), m,n=1,2,... N.
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Theorem 65. The d.f. g(x) of z, satisfies

(i) /01 /Ul‘l’(x,y)dgl(fc)dgz(y) :/01 zdg(z),
i) | 1 / 1 / 1 / 1) — (o, ) |dgs () dgay)dgn (u)dga o)

:/01 /01 |z — yldg(z)dg(y),
i) [ 1 / 1 ( / e g(t)dt) o)) = | 1 ( / xg(t)dt) dg(x)

which is unique solvable in g(z).
Proof. Tt follows directly from L2-discrepancy by Theorem 22. m

Example 30. [172, p. 2-215, 2.22.2], also see Open problem no. 1.13 in
[167]: Assuming u.d. of z,, n =1,2,... find a.d.f of the sequences

o ||vy —xn| — |k — ||, myn, k1l =1,2,...,
o |||z —xp|—|zp—x||—||xi— x| — T —26]||, My, KL L0 g s = 1,2, 00
etc.

We can use the following method: Let us denote by g;(z) an a.d.f of the
sequence of jth differences (thus by Theorem 104 g;(x) = 2z — z?). For kth
moment we have

/lekdgjﬂ(x) = /01 /01 |z — y|Fdg;(x)dg; (y).

For j =1 we have

1 1 8
| [e=stannin) - s

which implies
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Notes 9. As a Theorem 18 for computing g2(z) we can used

(i) / 1 / (U - y)d(2e — 222y — ) = / ' ga(a)de,

0

(ﬁ)/ol/ol/ol/ol (1_m_y|_ |x—y|;|u—vl|>
d(2z — 2?)d(2y — v*)d(2u — u?)d(2v — v?) = /01 g3 (z)dx

(111)/01/01 </leygg(t)dt>d(2x—x2)d(2y—y2) _/Olgg(x)dx_/olgg(z)dx.

Also

/01/01/01/01”“3’;'“‘“'d@x_xz)d(gy_yz)

1 1
d(2u — u?)d(2v —v?) = / g2(z)dx — /0 g5 (x)dz.

0

Notes 10. S. Steinerberger (2010) conjectured that the density function dgjj%;x) of the

a.d.f. g;(x) of jth iterated differences is of the form dgé%(x) _ 2t

T 271
p(z) is a polynomial with integer coefficients. For j = 3 he found

doale) _ 8 (3 — 1)3(—132 — 1162 — 3622 + 32 4 2).

(x — 1)7p(x), where

4.7.1 Computation of G((logn,loglogn) mod 1)

Example 31. The set of all d.f.s of the two-dimensional sequence
(logn,loglogn) mod 1
has the form [170]
G((logn,loglogn) mod 1) = {gu.(x,y);u € [0,1],v € [0,1]}
U{guoja(z,y);uel0,1],ac A,j=1,2,...}
U {gu,0,0,0c('r? y)7 u e [Oé, 1]7 o€ A}7
(129

where A is the set of all limit points of the sequence e” mod 1, n =1,2,...
20 and, for (x,y) € [0,1)?,

gu,v($7y) = gu(z) : cv(y),

29The exact form of A is an open problem.
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gu,07j7a(x7 ?/) = gu,O,j,a(x) : Co(y),
Gu,0,0,0(Z,Y) = Gu0,0a(2) - co(y), where
emin(a:,u) -1 1e*—1

gul) = et et e—1"
0 ifo<y<uw,
co(y) = .
1 ifo<y<l,

and ¢,(0) = 0,¢,(1) =1,

( ) emax(a,x) — e N emin(x,u) -1 N 1e*—1 | 1

uw,0,5,0\T) = - — -,

Gu.0., eltu el et e—1 el—1
emax(min(z,u),a) — e

Y

Gu,0,0,a ($) - ou

121)

and, for z € [0,1] and y € [0, 1], marginal d.f.s are

guv(xal):gu(x):g ( 1_0)
Gup(1,9) = co(y) = gup(1 = 0,y),
gu,Oja(xal):gu(x) guO]oz(x 1— O)aj:071727"'7
1
9u04.a(L,y) = hp(y) = Guojall —0,9), Whereﬁzl—m, and
hs(y) = B ify € (0,1),hg(0) = 0, hs(1) = 1,

125)

where, the parameters u,v,j and « play the following role: Let Fy(z,y)
denote the step d.f. of the sequence (logn,loglogn) mod 1 (for definition see
Section 7.2) and let Fy, (z,y) — g(x,y) be a weak convergence as k — oc.
Then

o Fn, (2,y) = guw(z,y) for {log Ny} — u and {loglog N} — v > 0,

o Fn.(2,9) = Guojalz,y) for {log Ny} — u, {loglog Ni} — 0, {e/} —
a, K —[e’] = j >0, where K = [log N|, J = [loglog N, and

o Fn(7,y) = Guooa(z,y) for {log Ny} — u, {loglog N} — 0, {e/} —

a, K —[e/] =0.

Y
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Since
dgu(,y) = dgu(z)dey(y)
dgu,05.0(®,y) = dgup,jal(z)dco(y)
and bearing in mind (124) we have
Agus(, ) # 0 only for (z,) = (z,v),
dgu,0,5,a(x,y) # 0 only for (x,0) and (1,y).

Furthermore we see that X (£)UX® (1)UX®) has zero measure with respect
to every g(z,y) € G((logn,loglogn) mod 1). We shall find G(log(nlogn) mod
1) by applying Theorem 64 to G((logn,loglogn)) mod 1). All integrals in
Theorem 64 can be computed and every d.f. ¢g(t) € G(log(nlogn) mod 1)
has the form

g(t) = Ot_v L.dgu(z) + fll_v ldg.(z) ift>w,
11:’_;_1} 1dgu($’) ift < v,

for v > 0 and for v = 0 it has the form

t t
g(t) = / 1.dgu0,j.q(7) +/ Ld(gu(z) = guojalz)), j=0,1,2,....
0 0

Thus we have G(log(nlogn) mod 1) = {gy.,(x);u € [0,1],v € [0,1]}, where
() g (14+z—v)—g,(1—v) f0<z<w, (126)
u,v = e
G gz —v)+1—g,(1l—v) ifov<z<l d

Directly by means of computation we see that g, ,(z) = g (2), for w = v + v mod 1.

Proof of (123). For 0 <z < 1,0 <y < 1 and a positive integer N denote
by Fn(z,y) the step d.f.

#{3 < n < N;({logn}, {loglogn}) € [0,7) x [0,y)}
N

FN('I?y) =

and desired d.f.s are all possible weak limits limj_,o Fy, (z,y) = g(z,y), for
suitable sequences N7 < Ny < .... Put

o K(N) = [logN]
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e J(N) = [loglog NJ,
e N={1,2,...,N}.

Note that, for given positive integers J and K, we have J(N) = J for every
N in (e¢',e¢""") and K(N) = K for every N € (e, e"*1). Further, let
k=1,2,... and 7 =0,1,2,.... Since

0 < {logn} <z <= (0 <logn — k < x) <= Fp(e" <n < ™)

0 <{loglogn} <y <= 3;(0 <loglogn — j < y) < Elj(eej <n< ee#y),

we have

>jo #le” e N (U [ef, eF)) NN

FN<x7y): N

Denote by | X| the Lebesgue measure of X C R. Using the facts that
o F{[e", M) NN} = 7 — e 4 O(1);

o 1<k <K =]llogN];

eJ—1t+y

° eeej — 0 as J — oo and for fixed 0 <y < 1;

° N>eej;

we have Fy(z,y) = Fy(z,y) + o(1), where

_ [le", ™) N (U [eF, ) N [e, V)
FN(xvy) = N

for every 0 <z <1 and every 0 <y < 1. Put
e u(N) = {log N},
e v(N) = {loglog N}.

For any sequence Ny, for which Fy, (z,y) — g(z,y), there exists a subsequence
N; such that u(N}) — u, v(IV]) — v and in this case we shall write

lim FN]/C([L',y) = gu,v($ay)'

k—o00
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On the other hand, the sequence ({logn},{loglogn}), n =2,3,..., is every-
where dense in [0, 1]?. Proof: Let (u,v) € [0,1]*> and let J;, k =1,2,..., be

eJk+U:|

an increasing sequence of positive integers. Put N, = [e . Expressing

Ny = e“*"™  then we have vy — v as k — oo. Put K, = [log N;| and
N; = [efFu]. Express Nj = efvtui = e?™ " then uw, — u and v, = v.
The final limit follows from the mean-value theorem

/
Tk T eeJk+”k eJ’fHeJk-H

N, —N,=e = (v, — vp)e

for t € (vy,v},) and since Ny, N}, € (ef*, e+l we have (v}, — vy) — 0.

Thus for every (u,v) € [0,1]? there exists a sequence of indices N}, such
that u(Ng) — uw and v(N;) — v and moreover, by Helly theorem, there exists
a subsequence Ny of Ny such that Fi; (z,y) weakly converges to g..(z,y).
We shall see that for v # 0 the d.f. ¢, ,(x,y) is defined uniquely.

Thus, in what follows we assume u(N) — u, v(N) — v, Fy(z,y) —
Guw(z,y) weakly (i.e. Ey(z,y) — Guw(z,y) weakly) for a suitable N = Ny,
k — oco. We distinguish two main cases: v > 0 and v = 0.

1. v > 0.
l.a. 0 <y <. In this case
B 66J+y
FN(CL’,y) < W — 0
for a suitable N — oo and thus
gu,v(xa y) =0

for every z € (0, 1).
1.b. 0 < v <y < 1. In this case the contributions of the following
intervals to the limit Fy(z,y) — gu.(z,y) are:

e The first interval [el*], el/1t1) gives

el 141 _ gle’]

€6J+U(N) — 07
e the interval [/ e%T1) gives
enlin(K+z,K+u(N)) _ BK emin(x,u) -1
el +u(N) — eu !
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e Since K — [e’] = ([¢/T"M)] — [e!]) — oo, the intervals [e¥, e#T®), k =
le’/]+1,..., K — 1 contribute with

1 iy le —1
k+x k B
K +u(N) Z (e _6)_>e_ue_1'
k=[el]+1

l.c. v = y. Taking in consideration the cases 1.a. and 1.b. we see that
Guw(z,y) has for y = v the step d.f. g,(z).
As summary, in the case v > 0 we have g,.(z,y) = gu(z) - ¢,(y), where

d.f.
el 1] et — ]
gul@) = ev * et e—1
for every x € [0,1) and g,(1) = 1. Here ¢,(y) = cw(y), i-e., cy(y) = 0 for
0<y<w, c(y)=1forv<y<1,and always ¢,(0) =0, ¢,(1) = 1.

2. v=0.
We shall see that in this case we need two new parameters j(V) and «(N)
defined

o j(N) =K —[e],
o a(N) = {e},

and we again assume that for the sequence of indices N = Ny, (k — 00)
we have Fy(z,y) — g(x,y), 7(N) = j, a(N) — « and in this case we shall
write

Fn(z,y) = Guojalr,y).

We distinguish three cases: j =00, 0 < 7 < o0 and j = 0.
2.a. j = oco. This case is the same as 1.b, and thus

gu,OyoO,a(xv Y) = gu(z) - o (y)

2.b. 0 < j < oo. In this case the contributions of intervals to Fi(z,y)
are:

e The first interval [el*], el/1T1) gives

max(eeJ, e[eJ]+r) _ 6eJ 6max(a,x) — e
— - ;
el +u(N) ejtu !
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e the interval [/ eXT1) gives again

emin(K+x,K+u(N)) — K 6min(ac,u) _ 1
el +u(N) - eu ’
e Since K — [¢/] = j = constant , the intervals [e*, ™), k = [e/] +

1,..., K — 1 contribute with

K-1
K ru(N) k_[;ﬂ(e e ta)

Thus in the case 0 < j < 0o we have ¢y0.j.0(%,Y) = Gu0j.a(T) - co(y),
where

emax(a,m) — e 6min(a¢,u) -1 1e*—1 1
Gu,0,5,0(T) = + + = 1- i1

el tu e e e—1
and gu,O,j,a(]-> =1.
2.c. j = 0. In this case we consider only the interval [e[e”, e[eJHl) and
its contribution to Fy(x,y) is

max(min(z,u),a) @

. J J
max (mm(eK”, eKHuN)y ee ) —e° e e
%

eK+u(N) eu

and thus we have ¢,.00.0(%,Y) = Gu00.a(z) - co(y), where

max(min(z,u),x) @

(& — €

Gu,0,0,a (l‘) = ou

and 9u,070,a(1) =1

We now show that the following triples (u, j, @) can occur: Suppose that
for integer sequence J; < Jo < ... we have {e’*} — a. Then for every fixed
J, (1 =0,1,2,...) and w € [0,1] (if j = 0, then u need to satisfy a < u)
there exist two integer sequences K and N such that

[ Kk — [e‘]k] = j,
o N € (efk, efutly,

o {log N} — u,
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o Ny e (e e ™),
e {loglog N} — 0.
It suffices to put
o K; = le'*] +j, and
o N, = [efkTur] where
o up —u, 0 <up <1,
o u, > {ek}if j =0,
o u; >log (1+ =) if u=0.

Denoting by A the set of all limit points of {e’}, J = 1,2,..., we have 19.

Finally, by definition, we have ¢(0,y) = ¢g(z,0) = 0 and for computing
g(z,y) € G(({logn}, {loglogn})) in the case y = 1 we can not use Fy(z,v)
instead of Fy(z,y). In this case

(Ui [e*, e 7)) AN
N

for every 0 < z < 1 and if u(N) — wu, then Fy(z,1) — gu(x). Thus
G({logn}) = {gu(x);u € [0,1]}, which also can be found in [92, p. 59] (see
(8) in Example 1 in this book).

All computations of g(z,y) € G(({logn}, {loglogn})) are also valid for
x =1 and we see that g,,(1,y) = ¢,(y) and

FN(I‘7 1) =

ea

gu,O,j,oc(Ly) = h,@(y)v where § =1 — citu’ 7=0,1,2,...

and this 5 covers [0, 1] if u runs [a, 1] for 7 = 0 and [0,1] for j = 1,2,....
Thus

9(1,y) € G({loglogn}) = {c,(y);v € [0,1]} U {hs(y); 8 € [0,1]},
where hg(y) = f for 0 <y <1 and hg(0) =0, hg(l) = 1. O

4.8 Computation of G(z,) using mapping =, — f(z,)

This leads to solving related functional equations.
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4.8.1 Mapping z, = f(z,) and mapping g — g

We repeat definition g(x) in Section 3.8:

Let f:[0,1] — [0, 1] be a function such that, for all z € [0,1], f~*([0,x))
can be expressed as a sum of finitely many pairwise disjoint subintervals [;(z)
of [0, 1] with endpoints a;(x) < B;(z). For any distribution function g(x) we
put

= Zg(ﬁz(m)) — g(a;(x)) for x € [0, 1]. (127)

The mapping g — g5 can be used for studying G(z,) by the following state-
ment:

Theorem 66. Let x, mod 1 be a sequence having g(x) as a d.f. associated

with the sequence of indices N1, No, . ... Suppose that any term x, mod 1 is
repeated only finitely many times. Then the sequence f({x,}) has the d.f.
gr(x) for the same Ny, N, ..., and vice-versa any distribution function of

f({{x,}) has this form.

Proof. The form gf(x) is a consequence of

A([0,2); Ni; f({zn})) ZA x); Ny; x,) and

A(Li(z); Nis ) = A([0, Bi(2)); Niy zn) — A([0, i(2)); Ny ) + o(Np,).
On the other hand, suppose that g(z) is a distribution function of f({z,})

associated with N1, Ny, . ... The Helly selection principle guarantee a suitable
subsequence N,,;, N,,,... for which some g(z) is a distribution function of
x, mod 1. Thus g(z) = g¢(x). O

The d.f. gf(z) is characterized by the following equation: For every
continuous F': [0,1] — R and every d.f. g(x) we have

/0 F(f(2))dg(z) = / Fa)dgy (). (128)

If g(x) = z, then gs(z) = g(x) is the d.f. of the random variable X =
f(@)

For non-continuous function f, some a(x), f(x) may be constant # 0, 1
and for exact definition g;(z) we need used point-wise definition of d.f. (see

92, p. 53, Def. 7.1)):

109



Definition 6. A d.f. g(z) is called the d.f. of a sequence z,, mod 1, n =
1,2, ..., if there exists an increasing sequence of positive integers Ny, Ns, . ..

such that e N
lim ([ 7:1:)7 kaxn)

lim N, = g(z) for every z € [0, 1].

Also g1 = ¢ if and only if g;(x) = go(z) for all z € [0, 1].

Example 32. Put f(z) = 2z mod 1, then f~!([0,z)) = [0,2/2) U [1/2,(1 +
x)/2) and gf(z) = g(x/2) + g((1 + x)/2) — g(1/2). Let z,, and y, by two
sequences in [0,1) such that x, » 1/2, ya, 7 1/2, yons1 ¢ 1/2. Both
sequences x, and y, have a.d.f. ¢;5(x), where for the first sequence x, we
have ¢;/2(1/2) = 1 and for the second one y, we have ¢/5(1/2) = 1/2, thus
there are two different d.f.s. Furthermore the sequence f(z,) has a.d.f ¢;(x)
and f(yn) has hyja(x) (i.e. it has constant value = 1/2 on (0,1)).

Note that if any term x,, mod 1 is repeated only finitely many times, then
the semi-closed interval [0,z) can be instead by the closed interval [0, x].
Thus if all of the intervals [;(z) are semi-closed of the form [a;(z), 5;(x)),
then o(Ny) = 0 and the assumption of finiteness of repetition is superfluous.

Let f:[0,1] — [0,1] be give Jordan measurable function. We generalize

(127) to
g7(x) = /f RErC (129)
—1([0,z

a.e. on x € [0,1].

In order to find d.f. g(z) of x,, by using gs(x) of the transforming sequence
f(z,), we can solve e.g.

- the functional equation g(z) = gs(z) for € [0,1], if x, and f(x,),

n =1,2,... have the same a.d.f.
- the functional equation g¢(x) = gn(x) for z € [0,1] if f(z,) and h(z,)
coincide.

- or we find one-to-one mapping g — ¢y, possibly another map g — g
such that g — (gr, gn) is one-to-one.

4.8.2 One-to-one map g — gr

In [157] we have proved g;(z) = 2y <= g(v) = x for f(z,y) =]z —y|. Ina
proof we have used
2

[ (ostw) =2~ 20100 =2 [ (o) — 20 2 ( [ (ot - e
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Here we actually found F(x) such that
1
|| Pt - st -

// f(z,y))dg(z // f(z,y))dg(x)dg(y)

where
/ / f(x,y))dg(x)dg(y) =0
has a unique solution g(z) = g(x). In the case f(x,y) = |x —y| and g(x) =
we find >
r oz
Fla)=-24+% 4 =
@W==3+t3 "1

because F'(|x — y|) represent diaphony in Example 100, see

[ [ #e = hastarstn) = [ (o) = a0 - [ tto) - e
= // (9(y) — 9(z) — (y — ) *dady = 0,

0<e<y<1

2

with the unique solution g(z) = z.
The problem of one-to-one g — g5 can be solve by the following steps:

(i) we find F(z,y) such that the moment problem

// (2, y)dg(x)dg(y) =0

has unique solution g(x) = g(z), and
(ii) F(x,y) can be expressed as
F(z,y) = H(f(z,y)),
where f : [0,1]> — [0,1] a H are arbitrary continuous functions.

Then g(x) = §s(x) <= g(x) = j(2).



4.8.3 Simple examples of f:[0,1] — [0,1] and g¢(x)

ssel6
ex7| Example 33. Since —z = 1 — x mod 1, the mapping f(z) = —z mod 1
coincide with f(z) =1 — x mod 1.

f(z)

11—z

This Fig. implies g¢(z) =1 — ¢g(1 — x) (as an application see Theorem 112).
Example 34. For a shift f(z) =z +amod 1, 0 < a < 1, we have

f(z) f(z)

1 1

r—a l—« l-a+x
Thus
gl—a+z)—9(1 —a fo<z<a
gf<x>={ drar ot (130)

gr—a)+1—-g(1l—a) fa<z<l1.

Example 35. Applying (130) to the sequence logn + o mod 1, then the d.f.
gu(z) of logn mod 1 described in Example 1 is transform to g, s(x) and then
using (126) we see that g, (z) = gu(z), where w = u + a mod 1. Since
u € [0,1] is arbitrary, then we have

G((logn + @) mod 1) = G(logn mod 1). (131)
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Now, let
2
Tpil = Tp — T

n’

n=12...

132)

with the starting point z; € (0,1). E. Ionescu and P. Stanica (2004) [77] was
proved that for every x; € (0, 1) there exists the limit

1
v = lim (——n—logn

n—oo :L‘n

Then they expand

) : (133)

1 logn v (logn)? logn logn
$n:ﬁ_?_ﬁ+ 3 +(2U—1) 3 o 3 s (134)
1 | —(1/2 1(1 2
IS LU /)__(0g2n)
Tp n n n
logn 3 1, 5\ 1 1(logn)
9 _ o 22y 4z
+(3/2 —v) St <2v 5V 6) ats 3
(logn)? (19 5\ logn logn
+(—2+U)T E—4v+v 5t —3 (135)
Since the sequence (logn + v) mod 1, n = 1,2,..., have the same d.f.s as

logn mod 1, then the sequences

n’z, mod 1,

— mod 1,
T

n=1,2,... have the same d.f.s as logn mod 1.

Example 36. Using notation of g5 we can write

/ ldx = x,
g~ 1([0,x))

for d.f. g(z).

Example 37. For fixed d.f. g(z) we can find function f such that g(z) =
gr(x). For example f(z) is called u.d. preserving if v = xy.

Example 38. For two-dimensional f(z,y) and d.f. g(z) we can define

s = [ | o Les()ds(o).

For f(z,y) = zy and g(x) = x we have zy = (1 — log x).
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4.8.4 Solution of gy = ¢g;

Assume that f is continuous with finitely many inverse functions f; ', ..., f-1,
all defined on the whole interval [0, 1] and the intervals f; ([0, 1]), ..., f-1([0,1])
are ordered from the left to right, i.e. f;'(z) < --- < f-'(x) for every
x € [0,1]. Then the d.f. g; satisfies

1+ sign(fi")'(=1)™

5 (136)

gr(w) =D _sign(f7)g(fi (@) +

on z € [0,1].
A functional equation gy = gy, where g is known and ¢ is unknown, we
can solve by following: Put [0,a] = f; ([0, 1]) and denote

zi(t)=ftof(t), i=1,....m, te€][0,qa].

Into
m

0= g(z) = Gsx) = D _sign(f;7) (9(f; " (x)) = §(f; " (2)))
i=1

insert x = f(t), t € [0,a]. We obtain a linear equation with m unknowns
g(x;). Its coefficients depend only on the number m of inverse functions of f
and on that f starting with an increasing or decreasing part of a graph. Then
selected part of the graph g, say g(z;(t)), we compute by remaining parts
g(x;(t)) given such that the resulting ¢ is d.f. The gs(x) can be replaced by
arbitrary d.f. ¢g;(x). As an application we give:

Theorem 67. Let s(x) = sin?(27z) and g1 be given absolute continuous d.f.
The unknown absolute continuous d.f. g solve the functional equation g; = g1
on [0,1] if and only if has the form

g1(s(2)) = Jg ¥(u)du if x €10,1/4],
2 p(u)du — [ p(u)du+1— [ p(u)du  if w € [1/4,1/2),
g(z) = 1 m—1/2)\ z—1/2 1/4 .

—Jo (u)du + fo p(u)du — [, p(u)du  if x € [1/2,3/4],
1— 7" Mu)du if x € [3/4,1],
where 1, ¢, X are integrable functions defined on [0, 1] and satisfying

0 < Ax) < ¢a) < d(x) < (g1(s(x))) forz € [0, 7] .
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Proof. In our case

gs(x) = g(s1 (%)) + g(s57 (2)) — g(s5" (2)) + 1 = g(s5 " (),

where 1
57 (z) = = arcsin /z, and
! 27 ’

'@ =g -5, s =g 4@, s =15 @),

(

Substituting z — s(x) in g; = g5 we find
)
(

V(z €[0,1])  g1(2) = gs(2) <=
z)

Wo € [0.1/4) g1(s(x)) = gla) + 904 +2) g3 —a) + 1 g(1 —2)
Thus we can compute values g(z) on [0,1/4] as g(x) = gl(s(x)) -9(5 +

+9(3 —2) — 14 g(1 — z). For monotonicity of g we need 0 < ¢'(z), 1.
g ( +2)+g'(; —2) +g(1—2) < (0i(s ( ))) Putting U(r) = (% +2) +
g —2) + (1~ 2) we find g(x) = gi(s(2)) — [0 duandg(% r) =
g(% +x)—g(l—2)+1-— foz ¥(u)du. For monotonlclty of 9(5 — x) we need
g'(%—l—x)—i—g (1— a:) < (z) for z € [0, 1/4] Putting ¢(z) = ¢'(3+x)+¢' (1—x)
we find g(3 — ) = [ ¢(u)du — [ (u)du+1 — 1/4 ¢ (u)du, ete. O

Example 39. For g, = g9 := (2/7) arcsin\/f we have ¢g(s(z)) = 42 and
thus 0 < A\(z) < ¢(z) < (x) <4 for z € [0,1/4].

If M(z) =1, ¢(x) =2 and ¢(x) = 3, then g(z) =

If AM(z) = ¢(z) = ¢(z) =0, then g(z) = gi1(x), where

3 _ J4x forx € [0,1/4],
gl(m)_{1 for z € [1/4,1].

If A(z) = ¢(x) =0 and ¢(x) = 2, then g(z) = go(z), where

i ~J2x forxz € [0,1/2],
ga(w) = {1 for z € [1/2,1].

Since for f(z) = 4x(1 —x) and h(z) = z(4z — 3)* we have go, = go, g0, = 9o,
then x, g1, g2 satisfy gros = gnos together with they convex combinations.

The general functional equation gy = g, is solved in Section 6.1.9.
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4.9 Hausdorff moment problem (an information)

For completeness, the classical moment problems are:
S :/ z"dg(z), n=0,1,2,... T. J. Stieltjes 1892;
0

Sn :/ z"dg(z), n=0,1,2,... H. Hamburger 1920;

o0

1
Sn :/ 2"dg(z), n=0,1,2,... F. Hausdorff 1923.
0

The problem is to recover g(x), given by its moments. Put

1
sp= [ a"dg(x), n=12..., (137) |eq148
/

Theorem 68 (F. Hausdorft). The moment problem (137) has a salution d.f.
g(x) if and only if

S (-1 (m) Sin >0
i=0 !
for allm,n=20,1,2,....

The set of all points (si, sg,...,sy) in [0,1]" for which exist d.f. g(z)
satisfying (137) for n = 1,2,..., N is called the N-th moment space Q. It
can be shown (see [5]):

(i) the point (sq,$2,...,sx) belongs to the moment space Qy if and
only if ZZLO(—l)i(T;‘)SHn > 0 for all m,n = 0,1,2,..., N, where sqg = 1,
SNt1=8SNy2=-"=0.

(ii) Qy is a simply connected, convex, and closed subset of [0, 1]%.

(iii) If the point (si,S2,...,sy) belongs to the interior of the moment
space €2y the truncated moment problem (137), n = 1,2,..., N, has in-
finitely many solutions g(z).

(iv) If (s1,$2,...,sn) belongs to the boundary of the €2y, the (137) has
a unique solution g(z).

(v) If the sequence z,, € [0,1), n = 1,2,..., satisfies lim % 25:1 T, = S1,
lm & S 22 = sy, lim = SN 2 = sy, where (s1, 5o, ..., sn) belongs
to the boundary of the Qy, then z,, has an a.d.f. g(x).
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Exact characterization of the moment space €2 can be given in terms of the
following matrices, see [83], [5]: Denote the Hankel determinants (different
sense for even and odd n)

H,y, = det((si;)75=0),

Hap = det((Sivji1 — Sivjs2)iimo);

Hyp iy = det((sivj1)ij=0),

Hopy1 = det((Sivj — Sivjr1)ii—o);

Theorem 69. (i) The N-dimensional point sy = (s1, Sa,...,Sn) belongs to
the moment space Qy if and only if H, > 0 and H, > 0 for all n =
1,2,...,N.

(ii) The point sy belongs to the interior of Qx if and only if H, > 0 and
H,>0 foralln=1,2,...,N.

(iii) The pint sy belongs to the boundary of Qy if and only if there exists
ak, 1 <k<N, such that H, > 0 and H; > 0 forl = 1,2,...,k — 1 and
H, =0 or H, = 0. In this case H,, =H,=0foraln=Fkk+1,... N
and the solution d.f. g(x) in (137) is uniquely defined in terms od sy .

4.10 The moment problem X = F(g) for d.f. g(z)

See [160]:
In this section we shall solve the moment problem

1 1 1
(X1, X5, X3) = (/ g(x)dx,/ xg(x)dx,/ gQ(x)dx) (138)
0 0 0
and by coordinates
1 1 1
X :/ g(x)dz, X, :/ zg(r)dr and Xj :/ g*(x)dx
0 0 0
for d.f. g(z). It is motivated by L? discrepancy criterion for g-distributed

sequences, see Theorem 22, p. 28: A sequence z,, in [0,1) has a.d.f. g(z) if
and only if

1 1 o N ran
. 2 - =
]\}1_120 <1+/0 g (x)dx 2/0 g(z)dz + NZ/O g(x)dx

1 N lnle
SO ICEE S DETEA) B
n=1 m,n=1



or equivalently, if and only if
(i) Hmyoseo & S0, @y = fol xdg(z)
(ii) Imy_eo ~ Zn o g(a)de = fo (fo t)dt) dg(z),

(iii) th%o#Zm,n:l T — x| = [ [ |2 — yldg(2)dg(y).

(cf. [159, p. 176, Th. 1]. Since the left-hand side of the third equation (iii)
contains g(z) we shall instead it by the second moment and we solve

svseess) = ([ aoto), [ #agto, [ [ o= siastardonn).

By using
(81, S9, 83) = (1 — Xl, 1-— 2X2, 2<X1 — X3))

it can be transform to

(X1, Xp, X3) — ( /O o), /O ' rg(z)de, /O lgz(x)dx).

4.10.1 The body 2 of all F(g) and the boundary 02

Define, for every d.f. g(x) the operator

F(g) = ( /0 (o), /0 ' eg(z)de, /0 1 g2(x)dx).

For F, we introduce its body
Q={F(g);gis df },

and 0€2 denote the boundary of €.
Note that throughout this chapter we shall always denote both the row

X
vector (X1, Xs, X3) and the column vector (Xé) by the same letter X and

3
the equation X = F(g) is referred to as a moment problem.

Let g(uy, vy, us,vy) denote the d.f. h(z) defined by

0 for 0 <z <wy,

_ Uz —u1 o U2—UL
h(z) = et u — vt for v <z < vy,
1 for vy <z <1.

(in any case h(1) = 1). Its graph is
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Uy

Then

1-— Vg + %('UQ — ’Ul)(ul + UQ)
F(g(u1,v17ug,v2)) = % - %’U%(?) — Uy — 2U2) - %’U%(?Ul + UQ) - %’Ulvg(UQ - ul)
1— vy + 3 (va — v1)(urug + ui + u3)

For varying parameters uy, vy, uz, and vy, the point F(g(uq, vi,uq, v9)) (=
F(g)) describes surfaces I1;-1Ils or the curve II; specified by the following list
of formulas:

I = {F(g); 0<v <vy<lup=0,up =1},

I, = {F(g); v1=0,v2=1,0<u <uy <1},

II; ={F(9); v1=0,0<v,<1lup=1,0<u <1},
(

I, ={F(9); 0<uv <lwpy=1u =0,0<uy <1},
1
H5:{F(g); 01:0,O§02§10§u1:u2§1,1}2(1—u2)>§},

1
I, = {F(g); 0<wu <Lop=1,0<u =us <Lu(l—v1)> 5},

1 1
H7:{F(g), U1:0,§<UQ<1,UJ1:U2:1—2—1}2}

1 1
{ (9); <v < 5 V2 y Ul = Uz 2(1—1}1)}

Eliminating the parameters uy, vy, ug, ve from the X = F(g(uy, vi, us,v2))
we arrive at the following canonical expressions:

1 1 3
II, = {(X1,X2,X3); Xo = 57 5(1 - X1)? - §(X1 - X3)%,
4 1 2
max<§X1 -3 §X1> < X3 <X,0<X, < 1}’

119



1 1 /1
H2 = {(X17X27X3>; X2 e —X1+_ (Xg_XQ)

1
X1+§>;0§X1 < 1},

3
1 4 (1-X))
I3 = < (X1, X0, X3): Xo=—-———
3 {( 1, “)2, 3)’ 2 9 9(1+X3—2X1)7
4 2 1 4 11
—X——X < X -Xi—=,=-<X; <1
CAE R T }
4 X3 4
H4={(X1,X2,X3); X, =X, — -4

2 1
Tl OX2 <X <X, 0< X, <=
9X331_ 3_3 1,U> 1_2}7

HS = {(X17X27X3); X2 - 9 -
2 1
Xi<X3<X,0<X, < 5[

1X3 1
H6_{(X17X2)X3); X2:X1 2X1 X2<X3<X1 §<X1<1}
3

11 1 1 1
I, — (—,— X) S Xy <t b 139) [£:surt
! {22 X, 3) 1< 3<2} (139) [£:surt]
Specify the following d.f. g(u1, vy, us, v2) = g:
(1= X1) = 3(X1 — Xs), 1, (1 — X1) +3(X1 — Xs)),

=g X1 —4/3(X5 = X7),0, X1 +1/3(X5 = X >

31+ X3-2X, 4 (1-X,) )

1-— 0.1.=
C1-x, "3(1+ X3 —2X;)

X1—-Xs g Xi—Xs (1-X,)°
1—-X; ' 0 1—X1 1+ X3 —-2X,
Xy XX 1)

=49

BEAC ARG A

=49

(
=
Y (O’ sy 2X1’1) ’
=
=o(x
=

1
1—-2X3,0,1—-2X
3 374X3>
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* ].
I =g (201 = e 2Xa). (140)
3

Their graphs are

g g? q®) g¥
q®) q®
Figure 2

The areas of rectangles bounded by the graphs of ¢° and ¢® are > 1/2. We
write ¢® = ¢ and ¢g® = ¢(™") in the case = 1/2.
4.10.2 Solution of X = F(g) for X € 2 and X € 012

We now state main theorems.

Theorem 70. For the moment problem X = F(g), to have only a finite
number of solutions in d.f.s g it is necessary and sufficient that X € 052,
where 0SY denotes the boundary of Q. We can express the boundary 02 as

0N = U I1;.

1<i<7

In addition, for X € 1I;, i = 1,2,...,6, the moment problem X = F(g) is
uniquely solvable as g = g%, and for X € Il; has precisely two solutions of
types ¢\7 and g7 .

Theorem 70 directly implies
Theorem 71. Let x,, n=1,2,... be a sequence in [0, 1] with the limits



1 1 1
Xo==—= lim — 2
2T T NN zigir"’
N 1 N
Xo=1=Jm 5D on =gl g 2 fom =l

If X = (X1,X9,X3) € U 1L, then the sequence x, has an a.d.f. These

1<i<7

a.d.f. are given by formulae (140). Exactly, if X € II;, i =1,...,6, then z,
has the a.d.f. ¢, and if X € Il;, then x, has the a.d.f. either ¢ or ¢(7"),
depending on whether

N—oo N

N
1 on
lim — ) / gD (t)dt = X, — X5
n=1"0
or
1oL [on
lim — ™ ()dt = X, — X
n%N§A9<> =X
respectively. Furthermore, X € (J, ;7 I is testable by (139).

In the following we also prove that the upper and lower surfaces of 9€2 in
the direction X5 are

(1,1/2,1)

(0,0,0) 7 Figure: Upper boundary surface of

(1/2,3/8 (1,1/2,1)

Ly
(1/2,1/4,1/4)
(0,0,0) Figure: Lover boundary surface of

For I'; and I'y see Theorem 75.
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4.10.3 Proof of the solutions of X = F(g)

We shall work with neighbourhoods of points in the body €2. For the sake of
more clarity, we give an outline of the proof. We shall prove the theorem in
six steps.

1.

We collected a couple of elementary facts about the body €. We find
two affine transformations leaving the body €2 fixed. We find projec-
tions of the body € to the planes X; x X3 and X; x X5, and we find
two curve-edges of (2.

The principal technical result establishes the closedness of €2 under
a linear law of composition as follows : For any finite set of ele-
ments X© ... X in Q, every sum Y (a; + B,X®) with vectors
a; = a(u;,v;, uip1,vi11) and matrices B; = B(u;, v;, w41, vi11), where
Ui, U, Uiy1, Vip1 are parameters (a and B will be defined later) also be-
longs to €2, and each point X € €2, for every N, can be decomposed as
X = fo\io a, + B;X® into corresponding terms X© ... XN ¢ Q.

. As a consequence, the following is proved : If X € int €2, then the

moment problem X = F(g) has infinitely many solutions.

Then we make a general observation about neighbourhoods in 2. We
shall discuss the transformation O = Zi]\io a; + B;0; mapping a se-
quence Oy, ..., Oy of neighbourhoods O; of X into the neighbour-
hood O of X.

But every point X of the boundary 9€2 of €2 would not possess a spher-
ical neighbourhood in €2, and hence in this way we have a link between
the decomposition X = Zfio(ai + B,;X®), and the X € 99Q.

In accordance with this decomposition and by the theory of Dini deriva-
tives the boundary 0€2 can be expressed as the F-image of d.f.s in Fig.
2.

4.10.4 The basic property of (2

e The body Q C [0, 1]? starts in (0,0,0) and ends in (1,1/2,1).
e The boundary o) = U1§i§7Hi-
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Theorem 72. Q2 and 02 are invariant with respect to the transformation

group
{Identity, ®, A, P o A},

where
1
O(Xq, Xo, X3) = (1 - X1, Xo = X5+ 3 1+ X3~ 2X1)7

X3

1_
A(X1, X, X3) = (1 X, — 23 1 2X2).

Proof. For any d.f. g let d.f. § be defined as 2!

9(z) = {y € [0,1]; g(y) < x}|.
Given F(g) = X, we can compute F(g) = A(X) by using

[ wiaw) = [ twrae, [ a5 = [,
// |z — yldg(z)dg(y // lg(z) — g(y)|dzdy =
_4/0 ()dx—Q/O g(z)dz.

Since the map A is affine and the matrix of A is unimodular, it is obvious
that A(Q2) = Q and A(02) = 9. Using g(z) = 1 — g(1 — x), we can obtain
analogous results for ®. 22 O

Theorem 73. Any straight line parallel to the Xy or X3 axis meets €2 at a
segment. Thus €2 is conver in these directions.

Proof. Assuming X; =Y; and X, = Y5 for X = F(g) and Y = F(f), where
f,g are d.f.s, we arrive at

tX+(1-t)Y = (Xl, X, /Ol(tg2(x) + (1 - t)fQ(x))dx) :

21Tn Example 36 is note (z) as g(z) = fq—l([o oy Ldz =24,
22\ can be considered as a transformation g — g. Similarly for ®(g(z)) =1 — g(1 — z).
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Since

/0 (tg(x) + (1 — ) f(2))? da < / (t*(@) + (1 — 1) f2(x)) de <

<max ([ g, [ fwar).

from continuity one obtains the existence of ¢y € [0, 1] so that

/0 (tog(x) + (1 — to)f(x))2 dz = /o (th(a:) + (1 - t)f2(:v)) dz.

Hence the F-image for nondecreasing h(z) = tog(x) + (1 — to) f(x) takes the
form F(h) =tX + (1 —t)Y.
The rest follows from the properties of the transformation A. O

Theorem 74. The orthogonal projections of the body €2 onto the X; x X3
and X1 X Xy planes are equal to

{(X1,X3); X7 < X3 < X3,0 < X, <1} (141)
and ) .
(LX) X <X <X - ox2, o< x <1}, (142)
respectively.
Proof. Here we consider wy as an N- dimensional vector wy = (z1,...,2y),
where z1,...,xy € [0,1] are ordered according to their magnitude, that is

0 <z <z9 <.+ <xy <1 Defining Fy(z) as step-d.f. of the sequence
wy. Then

F(Fy) =
N N N
1 11 1
=|1-= = — —— 21— == 2n—1)z, .
o e S

Since there is no risk of confusion, we shall write F(wy) instead of F(Fy).
For fixed N, consider the set Ay of all wy and the set 2y of all F-images
of wy. Representing 2 and Ay as

Q2 = closure Uj<y<oo 2N,
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Ay = convex hull {wx’:(0,...,0,1,...,1);@:0,1,...,N}

where w](\i,) has i-times 0 and N — ¢ times 1. Then we find that
projection £} =

= closure Uj<py<o projection F (convex hull {w](\i,);i =0,1,..., N}) :

Since X = F(wy) consists of linear X; and X3 over wy, and

- (1)
(4)

for wy = wy’, then the orthogonal projection of €2 onto the plane X; x Xj is

. . 2
closure Uj<py<os convex hull { (%, (%) > 1=0,1,..., N}.

Finally, applying transformation A to the above projection, we find the or-
thogonal projection of €2 onto X; x Xs. O

th:19| Theorem 75. The following curves
g

1
D= {00, X, Xo)i Xo = S X012 = X)Xy = X0, 0S Xy S 1), (143)
1

T, = {(Xl,Xz,Xg);Xzz§X1,X3:X12,0§X1 < 1}, (144)

intersect in the points (0,0,0) and (1, %, 1), and they belong to Q. Moreover,

their orthogonal projections coincide with the boundary of the projections
(141) and (142) of Q and we call 'y and 'y curve-edges of Q.

For d.f.s g(z) we have
Example 40.

o) = & = / o) (2 — g())dr = -
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Example 41.

o) = % = / 9(2)(2 — g(a))dz = =

(OIS

Proof. Projection of €2 to X3 x X5 we have no given explicitly, but we project
IT; to X3 x Xso,72=1,2,...,6 and compute the maximal « such that straight
line Xo — X3 = « is touch this projection. We find o = % for projection

of I, where Xy = % and X3 = % which have a solution g(x) = 5. Such
solution is unique, since the point (%, %, é) lying in II; - in the boundary of
Q. O

Example 42. In Section 6.3 we have mentioned that the sequence ¢(n)/n,
n=1,2,3..., has a singular a.d.f. denoted by go(z). Put

1 1 1
X — (Xl(o),XQ(O),XéO)) = </ go(x)dx,/ xgo(x)d:r:,/ gé(m)dm) )
0 0 0
Then by (VI) X© € int . Since

6
— X

xXO=1-
™

N~
e
|
N | =
|
N | —
==
VR
—_
|
ol
+
|
N~
Il
(e}
[\)
(020)
Ot

we have
0.250 - - = min X3 < X{” < max X3 = 0.307....

Proof. Since €2 intersect the line (Xfo), XQ(O), X3) we can find the point (Xfo), XQ(O))
in the projections Il and II5 on the plane X; x X5. Then we express I1; and
IT5 by X3 and we find

4 X(O) 3 1 X(O) 3
(X, ) and nlaxX3:2X1(D)—1+ ( )

min X5 = -
9(x{” — X 1-2x"

4.10.5 The law of composition

Let ((vs,u;))Y5" be a finite sequence of points in [0, 1]2. Suppose that

(1) (vo,u0) = (0,0), (vn41,un41) = (1,1),
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(il) v; <wipq and w; < wyqq foralle=0,1,..., N.

Defining a; and B; as

(Vig1—vi)u;
a; = a(ts;, Vi, U1, Vig1) = | (Vig1—0i)ugv; + %(Uiﬂ—vi)zui )
(Vi1 —vi)uf

B, = B(uhviaui-i-lavi-i-l)

(ui+1—ui)(vi+1—vi) O 0
= | iU =) (Vig1—vi) (i1 —1;) (Vig1—05)? 0 :
2ui<ui+1_ui)(vi+l_vi> 0 (ui+1_ui)2(vi+l_vi)

we form the sum

N
X = Z a; + B;X® (145)
1=0

Theorem 76. Let X be determined by (145), then we have X € €2, and vice
versa, for any X € Q (i.e. X = F(g), g is d.f.) a sequence (XN, C 9,
which satisfies (145), can be found.

Proof. We shall first demonstrate the second statement. We have X = F(g),
where ¢ is nondecreasing and g/(v;, viy1) @ (vi, Vig1) — [, ui1] denotes a
restriction of g. Then by elementary reasoning one shows that the graph of
g/(vi,vi11) has the linear expansion on [0, 1] given by

g@wir1—v)+vi)  wuy if u; < wiq

(7)) = Uip1—U; Uip1 Ui’ ! B 146) |eq136
9i() 0, = e, (146)

for all z € (0,1), see the following Fig.

g(2) gi(z) __(1,1)
U1 =17
(ui, 07 T
(0,0)

2We need to add the assumption (iii) g(v; — 0) < u; < g(v; +0) for alli =1,..., N.
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Putting X = F(g;) and assuming v; < vi1,u; < u;41, we find that

‘ 1
Xl(z) :/ gi(x)dz
0

1 Vit1 d U;
B Uir1 — Ui )\ Vi1 — Uy / g($>$_uil_ui’
( + )( + ) v +

) 1
XQ(Z) :/ zgi(z)dz
0

1 Vi1 Vi+1
(wit1 — u) (Vig1 — v3)? </v wg(e)dr v /v 9() x)

1 U;

)
2 U1 — Uy

) 1
X = / g7 (z)d
0

1 Vit1 9 q 5 Vit1 1
(w1 — )2 (Vi — ;) </v g (z)dz - 2u; /U 9() I)

7

2
; (_ ) | (147)
Ujr1 — Uy

As a result of these equalities, we have

Vi+1 Vi+1 Vit+1 .
(/ g(x)d:c,/ xg(a:)dx,/ g2(x)dx> —a; + B;X®,

7 3

which holds also for v; = v; 11 and u; = u;1;. The equality (145) is shown.
In order to prove the first statement of theorem, one observes that, for

a given (X(i))i]io C Q and ((Ui,ui))j\:gl C [0,1]?, where X = F(g,), and

g; is nondecreasing, one can guarantee the existence of a nondecreasing g :
[0,1] — [0, 1] having g; as in (146). Indeed, putting

T—v; .
gi (Ui+1—lvi) (ui+1 — ’UHL) + uy, if Vi < Vjt1,

(148)

U, it v; = viya,

9/(%%41) = {

we have (146) for all i = 0,1,..., N, and hence the second statement of the
theorem can be applied to g. O

Theorem 77. If X € intQ, then the moment problem X = F(g) has in-
finitely many solutions in d.f.s g.
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Proof. We start from (145). Assuming X € int€2, with the help of Theorems
74 and 75, we can find an index i such that B; # 0. The expression for X®
takes the form

N

X0 = B! (X —a;— Y aj+ BjX@) (149)
j=0,j#i

where

-1 -1
Bi =B (uiavi7uz’+lavi+1):

.
(ujq1—uy)(vig1—v;)

—v;

0 0
1 0
(i1 —u) (Vg1 —v3)? (w1 —u) (Vi1 —v)?

—2u; 0 1
(wip1—u) 2 (vigp1—v5) (wiqp1—ug)2(vigp1—vs)

Here we consider the right hand side of (149) as a vector-valued function of
. N :

the variables (X(]))j:o,j;éz‘ C © and ((vj,uj))év;gl C [0,1]%. Calculating the

limits of B; *,a;,B; as (v;,u;) — (0,0) and (viy1,ui1) — (1,1), we obtain *

B;' — 1,a; — 0 for all j,B; — 0 for all j # i.

Consequently,

N
B! <X —a— Y A+ Bjﬂ> C intQ (150)

=0,j#i

for any (v;,w;) and (v;41,u;41) sufficiently near to (0,0) and (1,1), respec-
tively. Thus, we have shown that for (X(J’));V:O’j 4 C Q) it is possible to
compute X® € € so that (145) is valid. Now, we can represent each
XW j =0,1,...,N in the form X = F(g;), and finally, applying con-
struction (148), we infer that X = F(g), where for different X we get
different g. O]

4.10.6 Linear neighbourhoods; Definition and construction

The purpose of the following is to study neighbourhoods O of X in the body
2. Here we shall use the notation

0=X+V={X+Y;YeV}

24Here we use the symbols 1 and 0 to denote the unit and zero matrices or vectors.
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where V' denotes a suitable set of three-dimensional vectors. With the help

of operation (145) (as u;, v, uit1, V41 vary continuously), we can find new

surfaces and bodies lying in €2, containing X, and forming neighbourhoods

of X in €. Using local coordinates, we can give the following classification:
Let a, b, ¢ be non-coplanar vectors. Let

la], [+a], [a,b], [t+a,+b]|, [*a,*b,(]
denote the following sets of three-dimensional vectors:

= {au+wu; ue 0},
[+a] = {au—l—wu; u € [—5,5}},

[+a,+b,c| = {au+bv+cw+w\/u2+02 +w?; w,v € [—e,e], weE [0,5]},

where u, v, w are variables, w is a continuously differentiable vector-valued
function such that w — 0 asu — 0, v — 0, w — 0, and ¢ is a sufficiently
small positive number. The sets

X +[a], X+[+a], X+]ab], X+ [ta,£b], X+ [*+a,+b,c]CQ

are called linear neighbourhoods of X in 2. For the sake of brevity, we
call these neighbourhoods half-line, line, angular, planar and half-spherical
neighbourhoods of X in €2, respectively.

Theorem 78. All the following sets

(0,0,0)
(1,1/2,1) —2)],

+ [(1717 1)]7

+[(-1
(1/2,1/3,1/3) + [:|:(3,1,2) +£(3,2,4)],

+

+|

(1—v,(1/2)(1 —v?),1 - ) :I:(l,v,l)]?, 0<v<l,
(u, (1/2)u,u?) + [£(1,1/2,2u)], 0<u<1

are linear neighbourhoods in €2. Here

(0,0,0), (1,1/2,1),(1/2,1/3,1/3), (1 — v, (1/2)(1 —v*),1 — ), (u, (1/2)u, u*)

are F-images of the functions from Fig. 5, respectively.

131



Figure 5

Proof. We shall not give the details of the proof of Theorem 78, we show
only (1/2,1/3,1/3)+[%£(3,1,2),4(3,2,4)] € Q. Put X = F(g(u1, v1, ug, va)).
Fig. 1 indicates that

X

a(0,0,uy,v1) + B(0,0,uy,v1)(0,0,0)

+a(uy, v, ug, v2) + B(uy, vy, ug, v2)(1/2,1/3,1/3)
+a(ug, va, 1,1) + B(ug, va,1,1)(1,1/2,1)

=X (u1, vy, Uz, Vo)

1-— Vg + %(Ug — vl)(ul + Ug)

%U%(?) —uy — 2ug) — %U%(Qul + ug) — %Ulvg(w —uy) | . (151)

1— vy + %(vg —v1)(ugusg + u? + ud)

Since X = (1/2,1/3,1/3) for uy = v; =0, uy = vo = 1 and

0X 0X

= = (~1/2,-1/6,~1 = = (—1/2,-1/3, -2
g0, = (T1/2,:-1/6,-1/3), 5= = (=1/2,-1/3,-2/3),
0X 0X

T = (1/2,1/6,1/3), Tu, = (1/2,1/3,2/3),
we have

X =(1/2,1/3,1/3) + (—=1/2,-1/6,—1/3)(vy — 0) + (=1/2,—1/3, =2/3) (v — 1)
+(1/2,1/6,1/3)(uy — 0) + (1/2,1/3,2/3)(uy — 1)

+w\/u%—|— v+ (ug — 1)2 + (vg — 1)2,

where w — 0 as vy, u; — 0 and ug, vy — 1. This completes the proof. O
Notes 11. Almost clear

Theorem 79. If X = Ef\io a;, + B; X" and X 4V, ¢ Q for alli=0,1,...,N, then
X+YN BV, cQ.
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Theorem 80. If X +V C Q, and V denotes the convex hull of V in the Xy and X3
directions, then X +V C (.

Theorem 81. A sufficient condition that X € int Q is that the following three conditions
be satisfied:

(i) There is a half-spherical neighbourhood of X in Q such that X + [+a,+b,c] C Q
has a normal vector n with second co-ordinate different from zero.

(ii) There is a point X € Q with a planar neighbourhood X + [*+a, +0] € Q such that
X, = X1, X3 = X3, Xo # Xo, and the vector product a X b has a nonzero second
co-ordinate.

(iii) The second co-ordinates of n and Xy — X, have mutually opposite signs.
Theorem 82. Assume that

N
(i) X can be decomposed as X = 3. a; + B; X, where X € Q fori=0,1,..., N,
i=0

(ii) there is an index i such that X € int .
Then X € int Q2.

Theorem 83. Suppose there are two planar neighbourhoods of X in € such that
(l) X + [ial, ibl], X + [iag, ibg} C Q, and
(ii) the vector product (a; X by) X (ag X ba) has a nonzero first co-ordinate.

Then X € int 2.

Here we give a definition which we shall need below.
For X + [+a, £b, c], consider a vector n satisfying n x (axb) =0 and n-c < 0 (scalar
product). n is termed a normal vector of the given half-spherical neighbourhood of X.

Theorem 84. Assume that

(i) X can be decomposed as X = SN a; + B XD, where X € Q for
i=01,... N,

(ii) there are three indexes i # j # k # i such that X®, X0 X® haye
line neighbourhoods X + [+a], XU 4 [£b], X*) + [+c] C €,

(iii) the vectors B;a, B,b, Byc are non-complanar.
Then X € int €.
Theorem 84 admit generalizations which involve also a limiting process.

Theorem 85. Let us suppose that
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i) a giwen point X € €2 can be decomposed as X = N o a;+B;X® where
=0
XD eQ fori=0,1,...,N, %

(ii) there are three indexes 0 < i,j, k < N, with |i — j|,|i — k|, |j — k| > 1,
such that the limits

XO 5 xP X0 5xP xX® 5 xP

exist as
(0) _(0)  (0) (0
(Ui,vi,uiﬂ,viﬂ) — (Uz Uy 7uz‘+17vi+1)>
(0) , (0) ,(0)  (0)
(g, v, i1, V1) = (U, 057 w0y, vj40),
() (0  (0)  (0)
(Up, Vky Uk 1, V1) — (W5 U Up g, V1),
respectively.

Further, assume that
(iii) the points Xgi), Xéj ), X(()k) have line neighbourhoods
XY 4 [+a], XY + [+b], X + [+ c Q,

(iv) the limits

B,a . B.b .
‘ — a, J — b,
(Wit — i) (Vi1 — ;) (wjr1 — uj)(vj+1 — vy)
BkC ~
— C,
(U1 — k) (Vkt1 — vk)
exist, where
(Ui, Vi, Uit1, Vig1), (Uj, V5, Uj+1, Uj—i—l); (Uk, Uk, Uk+1, Uk+1)
converge as in (ii).
Moreover, suppose that
(v) the vectors a, b, & are non-complanar.
Then X € int €2.
Proof. See [160, Lemma 14]. O
BHere X = X (u;, v5,ui41,vi11) = F(gi), gi is defined by (146), and the variables
(s, Vi, Uig1,Vi41), ¢ = 0,1,..., N, must satisfy the assumptions (i), (ii), and (iii) of The-
orem 76.
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4.10.7 Criteria for F(g) € 0Q2

Let g : [0,1] — [0,1] be a given d.f. Define the following four sets depending
on the mapping ¢:

A = the set of points v(Y) in which g has a one-side derivative with
0 < ¢ (vW) < 4o0;

B = the set of points v® in which ¢ has a jump discontinuity and
0<v® < 1;

C = the set of constancy intervals (v®, v™®) of g in which g has a value with
0<g<1;

D = the set of continuity points v® of ¢ in which ¢ has Dini derivatives
such that Dg = D~g = +o0, and D,g = D_g = 0.

Theorem 86. If F(g) € 092, then there exists a straight line passing through
the following set of points

2) (2)
{(U(l),g<v(1)>) M) ¢ A} U {(v@), g +0)+g(v )) 0@ ¢ B}

2

3 4 3 4
U {(U();U( ),g <v()"2H’( ))) (0@, @) eC}

U {(0(5),9(0(5))) 00 e D} )

Proof. Consider an arbitrary finite set of elements from A...D. We shall
derive, first of all, that F(g) = X can be decomposed as X = Zfio a;+B;,X®
(setting as usual XY = F(g;), where g; is the linear expansion of g|(v;, vi11)

given by (9)), where X® — X! and
Xéi) € {(0,0,0), (1,1/2,1),(1/2,1/3,1/3), (1 — v, (1/2)(1 — UQ), 1—w),
(u, (1/2)u, u?);u,v € (0, 1)} (152)

for such ¢ which correspond to the choice of elements from A ... D. Further,
with the help of neighbourhoods of these limiting vectors (Theorem 78), the
corresponding neighbourhood of X can be immediately (Theorem 85) found.
We shall complete the proof using the assumption X € 0f2.

To do this, let us discuss the following four cases.
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a) Let g be a distribution function that has a non-zero finite left derivative
at v € (0,1]. Suppose that the independent variable point (v;,u;) tends
to fixed (viy1,uir1) = (v, g(vM)). Using these assumptions, the following
limit can be established

5):

1
30
Here we shall only show the case X?Si) — %; the cases X' M1 1 and Xg(i) —1
are completely similar.
Indeed, we can write

X0 (4

9(x) = g(vig1) + g'(vig1) (@ = vig1) + W@, Vi) (T — vig1)

for all z € [v,v;11], where w(x,v;41) — 0 as & — v;41. Substituting that into
the formula (147), after some arrangements, we find

1

<—g(vi,+1):g@i)>2(vi+1 - Ui)3
+ g (vi1)*(1/3) (vis1 — 03)° + wi (03, v541) (1/3) (vig1 — v3)°
+ 29" (vis1)wa (03, vi41) (1/3) (Vi1 — v3)?

— 2(g(vit1) = 9(v3))g' (Vix1) (1/2) (Vg1 — v;)?

+2(g(vir) = 9(0))wavs, 1) (1/2) (001 = 0)° .

x{¥ =

{(9(0i41) = 90)*(wiss = v)

where
Vi+1
w1 (3, 0i41)(1/3) (Vi1 — v;)* = / w(z, vip1)? (€ — vi)?de,

Vi+1
wa(05, 0311)(1/3) (w41 — 01)? = / (i, vi1) (@ — v,

Vi+1
w3 (vi, vigp1)(1/3)(vigr — Ui)2 = / w(z, vig1)(T — viy1)da

i
and, since wy,wy, w3 — 0 as v; = v;41, we finally obtain

1

x - —
s 9’(”z’+1)2

{g/(Uz‘H)Q +(1/3)g' (vig1)* — g’(vm)z} =3

b) Let us consider the case that ¢ has a jump in v® € (0,1). We choose
variable points (v;,u;), (vjy1,uj41) such that v; < v® < v, u; = g(vy),
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— 2
Ujp1 = g(vj-i-l)a Vj, Vj41 —> U( )7 and

(2) _ o).
v v
Iy,
Uj+1 — V)
where v € (0,1) is an arbitrary constant. Then, if (uj, v, u;41,v41) runs
through these variables, we have

X — (1 —v,(1/2)(1 —v?),1 —v).

c) Begin with the case when (U(S),U(4)) is any interval of a constant
value of g, where 0 < g < 1. In the same way as we choose the variables
(uj, v, Ujs1,Vj11), Now select (up, Vg, Upr1, Vpe1) such that vy < v® <@ <
Vg1, Uk, U1 — ¢, and

g — Ug
Ug4+1 — Uk

Then
X® = (u, (1/2)u, u?).
For a later application of Theorem 85 in this proof, we note that for
neighbouring v and (U(S),U(4)) the corresponding variables coincide. In

this case we take (vji1,uj11) = (vp,up) — (v@,g), preferably. Then the
difference X — Xy in the proof of Theorem 85 can be expressed as

X - X, = B, (X@ - Xé”) +B, (X(j) - ng)) + By (X<k> - xg@)

vy Vg Vg
. ( / (g — up)de, / 2(g — up)da, / (g uk>2dx) |
v(2) v(2) v(2)

and the final vector on the right-hand side is O(#?). Thus again the limit in
(X —Xg)/t > 0ast—0.

d) Let us suppose that the distribution function g has the Dini derivatives
Dtg=D"g=+4ooand D,g = D_g = 0 at a continuity point v® € (0,1).
Having in mind the geometrical interpretation of the Dini derivatives, by
selecting two suitable sequences of variable vectors (us,vs, Usy1,Usy1) One
can guarantee the existence of the limits

X® — (0,0,0) and X — (1,1/2,1).

These cases are obtained in the limit when all of the sides of the rectangles
shown in [160, Fig. 6] suitably tend to zero.
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For our further aims, to apply Theorem 85, we need to establish the limits
in (iv). To do this, we have already found in Theorem 78 the neighbourhoods
of all limiting vectors from a)-d). When

(ui7 Uiy Uiy, UZ'Jrl)? R (U’Su Vsy Us1, USJrl)
run through the variables in a)-d) we verify that

Bz<3a 172)
(Uig1 — ;) (Vig1 — ;)
B;(1,v,1)
(uj1 — uy)(vig1 — vy)
B (1, (1/2),2u) N <17 3 +U(4),2g (U(S) +U<4))> |

(U1 — up) (Vkg1 — V) 2 2
B.(1,1,1)

(Usy1 — Us) (Vo1 — Vs)
B.(—1,0,-2)

(Usy1 — Us)(Veg1 — vs)

— (3, 30, 6g(vM))

= (1, v®, g(v® +0) + g(v?))

— (17 U(5)7 29(1)(5))) )

— (=1, =0, —2¢(v®))).

Finally, the corresponding vector product of limit vectors has the co-ordinate
X3 different from zero for all interesting cases. Thus the additional parallelity
assumption in (v) of Theorem 85 is valid.

As a consequence of this theorem, using F(g) € 99, we easily obtain that
all the limiting vectors are co-planar and we have therefore shown Theorem
86. In conclusion, it should only be noted that in cases a)-d) we can choose
an arbitrary finite number of elements from A ... D, respectively, and at these
there must exist independently specified variables (u,, Uy, Upt1, Unt1)- 6 O

For the sake of more clarity, see a geometrical illustration of this result
in [160, Fig. 7.]:

26This assumption may be unrealizable if v(*) and (v(®),v®) are neighbouring, and
therefore we use (20”) or the note in c).
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D+g
D_g__ D.g
D™g
/—/
—
/ 8
0 O @ B @ ) 1

Theorem 86 implies the following restriction upon the nature of those
distribution functions which can be F-mapped on the surface 0€2.

Theorem 87. In order that the d.f. g(x) should satisfy F(g) € 0K, it is
necessary that either

(i) g is continuous in (0,1) and the part of its graph included in the open
square (0,1)? takes the form of a line-segment in (0,1)* (see a list of
these graphs in Fig. 2). Eaxpress it asy = ax +b. If a # 0, then
F(g) possesses a half-spherical neighbourhood having the normal vector
(b,a,—1/2); or

(i1) g is a step-function such that all midpoints of its jumps and intervals
of constancy from the open square (0,1)? lie on a common straight line.
Write it as y = ax +b and suppose that at least one step 27 of the graph

27 A step of g consists of a vertical segment associated to a jump of g and the neighbouring
interval of constancy of g.
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of g lies in the open square (0,1)%. Then a half-spherical neighbourhood
of F(g) can be found, with the normal vector (—b, —a,1/2).

Proof. Let F(g) € 092. We adopt the notations of Theorem 86 and assume

2) ¢

first that ¢ has a jump in UO € (0,1). Claim' It is not possible to choose a

sequence of points of type v? so that v(1 (()2). Suppose, on the contrary,
that

(v®, g(vM)) — <U(<)2>’g( <2>)>, or

(v(l),g(v(l))) — <v(()2),g( @) 4 O)) .

©) &)
Since, by Theorem 86 all of these (v, g(v()) and (véQ), W)

must be lying on a fixed straight-line, the only possibility is that

2 )
(v, g ™)) — (ng),g(vo +0) +9(v )>‘

2

This is impossible, and the claim is proved.
A similar analysis can be done for sequences of v®, (v v®) and v®

tending to v((f). Thus, for a given v((f), there exists a suitable ¢ so that g has,

on (v(()2)—5, v((f))u(v(() ), véz)—i—g), the following properties: g is continuous; g has
derivative zero at all points of differentiability; g cannot have a point of type
v®) and an interval (v®, v®). Since (see K.M. Garg [59]) for any continuous
strictly increasing function f which has a zero-derivative almost everywhere
2 there exists a residual set of points with DT f = D™ f = +oo D,f =
D_f =0, then g is a constant function on (v(()Q) — €, v((f)) and ( (2) +¢€).

Along the same lines, it can be shown that if g has an interval ( 3) @)
of constant value of ¢, 0 < g < 1, the boundary points v® and v® are the
jump-points of g. n

Notes 12. Here we give a complete proof from [160, pp. 201-204]:

Proof. Collecting all these results, we obtain that whenever the function g has at most
one point of type v(?) or an interval of type (v, v®), then g is a step-function.

To complete the possible cases, let us assume that g is continuous in (0, 1), but has no
element of type (v(3), v(4)). Then the unit interval can be split into three sub-intervals, say

28such function is said to be singular.
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[0,c], (c,d), [d,1], so that g takes the value 0 in [0,¢], 1 in [d, 1], and is strictly increasing
in (¢,d). If in addition to this, the set of points v!) is dense in (c,d), then the set of
points (v(1)7g(v(1))) is also dense in the graph of g’(cyd), and according to Theorem 86 the
graph is a line-segment. If g cannot have v()-point in a sub-interval (e, f) C (c,d), then
the restriction g’(e, #) of g is singular. Making use of Garg’s (above mentioned) theorem,
we may argue that the set of points v(® is dense in (e, f). But then, since g is continuous,
the set of points (v(5),g(v(5))) is also dense in the graph of g|(e7f). Using here Theorem
86, one derives that this graph forms a line-segment. This is impossible because of the
existence of v(®).

Let us proceed to find an expression for the half-spherical neighbourhoods of points

N

F(g) of g specified by (i) and (ii). We start with a decomposition F(g) = 3" a; + B;X®

=0
constructed as in the proof of Theorem 76.

In case (i) we may assume that (v;,u;) and (v;41,u;41) are chosen from the straight-
line y = az + b with suitable 7. Then X(*) = (3,3, %), and we begin with the construction
of that half-spherical neighbourhood

(; % ;) + [£(3,1,2),£(3,2,4),(0,-1,0)] . (153)

There is a point (%, 1—56, %) lying under (%, %, %) Since it may be put in the form

151 1,13
2716’ 3 37734

by virtue of the expression (151) for X (u1,v1, ug,v2) and since

ox _(_2 1 8 ox _ (33 1
Avy 37 2 9 Aus  \ 8716714 )’

we find that (%, 1%, %) has a planar neighbourhood in . Summing up the result and using
convexity, provided by Theorem 73, under the lines parallel to the Xs-axis, we shall then
complete our proof of (153).

Now the decomposition of F(g) and Theorem 79 imply

Il
>

F(9) + [+Bi(3,1,2), £B;(3,2,4), B;(0,-1,0)] C Q. (154)

One easily sees that if (¢,d,e) is a normal vector to (153) (compare the definition over
Theorem 82, then (c,d,e)B; " is a normal vector to (154). Since (153) has (0,1, —31) as
its normal vector, and

Uip1 — Ui Uipl — Uy 1

1 1
0,1,—= |B; ! = <u — , , —) 155
( 2) (wit1 — w;)%(vig1 — i) Vil — Vi Vg1 — ;2 (155)
1 1
= b,a,—=), 156
(Uit1 — us)? (Vi1 — Uz')( > (156)

then the half-spherical neighbourhood (154) of the image F(g) has a normal vector (b, a, —%)
as asserted.
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Using the same procedure from the above construction, we can now find a half-spherical
neighbourhood of F(g), where g is specified by (ii). Assume that there are neighbouring
v? and (0(3), v(4)). We distinguish two cases, depending on whether v(? = v®) or v(?) =
v®) . Observe that the transformation A transfers immediately the case v(?) = v tov(?) =
v®), so that it remains to consider the case v(?) = v(®). In this case F(g) can be decomposed

N . .
into the sum F(g) = 3 a; + B; X, where some X ) may be put in the form X = F(g)
=0

for a one-step function g. We shall use the representation for g given in (1), where
g =g(ui,v1,u2,v2), 0 <u; =uz < 1,0 <w; <1, v =1, and we again use the expression
(151) that gives X9 = X(uy,v1, u2,v2). Now let y = az + b be the line joining the points

e @) -
(U(Q), sl +O%+g(v ))7 (1)(3)—51)(4)a 9(1)(3);”(4) >>7 and y = ax + b joining (vl, %) and

L;l, u1 ). Graphically, see following Fig.

y:ax—|—b y:&$+b

7 'U'—};/ 1= U2

(U-, Z’\\\%

v =90 0 U1 1=
Now we can show that the partial derivatives of X with respect to the parameters v,
vy, U1, and uy are

oX 0X
:_u1(17U17u1)7 a

= (—1 + ul)(l, 1,1+ ’U,l)

871)1 8112
oX 11 oX 1
aiul = (1 — ’Ul) <27 6(1 + 2'()1), Ul) 87u2 = (1 — '()1)(5, (2 + Ul),'u,l).

Moreover, the increments dvi, dvse, duj, and dus must satisfy dvy < 0 and du; < dus,
and, in addition, the differential of X becomes

ax = Xy, + Xy 4 (X X)) (detdu
8u1 8u2 2

81}1 81)2
L (0X0X (duy—duy
8UQ 8u1 2 '
So we arrive at

F(j) + [j:(l,vl,ul), 1(1,%,%1), (o,l_T”l,o), (1,1,1—|—u1)} cQ. (157

Now we make use of the inner products

-~ 1 -~ 1 14w
(—b,—a,2>(1,v1,u1):0 (—b,—a,2><1, 5 1,2u1):O




S 1\, 1- -1 1
(—b,—d,2>(0, 6”1,0) <0, (—b,—d,Q)(l,l,l—i—ul):2—u1,

and conclude that (157) will be either a half-spherical neighbourhood of F(g) with normal

vector (—b, —a, ) if 3 < uy, or a spherical neighbourhood for uy < 1.
But again the decomposition of F(g), Theorem 79, and

(—b, —a, 3)B;*
( lN)( )+~ Ujp1 — Uy L Uip1 — Uy ].) 1
= =b(wjy1 — u;) + Gv;———— —u;, —a , =
o "1 — v Vig1 — U 2/ (Uig1 — u3)? (Vi1 — v;)
1 1
=( —b,—a, =
( 2) (wit1 — ui)? (Vi1 — v;)
yield that

F(g) + {iBi(lavhm%iBi(la1zm,2u1)73¢<07T,0)] cQ (158)

is a half-spherical neighbourhood of F(g) with the normal vector (—b,—a, %)7 and the
proof is complete. O

Having done all this, we may now conclude the proof of Theorem 70.

Theorem 88. We have _

1<i<4

Proof. Suppose that g satisfies condition (i) and § condition (ii) from The-
orem 87. For the points X = F(g) and X = F(j§) we have, according to
this theorem, two half-spherical neighbourhoods in €2, with normal vectors
(b,a,—1/2) and (—b, —a, 1/2), respectively. Now we state the result:

If X,X € 99 and X; = X1, X3 = X3, then Xy > Xo.

Indeed, let us assume, to the contrary, that Xy < X,. Then the points
X and X (or, in the case X, = X,, its small shift) satisfy all the three
conditions in Lemma 11, and thus they have spherical neighbourhoods in €2;
this is a contradiction. We thus obtain a separation of F-images of g which
are described in (i) and (ii) of Theorem 87 either to the upper and lower
surfaces of 0€2, respectively, or to the interior of 2.

Now we use that the functions g which satisfy (i) of Lemma 16 can have
only the graphs of types g™ ... ¢® from Fig. 2. Then, using notations (2), let
IT; ... 114 be their F-images in Q. By virtue of the expression g(uq, vy, ug, vs)
in (1) for g ... g%, we obtain a parametric representation of II; ...I,.
Eliminating parameters from these equations, we obtain the canonical equa-
tion of I1; .. . II4 as in (4). One sees immediately that any intersection II;NIL;
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of two different surfaces from II; . ..II; coincide with the intersection of their
boundaries. If a point X runs through this common curve, one can also com-
pute the identity g = gU) at the equation X = F(¢®) = F(¢¥), (1 < i,
j < 4). In an alternative proof, one uses the normal vectors (b;, a;, —1/2) and
(bj, a;, —1/2) to half-spherical neighbourhoods of F(g?) and F(g\), respec-
tively, constructed as in the proof of (i) of Theorem 87. Then the direction
vector considered in Theorem 83 can be found as the vector product

(bi,a;, —1/2) x (bj,aj,—1/2).

Applying F(g;) = F(g;) € 02 and Theorem 83, we find that the first co-
ordinate of the product must be zero. The only possibility is that a; = aj;,
and consequently b; = b; and g = gl¥). O

In fact, the mapping F specifies a one-to-one correspondence between the
functions of Fig. 2 and the points X of the upper boundary surface of €2.

Theorem 89. We have
o= 1.

5<i<T

Proof. Let us consider one-step functions listed in Fig. 3. Their expression
g(ug, vy, ug,v7) in (139) is determined by two collections of conditions v, = 0,
O<ui=u<1,0<v<lor0<uv;<1,0<u; =uy <1, vy =1. Using
the F-mapping, we can extend the surfaces Il5, Il (without boundary) to
the following enlarged sets

s = {F(g);v1 = 0,0 <uy =up < 1,0 < vy < 1},

Iy = {F(g);O <1 <1,0<u; =uy < 1,09 = 1},

respectively. Taking into account expression (151), we can rewrite paramet-

rically
1—va+tvaug
HSZ {(;—évg(l—Uﬂ) ; 0 <uy < 1, 0<vy < 1}7

2
1—vo+tvous

(1—v1)ug
Iy = {(;é(lul)év%ul) c0<u <1, 0<oy < 1} .

(1—v1)u%
Since the parameters us and vy in Ilg can be eliminated as

X - Xy (1—X,)?

- SRS Sk i) 159
PETOX 0 P Iex,oex (159)
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the expression for Ilg takes the form

1 (1-X,)3
21+ X3 — 2X,’

1
IIg = {(Xl,X27X3);X2 = 5

X12<X3<X1,0<X1<1}.

Similarly, in the case Iy,

= 1—?11:?37 (160)

and we can write

1.X3
Iy = < (X1, Xo, X3);: Xo = Xq — ==
9 {( 1y 22, 3)7 2 1 2X3’

X12<X3<X1,O<X1<1}.

Together with Theorem 74, we obtain that the projections of Ilg and Iy on
the X7 x X3-plane are the same as the projection of the domain 2.
Moreover, it is easy to verify that IIg and Ily intersect in a curve

11 1 1 1
oL x) Lex <,
! {22 16X5" %) 4 =77 2}

where % = X1, and we simply deduce that every X € Ilg with X; < % must
lie under Ilg and every X € Ilg with X; > % must lie under Ilg, in both cases
with respect to the X; x Xjs-plane.

Recall that every point from I[IgUIly is the F-image of a one-step function
and we may apply (ii) of Theorem 87, so that then each one has a half-
spherical neighbourhood with a normal vector (—b, —a, %), where the second
co-ordinate is negative. But then we make again use of Theorem 81 and
conclude that all the points from Ilg lying above Iy and all the points from
I1y lying above IIg must lie in the interior of £2. We simply write this relation
as 113 U II§ C int £2, where

Hg:{F(g); 1}1:(), O<u1:uQ<1, 0<’U2<1, U2(1_u2)<§}7
1
ng{F(g); O<u <1, O<ur=uz <1, vo=1, (1_U1)u1<§}'

[]
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4.10.8 Open problems for dimension s =4

Solve the moment problem

(X1, Xy, X3, Xy4) = (/Olg(:v)dx, /01 rg(r)dr, /01 x2g(x)dx,/01g2(x)dx).

E.g. for g(x) = 2x — 2? it has the unique solution.

5 Operations with d.f.s

Given a sequence x,, in [0,1), let the sequence y, be defined by one of the
following ways:

Yn = f(xn)v f : [O’ 1] — [07 1]7

Yp =21+ -+ 2, mod 1,

Yp = 961-|—-7~AL~-"-90717

Yp = nx, mod 1,

Yn = ax, mod 1,

Yn = TpUnp,

Yn = 2—: mod 1,

Yo = Max(Ty, Tpyy) = DFntibintnl

Yn = (Tni1, s Tngs),

Yn = ($2n—1, IQn)a

Y is the sequence F(z,,x,) mod 1 for m,n = 1,2,..., ordered in such

way that the values F(x,,x,) mod 1 with m,n =1,2,..., N, form the first
N? terms of y,, n=1,2,..., where F : [0,1]? — R.

In every of the above cases the connection between G(z,) and G(y,) is
an open problem. In what follows some results will be presented:

5.1 Statistical independence

The following part continues Section 3.2.

Theorem 90. Let x,, and y, be two sequences in (0,1)%. If
(i) z,, and y, are statistically independent;
(i) x, is u.d.;
(iii) g(x) € G(y,) are continuous;

then the sequence x, + 1y, mod 1, n=1,2,... s u.d.
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Proof. By (i) and (ii) every g(x,y) € G(zy, y,) has the form g(z,y) = zg(y).
Divide unit square [0, 1]? into three parts

1
Xi(t) = {(z,y) € [0,1];x +y < 1},
Xo(t) ={(z,y) €0, 1}l <x+y<t+1,z <t}
X3(t) ={(z,y) € [0,1;1<x+y<t+1l,z >t} see
Xa(t)
X3(t)
t
Xyt
0 t 1

By integration

Thus

¢ 1
/ 1dg(x,y) :/ 1.dz —/ g(1 —z)dx
z+y mod 1€[0,t) 0 0
t 1
+ / g(t —z)dz + / g(t+1—x)dx.
0 t

Now mtegratlon by substltutlon glves
fo (1—z)dz = - fo
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() Jfy gt —2)dz = I g(r)da
(353) J, 9t +1—a)da = [, g(x)dz,
then finally we have
fz-i—y mod 1€[0,t) ldg(z,y) = t. O

Example 43. Let z, and y, be two sequences in [0,1). Assume that

(i) x, and y,, are u.d.

(ii) =, and y, are statistically independent.
Then by Theorem 90 the sequence z, + y, mod 1 is again u.d. It can be
proved directly by Weyl’s criterion if we prove

1
AT n n k= 1,2,...
Z {on o))" = 7
From (ii) follows that the sequence (z,,y,) has a.d.f. g(z,y) = zy and by
Helly theorem

%Z {xn+yn})k—>/0 /0 ({z+yDrdedy, k=1,2,...

Now

1 1
/ / ({z+y})rdzdy = // (:v+y)kdxdy+// (z4y—1)*dzdy
0<aty<1 1<e+y<2

which is k_+1 and the proof is finished.

Theorem 91. Let z, € [0,1), n =1,2,..., be u.d. sequence. Then x, and
logn mod 1 are statistically independent, i.e. every g(x,y) € G(x,, {logn})
has the form g(z,y) = z.g(1,y).

Proof. Let N € [ef eft1) ie., N = £+ and divide n < N to the subsets
n € [e¥, "), k < K. For such n we have {logn} € [0,y) <= n € [e*, V).
For n € [e¥, eF1¥) we ask the number of z,, € [0,z) which is z(e**¥ — e*) +
O(e* D + €**YDrvy). Omitting integer parts here we use discrepancy Dy,
of the initial string x1, z, ..., 2y and the formula A([0,z); M;z,) = aM +
O(MDy;). * Thus

A([0,2) x [0,y); N; (xn, {logn}))
N

290-constant can be put = 1 and in the interval
an error term we put O(e*D,x 4+ KTV D xy).

[eK, eBHmin(y,08)]  for simplification,
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K:Ol x<ek+y _ ek) + x(€K+min(y,0N) _ €K> + O(Zszo e* D + €k+yDek+y)

N
As N — oo and Oy — u, we have
T Gl et B D Gl et DI Gt NI S B )
N o (ekty — k) N e—1ev
(e Hminwon) _ oK) . xemin(y,u) -1
N et ’
O(Zszo “ D + €YDy —0 (Zf:o *Dex + €k+yDek+y) 0
N > rglebty —ek) '
In the final parenthesis we have used ekDEZ:fjiEeHy — 0 as k — oo. Col-

lected all above results we have

A([0,2) x [0, y); N; (n, {logn})) x(ey —11 eminw) _

Y = 2
- = TGy )
N e—1ev el Jul¥
where g, (y) is the same as in (8). O
A consequence of Theorem 90 and 91.

Theorem 92. Given a sequence x,, then the sequences
zpomod1l and (z,+logn)mod 1

are simultaneously u.d.

Notes 13. Theorem 92 was proved by G. Rauzy (1973), see [129, p. 2-27, 2.3.6.]. Other
proof can be found in [124, p. 249-250, Exerc. 5.11] and furthermore it is noted that logn
cannot be instead by (logn)?, § > 1 since (logn)? mod 1, n =1,2,... is u.d.

In 2011 Y. Ohkubo [122] proved that in Theorem 92 the sequence logn
can be replaced by log(nlogn).

Theorem 93. An arbitrary u.d. sequence x,, mod 1 and log(nlogn) mod 1
are statistically independent.

149



Proof. G. Rauzy [135] proved that two sequences z,, mod 1 and y,, mod 1 are
statistically independent if and only if

1 N 1 N 1 N
: 2 2mi(haxn+kyn) E 2mihTn § 2mikyn
z\}1—>moo<N 16 ’ (N 16 )(N 16 y)>_0

for every integers h and k. 3° Now, by Abel partial summation we obtain

N
E : 627ri(h:cn+k log(nlogn))

=1

3

N-1 n
(627rik:10g(n logn) 627riklog((n+1)log(n+1))) Z 627rihzn
n=1 7j=1
N
+e 2miklog(N log N) Z eQﬂihxn (161)
Jj=1
and
ik log(n ik 1 1 (logn) +1
{6 miklog(nlogn) e2mi og((n+1)log(n+ ))| < 27T|]{5|— (162)
- nlogn
Thus
‘i 627ri(hxn+k10g(nlogn)) <
N >
(logn) + 1 1 1 <
ok - 2mihx - 2miha 163
o 2 o OB L5 e |5 163
which tends to 0. [

Using Theorem 93 Ohkubo [122] proved that in Theorem 91 the logn can
be instead by logp,, p, is the increasing sequence of all primes.

Theorem 94. Let x, € [0,1), n=1,2,..., be u.d. sequence. Then x, and
log p, mod 1 are statistically independent.

30p.J. Grabner and R.F. Tichy [65] characterize the statistical independence by L?
discrepancy fol fol (Fn(z,y) — Fy(x, l)FN(l,y))2dxdy as

—L_§ 1 | LN 2mi(ke,t+Hlyn, 1 N 2mi(kan +lym) |2
1672 Zk,}i:l;ooo W’N _1€ (kzn yn)_WZm,nzle (kzn+lym) |
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Proof. Firstly he proved that
log 1 1
log p, zlog(nlogn)+0( 08 ogn) —1—0( ) (164)
logn log p,

Then Ohkubo extend Theorem 10 to the Theorem 197 of two dimensional
case. Then the limit

lim (log p,, — log(nlogn)) =0,

n—oo

given by (164), implies
G((zn, {logpn})) = G(xn, {log(nlogn)}) = G((xn, {logn})).  (165)

Proof of (164). He starting with the prime number theorem of the form

)= —" ¢ 0<<—> (166)

- logz —1 log )

n 1
p—:logpn—l—l—O( >
n log p,

This implies

Now we use (see [170])

n log1
Pn _ logn + (loglogn — 1)+ 0( 08 Ogn)
n logn
which implies (164). O

Similarly, using

lim (& — log(nlogn)) =—1.

n—oo n

Ohkubo (2011) [122] proved that

Theorem 95. Let p,, n=1,2,..., be the increasing sequence of all primes.
An arbitrary u.d. sequence x, mod 1 and 2 mod 1 are statistically indepen-
dent. Thus, for every sequence x,,

z, mod 1 and (xn + &) mod 1
n
are simultaneously u.d.
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Example 44. Y. Ohkubo notes that Theorem 94 and 95 implies u.d. mod 1
of the sequences p,f + log p, and p,0 + 2+, n=1,2,...

Example 45. (a) The sequences z,, and y, =constant are statisically inde-
pendent.

(b) The sequences (z,,Yn), (1 — Tpn, Yn), (Tn, 1 —Yn), (Yn,x,) are statisti-
cally independent, simultaneously.

(c) Assume that the sequence z, € [0,1) has a.d.f. c,(x). Then an
arbitrary sequence y, € [0,1) is statistically independent with x,,.

(d) If the sequences x,,, x,,, Yn, y,, from [0,1) satisfy

1 e _/ _ / —
NgnOONZ!:En ol + [y = | = 0

then (z,,y,) and (2!, y, ) are statistically independent simultaneously.

5.2 Simple operations with sequences

Theorem 96. Let z,, n =1,2,..., be a sequence in (0,1]. If every g(x) €
G(z,,) is strictly increasing, then the 2~ -terms blocks sequence with the block

anmod 1, Xc{L2...,N}
neX

15 u.d., if N — oo.

Proof. For integer h > 0 we starting with the Weyl sum

N
QLN Z e2mih 32, e x Tn LN H 1 + 62”‘”") = H | cos Tha,|,
n=1 n=1

Xc{1,2,...,N}
because ’1—{—62””"’ = 2| cos mhx,|. Now, if thz,, € [% 0, 2+(5} for0 <d <7
1

then |cosTha,| <1 —¢, and if we put I, = +[1 — 2,4 + 2] then

N
H | cos Tha,| < (1 — g)AUniNian),

If for every z € (0, 1) there exists g(z) € G(z,) such that g(z) in = increase,
then x,, n = 1,2,... is everywhere dense in [0,1]. Then A(I; N;x,) — o0
as N — oo, and the Weyl’s sum tends to 0. O
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Theorem 96 can be applied to logn mod 1, since (see Example 1) all
g(x) € G(logn mod 1) strictly increases.

The following problem in AMM was proposed by A.M. Odlyzko [121] and
then solved by D.G. Cantor [25].

Theorem 97. Let the sequence x,, in [0,1) have at least one irrational limit
point and A,, n=1,2,..., be the block of 2™ numbers

A, = (121 + g0+ -+ + €256, = £1) mod 1.
Then the sequence of individual blocks A,, n=1,2,..., is u.d.

Proof. A relevant Weyl sum has the form

1 ) -
Q_n Z eZﬂzh(€15E1+"'+€nf’5n) — H 008(271']137@')-
=1

ei==+1,i=1.2,...n

Let xp, — 6 as i — oo and let ¢ be irrational. Then hx,, — hf and
| cos 2rhd| < 1 for integer h # 0. This implies zero limit of the above Weyl
sum. 0

Theorem 98. Let the sequence x,, from (0,1) has a continuous a.d.f. g(z).
Then the sequence

yn:imodl
T
has the a.d.f.
(1 1
g(fﬁ)—ZQ(g) —g(n+x)

Notes 14. C.f. IJ. Schoenberg (1928) [146], E.K. Haviland (1941) [69], L. Kuipers
(1957) [91], a proof can be found in [92, p. 56, Th. 7.6]. E. Hlawka (1961) [72], (1964) [73]
considered the multi-dimensional case. G.Pdlya (cf. I.J. Schoenberg (1928) [146]) proved

that for g(x) = x we have
(1 1 T1—¢
X () - e
Z\n n+tw 0 —1

For history consult [92, p. 66, Notes].

Theorem 66 has the following reformulation:
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Theorem 99. Let f : [0,1] — [0,1] be a function such that, for all x €
0,1] the set f~1([0,x)) can be expressed as a union of finitely many pairwise
disjoint subintervals I;(x) C [0,1]. Let x, mod 1 be such that each its term
appears only finitely many times in it. Then

G(f(x, mod 1)) = {gs; 9 € G(x, mod 1)}.

Theorem 100. If z, mod 1 and f(x, mod 1) have the same a.d.f. g(x),
then

g(z) = gf(x) for z € [0,1].

Theorem 101 (S.H. Molnér [107]). Let f be a real function and let g, and
go be two d.f.s. For any g, and go there exists a sequence x,, n = 1,2,...,
such that the a.d.f. of x, mod 1 is g; and the a.d.f. of f(x,) mod 1 is gy
of and only if the graph of f mod 1 s everywhere dense in the unit square

0, 1]2.

Theorem 102 (I.J. Schoenberg [146]). See [92, p. 68, Ex. 7.19]: If the
sequence x, mod 1 has a continuous a.d.f. g(x) then the sequence

9 ({zn})

5 u.d.
Proof. Assume z,, € [0,1). In the simple case if —#{"S%x”@} — g(x) and
g(z) increases, using g(z,) < r & z, < g !(z) we find w N

9(g~! () = @.
In the general case, for non-increasing g(x), we can using Weyl’s criterion
that the sequence g(z,) is u.d. if and only if

N 20 = s

and by Helly theorem
N
Z () ks / kdg

Now, integration by parts fo g(z)dg(x) = [g(x fo ) which
implies fo z)dg(x) = 5. Also

Jiy (g(x))2dg( > [(g(2)2g(2)]§ — 2 [ g(x)g(x)dg(x)
which 1mphes fo ng( ) =1/3, etc. O
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Theorem 103. If u.d. of z, is proved by Fejér’s theorem [172, 2.2.10, 2.6.1]
(see also Theorem 33 in this book) then for every a > 0 the sequence ax,, mod
1 is u.d. again.

Theorem 104 ([157]). The sequence

z, €0,1), n=1,2,...,
1s u.d. if and only if the double sequence

| T — xnl, myn=1,2 ...,
has the a.d.f. g(x) = 2z — 2.

Here the double sequence |z, — x,|, for m,n =1,2,..., is ordered to an
ordinary sequence ¥, in such a way that the first N2 terms of y, are |z, —,|
form,n=1,2,...,N.

Proof. For every continuous f : [0,1] — R we have
1 1 1 1
| st = shasdy = [ f@nago) = [ o2~ 2010
o Jo 0 0

The argument is that

1,1 9 1
k k
xr —y|"dedy = :/1: 2 —2x)dx
A.A‘ | e R

for all k =0,1,2,.... Then we use Part (I) of Theorem 21 because for u.d.
sequence x,, n = 1,2,... we have

N 1 1
1
dm s 30 o —l) = [ [ fle = udody

For symmetric and continuous F(z,y) on [0, 1]* by (716) we have proved
for d.f.s Fiy(z) and g(x) that

1 N 1 1
wo 2 Fleman) = [ [ R =

m,n=
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//nydFN YdF N (y //Fa:ydg )dg(y

:4/ (Fy(z) — g(2))d, F(z,1) / / (Fn(z Fn(y) +9(y))dyda F(z,y).

From it
1
W F(@m, xn) // (2, y)dg(z)dg(y \// (Fn(z ))2dz
( \// F!(x,1) 2dx+\// / (Fn(y) + g(y)2(FY, (z, y))dedy)

Specially for F(z,y) = |x — y| we find

NQZ!xm—:cu—//u—mdg )dg(y)| <

m,n=1

2\//0 (Fu(z) — g(x))2da (1+\//0 (1+g(1:))2d3:) |

5.3 Convolution of d.f.s (an information)

Let gy : [0,1] — [0,1] and ¢ : [0,1] — [0, 1] be two d.f.s and extend they to
d.f.s defined in g; : (—o00,00) — [0, 1] and g, : (—o0, 00) — [0, 1]. By statistic
d.f. g(x) is a convolution g(z) = g1(x) * go(x) if

g(z) = /_OO g1(z — y)dga(y). (167)

Since dga(y) = 0 if y & [0, 1], then we have

o(z) = / 01(x — y)dga(y).

Convolution g(z) is different other than 0 and 1 only for 0 < z < 2. Thus
Jo 91(z = y)dga(y) ifo<ax<l,
g(x) = . (168) [eq130
{fxl1 Gz —y)dga(y) + go(z —1) if1 <2 <2
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since in the second part, for 1 < z < 2 we have fol gi(z — y)dga(y) =

Jo 7 Ldga(y) + [ (e = y)dga(y):
Now, let 2 and 27 be two sequences in [0,1) and FJ(Vl)(x) and F](VQ) (x)
by two relevant step d.f. defined in (1), respectively. Using (168) we have:
If 0 <z <1, then

N

’ 1
1 2 2
Fz(v)(x)*Fz(v)(x)Z/ @ —)dFy () = Y By (@ — o)
0 e
ng%z%;a:

= i #{m < Niay! <o -} #{(mn);m,n < Nyaw + 2 < a}
n=1

N2 N2

0<e® <
If1 <z <2 then

1
FO@) « FP(x) = FP(x — 1) + / FO@ — y)dF2(y)

r—1

N
#{n < N;ald <o —1) " o 1
SHhERe sl Y We-dy

n=1,
r—1<zP <1

#{(m’n)3m7n§N;$7(z2)<x—1} a #{mSN;$ﬁ)+x7(l2)<I}
N? + D ul
n=1,
e—1<z(P <1
#{(m,n);m,n < N,aw + o < a}
N2 .

Then we have

Fy (@) + B (x) = e (= Fye(x)) (169)

for every 0 < z < 2.
Thus the d.f. g(x) of o+ 2 e [0,2) ordered by increasing m + n is
9(x) = g1(x) * g2().

157



5.4 Characteristic function (an information)

—

Let g(x) be a d.f. The characteristic function g(x) of g(x) is defined as

= [ edgto 70

—00

for t € (—o0,00). We have

—

g1(x) * ga() = g1().ga2(). (171)
Example 46. For an arbitrary sequence z,, in [0, 1) with step d.f. Fy(z) we
have
— 1 1
_ ztgc _ ztmn
Fy(t) _/0 dFy( —N;e

According to (169) we have

Fye(t) = / e dPy:(z) = < Z it(ayn 4
0 n=1

T @) w(l) 1 it2®
= F(1).FP () NZ tan” N iten”,

n=1

Theorem 105 (Continuity theorem, Lévy 1925). Let g,(x) be a sequence of
d.f.s and ¢,(t) the corresponding sequence of their characteristic functions.

Then g,(z) — g(z) weakly if and only if ¢, (t) — ¢(t) pointwise on R, ¢(t) is
continuous at 0. In addition, in this case, ¢(t) is the characteristic function
of g(x) and the convergence ¢, (t) — ¢(t) is uniformly on any compact subset.

C.f. Tenenbaum [178, p. 285, Th. 3].

(I) Let X be Gauss normal, then the characteristic function ¢ of X is
o(t) = e /2.

(IT) If the random variable X has characteristic function ¢(¢) then X +a

has ¥(t) = ey (t).
(III) If random variables X and Y are independent with characteristic
functions ¢ and 9, respectively, the X + Y has ¢(t) = 1(t)pa(t).
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5.5 Random variables (Some results)

(I) If X and Y are independent random variables and f,¢g : R — R are
arbitrary functions, then f(X), g(Y') are independent also.

(IT) Let X and Y be independent random variables with densities fx(z),
fr(y). Then the random variable W = X +Y has density fi (z) of the form
of convolution

z) = /_OO fx (@) fy(z — x)dz. (172)

6 Special sequences (extension of Section 3)

6.1 D.f.s of £(3/2)" mod 1 (continuation 3.8)

In this part we study the set of all d.f.s of sequences £(3/2)" mod 1, £ € R.
Most results are from [163]. (For open problems see Section 3.8.)

Definition 7. Let f : [0,1] — [0,1] be a function such that, for all z €
0,1], f7(]0,z)) can be expressed as a sum of finitely many pairwise disjoint
subintervals I;(z) of [0, 1] with endpoints «;(z) < B;(z). For any distribution
function g(z) we put

= D9l - slaste)), (173)

The mapping g — g5 is the main tool of this part. A basic property is
expressed by the following statement (previously written in Theorem 66):

Theorem 106. Let x,, mod 1 be a sequence having g(x) as a d.f. associated

with the sequence of indices N1, No, . ... Suppose that any term x, mod 1 is
repeated only finitely many times. Then the sequence f({x,}) has the d.f.
function gs(x) for the same Ny, Na, ..., and vice-versa any d.f. of f({zn})

has this form.

Proof. The form g¢¢(z) is a consequence of

A([0,2); Nig; f({zn})) ZA x); Ny; x,) and
A(Li(z); N ) = A([0, B;(2)); N ) — A([0, (@) ); Nigi ) + 0(Np).
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On the other hand, suppose that g(x) is a d.f. of f({z,}) associated with

N1, Ny, .... The Helly selection principle guarantee a suitable subsequence
Ny, Ny, ... for which some g(x) is a distribution function of x,, mod 1. Thus
9(x) = g5 (). O

6.1.1 Functional equation gy = g,

Let z, = £(3/2)"mod 1, n = 1,2,..., and denote f(z) = 2z mod 1 and
h(z) = 3z mod 1. In this case, for every z € [0, 1], we have

gr(x) = g(fi (@) + g(fz " (x)) — 9(1/2),
gn(x) = g(hy ' () + g(hy ' (2)) + g(h3™ (z)) — g(1/3) — 9(2/3),
with inverse functions
fil@) =z/2, fy'(x) = (z+1)/2,
hil(z)=x/3, hy'(z)=(x+1)/3, h3'(z)=(x+2)/3.

Theorem 107. Any d.f. g(x) of £(3/2)" mod 1 satisfies g¢(x) = gn(x) for
all x € [0, 1].

Proof. Using {q¢{z}} = {qx} for any integer ¢, then we have {2{{(3/2)"}} =
{3{&(3/2)"'}}.  Therefore f({£(3/2)"}) and h({£(3/2)"'}) formed the

same sequence and the rest follows from Theorem 106. See Fig.

f(x) h(x)
1 1
T x
0 : 1 1 a+1 2
3 =) 0 3 = al nl
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6.1.2 Intervals of uniqueness for f(z) = 2x mod 1 and h(z) = 3z mod
1

The above theorem yields to the following sets of uniqueness for d.f.s of
€(3/2)" mod 1. Here

e X C [0,1] is said to be set of uniqueness for g = g, if for any two
g1, g2 solutions of g = gp, the equality g;(z) = go(z) for x € X implies
g1(z) = ga(x) for every x € [0, 1].

Theorem 108. Denote f(z) = 2z mod 1 and h(x) = 3z mod 1 an let g1, g2
be any two d.f.s satisfying g;,(x) = g, (x) fori=1,2 and x € [0,1]. Denote

L=[0,1/3], L=[1/3,2/3], I;=[2/3,1].

If i(x) = galx) forx € L;UIL;, 1 < i # j <3, then g1(x) = ga(x) for all
x € [0,1].

Proof. Assume that a distribution function ¢ satisfies g = g, on [0, 1] and

let J;, J;, J; be the intervals from [0, 1] described in the following Fig.
X
1
hyl(x @y
e
Ji oy Jz
o J//
2/ ’
J//
Ty !
/2
Ji
J3
1/ )
e Lo J3
J4 AR O RS /A N A
,Jé/
0 1/32/5 3/52/3 1y

There are three cases of I; U I;.
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1°. Consider first the case I, U I3. Using the values of g on I, U I3, and
the equation g; = g5 on Jy, we can compute g(hy'(x)) for z € J;. Mapped
xr € Jy toa’ € Jy by using hi'(z) = f;H(2), we find g(f; ' (x)) for x € Js.
Then, by the equation g; = g, on Jo we can compute g(hy'(x)) for x € Ja,
from it we have g(f; *(x)) for z € J3, etc. Thus we have g(z) for = € I;.

2°. Similarly for the case I; U Is.

3°. In the case I; U I3, firstly we compute g(1/2) by using g(1/2) =
grn(1/2) and then, an infinite process of computation of g(x) for z € I, we
shall divide into two parts:

In the first part, using ¢(y), for y € I U I3, and gy = g5 on [0,1], we
compute g(hy'(z)) for x € J,. Mapped z € J, — 2’ € J} by hy'(z) =
fr'(2") and employed g; = gj, we have find g(hy*(z) for x € Jj. In the same
way this leads to g(f; ') on J5, g(hy') on J4, g(fi') on Ji, g(hy') on Jj, and
SO on.

Similarly, in the second part, from ¢g on I; U I3 and gy = g5, on [0, 1] we
find (A=) on !, g(f;1) on JZ, g(hy) on 4, g(fi1) on J4, g(hy) o J5,
etc.

In both parts these infinite processes not covered the values ¢(2/5) and
g(3/5). The rest follows from the equations g7(1/5) = g5(1/5) and g(4/5) =
gn(4/5). O

Directly from the above Fig. we have

Theorem 109. The set X =[2/9,1/3|U[1/2,1] and the set X* =[0,1/2] U
2/3,7/9] are also sets of uniqueness.

Proof. Using the values of g(z) on € X, and the equation gy = g, on Jj,
we can compute g(f; ! (x)) for € J;. This gives g() on [1/3,1] which is the
set of uniqueness. Symmetrizing X we find the set X* of uniqueness. n

6.1.3 Intervals of uniqueness for f(z) =4z(1 — ) mod 1 and h(z) =
z(4x — 3)? mod 1

Now, let
f(z) =421 —2), h(z) =42z — 3)* for z € [0, 1].
In this case

gr(@) = g(fi (@) + 1 = g(f3 " (),
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where
fille) = —5—, fi'@)=1-f'(2),

and for h;l we known only

hy () = % (g _ h,;l(x)> + \/(g - h,;l(x)>2 - %Ll(x) . (174)

k

for every z € [0,1] and 1 < i # j # k < 3. In this case the equation gy = g,
has solutions

2

o), 55 (2), 515 (2), golx) 1= = awcsin vz,

Theorem 110. Let f(x) = 4x(1 — x), h(z) = z(4x — 3)? and

S

I =[0,1/4], I,=[1/4,3/4], I5=[3/4,1].

If g1, g2 solve gy = gn, on whole interval [0, 1] and g1(x) = g2(x) forx € L;UI;,
1 <i#j <3, then g1(z) = go(x) for every x € [0, 1].

Proof. 1t follows directly from the following Fig.
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1

Ji hfl X hgl Ji
% -1 —1

i 2,
Jé hfl ’
2 (]é

J3
Ja 7 J
J5
0 I, = I, S, 1Y

6.1.4 Equation fol fol F(z,y)dg(x)dg(y) = 0 characterizes g; = g

Next we return to Theorem 107. We derive an integral formula for testing

g = gn. Denote *!

Fr,y) = {22} = {3y [+ {2y} — {32} = [{22} = {2y} - [{32} — {3y}[. (175)

Theorem 111. The continuous d.f. g(z) satisfies g = gn on [0,1] if and

only if

/01 / F(x,y)dg(x)dg(y) = 0.

Proof. Let x,, n = 1,2,... be an auxiliary sequence in [0, 1] such that all
(m, T, ) are points of continuity of F'(x,y), and let cx (z) be the characteristic

function of the set X. Applying c ) (2n)

where

= C(z,1](%), we can compute

1 1 N 1 N i
/0 (N D cp1 (o (@n) — N > Ch‘lﬁovx))(”“"”))
n=1 n=1

m,n=1

Fyn(e,y) =max(f(z), h(y)) + max(f(y), h(z)) — max(f(x), f(y))

3lHere again f(x) = 2z mod 1 and h(z) = 3z mod 1.
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— max(h(z), h(y)) =

I%(\f(x) —h(y)l +1f(y) = h(x)| = |f(2) = fy)] = [h(x) =

Applying the Helly lemma we have (cf. Example 102)

/( — gn(z dfﬂ—//thwydg )dg(y)

for any continuous d.f. g. Here 2F};(z,y) = F(z,y) in (175).

Second proof. Helly theorem gives

1
N2 xmxn—>// (x,y)dg(x)dg(y

m,n=1

LN e b Jy o F(F (), hly))dg(z)dg ()
5 O F(f(@n),h( n>>%{ T Fle oy ()don ().

m,n=1

Then

/ / {2y} — {32} dg(x)dg(y) / / 2 — yldgs(x)dg(y),
/ / {20} — {3y}dg(z)dg(y) / / 12— yldgn(2)dgs(v),

h(y)l)-
)

a7s)

]

a79)

//I{%} {2y}Idg(x)dg(y //Ix—yldgf z)dgy(y),
/ / {3} — {3y }H|dg(x)dg(y / / & — yldgn(z)dgn(y)

and by integrals in Section 13

[ = slg@int = [ o)
[ [ o= ntasto = [ awio s [ o
//\x—y\dgf z)dgy(y) = — (/ (x)dx—/olg}%(x)dx)

165

gr(x dx—i—/o gn(x)dx — 2/0 gr(x)gn(x)de
(x)dz — 2/0 gn(x)gs(x)de



-/ 1 / o — yldgn(x)dan () = (@) [ 19,3(@@)

which gives (178). O
Example 47. We verify Theorem 176 for gs(x) which solve gy = g5, by
Example 49.
g3(2)
x
2¢ — 2
1
r—3
T 2 3 1 5
O 5 & F 5 & 1
Firstly we compute
- ‘

/ (/6 F(x,y)dx>dy, i,j=0,1,...,5 (180)
% K

for ]*? (x,l y) defined in (175). For example we compute
I J ¥ F(x,y)dedy, where in this case
F(z,y) = |2z — 3y| + |3z — 2y| — |22 — 2y| — |3z — 3y|.
By the following Fig. we have F(z,y) = A, B,C, D

[
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% 3r—2y =20 y—x=0
A
B
C
3y —2x =0
D
0 1 2 1
18 18 6
where
A=3y—2rx+2y—3zx—5(y —z) =
B=3y—2r+3x—2y—5(y — —6x—4y,
—4:L’—|—6y,

(y — =)
C=3y—2x+3x—-2y—>5r—y) =
D=2x—-3y+3x—2y—5(z—y) =

From it L
P Pl dedy = —
/0 /0 (957?/) x y—ﬁ.

By program "DERIVE” all integrals in (180) are (indexed from the bottom)

0 -1 1 _5 1
432 1944 1944 3888
- _ 5 S _ 5 13
432 1944 3888 432 1944
T S 28 2 -
1944 3888 972 81 432
__5 — 5 2z 23 37
1944 432 1 72
pr Tgr o EL g
1944 432 1944
om o W
972 3888 1944 1944 432

1

972
1
8

w
o0

|
~

‘*ﬁ\w
=

| —
e
i~
S

|-

O

Then we see that sums over lines of matrix (181) are 0, i.e

11
/ / F(z,y)dzdy =0
o Jo
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which is equivalent that xy = z,. Furthermore for every j =0,1,2,3,4,5 we
have (cf. (737))

Jj+1

ﬁ 6 (/OlF(x,y)dx)dy = 0. (182)

6

New, we shall compute

d d v o1+1 Jj g+1
- f L L2
Q;,j d$g3( )dyg?)( ) or r € (6 6 )7y € (67 6 )7

where 4,7 = 0,1,2,3,4,5. This a;; form the matrix (indexed from the bot-
tom)

001221
002442
002442
001221 (183)  [eq225)
000000
000000

Combining (181) and (183) we find

it+1

[ [ reninenn =3 /J’“( [ Py
—23

,j=0
2 37 7
=l.— 42— +2.—+1.—
81 * 972 i 3888 * 1944
—23 2 -5 -5

20— +4.—+4. 2.——
i 972+ 81jL 432jL 1944

37 5 13 1
0. 90 4% 4y 9.
toages T3 T 10w T Y38
7 5 1 1
1 9. 9. 1
002 T 01 T 3sss Tl ome
0.
Again as in (182)
/ ( / F(:c,mdgs(a:))dgg() 0 (184) [oq226
i 0
6

for j =0,1,2,3,4,5.
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Notes 15. [165, Prop. 15]: If d.f. g(z) solve fo fo (x,y)dg(z)dg(y) = 0, then we have
0= fo (z,y)dg(y) for every z € [0, 1}. Here we assume F'(z,y) is a copositive and g(x)
is strictly increasing. See also Theorem 247 in this book.

6.1.5 g(z) and 1 — g(1 — z) satisfies g; = g5 simultaneously
We present two proof, second one by using the integral (176).

Theorem 112. The d.f. g(z) and 1 — g(1 — x) satisfies gy = g, simultane-
ously for all z € [0,1].

By the following Fig. we see that gs5(x) = 1 — g3(1 — x). Their solution
of gr = gi, are given in Examples 49 and 55.

93(@ 95@)
T+
T
2r — % 2 — %

ol
&

4 5
i ¢ 10

(SN[}
W
(oSN
ot

=

2
6

=
W

First proof. Using transformation x = 1 — y then we have

oz _ y+l
11—2=udl

1
21—z ¥

_x _ y+2
31— % =1u2
z+1 _ y+1
4. 1———T,
2 _y
5.1 =3
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Put ¢g1(z) =1 —¢g(1 — x). Then

95(Y) = 9n(y) = 915(x) — gun() (185)
for every x =1 —y € [0, 1]. O

Second proof. We shall prove that for all (x,y) € [0, 1]* except (x,y) in lines

1 1 2
r=0zr=—-x=—-,z=—,r=1and
3 2 3
1 1 2
=0y==,y==,y=-,y=1 186
y=0y=gy=59=3y (186)
we have

We start with

{22} — {3y}| = |22 — [22] — By — [By])| = [(2x — 3y + [3y] — [22])|

20 — 3 3y| — [2z] > 0
—(2z — 3y + [3y] — [2z]) > 0.
Thus from integer parts [3y] — [2z] in Fig. 1 we have the fractional part

{22} — {3y}| in Fig. 2 without straight lines (186).

{22} — {3y}
—(2z — 3y + —(2z -3y +
[3y] — [22] (20 -3y +2)) 20 -3y +1)
2x—3y+2=0_(2x_3y+ —(22 — 3y)

2-0=2|2-1=1

(2 —3y+1) (22 — 3y)
—(2x — 3y) —(2x — 3y =

1-0=1[1-1=0]| 22—-3y+1=0

0-0=0]0-1=-1 (22 — 3y) (20 — 3y — 1)

20 — 3y =0 <
Oz —3y—1=03% 1
Figure 1 Figure 2

170



Similarly to (188) we have

{2(1 —2)} = {3(1 = y)}| = {22} — {3y}
= | = 2z — [-27] — (=3y — [-3y])|
= |(3y — 22 + [-3y] — [-2z])]

3y —2x + [—3y] — [-22] >0
= 189 eq1000
{—(Sy — 2z + [-3y] — [-22]) > 0 (189)
and similarly to Fig.1 and Fig. 2 we have

{2(1 —2)} = {3(1 = y)}|
By — 2z —2 By—2z-1

[—3y] — [—22] <(By—2x—2) ~“By—2zx—-1
3y72x72:0(3y_2$_1 (3y — 27)

(2) = (<)) (<2 = (-2) | By — 20— 1= By =20 17 —(3y ~ 20)
=-1 =0 (3y —2x) By —2zx+1
(1) = (=1) | (-1) = (-2)
A =0 =1 3y — 22 — 0L~y — 22) 1 “(3y—2z+1
3y—20+1=02 1
Figure 3 Figure 4

Thus from Fig. 2 and Fig. 4 we see that

{22} = {3y} = {2(1 —2)} = {3(1 —y)}| (190)

for every (z,y) € [0,1]* without straight lines (186). Similarly it holds also
for the parts [{2y} — {3z}|, |{22} — {2y}| and |{32} — {3y}| of F(z,y) and

thus
F<:U7y):F(1_x>1_y> (191>

for all (z,y) € [0, 1]* except straight lines (186). If d.f. g(x) is continuous at
=0, %, %, %, 1, then

/ / e 15y Y9 (@)dg(y) =0
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and thus

// (z,y)dg(x)dg(y

Using transformation x — 1 —z, y — 1 — y we have

/01 /01 F(l—2,1—y)dg(z)dg(y)

_ / / Fz,y)d(g(1 - 2))d(g(1 — y))

/0 /0 F(z,y)dg(z)dg(y) = 0 <
/0 /o F(a,y)d(1 = g(1 = z))d(1 — g(1 - y)) = 0.

and thus

Finally we use Theorem 111.

// (1 - 2,1 - y)dg(z)dg(y).

192)

(19)

(19)

]

In the following Fig. 5 and 6 we give different values of |[{2z} — {3y}| and

{2(1 —x)} — {3(1 — y)}| on the straight lines (186).

{2(1 —2)} = {3(1 = y)}

{22} — {3y}
2x 20 — 1 1—2x 2 —2x
3y — 2 3y —2 3y — 2 3—3y 3—3y 3—3y
2x 20— 1 1—2x 2 —2x
Jy—1 3y — 1 3y —1 2 -3y 2 -3y 2 -3y
2x 20 — 1 1—2x 2 —2x
3y 3y 3y 1-3y 1—-3y 1—3y
2x 20 — 1 1 -2z 2 -2z
0 1 0 1
2 2
Figure 5 Figure 6
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6.1.6 Explicit formula for F(z,y) = {22} — {3y}|
+ {2y} — {32} = {22} — {2y}] = {32} — {3y}

We give explicit formulas of [{2x} — {3y}|, [{2y} — {3z}|, —|{22} — {2y}|,

— {3z} — {3y}| respectively, in the following Figures 7—14:

{22} — {3y} on (186)

2 20— 1
3y —2 3y — 2 3y —2
2z 20 —1
Jy—1 Sy — 1 3y—1
2z 2¢ — 1
3y 3y 3y
2 20 —1
1
0 i 1
Figure 7
{2y} — {3z} on (186)
3x 3z —1 3x — 2
2y —1 2y — 1 2y — 1 2y — 1
1 3z 3z — 1 3z — 2
2
2y 2y 2y 2y
3z 3z — 1 3z — 2
1 2
0 3 3 1
Figure 9

{22} -

{3}

—(2z -3y +

(22 — 3y +2)

—(2z -3y +

(20 —3y+1)

Wi

Wl

—(2z -3y +

(20 -3y +1)

—(2z — 3y)

(2z — 3y)

—(2z —3y)

—(2x — 3y =

(2x —3y —1)

(22 — 3y)

1
5 1

Figure 8

{2y} — {32}

2y —3z—1
(2y —

~(2y —3xz — 1

—(2y — 3x)

2y —3z+1
3x)

A2y — 3z +1

N =

(2y — 3z) (2y —

—(2y — 3x)

~(2y — 3z + 1)

3z +1 (2y — 3z + 2

~(2y — 3z + 2
2

0 I
3

3

Figure 10
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{2z} — {2y} on (186)

2 2 — 1 {2z} — {2y}
—(2z—-2y+1 —(2z — 2y)
2y — 1 2y — 1 2y — 1
1 2 2z — 1 1/ (20 =2y +1) (22 — 2y)
—(2z — 2y —(2z -2y —
2y 2y 2y
2a 2z — 1 (2z — 2y) (20 —2y—1)
1 1
0 i 1 0 i 1
Figure 11 Figure 12
{3z} — {3y}| on (186)
3x 3z — 1 3z — 2 |{31’} o {3y}|
—(3x — 3y +2) |- (3z — 3y $.1) |- (3z — 3y)
3y — 2 3y — 2 3y —2 3y —2
% 3z 3z — 1 3z — 2 % 3z — 3y + 2)| {3z — 3y + 1) 3z — 3y)
—(3z — 3y +A4) |- (3z — 3y) —(3z — 3y —A)
3y —1 3y —1 3y —1 3y —1
% 3z 3z — 1 3z — 2 11/Be = 3y + 1)) (3x — 3y) (3z — 3y — 1)
—(3z — 3y) —(3z — 3y — YJ |- (3z — 3y —
3y 3y 3y 3y
3z 3z — 1 3z — 2 (3z — 3y) 3z — 3y — 1) /(3z — 3y — 2)
0 5 5 Lo : :
Figure 13 Figure 14

6.1.7 Integration fol fol F(z,y)dg(x)dg(y) by parts

Since F'(z,y) in (175) is discontinuous we cannot apply (534) in the form

/O/0F(fr,y)dg(x)dg(y)=F(1,1)_/0 g(y)d, F(1,y)
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/ g(2)d, F(z, 1) // (y)dod, F(z, ). (195) [q137]

Here for F(x,y) in (175) we have

F(1,1) =0,
F(1,y) = {3y} + {2y} — {2y} — {3y} =0,
F(x,1)=0.

In the following we apply W.H. Young’s [197] repeated integration by parts
(see (208), (209) and (210)) on every continuous part of F(z,y) defined on
subs-squares of [0,1]? by Fig. 8,10,12 and 14.

2dx (1/2,1) 2dx

—4dz 6dy —4dx 3dy
, Adx  (1/2,2/3 4dx (1,2/3)
= (/3 +2/3 (12
—4dg 6dy —4dz 3dy
i 4dx (/2,13 4dzx (1,1/3)
3
v=(2/3)c+1/3 (Y
—4dzx 6dy —4dzx 3dy
0 1 1
y=(2/3)x y=(2/3)x—1/3 2
Figure 15

By Fig. 15 for arbitrary d.f. g(z) we have

/ / {22} — (3y}ldg(x)dg(y)

= g(1/2)9(1) — 9(L)a(1/3) — 9(1)g(2/3) — 29(1/2)g(1/3) — 20(1/2)9(2/3)  (196)
1/2 1

; / o(2)g((2/3)z +2/3)(—4)da + / o(2)g((2/3)z + 1/3)(—4)de

+ [ st/ -+ [ 9@al(2/3)e =1/3) (- (197)
1 1 1
+ [ at/290y+ [ aawady+ [ gle)g2da
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1

+ /0 g(2)g(1/3)4dz + /0 g(2)g(2/3)4dz. (198)

Here (196) are jumps, (197) are integrals over diagonals and (198) integrals
over orthogonal lines.

dg,d, and d,d, {2y} — {3z}
3dz (/3,1 3dx (2/3,1) 3dx

—6dx —6dz —6dz,
Udy Udy 2dy
% dax @z, 1206dx 273,172 6dxz (1,1/2)
) /o 1o ass,1/2 Jle/sr)
—6dx —6dz —6dz,
Udy Udy 2dy
1 2
y= /D 0 3 3 1
y=(3/2)x —1/2 y=(3/2)xz -1

Figure 16

By Fig. 16 for arbitrary d.f. g(x) we have

/ 1 / 2y} - (3aHdg(a)dg(y)

= —g(1/3)g(1) — g(2/3)g(1) — 29(1/3)g(1/2) — 29(2/3)g(1/2) — g(1)g(1/2)  (199)
+/01/39(w)9((3/2):c+1/2)(—6)dx+/02/39(1)9((3/2)33)(_6)@

" // o(a)g((3/2)a = 1/2)(~6)dz + [ 9@/ = V(-6 (200)
+/019(1/?>)g(y)4dy+/01

—_

9(2/3)g(y)ddy + /O g(1)g(y)2dy

1 1
+/O g(x)g(1)3dx+/0 g(z)g(1/2)6dz. (201)

Here (199) are jumps, (200) are integrals over diagonals and (201) integrals
over orthogonal lines.

176



Notes 16. Since

[ [ 10 - @as@ioe = [ [ e siaas o),
[ [ 1 - sayas@ito = [ [ e slamassv),

then we have (196), (197) and (198) equal to (199), (200) and (201), respectively. For
(197)=(200) we give

1/2 1
| @tz +2/3(-nde = [ glagl(3/2)0 - 1)(-0)de,
0 2/3

/ 9(x)g((2/3)z +1/3)(-4)dz = /1/39(36)9((3/2)96 —1/2)(-6)dz,

01 2/3

/ 9(x)g((2/3)z)(—4)dz = / 9(2)g((3/2)x)(—6)dz,
0 0

1 1/3

/1/2 9(x)g((2/3)x — 1/3)(-4)dz = /0 9(x)g((3/2)z + 1/2)(-6)dx.

ds,d, and d,dy|{2z} — {2y}
2dz (1/2,1) 2dz

—4dx 4dy —4dx 2dy

4dx (1/2,1/2 4dx

3 (1.1/2)
y— 1) (1/2,1/2)
—4dzx 4dy —4dz 2dy
y=zx 0 y=z—1/2 % 1
Figure 17
By Fig. 17, for an arbitrary d.f. g(z) we have
1 1
|| e = enastoaate)
= —g(1/2)g(1) — g(1)g(1/2) — g(1/2)g(1/2) — 9(1/2)9(1/2) (202)
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1

1/2 1
4 / o(2)g(z +1/2)(~4)dz + / g(2)g(x) (—4)dz + / o(2)g(z — 1/2)(~4)da

/2
(203) [eq244

1 1 1
g(l)g(y)?dy+/ g(m)g(1/2)4dx+/ g(z)g(1)2dz. (204) |eq245
0 0

+ / ' g(1/2)g(w)dy + /

0

Here (202) are jumps, (203) are integrals over diagonals and (204) integrals
over orthogonal lines.

ds,dy and d,dy|{3z} — {3y}|
3dz (/3,1 3dx (2/3,1) 3dx

—6d —6dz —6d
6dy 6dy 3dy
2| Bdw1/3, 2/4y6dx2/3,2/9)06dx (1,2/3)
3 (1/3,2/3) (273,273) ’
y=uz+2/3
—6dg —6d —6dz
6dy 6dy 3dy
1 Bdxays, 1/406da2/3,1/30dx (1,1/3)
3 (1/3,1/3) (273,173) ’
y=xz+1/3
—6d —6dz —6dx
6dy 6dy 3dy
1 2
y==x y=2-1/3 3 y=2-2/3 3 1
Figure 18

By Fig. 18 for an arbitrary d.f. g(x) we have

| [ Hsa = eudiaateagte)
= —9(1/3)g(1) = g(2/3)9(1) = 9(1)g(1/3) — g(1)g(2/3) — 2.9(1/3)g(2/3)
—29(2/3)g(2/3) — 2.9(1/3)g(1/3) — 29(2/3)9(1/3) (205)

1/3 2/3 1
4 / o(2)g(x +2/3)(~6)dz + / o(2)g(x +1/3)(~6)dz + / 9()g(x)(~6)dz

1

1
- / 9@ =1/3)(=6)dr + / g(@)g(x — 2/3)(—6)dz (206)

/3
+/0 9(1/3)g(y)6dy+/0

g(2/3)9(2~/)601y+/O 9(1)g(y)3dy
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1

+/0 g(x)g(1)3dx+/0 g(x)g(2/3)6dx+/o g(x)g(1/3)6dz. (207)

Here (205) are jumps, (206) are integrals over diagonals and (207) integrals
over orthogonal lines.

Proof. Let F(x,y) be continuous on the interval [xy, 5] X [y, y2] C [0, 1]* and
g(x) be a d.f. Two-times integration by parts given by W.G. Young [197]

//yl (z,y)dg(x)dg(y)

=9(22)g(y2) F'(v2,y2) — 9(w1)g(y2) F (21, y2) — g(22)g(y1) F(z2, y1)

T gl F ) (208)
- / 9(2)g () AF (2, o) + / 9()g(y)AF (2, 1)
- / " g(a2)g(y)dF (22, ) + / " g@)g(y)dF (x, y) (200)

/ - / y)dod, F(z, ). (210)

For example, we shall apply this to subs-quare (II) in the following Fig. 19.

{22} — {2y}
—(2z—-2y+1 —(2z — 2y)
an’ T (I11)
1/ (e =2y +1) (22 — 2y)
y=a+1/2 —(2z — 2y —(22 — 2y —

() (V)

(22 —2y) (20 —2y—1)
0 1 1

2
Figure 19
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In this case
—(2x—2y+1) if —(2x—2y+1)>0,
Flz,y) = 211) [eq253
(@9) {(2x—2y+1) if (22— 2y +1) >0 (211)
(z1,91) = (0,1/2), (w2,92) = (1/2,1),
F(z1,11) = 0, F(22,y2) = 0 since (x1,y1) an (x9,y2) lies on diagonals.
Put
A= (z,y), B=(z+dz,y+dy), C = (z,y+dy), D = (x+da,y), where
y = = + 1/2. By definition of differential d,d,F(x,y) we have
dod, F(z,y) = F(z,y) + F(z + dv,y + dy) — F(z,y + dy) — F(z + dz,y)
=2 -2y—1)(=0)+ (2(x+dz) —2(y +dy) — 1)(=0)
—(—2z—-2(y+dy) — 1)) — 2(z+dx) — 2y — 1)

= 2dy — 2dx = —4dz. (212)

Now applying (208), (209), (210) to F(x,y) in (211) we find

/ / F(x,y)dg(z)dg(y
1/2

1/2)g(1)F(1/2,1)(= 0) = g(0)g(1) F(0,1)(= 0)
1/2)g(1/2)F(1/2,1/2)(= 1) + (0)g(1/)F0,1/2)(=0)  (213)

9(

—9(

/01/2 1)dF(z,1) ( /Ol/zg(x)g(lﬂdx)

/01 g(z)g(1/2)dF(x, 1/2)( /01/2g(x)g(1/2)2dx>

/1129 (1/2)9(y)dF (172 y>( / :2g<1/2>g<y>2dy)

/ 9(0)g(y)dF(0,y)(= 0) (214)
/1/2 //2 y)d.d, F(x y)< /01/29(x)g(x+ 1/2)(—4)dx>. (215)

Here (208), (209), (210) are equivalent (213), (214), (215). Similarly, using
all sub-rectangles of Fig. 15, 16, 17 and 18 for F(z,y) in (175) we find
the integral fol fol F(z,y)dg(z)dg(y) as a sums of (196), (197), (198), (199),
(200), (201), (202), (203), (204), (205), (206), (207), sce Theorem 113. I

+
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Theorem 113. For every continuous d.f. g(x) we have

2/<gf<>—gh dm—// (2, 9)dg(x)dg(y)

— —4g(1/2)9(1/3) — 49(1/2)g(2/3) + 29(1/2)9(1/2) + 49(1/3)g(2/3)
+29(2/3)9(2/3) +29(1/3)9(1/3) (216)

1

1/2
—8 (/0 9(2)g((2/3)x +2/3)dx + /0 9(x)g((2/3)z + 1/3)dx
—l—/o g(w)g((2/3)x)dx+/

1/2

9(x)g((2/3)z — 1/3)dx)

1/2
+/O g(m)g(m—i—l/Q)dx—l—lO/o g(x)g(x)dz

1/3 2/3
+12/0 g(x)g(x+2/3)dx+12/0 o(2)g(x + 1/3)de (217)
[ atoraa(19(1/2) - 490173 - 402/3)). (218)

Proof. Using (196), (775), -(202), and -(205) in (216); using (197), (200), -
(203), and -(206) in (217); and using (198), (201), -(204), and -(207) in (218)
we find Theorem 113. ]

Theorem 113 can be using for testing g = g5. But if g(x) is defined by
finite intervals then we can compute gy and g, directly by definition, see:

Example 48. Transform the graph of gs(z) to the interval [0,1/2] then we

find
(0 if z € [0,2/12],
2r — (4/12)  if z € [2/12,3/12),
g(x) = 4o — (10/12) if x € [3/12,5/12), (219)
2 if 2 € [5/12,1/2],
|1 if 2 € [1/2,1].
and directly by definition g¢(x) = g(x/2) + g((x + 1)/2) — ¢g(1/2) we have
(0 if z € [0,4/12],
v —(4/12)  ifz € [4/12,6/12],
9r@ =19, _ (10/12) if z € [6/12,10/12], (220)
o if 2 € [10/12, 1],
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and directly by gu(z) = g(x/3)+g((z+1)/3)+g((z+2)/3) —g(1/3) — 9(2/3)
we have

(4/3)x if x € ]0,3/12],
gn(z) =< (2/3)x +2/12 if x € [3/12,9/12], (221)
(4/3)x —4/12 if z € [9/12,1],

which gives gy # gn.

6.1.8 Copositivity of F(x,y)
By Section 13 (IV)

2 [t~ oo = [ [ F@apagloa) 0. @22

Thus F(z,y) is copositive if we not taking into account the continuity of
F(z,y). Assuming that Theorem 242 (I) holds also in this case and thus

F(z,2).F(y,9) > (F(z,y))’ (223)

for (z,y) € [0,1]* or F(x,y) > 0.
Now, using F(z,x) = 2|{2z} — {3x}| and

(= + [32] — [22]) 2 0,

{22} — {32}| = |22 — 3 + [32] — [22]| = { —(—z + [32] — [21])

then we have

" if 2 €[0,1/3),
J1—=z ifzell/3,1/2),
{22} — {32}] = itz € [1/2,2/3),
[

1—z ifze[2/3,1).

and then we find upper bounds for F?(x,y) by
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F(z,z).F(y,y)

4z(1 — y) Ul — )| 4z 41 —z)(1 — y)
(1-y) | (1-v)
2
4xy Ul —z)| 4zy 4(1 — x)y
1 y
4z(1l — y) (1l —x)| 4z 4(1 —z)(1 —y)
1 (1—y) | (1—v)
dzy U(l — )| 4zy 4(1 — z)y
Ly
0 Fr 1
6.1.9 Solution of g; = g,
We continue Section 4.8.4, see also Example 113.
Let f;[0,1] — [0,1] and h : [0,1] — [0, 1] satisfy:
(i) f and h commute,
(ii) f has m inverse functions f; !, ..., f-!, defined on whole interval [0, 1],
(iii) h has k inverse functions hi*', ..., h;', defined on the whole interval

[0, 1],
(iv) These inverse functions are ordered such that

fit@) < < fol(x), hi'(z) <o <k l(x) for all z € [0, 1].
The functional equations gy = gy and g, = g5, can be adding by following
method: Put
[0,a] = fi* o hy'([0,1]),
xi;(t) :fi_lohj_lohobf(t), i=1,....omj=1,...,k, te€l0,q].

Now, to the equation

0=gs(x) = gs(e) = Z sign(f;)'(9(f;7 () — 9(f; (@),

input z = hj_l oho f(t), for j =1,...,k, where t € [0,a]. We find £ linear
equations on mk unknowns g(xij(t)), i=1,...,myj =1,... k. Similarly,
into

0= gu(w) — () = 3 sign(h; ) (ol (@) - 3005 ().

Jj=1
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“to foh(t), fori=1,...,m. We find m linear equations with
mk unknowns g(zi;s(t)), I = 1,...,m;s = 1,..., k, where t € [0,a]. All
coefficients of such system of equations are dependent on the number m and
k of inverse functions of f and h (respect.), on that f; ' and h;' increase or
decrease and are independent on concrete form of f and h.

Using this system of linear equations some g(z;;(¢)) cam be computed by
others g(z;5(t)), where we can select such that the resulting g will be d.f. in
[0, 1].

The above method we apply on the following two pairs of f, h:

f(z) = 2x mod 1 and h(z) = 3z mod 1;

f(x) =4z(1 — z) and h(x) = z(4x — 3)?
where z € [0,1]. A motivation for searching f(z) = 22 mod 1 and h(z)
3z mod 1 is Theorem 107. A motivation for searching f(z) = 4z(1 — x) and
h(z) = z(4x — 3)? is the fact that for s(x) = sin?2wz we have f(s(x))
s(2z) and h(s(z)) = s(3x). Thus by Theorem 107 arbitrary d.f g(z)
G(£(3/2)™ mod 1) satisfies gros = gnos- It is holds also for ** g(z) = z as we
see from the following: 9 moa1 = @ and 3¢ meq 1 =  implies x .5 = x5 and
Thos = Ts. Furthermore z, = %arcsin Vz(:= go(z)). Thus gy solve g5 = g3
as we mentioned after (174).

input x = f;”

m 1

Theorem 114. Let g1, g2 be two absolutely continuous d.f.s satisfying g1, (v) =
92,(x) for x € [0,1], where f(x) = 2x mod 1 and h(z) = 3z mod 1. Then
the absolutely continuous d.f. g(x) satisfies g¢(x) = g1(x) and gp(zr) = go2(x)
for xz € [0,1] if and only if g(x) has the form

U(x), forxz €10,1/6],

U(1/6) + @(z — 1/6), for x € [1/6,2/6],

U(1/6) + (1/6) +g1(1/3) — ¥(z —2/6)

+®(x —2/6) — g1 (22 — 1/3) + g2(3z — 1), for z €[2/6,3/6],

) — 4200/6)+01(1/3) = 1 (2/3) + (12

—W(z — 3/6) + g1 (22 — 1), for x € [3/6,4/6],

—W(1/6) + 20(1/6) + g1(1/3) — g1(2/3) + 2(1/2)

—®(x—4/6) + g1 (22 — 1), for x € [4/6,5/6],

—U(1/6) + ©(1/6) + g1(1/3) + ¥(x — 5/6)

—®(x —5/6) — g1(2x — 5/3) + g2(3z — 2), forxz e€[5/6,1],
where

m(:c):/;w(t)dt, @(x):/omqb(t)dt, for z € [0,1/6],

32In opposite case we will have simple proved that the sequence (3/2)™ mod 1 is not u.d.
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and @D( ), ¢(t) are Lebesgue integrable functions on [0,1/6] satisfying
< () < 2¢5(20),

0 < (1) < 9'1(2?5 +1/3),

201(2t) = 3g5(3t + 1/2) < () — o(t) < —291(2 +1/3) + 3g5(31),

for almost all t € [0,1/6].

Proof. We shall use a method which is applicable for any two commutable
f, h having finitely many inverse functions.
The starting point is the set of new variables z;(t)

zi(t) :=f; T ohytoho f(t) =hito fit o foh(t),
wo(t) :=fi ohytoho f(t) =hito fy o foh(t),
z3(t) :=fr ohz'oho f(t)=hy' o fi' o foh(t),
za(t) :=f; T ohytoho f(t) =hy' o fyt o foh(t),
w5(t) :=f3 ' ohy' oho f(t)=hz'o fi o foh(t),
wo(t) :=fy ' ohytoho f(t) =hz'o fyto foh(t).

Here the different expressions of x;(t) follows from the fact that f(h(x)) =
h(f(x)), x € [0,1]. For t € [0,1/6] we have

wi(t)=t+(i—1)/6, i=1,...,6.

Substituting x = hj_l oho f(t), 7 = 1,2,3, into gs(z) = ¢g1(x) and
x=flofoh(t),i=1,2 into g,(x) = go(x) we have five linear equations
over g(z(t)), k =1,...,6. Abbreviating the composition f; ' o hj_1 oho f(t)
as f; 'hy 'hf(t), and x;(t) as x;, we can write

9(x1) 4+ g(xs) — 9(1/2) = gu(hy 'R f (1)),
9(x2) + g(xs) — g(1/2) = gi(hy ' hf (1)),
9(x3) + g(xze) — 9(1/2) = gu(h3 ' hf(t)),
g(x1) + g(3) + g(x5) — 9(1/3) — g(2/3) = g2(f " FR(1)),
9(x2) + g(x4) + g(x6) — 9(1/3) — g(2/3) = ga2(f5 ' fR(1)).

Summing up the first three equations and, respectively, the next two equa-
tions, we have find the necessity condition

g1 (1/3)+91(2/3)+39(1/2)+g1, (hf () = g2, (f1(t))+92(1/2)+2(g(1/3)+9(2/3)),
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for t € [0,1/6], which is equivalent to

91(1/3)+91(2/3)—g2(1/2) = 2(9(1/3)+9(2/3)) =39(1/2) and g1, (z) = g2, (x)

for x € [0,1]. Eliminating the fourth equation which is depending on the
others we can compute g(z3), ..., g(xg) by using g(x1), g(x2), g(1/3), g(1/2),
and ¢(2/3) as follows

g(xs) = g(1/3
—91(

) +9(2/3) = 9(1/2) = g(x1) + g(2)
g9(xs) = g(1/2)

) =

)+

+9(

hf(t)) + g2(fi fA(E),

— g(x1) + g1 (hy 'R f (1)),

9(zs5) = 9(1/2) — g(x2) + g1 (hy 'R f (1)),

g(ws) = g(1/3) + 9(2/3) — 9(1/2) + g(21) — g(x2)
)

— (AT RF(D) + ga(f7 FR (D)), (224)

for all ¢ € [0,1/6]. Putting ¢t = 0 and ¢ = 1/6, respectively, we have find

9(1/2) = 29(1/3) —29(1/6) + g1(1/3) — 91(2/3) + g2(1/2),
9(2/3) = 2g(1/3) — 3g(1/6) + 291(1/3) — 91(2/3) + ¢2(1/2).

These values satisfy the necessity g1(1/3) + g1(2/3) — g2(1/2) = 2(g(1/3) +

9(2/3)) = 39(1/2). Moreover, g(1/3) = g(25(1/6)), g(1/6) = g(x2(0)), and
thus g(z3), ..., g(xg) can be expressed by only using g(z1), g(x2). Next, we
simplify (224) by using

W' hf(t) = ff ()
hy 'hf(t) = ffy'hy ' hf(t)
frtfh(t) = hhy ' fHfR(E)
for g(z3),

fa ' fh(t) = hhg' 5 fh(t) = h(ze) and hi'hf(t) = ffi by hf(t) = f(z1)
for g(xg).

f(z4) for g(z4),
f(zs) for g(zs),
h(xs) and hy'hf(t) = ffi hy 'hf(t) = f(x2)

Now, any g(z;) can be expressed as g(x), z € [(i —1)/6,i/6]. Using g(x),
x € [0,2/6] and given g;(z) and go(x), then (224) has the form

g9(zs) = g(x) = g(1/3) — g(1/6) + 91(1/3) — g(x — 2/6) + g(x — 1/6)
—q1(2x —1/3) 4+ g2(3x — 1) for z € [2/6,3/6],

186



9(xa) = g(x) = 29(1/3) — 29(1/6) + g1
—g(x—3/6)+gi1(2x — 1
9(xs5) = g(x) = 29(1/3) — 29(1/6) + 91(1/3) — 91(2/3) + 92(1/2)
—g(x —3/6) + ¢1(2x — 1) for x € [4/6,5/6],
9(@e) = g(x) = g(1/3) — g(1/6) + g1(1/3) + g(z — 5/6) — g(z — 4/6)
— g1(22 — 5/3) + go(3x — 2) for x € [5/6, 1]. (225)

1/3) = 1(2/3) + 92(1/2)
for x € [3/6,4/6],

Now, assuming the absolute continuity of g(z;) = g(z) for z € [0,1/6]
and g(z2) = g(x) for x € [1/6,2/6 we can write

g(x1) = /1/) Jdu, and g(z3) = / Y(u du+/ o(u)du
(226)

for z € [0,1/6].

Summing up (225) and (226) we have find the expression g(z) in the
theorem. The graph of g(z) defined by (225) is continuous. For the condition
of monotonicity of g(x) we investigated ¢'(x;(t)) > 0 for ¢ € [0,1/6] and
1 = 1,...,6 which leads to the inequalities, for v and ¢, described in our
theorem, immediately. O

If g1 # g then Theorem 114 not give a new solution gy = g5. If g1 = g,
gif = ¢gin then we find a new solution gy = g,. Thus Theorem 114 can be
using to construct a chain of solutions gy = g3 in the following form:

Theorem 115. Let g; be given absolutely continuous d.f. satisfying g1, (x) =
91, () for x € [0,1], where f(x) = 2z mod 1 and h(x) = 3x mod 1. Then the
absolutely continuous d.f. g(x) satisfies g¢(x) = gn(x) = g1(x) for x € [0, 1]
if and only if g(z) has the form

¥ (), for x €10,1/6],
U(1/6) + @(z — 1/6), for x € [1/6,2/6],
U(1/6) + (1/6) +g1(1/3) — ¥(z —2/6)
+®(x —2/6) — g1 (22 — 1/3) + g1 (3z — 1), for z €[2/6,3/6],
o(z) = 20(1/6) + g1(1/3) — 91(2/3) + 91(1/2)
—U(x —3/6) + g1 (2x — 1), for € [3/6,4/6],
—V(1/6) +20(1/6) + g1(1/3) — 91(2/3) + 91(1/2)
—®(x —4/6) +g1(22 — 1), for x € [4/6,5/6],
—VU(1/6) + ©(1/6) + g1(1/3) + ¥(z — 5/6)
—®(x —5/6) — g1(2x — 5/3) + g1(3z — 2), for x € [5/6,1],
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sse4d4
ex15

where
= /x1/)(t)dt, O(z) = /x o(t)dt, for xz €0,1/6],

and 1[)( ), o(t) are Lebesque integrable functions on [0,1/6] satisfying
< (t) < 2¢1(2),

0 < o(t) < 2¢1(2t +1/3),

21(2t) = 3g1(3t + 1/2) < (1) — o(t) < —2¢1(2t + 1/3) + 391(31),

for almost all t € [0,1/6].

6.1.10 Examples of solutions g; = g,

Example 49. The functions ¢y(x), ¢1(z), and x solve gf(x) = gn(x) for all
€ [0,1]. Putting g4(x) = =, the next solution of g; = g, can be found by
Theorem 115. In this case we have
0<(t) <2
0<o(t) <2
1<) —ot) < 1,
for every t € [0,1/6]. Putting ¢ (t) = ¢(t) = 0, the resulting d.f. is

0 for z € [0,2/6],

[
(2) = x—1/3  forxz €[2/6,3/6],
90 =00 506 for e [3/6.5/6)
[

x for x € [5/6, 1].

Example 50. Taking ¢;(x) = g3(x), this g3(z) can be used as a starting
point for a further application of Theorem 115. We need

0 <(t) <0fortel0,1/6],

0 <o) <2fortel0,1/12],

0 < p(t) <4forte[l/12,1/6],

—6 < —¢(t) < =2 for t € [0,1/12],

—6 < —p(t) < —4 for t € [1/12,1/9),

—3< —¢(t) < —1fort €[1/9,1/6].
Putting ¥(x) = [ 0dt = 0 and

for z € [0,1/12],

/qb = 495—1/6 for x € [1/12,1/9],
2z +1/18  for x € [1/9,1/6).
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and applying Theorem 115 we find

(0 for z € [0,1/6],

20 —1/3 for x € [1/6,3/12],
dr —5/6 for x € [3/12,5/18],
o0 —5/18  for x € [5/18,2/6],

7/18 for z € [2/6,8/18)],
8/18 for x € [3/6,7/9],

2¢ — 20/18 for x € [7/9,5/6],
4r —50/18  for x € [5/6,11/12],
20 —17/18  for x € [11/12,17/18],

[
[
[
[
[
ga(z) =<z —1/18 for x € [8/18,3/6],
[
[
[
[
¥ for x € [17/18, 1].

Then we have
T g3(z) ga(m)

0 1 0 1 0 1
The interval I with maximal length of constat value of gy4(x) is I =
[1/2,7/9] (see open problem XII in Section 3.8).

Other chain of solutions of gy = g, by Theorem 115 can be construct by
following theorem:

Theorem 116. Assume that g1(x) satisfies g = gn. Then go(x),

92(x) = g17(x) = 91(x/2) + 91 ((z + 1)/2) — g(1/2), or
92() = gin(x) = g1(z/3) + 1 ((z + 1)/3) + g1((x +2)/3) = 1 (1/3) — 9:1(2/3)

also satisfies g = gn.

Proof. Assume gf(x) = gip(x) = g2(x). Then gof = giny and gop = g1n-
But the functions f and h commute fh = hf. O
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Example 51. If we start in Theorem 116 with ¢;(x) = g4(z) then we find
resulting go(z) = g3(x). If we start with g, (z) = g4(x) then we find go(x) =
g3(z). Putting gs(z) in our scheme as ¢;(x), then the resulting go(z) = x.

6.1.11 Problem g; = g5 and g(z) =1 for = € [1/2,1]

Example 52. Assume
d.f. g(z) =1 for z € [1/2,1] and assume
gs = gn- Denote
gi(x) =1-g(1 —x);
ga(z) = (1 — a)g(z) + agi(z) for a € [0, 1]. Then
ga(2) = a + (1— a)g(z) — ag(1 - z) and
9o () satisfies g; = g), again. Now put o = 1/2. Then
G1/2(1/2) = 1/2 and
gu2(1/2 — 2) = (1/2)g(1/2 — ). Then
91/2(1/2 + I)) =1- g1/2(1/2 — I’) for z € [0, ]./2]
This leads to the functional equation

g@)+g9(1—2) =1 (227)

but for all z € [0, 1], where g(z) satisfies gy = gj. For example such d.f. g(z)
exists, e.g. §(z) =z and g(z) = hy/a(2)
Example 53. Assume that
d.f. g(z) =1 for x € [1/2,1]. Then g; = g, has the form
o(2/2) = 9(e/3) + ol(x + 1)/3) ~ 9(1/3), w01 (228)

Putting x/2 = z (then /3 = (2/3)z and (z + 1)/3 = (2/3)z + 1/3) the
equation (228) gives

9((2/3)2) = 9(2) — 9((2/3)2 + 1/3) + g(1/3), z€[0,1/2.  (229)
Repeating (229) we find

9((2/3)"= Z( (2/3) z+1/3)—g(1/3)> ze€[0,1/2]. (230)

Jj=1

Using k£ — oo we have

o

o) = 3 (a3t 13) ~a1/3). sl @)

k=1
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Notes 17. If we extend [1/2,1] to g(z) = 1 for x € [1/3,1], then (228) gives
9(x/2) = g(x/3)

which implies
9(x) = co(x)

the same result as in Theorem 108.

Example 54. Assuming that d.f. g(x) satisfies g5 = gy, g(x) = 1 for z €
[1/2,1] and g(x) is constructed by Theorem 115 using starting d.f. g;(z) also
satisfactory g = g. Then we have

1=29(1/6) + g1(1/3) — 91(2/3) + 91(1/2) — ¥(x — 3/6)
+ 91(21- — 1), for z € [3/6,4/6],

L= W(1/6) + 20(1/6) + u(1/3) — 02(2/3) + 01(1/2) — Dz — 4/6)
+g1(2x — 1), for z € [4/6,5/6],

1=—U(1/6) +P(1/6) 4+ ¢1(1/3) + ¥(x —5/6) — ®(x — 5/6) — g1(2x — 5/3)
+ g1(3x — 2), for x € [5/6,1]. (232)

From (232) follows

U(y) — g1(2y) = 20(1/6) + g1(1/3) — 91(2/3) + g:1(1/2) — 1,y € [0,1/6],
P(y) —g1(2y +1/3) = =¥(1/6) + ®(1/6) + g1(1/3) — 9:(2/3)

+a1(1/2) = 1,y € 0,1/6],

O(y) = ¥(y) + 0:1(2y) — 13y +1/2) = —¥(1/6) + ©(1/6)

+g1(1/3) =1,y € [0,1/6]. (233)

Then
Dy) — ¥(y) + 91(2y) = g1 (2y + 1/3) — ¥(1/6),y € [0,1/6],

O(y) — ¥(y) + 91(2y) = g1 (3y +1/2) — ¥(1/6) + O(1/6)
+91(1/3) = 1,y € [0,1/6]. (234)

From it
9By +1/2) =12y +1/3) + 1 — ®(1/6) — g1(1/3) (235)

for y € [0,1/6]. From y = 0 we find 1 — ®(1/6) = ¢1(1/2) and the equation
(235) has the form

a1y +1/2) =12y +1/3) + 9:(1/2) — g1(1/3) (236)
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for y € [0,1/6].

Using 3y + 1/2 = z, then

y=(1/3)(z - 1/2))

2y+1/3=(2/3)z

2 e [1/2,1]
and we can transform (236) to the final form

91((2/3)2) = 91(2) = 91(1/2) + 91(1/3)

for every z € [1/2,1). *

Notes 18. But such d.f. g1 (x) satisfying (237) exist, e.g.

x for z € [0,4/9],
3z — (8/9) for x € [4/9,1/2],
g1(z) =< (2/3)z + (5/18) for x € [1/2,2/3],
2z — (11/18) for x € [2/3,3/4],
(8/18)x + (10/18)  for = € [3/4,1].

Denote A = 5/18. Then
91(1/2=g1(1/3) + A =11/18,
91(2/3) = g1(4/9) + A = 13/18,
91(3/4) = ¢1(1/2) + A = 16/18, and
91(1) =q1(2/3) + A =1.

Insert (238) to (232) we find

(i) ¥(y) = g1(y) for y € [0,1/6],
(if) W(1/6) = g1(1/3) = 6/18,
(i) @(y) = g1(2y +1/3) — ¥(1/6),
and then we find

2z for x € ]0,2/9],
6z — (8/9) for x € [2/9,1/4],
) @/3)x +(5/18)  for x € [1/4,1/3],
90 =904 (718) for o € [1/3,13/27),
Tz — (45/18) for x € [13/27,1/2],
1 for z € [1/2,1].

2)

59

e

But the d.f. gi(x) (238) does not satisfies the equation gy = g5, because g15(1/3) #

g11(1/3). Then also d.f. g(x) from (239) does not satisfies g5 = gs.

33Similar functional equation is in (229).
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Example 55. The Mahler conjecture follows from that does not exist d.f.
g(x) such that gs(z) = gn(x) for x € [0,1] and g(z) = 1 for x € [1/2,1]. Yet
is not proven, therefore we are looking for the biggest possible interval [, 1]
such that g(x) = 1 for x € [, 1] without ¢y(z). Here we found d.f. g5(z)
such that gs(z) =1 for « € [4/6,1]. Starting with Theorem 114, we put

1=—V(1/6) +29(1/6) + g1(1/3) — 91(2/3) + 91(1/2) — ©(x — 4/6)

+ g1(2¢ — 1), for z € [4/6,5/6],

1=-U(1/6) 4+ ©(1/6) + g1(1/3) + ¥ (x — 5/6) — ®(x — 5/6) — g1 (22 — 5/3)
+ g1(3x — 2), for z € [5/6,1],

From it

O(r —4/6) = g1 (22 — 1) = W(1/6) +20(1/6) + g1(1/3) — 91(2/3)

+g1(1/2) — 1, for x € [4/6,5/6)], (240)
O(x—5/6) —V¥(x—5/6) = —g1(2x —5/3) + g1(3x — 2) — ¥(1/6) + (1/6)
+g1(1/3) — 1, for 2 € [5/6,1]. (241)

Putting ¢1(z) = 2 and y = z — 4/6 from (240) we find
®(y) = 2y + 20(1/6) — W(1/6) — 1/2 for y € [0,1/6]. (242)
Putting y = = — 5/6, (242) and (240) we find

O(y) =y + 20(1/6) — 1/3 for y € [0,1/6]. (243)

Using continuity of gs(z) in x = 0 we put ®(1/6) = 1/3 and Theorem 114
gives
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gs(x)
T+

2r — L

0 1 2z 3 1 35 3
Note that gs(x) satisfies g¢ L Jn a?lso b)? Thegrem 1612 since g5(z) = 1—g3(1—
x) and by Example 47 d.f. g3(x) satisfies them. Also note that Theorem 108
of uniqueness implies that if g = g, and g(x) = 1 for z € [1/3,1] then
9(x) = colx).

Example 56. Since x5 = x5, Theorem 108 gives the following example of
d.f. g(x), which is not d.f. of the sequence £(3/2)" mod 1, for every £ € R

. . for x € ]0,2/3],
g\r) = r? —(2/3)x +2/3 for x € [2/3,1].

Theorem 117. Let f(z) = 4z(1 — ) a h(z) = z(4x — 3)? and let g1, g2 be
two absolutely continuous d.f.s solvable the functional equation g1, = gz, on
[0,1]. Then an absolutely continuous d.f. g satisfying g = g1 and gy, = ga if
and only if g has the form

(7 g >du (== U(x))
f(2 f/4 +f(2 f)/4 u)du (= ®(x)) forx e |3 4\/5,%‘
o) = U(x )+<I>( )+1—gl(f( <:c>>>—gz(h(w>) forz e [§,5],
U(x) + @(x) + 1 - gi(f(22(2))) — g2(h(2)) forz € [5. 7],
O(x)+1—gi(f(2)) prex € |3, 23
| V(@) + 1= 01(f(2)) foraz e |21
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2—/3

1 and a.e.

where V¥, ¢ are integrable on [O,

0 <9(t) < (9(f(1))),

0<o(t) < —(91(f(22(2)))),

(91(f(£)) + g2(1 = h(1)))" < ¥ (t) — ¢(t) < (92(f(w2(t))) + g2(h(2)))".
The x1(x) and zo(x) are given in (246) and (247).

Proof. In this case the new variables has the form

z1(t) =fi o hitoho f(t) =hito fito fohl(t),
wo(t) =fr ohytoho f(t) =hi'o fy'o foh(t),
z3(t) =fi ohytoho f(t) =hy'o fy o fohl(t),
z4(t) =fy ohgtoho f(t) =hy'o fito foh(t),
z5(t) =fy ' ohytoho f(t) = hy'o fio foh(t),
z(t) =f5 o hi'oho f(t) =h3' o f; ' o foh(t),

Here we double indexing x;;(¢) changed on simple x;(¢) such that the intervals
{z;(t);t € [0,a]} are ordered by growth. The values x;(t),...,x¢(t), for

t e [O, 2_4‘/?:] = fi' o hy1([0,1]), divide the unit interval [0,1] on the six

intervals

hf]. [5G4

4 4 4

1,8, [é M] [2+¢§’1]

1 1 1
Now, assume that the system of functional equations gf = g1 A g, = g2 has a
solution g. Input z = hj_l oho f(t), j =1,2,3, into gs(x) = g¢(x) and input
v =flofoh(t),i=1,2 into g,(x) = gn(xr) we find five linear equation

between g(x(t)), k =1,...,6. Leave out depending equations we find

g(z1) — g(1)
0 100 0 0 —1\ [gla)—gla)
0 010 0 —1 0 (z3) — §(w3) o3
ol = loo1 -1 0 o §<x4>_§<x4> for # € [0’ 4f]
0 000 1 -1 -1 g(xs5) — g(zs)

9(z6) — G(xs)
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It is equivalent to 34

9(ze) =g(z1) + g(x6) — g(1)

9(w5) =g(x2) + g(x5) — §(z2)

9(z4) =g(21) + g(x2) — (G(z1) + G(22)) + G(74)

9(xs) =g(z1) + g(x2) — (§(21) + 9(22)) + g(z3). (244) [a11

Thus we can compute g(z3),...,g(xg) by using g(z1) a g(z3). Here g(z1) a
g(x) we must choice such that resulting g(z) is non-decreasing on [0, 1]. For
absolutely continuous g(z) and g(x) the monotonicity of g(z) is equivalent

to ¢'(z;(t)) >0prei=1,...,6 a.e. ont € [0, 2_4‘/3] Its has the form

g (x)xy >0, g'(x2)2f <0,

g'(z1)x] + §'(26) 75 — §'(21)77 <0,

9 (22)x5 + §'(v5)5 — §'(22)25 >0,

g'(x1)7) + ¢ (w2)2h — §'(21)7) — §'(22)75 + §'(23)7 >0,
g'(z1)2) + g'(w2)xy — §'(x1)7) — §'(w2)25 + §' (24)2) <O0. (245) [a12

In (244) and (245) we shall add all terms g(z;) occur in gy and g, e.g.

g(x4) = g(1) + g(x2) + 1= gs(hy" o ho f(t)) = gn(fi " o f o h(t))
= g(z1) + g(x2) + 1 — g (f(22)) — Gn(h(z4)).
In the next step modified (244) and (245) (in above way) we shall prepare

by using z1(t) =t for t € [O, 2_4*/3] and the identity

zi(x;(t)) = zi(t) pre t € [0,1] a 1 < 4,5 <6,
which follows immediately from

fitohitohofoftohtoho f(t)=f"oh; oho f(t).

7

34The same system of linear equations we find for the following functions

. 3z, if x €10,1/3],
Fa) = {Qx, if o €[0,1/2 e =230 itze(l/3.2/3
2—2x, ifxell/2,1] .
3x—2, ifxel2/3,1]

with the variables z1 (t) = t, x2(t) = 2/6—t, x5(t) = 2/6+t, z4(t) = 4/6—t, x5(t) = 4/6+t,
z6(t) =1 —t, where t € [0,1/6].
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E.g.
9(z4) = g(x1(x4)) + g(@2(74)) + 1 = G5 (f(z2(24))) — Gn(h(24))
is the same as

9(x) = g(1(2)) + g(x2(x)) + 1 = §¢(f(22(2))) = Gu(h(2)) pre x € [3, 3]

Finally, we put

P(t) = g (e ()2)(t), o(t) = —g'(xa(t))2(t) pre t € [O, 2*4‘/5] ,

and we find

g1 (1)) = / (u)du,
(2—V/3)/4

olaa(t) = |

and we solve modified (245) with respec to ¢ a ¢. This gives theorem.
Note that the continuity of g of boundary points of using intervals follows
directly. O]

(2-v/3)/4
o(u)du + /o W (u)du.

For possible application of Theorem 117 we add explicit formulas for
x;(x),7=1,2,3 and the others are given by

xy(x) =1 —a3(x), w5(x) =1—129(2), z6(2) =1—21(2) Pre x € [0, 1].

Starting with (174) for h;', h;', hi', and putting k = 1 for z € [0,1/4],
k=2 for x € [1/4,3/4], and k = 3 for x € [3/4,1], we find

3—2:15i 33:(1—:15)'

W (ha)) = 2 5

Denoting

e (3=2f(x)  V3f(0)(1 - f(x))
ar(z) =f; ( 1 - 5 >

1 1
=5~ Z\/4|2x —1]3/3z(1 —x) — 822 + 8z + 1
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no3

 (3=2/) | VBF@I—T@)

az(z) :=f1 1

2

1 1
=31 —42x — 1|\/3x(l — ) — 822 + 8z + 1

we find

z1(z) =< ai(x)
k1 —x

ap(x)
xa(x) =< as(x)
1—=x
|1 (x)
(s ()
73(w) = 1—=x

L a2()

for
for

for

for
for
for
for
for
for
for

for

for

z € |0, 2_4*/3 ,

= 2—4\/37 2—&-4\/3] 7 (246)

x € -2+4\/§,1_ ,

T E _O, 2’4‘/5 )

S -2_4\@,}1‘ ,

ve Ly, (247)
3 243

rTE | ,

= -2+4‘/§,1 ,

T E [O, ﬂ )

v € (1.3,
¥ 219

v € [5.3],

T € [%,1] .

Notes 19. For g; = g see also Examples 115, 113, 112 in Section 10.6. For gy = g1 see

also Theorem 67 and Example 39.

Notes 20. Let a be nonzero integer. Pjateckii-Sapiro in [128] proved:

1. The d.f. g(z) is an a.d.f. of the sequence £a™ mod 1, n = 1,2,... if and only if
g¢(z) = g(x), € [0,1] for f(z) = za mod 1.

2. If the a.d.f. g(x) of £a™ mod 1, n = 1,2,... is absolute continuous, then g(x) = z,

z € 10,1].

3. Ifevery d.f. g(z) of £a™ mod 1, n = 1,2,... satisfies g(y) — g(x) < ¢(y —z) for some
c¢>0and for all 0 <z <y < 1, then the sequence £a™ mod 1 is u.d.
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6.1.12 Equations for g(z) € G((3/2)" mod 1) other than g; = g
(open questions)

In the previous part for the sequence {(%)n} we study the sequence {{%} +
{(2)°} 4+ {(2)"}}. By the following

- (G ()07 07
NE BN
b))

we have that d.f.s of {{2}+{ (%)2}+ ~+{(2)"}} are the same as {3{(2)"}}
or d.f.s of {2{ (%)n+1}}. Other expression of such d.f.s are

(T {05007
O )

( )nil}} if [(%)nil} is even,
P e [() ] sodd. 20V

2z mod 1,

3z mod 1,

=(9/2)z mod 1,

u(z) = (9/2)x + (1/2) mod 1. (252)

For some sequence N = N, k — 0o, we have
#{n < N;{(3/2)"} € |0,z
(< NG €00},

H#in < N: (612 € 00, (321 5 00d)
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#{n < N; {(3/2)"} 6]\[[07x), [(3/2)"] is even} = gD (2) (253)

% As in (173): Let f : [0,1] — [0,1] be a function such that, for all x €
0,1], f71(]0,z)) can be expressed as a sum of finitely many pairwise disjoint
subintervals I;(z) of [0, 1] with endpoints «;(z) < B;(z). For any distribution
function g(x) we put gf(x) = >, 9(Bi(z)) — g(ei(x)). By Theorem 106 the
sequence f({z,}) has the distribution functions g;(z) if z,, has the d.f. g(z).

Theorem 118. Every d.f. g(z) of the sequence (3/2)" mod 1 can be ez-
pressed as g(x) = gV (x) + g@(z) for every x € [0,1] such that
90 (@) + 9 (1) = g5(x) = n(e) = g} (1) +67 (@) = 63 (@) +9,” (). (254)
Note that a solution of (254) is an open problem.

Proof. Dividing the sequence (3/2)" mod 1 into two parts which respect to
[(3/2)™] is odd or [(3/2)"] is even and then transform they applying v(z) and
u(z), respectively, then we find the sequence (250) which is the same as
(249). O

v(x) = (9/2'):5 mo'd 1

i i i
i/ f /
/ / /

N |—

S
Rell V)
Ol
Nelle}
©|0o

—_

For < 1/2 we have

9 (@) = g ((2/9)x) + gP((2/9)z + (2/9)) — 9 ((2/9))

3By Section 3.8 if g™)(2) > 0 then Mahler’s conjecture valid for (3/2)™ mod 1.
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2((4/9) + (2/9)x) —
2((6/9) + (2/9)x) —
2((8/9) +(2/9)x) —
) ca end a

{ }+{<z>2}+---+{<z>“}}:{3@)"}
NI T A I

Then the sequen {{ } + {( ) } + - {(%)n}} has the same d.f.s as

. b0

3(%)2« + 2(2—7,;‘) mod 1, where 2(2_2) - {3(g>k Kg)n_k} } (257)

Let N7 < Ny < ... be a sequence of indices such that
#{n < N;; {(3/2)"} € [0,z)}

g( )( 4/9 )
g( )( 6/9 )
9?((8/9)). (255)

N, — g(z),
i < Nl B2} €D i) =), 255)
and denote
k .
ui(x) = 3(%) T+ % mod 1,
u; ([0, 2)) = Uiy [a; (@), B;(x)),
S

Giui (T) = Z(gz‘(ﬁj(@) — gi(o(2))).

Theorem 118 can be extend to
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Theorem 119. FEvery d.f. g(z) of the sequence (3/2)" mod 1 can be ez-
pressed as

o) = Y o) (259)

2k—1

D gil) = g5(2) = gn(). (260)

6.2 Ratio block sequences (continuation of 3.11)

Let z,, n =1,2,... be an increasing sequence of positive integers. The dou-
ble sequence x,,/x,, m,n = 1,2, ... is called the ratio sequence of x,; it was
introduced by T. Salat [140]. He studied its everywhere density. For further
study of the ratio sequences, O. Strauch and J.T. Té6th [174] introduced a
sequence X, of blocks

X:(___) n=12....

7 7

and they studied the set G(X,) of its d.f.s. The motivation is that the
existence of strictly increasing g(x) € G(X,) implies everywhere density of
Tm /T, the basic problem by Saldt [140]. Further motivation is that the

block sequences are a tool for study of d.f.s of sequences. Also for computing
boundaries of limit points e.g. of the sequence *>°7 % n =1,2,... we

n 1=1 Ty’

apply the Riemann-Stieltjes integration of g(z) € G(X,,).

6.2.1 Basic notations of X,, = (z1/zp, ..., 2,/2,)

Denote by F(X,,,z) the step distribution function

1<ny i <x
P, 0 = OS2
n

for x € [0,1) and F(X,,1) = 1. Directly from definition

F(X,2)= " F (xfiﬂ) (261)

n

for every x € [0, 1).
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For any increasing integer sequence x,, n = 1,2, ..., we define a counting
function A(t) as
A(t) = #{n e N;z, < t}.

Then for every x € (0, 1] we have

nF(X,,z) Alzxx,)

TIn B rT, (262)

A d.f. g is a d.f. of the sequence of single blocks X,,, if there exists an
increasing sequence of positive integers ny,ns, ... such that

lim F(X,,,z) = g(z)
k—o0
a.e. on [0, 1].
Denote by G(X,,) the set of all d.f. of the sequence of single blocks X,.
G(X,) has the following properties (some of them will be proven later):

6.2.2 Overview of basic results of d.f.s ¢g(z) € G(X,,)

(i) If g(x) € G(X,) increases and is continuous at z = § and g(f) > 0,
then there exists 1 < « < oo such that ag(xf) € G(X,,). If every d.f.
of G(X,) is continuous at 1, then o = 1/g(p), [174, Prop. 3.1, Th.
3.2].

(") If 5 is a point of discontinuity of g(z) with g(8+0)—g(8—0)=h > 0,
then there exists a closed interval I C [0, 1], with length |I| > h such
that for every X € I we have ag(zf) € G(X,). Using a mapping
0, 1]> — [0, 1]? defined by (z,y) — (z/8, ya), the graph of ag(z3) can
viewed as a linear expansion of the graph of the restricted function
gl[0, 3) by the following figure

g() ag(zB)

203



(ii) Assume that all d.f.s in G(X,,) are continuous at 0 and ¢;(z) ¢ G(X,,).
Then for every g(z) € G(X,) and every 1 < o < oo there exists
g(x) € G(X,) and 0 < 5 < 1 such that g(z) = ag(zB) a.e., [174, Prop.
3.1, Th. 3.3].

(iii) Assume that all d.f.s in G(X,,) are continuous at 1. Then all d.f:s in

G(X,,) are continuous on (0, 1], i.e. only possible discontinuity is in 0,
174, Th. 4.1].

(iv) If d(z,,) > 0, then for every g(x) € G(X,,) we have [174, Th. 6.2(iii)]

a E(xn)
A" S90S G

x for every x € [0, 1]

(d/d)x
o dfd)a

Thus d(z,) = d(z,) > 0 implies u.d. of the block sequence X,, n =
1,2,....

(v) If d(x,) > 0, then every g(z) € G(X,) is continuous on [0, 1], [174, Th.
6.2 (iv)].

(vi) If d(x,) > 0, then there exists g(x) € G(X,,) such that g(z) > x for
every x € [0, 1], [174, Th. 6.2(ii)]. Generally [11, Th. 6)] every G(X,,)
contains g(z) > x.

(vii) If d(z,) > 0, then there exists g(z) € G(X,) such that g(z) < x for
every x € [0,1], [174, Th. 6.2].

(viii) Assume that G(X,,) is singleton, i.e. G(X,) = {g(z)}. Then either
g(z) = co(x) for z € [0,1]; or g(x) = 2* for some 0 < A < 1 and
x € [0, 1]. Moreover, if d(z,) > 0, then g(z) = x, [174, Th. 8.2].

(ix) maxgeq(x,) fol g(z)dz > 1, c.f. (vi), 174, Th. 7.1.].
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(x)

(xi)

(xii)

(xiii)

(xiv)

(xvi)

Assume that every d.f. g(z) € G(X,,) has a constant value on the fixed
interval (u,v) C [0,1] (maybe different). If d(z,) > 0 then all d.f.s in
G(X,) has infinitely many intervals with constant values, [175].

There exists an increasing sequence x,,, n = 1,2, ..., of positive integers
such that G(X,,) = {ha(x); € [0,1]}, where hy(z) = «, x € (0,1) is
the constant d.f., [66, Ex. 1].

There exists an increasing sequence x,,, n = 1,2, ..., of positive integers
such that ¢;(z) € G(X,) but co(x) ¢ G(X,,), where co(x) and ¢;(x)
are one—jump d.f.s with the jump of height 1 at + = 0 and =z = 1,
respectively.

There exists an increasing sequence x,,, n = 1,2, ..., of positive integers
such that G(X,,) is non-connected, [66, Ex. 2].

G(X,) = {2} if and only if lim, oo (2n/z,) = K/ for every k =

1,2,.... Here as in (viii) we have 0 < A <1, [54].
L. Misik: If d(x,) > 0, then all d.f.s g(z) € G(X,) are continuous,
nonsingular and bounded by hy(x) < g(x) < hy(z), where 3¢
d . 1—d —
= ifx e [O, —} ) d
hi(zx) = dd 1-d ho(x) = min (z—, 1) :
+——— otherwise, d
=—(1-d)
Furthermore, there exists x,, n = 1,2,..., such that hy(z) € G(X,)

and for every z,, we have hy(x) &€ G(X,,), [11, Th. 7] and moreover

for a given fixed g(x) € G(X,,) we have hy 4(z) < g(z) < hg4(x), where

xdi ifx <yg= 11__%’,
hl:g(w) = 1g 1 . B
x@—i—l—@ ifyg <z <1,

d
ha,4(z) = min (xd—, 1) ,

g

see [11, Th.6].

36d = d(x,,), d = d(x,).
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(xvii) These boundaries are established by observing that for every g(z) €
G(Xn)
9y) —9(x) _

0< !
y—x dg

for z <y, x,y € [0,1].

In the following we give proofs of some (i)—(xvii).

6.2.3 Basic theorems of G(X,,)
Using
(%)
T < xxyp = x; < | x— | xp
and that these inequalities imply ¢ < m, it directly follows from definition

F(X,,) it follows (261)

F(X,,,z) = nF <Xn,x$—m) ,

m T

for every m < n and = € [0,1). Also for any increasing sequence of positive
integers x,,, n = 1,2, ..., we define a counting function A(t) as

Aty =#{n eN; z, <t}
Then for every x € (0, 1] we have the equality (262)
nl(Xn,z)  Alzw,)

Ty T,
which we shall use to compute the asymptotic density of ,,. We have the
lower asymptotic density d, and the upper asymptotic density d of x,, n =
1,2,... as
Alt n o = Alt n
d = lim inf Q = liminf —, d = limsup Q = lim sup —.
t—o0 t n—oo Ty t—00 n—oo Ln

Using Helly’s selection principle from the sequence (m,n) we can select a
subsequence (my,ny) such that F (X, ,z) — g(z), F(Xn,,z) — g(z) as
k — oo, furthermore x,,, /z,, — B and my/ny — «, but o may be infinity.
These limits have the following connection.
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Theorem 120 ([174, Prop. 3.1]). Let my and ny be two increasing integer
sequences satisfying my < ng, for k =1,2,... and assume that
(1) limg—eo F( Xy, x) = g(x) a.e.,
(i) limy oo F' (X, x) = g(x) a.e.,
(iii) limy—_ oo ZL: =£>0,
(iv) (5~ 0) = 0.
Then there exists limy_, oo ;—’Z = a < oo such that

g(x) = ag(xp) a.e. on[0,1], and a = H (263)

Proof. Firstly we prove
. T\
klgroloF <Xnk,xm—nk) = g(xp). (264) |bleq58

Denoting fr = xpm, /T, and substituting u = xfy, we find

1 B
0< / (F(Xoy, 260) — g(xfi))Pde = — / (F(X, 1) — g(u)2du

Br Jo
1! )
< E/o (F(X,,, ) — g(u))2du — 0,

which leads to (F(X,,,z0k) — g(xfk)) — 0 a.e. as k — oo (here necessarily
B > 0). Furthermore,

/0 (F (X 26)—g(2B))2de = / (F (X 285)—g(xBi) +9(2B)—g(xB) Pde

<2 (/Ol(F(Xnk,ﬂfﬁk) — g(xfy)) dw + /Ol(g(xﬁk) - g(xﬂ)fdx) :

Since g(x) is continuous a.e. on [0, 1] then (g(zfx) — g(zf5)) — 0 a.e. and
applying the Lebesgue theorem of dominant convergence we find fol (g(xfk)—
g(xf3))?dx — 0. This gives (264). The existence of the limit limy,o ;=
a < oo follows from (1) and (iv). Now, let ¢, € [0, 1) increases to 1 and g(z
be continuous in t,,. Then g(xf) is also continuous in ¢, and §(t,,) = ag(t,s
for n =1,2,.... The limit of this equation gives the desired form of a. [

~— —
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In the simple form we have
Let g(x) € G(X,), 5 € (0,1), and assuming that
(i) g(x) is continuous at 3,
(i) g(x) increases at 3, 37
(i) g(8) > 0,
(iv) all d.f. in G(X,,) are continuous at 1.

Then
g9(zB)

5 € G, (265)

Theorem 121 ([174, Prop.6.1]). Assume for a sequence ng, k = 1,2,...
that

(1) limg—yoo F(Xn,,x) = g(2),

(i) limy oo ;Tkk =d,.
Then there exists

A(zzn,)
Txp,

=dy(z) and

(iii) limp o0

T

ola) = o). (266)

Here the limits (i) and (iii) can be considered for all x € (0, 1] or all continuity
points x € (0,1] of g(x).

Proof. Directly by (262). O

bldef2| Definition 8. If lim; . F(X,, ,z) = g(x) and lim;_,,, =+ = d,. we shall
k xT g
N
call d, as a local asymptotic density for d.f. g(x).

6.2.4 Continuity of g € G(X,,)

If all g € G(X,,) are everywhere continuous on [0, 1], then relation (263) is of

the form ()
g(x
) € G(X,). (267)

37The assumption (ii) can be replaced by a requirement that (3 is a limit point of
i =1,2,...,n5,k=1,2,..., where weakly F(X,,,z) — g(x).
nk

208



thd

As a criterion for continuity of all ¢ € G(X,) we can adapt the Wiener-
Schoenberg theorem (cf. [92, 6, p. 55]), but here we give the following
simple sufficient condition.

Theorem 122 ([174, Th. 4.1]). Assume that all d.f.s in G(X,,) are contin-
uwous at 1. Then all d.f. in G(X,) are continuous on (0,1], i.e. the only
discontinuity point may be 0.

Proof. Assume that x,,, /z, — § and F(X,,,z) = g(z) as k — oo. If
from (my,ng) we can select two sequences (my,n;) and (mj,ny) such that
nj./mj — aq and nf/mj — o with a finite oy # g, then aqg(xf), asg(zf) €
G(X,) and thus one of such d.f. g(x) must be discontinuous at 1 (it holds
also for g continuous at §). Thus, assuming that G(X,,) has only continuous
d.fs at 1, the limits x,, /z,, — 8 > 0 and F(X,,,z) — g(z) imply the
convergence of ng/my. Now by [174, Th. 3.2]: If 5 is a point of discontinuity
of g(z) with g(f 4+ 0) — g(8 — 0) = h > 0, then there exists a closed interval
I C [0,1], with length |I| > h such that for every 1 € I we have ag(zf) €
G(X,). Thus g(z) cannot have a discontinuity point in (0, 1]. O

Theorem 123 ([174, Th. 6.2]). (i) If d > 0, then there exits g € G(X,,)
such that g(x) < x for every x € [0, 1].

(ii) If d > 0, then there exits g € G(X,,) such that g(x) > x for every
z € 0,1].

(iii) If d > 0, then for every g € G(X,,) we have
(d/d)r < g(z) < (d/d)x (268)
for every x € [0, 1].
(iv) If d > 0, then every g € G(X,,) is everywhere continuous in [0, 1].

(v) If d > 0, then for every limit point 5 > 0 of x,,/x, there exist g €
G(X,) and 0 < a < oo such that ag(zf) € G(X,).

Proof. (i). Assume that ng/z,, — d as k — oo. Select a subsequence nj, of
ny such that F(X,/,z) — g(x) a.e. on [0,1]. Since dy(z) < d a.e. in (266)
gives (g(z)/z)d < d a.e., which leads to g(z) < z a.e. and implies g(z) <
for every z € [0, 1].
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(ii). Similarly to (i), let ng/x,, — d as k — oo. Select a subsequence
ny, of ng such that F(X,/,x) — g(x) a.e. on [0,1]. Since da(z) > d a.e.,
(266) implies (g(z)/z)d > d a.e. again, which gives g(z) > = a.e., whence,
g(x) > z everywhere on z € [0,1].

(iii). For any g € G(X,,) there exists ny such that F(X,,,z) — g(z) a.e.
From ny, we can choose a subsequence n;, such that ny /z,, — di. Using (266)
and the fact that d < d; < d and d < dy < d we have (g(x)/z)d < d and
(g(w)/x)d > d a.e. If d > 0, these inequalities are valid for every x € (0, 1].

(iv). Continuity of g € G(X,,) at 1 follows from [174, Prop 4.2]: Denote

d(e) = Timsup #i<n;(1—e)x, <z; < :L‘n}

n—o0 n

Every g € G(X,,) is continuous at 1 if and only if lim,_, d(¢) = 0. Since

d(e) < limsup eln —
n—o00 n

Y

[ ™

applying [174, Th. 4.1]= Theorem 18, we have continuity of ¢ in (0, 1].
Continuity at 0 follows from (268).

(v). It follows from the fact that if d > 0 and limy_,o 2, /20, = S > 0 for
my < ny, then limsup,_, . ng/my < co. More precisely, if we pick (mj},n},)
from (my,ny) such that nj,/mj — «, then

4,4
s 5

This is so because if we select (my,ny) from (mj,ny) such that nj/z., — d
and my [z, — da, then, by

<a< (269)

ISH

we see o = dy /(daf3). O

6.2.5 Singleton G(X,) = {g}

For general G(X,,), the connection between G(X,,) and G(z,,/z,) is open,
but for singleton G(X,,) we have
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Theorem 124 ([174, Th. 8.1)). If G(X,) = {g}, then G(x,/x,) = {g}.

Proof. A proof of the theorem is the same as the proof of [130, Prop. 1, (ii)],

since
I | X0 ) n
im

ST+ %] ok e+ D)2

[
Theorem 125 ([174, Th. 8.2]). Assume that G(X,) = {g}. Then either
(i) g(z) = co(x) for x €[0,1] or
(i) g(x) =2 for some 0 < XA <1 and z € [0,1]. Moreover,
(iii) if d > 0 then g(z) = =.

Proof. Let G(X,,) = {g}. We divide the proof into the following six steps.
(I). By [174, Th. 7.1], we have fol g(z)dz > 1 which implies g(z) # c1(z).
(IT). g must be continuous on (0, 1), since otherwise [174, Th. 3.2], for a

discontinuity point 3 € (0, 1), guarantees the existence of a; # a5 such that

a19(zf) = asg(zf) = g(x) a.e. which is a contradiction.

(III). Assume that g(x) increases in every point 5 € (0,1). In this case
relation (5) gives the well-known Cauchy equation g(z)g(5) = g(xf3) for a.e.
x, 8 € [0, 1] For a monotonic g(x) the Cauchy equation has solutions only of
the type g(r) = 2.

(IV). Assume that g(z) has a constant value on the interval (v, ) C [0, 1].
For 5 € (0, 1] satisfying (j) g(x) increases in 5 and (jj) g(8) > 0 the basic
relation (263) gives g(x) = ag(xf) which implies that g(x) has a constant
value also on (3(v,d) and if § < B then also on 71(v,d). Thus, if (y;,;),
i € T is a system of all intervals (maximal under inclusion) in which g(x)
possesses constant values, then for every ¢ € Z there exists j € Z such
that B(ys,6;) = (v;,9;) and vice-versa for every j € Z, 6; < 3, there exists
i € T such that 37'(v;,d;) = (v,0;). This is true also for 3 = 1332 ...,
where 1, Bs,... satisfy (j) and (jj) and ny,ne,--- € Z. Thus, there exists
0 < # < 1 such that every such § has the form 6", n € N. The end points
Yi, 0; (without ~; = 0) satisfy (j) and (jj) and thus the intervals (v;,d;) is
of the form (0",0" 1), n = 1,2,... and all discontinuity points of g(z) are
0", n=1,2,..., a contradiction with (II). For g(z) = ¢o(x) there exists no
B € (0,1] satisfying (j) and (jj).
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(V). We have the possibilities g( ) = ¢p(x) and g(x) = x> for some A > 0.
Applying [174, Th. 7.1] we have fo x)dz > 1/2 which reduces A to A < 1.

(VI). If d > 0, then by [174, Th. 6.2, (i)]= Theorem 125 must be g(z) <
which is contrary to z* > x for A < 1. D

Notes 21. The possibilities (i), (i) are achievable. Trivially, for z,, = [n}], G(X,) =
{z'/*} and for x,, satisfying lim, ,oo Z,/Zn11 = 0 we have G(X,) = {co(z)}. Less
trivially, every lacunary ,, i.e. Z,/®n41 < X <1, gives G(X,,) = {co(x)}.

The following limit covers all of G(X,,) = {g}.
Theorem 126 ([174, Th. 8.3]). The set G(X,,) is a singleton if and only if

1 |z T;
1 - R
RIS
=1 j=1
1 & | x; A T
S N e A [ N R A I ) 270
2m2i — Ty T 2n2 HZI T, :L‘n> (270)

Proof. 1t follows directly from the limit (270) in the form
m,n—00

1
lim / (F(Xpm,2) — F(Xy,2))%dz = 0,
0

after applying

[0 - s = [ [ - viaswase)
5 [ [ vits@ast) -5 [ [ o= viasase) e

for g(x) = F(X,n, x) and g(z) = F(X,,x). O

6.2.6 One-step d.f. c¢,(z) of G(X,)

In [174] there is proved that singleton G(X,,) = {c1(z)} does not exist, since
(by [174, Th. 7.1]) for every increasing sequence z,, of positive integers we

have .
max z)dx >
g(:v)EG(Xn)/o gle)de =

In [174] is also proved (see Th. 8.4, 8.5) that

(272)

| —
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Theorem 127.

G(X,) ={c(x)} = nlim - ;:1 z; =0, (273)
. m n x; zj
( n) {CO(J;)} nlL oo ™MN Zz—l Zl Tm Tp O’ (274)
G(X,) C{ca(z); € [0,1]} <= i L zn:| —x;| =0 (275)
s 11m i il = U.
n Ca\T); ) oo ngxn = Ty — Tj

Proof. (273). fol rdg(z) =1 — fol g(z)dz = 0 only if g(z) = co(x).
(274). Assume that F(X,,, ,z) — §(z) and F(X,,,z) — g(z) a.e. as
k — oo. Riemann-Stieltjes integration yields

1 mp Mg T x; /1 /1
M 121321 Ty, T, o Jo ‘ y\ ( k ) ( k y) ( )

which, after using Helly’s theorem, tends to

/ 1 / o yldg(a)dgly) 277)

as k — oo. Then (277) is equal to 0 if and only if §(z) = g(z) = ca(z) for
some fixed a € [0,1]. By Theorem 125,  must be 0. (d = 0 follows from
Theorem 123, part (i)).

(275). Again fol fol |z — yldg(x)dg(y) = 0 if and only if g(z) = c,(x) for
a € [0,1] and thus

for every ny — oo. O

Furthermore, if G(X,,) C {ca(z);a € [0,1]}, then d(z,) = 0. Here we
prove that

Theorem 128 ([66, Th. 6]). Let x,, n =1,2,..., be an increasing sequence
of positive integers. Assume that G(X,,) C {ca(z); € [0,1]}. Then co(x) €
G(X,) and if G(X,,) contains two different d.f.s, then also ci(x) € G(X,,).
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Proof. We start from the equation (2) (see [174, p. 756, (1)])

F(Xp2)= 2 F (anx—m> ,
m

n

which is valid for every m < n and z € [0,1]. Assuming, for two increasing
sequences of indices my < ny, that, as k — oo

(i) F(Xomy, o) — ca, (2) ace.,

(ii)

(i) 2% — 4,
) s g,

Ty,

F(X,,,) = cap(x) ace.,

(iv

(such sequences my, < ny, exist by Helly theorem) then we have:
a) If >0 and vy < oo (see (3) in [174]), then

Can (T) = YCay (23) (278)

for almost all x € [0, 1].
b) If 5 =0 and v < oo, then by Helly theorem there exists subsequence

(mj, ny,) of (my,ng) such that F'| X, ,x——* ) — h(z) a.e. and since

(En;C

Loy

F (Xnk,x—’“> < F(X,,,z0)
.

for every ' > 0 and sufficiently large k, we get h(x) < cq,(zf"). Summariz-

ing, we have

Ca () < VCay () (279)

for every 8 > 0 a.e. on [0, 1].

We distinguish the following steps (notions (i)-(iv), a) and b) are pre-
serve):
19 Let coy(x) € G(X,), 0 < a; < 1, and let my, k = 1,2,..., be an
increasing sequence of positive integers for which

(1) F (X, ©) = Cay (T).
Relatively to the my, we choose an arbitrary sequence ng, my < ng, such
that
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(ili) = = 7y, 1 <y < o0.
From (myg, ng) we select a subsequence (mj,n}) such that
(i) F'(Xny , ) = cay(z) ace. on [0, 1],

(iv)zlf“ — (3 for some g € [0, 1].

a) If >k0, then (278)cq,, (x) = Yca,(x5) a.e. is impossible, because v > 1
and for x > oy we have ¢,, (x) = 1. Thus g = 0.
b) The condition § = 0 implies (279)ca, () < Yo, (xf') for every 5 > 0 and
a.e. on z € [0,1]. If ay > 0, then c,,(2f") = 0 for all z < 2, which implies,
using /' < ap, that ¢, (z) = 0 for € (0,1), and this is contrary to the
assumption a; < 1.
Thus as = 0 and we have: If 0 < «a; < 1 and ¢4, (2) € G(X,) then
co(x) € G(X,). Now, applying [174, Th. 7.1] we have max,, 2)cc(x.,) fol Co(x)da =
1 —a > L Then the assumption c,, (z) € G(X,,), 0 < oy < 1 is true, thus
co(x) € G(X,,) holds.
20, In this case we start with the sequence ny, and we assume that c,, (z) € G(X,),
0<ay <1, and

(i) F(Xy,, ) = Cay(x) a.e. on [0,1].
Then we choose arbitrary my, such that m; < n; and

(ili) = — 7, 1 <y < o0
From (myg, ny) we select a subsequence (mj,,n}) such that

(ii) F' (X, ¥) — cay () ae. on [0, 1],

(iv)zlf" — [ for some g € [0, 1].

a) If g > 0, then by (278)ca,(z) = vea,(xzf) ae. If ay < 1, then v > 1
implies ¢, (z) > 1 for some = € (0,1), a contradiction. Thus a; =1 (in this
case 3 < a).

b) Now, 8 = 0 implies (279)cq, () < veq,(z5') for every ' > 0 and a.e. on
z € [0,1] and the assumption as > 0 implies c,,(zf') = 0 for all z < F,
which gives a; = 1. Summarizing, if G(X,,) contains two different d.f.s, then
it contains co(x) and ¢;(x) simultaneously. O

6.2.7 Connectivity of G(X,,)

As we have proved in Theorem 6, for a usual sequence y, the set G(y,) of
all d.f. of y, is nonempty, closed and connected in the weak topology, and
consists either of one or infinitely many functions. The closedness of G(X,,)
is clear, but connectivity of G(X,,) is does not have to pay. A general block
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sequence Y, with non-connected G(Y;,) can be found trivially. For our special
X,, we have only the following sufficient condition.

Theorem 129 ([174, Th. 5.1]). If

1 n+l n
li _—
ngrolo (n(n + 1) ; —

n+1 n
2(n +1)2 x x 2n? x x Y
( + ) ij=1 n+1 n+1 ij=1 n n

then G(X,,) is connected in the weak topology.

Proof. The connection follows from the limit

1
lim | (F(Xpi1,2) — F(X,,2))*de =0,

n—oo 0

since by a theorem of H. G. Barone [16] (Theorem 8 in this book) if ¢, is a
sequence in a metric space (X, p) satisfying

(i) any subsequence of ¢, contains a convergent subsequence and
(i) limy—eo p(tn,tnt1) =0,

then the set of all limit points of t,, is connected. Next we use the expression

[ 0w —awrar= [ [l -viastaraw) -3 [ [ 1= viastniow

_%/Ol/ol\x—y\dg(x)dﬁ(y)-

Putting g(z) = F(X,41,2) and g(x) = F(X,,x) we get the desired limit.
38
[

As a consequence we have:

Theorem 130. If lim,, rxﬁ =1, then G(X,) is connected.

~ 1 ~
*#p%(9.9) = [, (9(z) — §())*da.
In Example 99 is given X,, such that G(X,,) is connected but limsup,,_, . p(tns1,tn) = 1.
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Proof. After some manipulation (430) it follows from
T i - ) =0
im T — = 0.
n—oo \ NTp = Tpal

Note that by [174, Th. 4.1] all d.f.’s in G(X,,) are continuous everywhere
on [0, 1] if they are continuous at 0 and 1 (see Theorem 122 in this book).

In [174, Th. 3.2] is proved that if g(z) € G(X,), g(z) increases at €
[0,1), g(8) > 0, then there exists a € [1,00) such that ag(zf) € G(X,).
Using this fact, we can define on G(X,,) the relation g(x) < g(x) if there
exist a, # such that g(x) = ag(xf). For every element g(z) € G(X,) we
define [g(x)] as the set of all g(z) € G(X,,) for which g(x) < g(z). Assuming
that all d.f.s in G(X,,) are continuous and strictly increasing, then we have

O

l9(x)] = {g(xB)/9(B); € (0, 1]}.
Denote as G(g(x)) the set of all possible limits limy_ o g(x8k)/g(Bk), where

B — 0 and put
[9(x)]" = [g9(x)] U G(g(x)).

Theorem 131. Assume that all d.f.s in G(X,,) are continuous and strictly
increasing. If G(X,) = U [g:(2)]*, then G(X,,) is connected if and only if
gi(z), i =1,2,... k can be reordered into g;, (x), n=1,2,... k such that

(i) (g1, (@) N {gipy ()] £ 0, n=1,2,..., k-1

Proof. 1°. Firstly we prove that [g(z)]* is nonempty, closed and connected,
for every g(x) € G(X,). Note that, in the following we say that we can go
connectively g (z) — g2(x) through the set H if for every € > 0 there exists a
chain g;, () € H,n=1,2,...,m such that p(g1,9i,) < &, p(9iy, is) <&, .-,
P(Gins G2) < €.

Connectivity: If g (x) =
go connectively ¢;(x) —
and [, since

g(xp) g(xpf')  [(g(zp) —g(xp’) e 9(B') —g(B)
‘< +gleh) w'))%0

g(8)  9(B) 9(8) 9(B)g

as (/= B) — 0, where 8,5 > ¢ > 0.

g(xp1)/g(B1) and go(z) = g(x52)/g(52) then we can
g2(z) through g(z3)/g(5), where [ is between [;
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If g1(x) = limysoo g(25r)/9(Br) and ga(x) = limyo g(2f;)/9(5;), then we
can go connectively

g1(@) = g(xBr)/9(Br) — 9(xB;)/9(B) = ga2()

through [g(x)]. Similarly for the rest
91(x) = g(x51)/9(b1) and g5(x) = lim g(z5x)/g(Bx).

Closedness: If limy o0 g(26k)/9(Bk) = g1(x), we can select [ such that
Br — [. If B> 0, then from continuity g(z) we have g;(x) = g(x8)/g(5).
The closedness of G(g(x)) follows from definition of G(g(z)).
2°. Assume that (i) holds and select gi(z) € [g:, (@)]* N [gi,,, (2)]*, @ =
1,2,...,k — 1. Let gi(z) € [g;(2)]* and ga(x) € [gis(x)]*. Then we can
go connectively

g (xP1) . gir(2P2) . 9is (£ 3)

g(x) = === = g1(x) = —=—5 = g(7) = ——=—== = ga(2),

i, (B1) 9i»(B2) 9i5(B3)

similarly in a general case.
3°. Assume that (i) does not hold. Then [g;(z)]*, i = 1,2,...,k, can be
divided into two parts such that

(Uiealgs(2)]") N (Uienlgi()]") = 0,

where AU B = {1,2,...,k}. From closedness of such sets follows p(g, g) >
d > 0 for some 0 and every g(x) € Uealgi(x)]* and g(x) € Ueplgi(2)],
which contradicts the connectivity of G(X,,). O

6.2.8 Everywhere density of z,,/z,, m,n=1,2,...

Theorem 132 ([173]). Let x,, n = 1,2,... be an increasing sequence of
positive integers. If d(x,) > (1/2) then the ratio sequence x,,/x,, m,n =
1,2,..., is everywhere dense in [0,00). Conversely, if 0 < v < 1/2 then
there ezists an x, € N such that d(z,) = v and x,,/x,, m,n = 1,2,..., is
not everywhere dense in [0, 00).

The proof immediately follows from the following theorem.
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Theorem 133. Let z,, € N and the interval (o, 5), 0 < a < 8 <1 be such
that (o, B) N {xpm/xn,m,n=1,2,...} = 0. Then

d(z,) < %min(l — d(zy), d(x)) and (281)

d(z,) <1—(8—a). (282)
Proof of (281). Let A C N be listed in a strictly increasing order as x; <
To < o0 <y < oo U (o, 8) 0z /T, mn = 1,2,...} = 0, then the
intervals

(p, fay),n=1,2,...

cannot intersect A but they may have mutually nonempty intersections. We
can select pairwise disjoint subintervals

((gy), gy + @), (AT [gn)+1, AT[gn)11 + @), . .,
(Oéxnfla OTp—1 + Oé),
(o, By (283)

for some 0 < 6 <1 (here we put zjp,) = 0if [In] = 0). Denote B = N— A and
B(z) = #{b < z;b € B}. Counting the number of integer points belonging
to (283) we obtain

B(fwn) = (n —[#n])(a = 1) + (6 = @)z, = 1) + Blawj))

for all sufficiently large n. To eliminate 1 in (o — 1) we replace n with nk
and « with ka. Then (283) transforms into pairwise disjoint subintervals of
the form

(axgn)k, axgn)k + ko), (O ((on)+1)ks AT ((on]+1)k + KQY), .. .,
(Qx(n—l)lw AT (n-1)k + /{?Oé), (Oéxnlm ﬁxnk) (284>

Thus, we have

B(Bant) , (n—[On))(ka —1) (B = a)am —1) B(aajgn)r) o agnje
Bank Bank, Bans, aane Bk

To compute the lim sup of the left and right hand side, respectively, use that

(i) limsup,,_, ., B(ﬁank>/ﬁank < 8(8) =1- C_l(A>7
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(11) lim SUPy, 00 nk/ank: = a(A)a
(iii) liminf, o B(aapnk)/aapnr > d(B) =1 — d(A), and

(iv) by selecting indices n for which lim,, nk/an, = d(A) we have (as-
suming d(A) > 0)

n . n . 0 k: 1 e
lim inf 222 — Jim inf S0 1y (o] > ——d(A)f.

n—o0o  Qpk n—00 [ n]/{j n—=00  QAnk d(A)
Thus, letting £k — oo we get

L= d(A) > (1—0)%3) + 2% 11— daye.
g s s

Computing the maximum of the right hand side for 0 < 8 < 1 yields

L dA) > 22 Y (@A), 1 — d(A)),

g g

which justifies (281). O

Proof of (282). A proof of (282) is given in [173], p. 69-71: Every infinite
set A C N with infinite complement N — A can be expressed as the set of the
integer points lying in the intervals

[bl,Cl],[bQ,CQ],...,[bn,Cn],..., (285)
whose endpoints form two integer sequences ordered as

b1§61<b2§02<"'<bn§0n<....

Clearly
n—1
|
d(A) = lim inf , Zl(ci —bi + 1), (286)
_ 1 <&
d(A) =limsup — Y (c; — b +1). (287)

n—oo Cn -
=1

220



The points of AN [1,¢,] divided by i, i € [by, ¢,], form a subset R,, C R(A);
39 we obtain the intervals

bl (&1 b2 Co bn—l Cn—1 bn Cn
A A I I TR A I IR A A B I AR

which have the following property: the distance of any two neighbouring
points of R, lying in [b,,_x /i, ¢,—/7] is less than 1/b,, and the same holds for

the union
[nJ bn—k Cn—k _ bn—k Cn—k
i cn | by |

i=by,

Thus, for sufficiently large n, every interval (a, §) C [0, 1] satisfying («, 8) N
R(A) = (0 must lie in the complement of [b,, /¢y, cn_k/bn], k =0,1,...,n—1,
which is formed by the pairwise disjoint intervals

Cn—k bnkarl
b, ' cn

), k=1,2,....n—1, (288)

some of which may be empty. Hence, a necessary condition for (a, ) N
R(A) = () is the existence of an integer sequence k,, k, < n, such that

(a, B) C ( sy b”"“”“) (289)

b, Cn

for all sufficiently large n. This also gives

bn—kn+1 . Cn—ky, > B —
Cn Cn '

Now we can express the upper asymptotic density as

8(A):hmsup<cn_b1+£_(bQ_Cl+b3_02+‘..+bn_cn—l)>

whence

d(A) = d(C) £1- (B~ a), (291)

where C'is the range of ¢,. For sufficiency of (289) we need the set R(A)! of
all limit points of R(A). 49

3R(A) = {a/b;a,b e A}.
10R(A)! is the set of all limit points z = lim;_, =™ of R(A).

i

R(A)? is the set of all accumulation points of R(A) i.e. the points = which can be
expressed as a limit x = lim;_, Z—" of a one-to-one sequence ZL
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By the above reasoning we see that («, 3) N R(A)! = 0 if and only if there

exists k, < n satisfying (289) for all sufficiently large n. Thus, inequality
(291) holds for (o, 3) satisfying (a, 3) N R(A)! = 0 as well.
Now, for a positive integer k, transform

by, cn] — [kbp, ke, + k — 1]

and denote by Ay the set of all integer points lying in [kb,, k¢, + k — 1],
n=1,2,.... Similarly, C}, is the set of all kc,, + k — 1. Evidently

d(Ag) = d(A), ACy) =AC)/k, and  R(A) = R(A)
which gives B B
d(A) = d(C)/k <1 —(B—a)
and (282) follows. O

Notes 22. Everywhere density of x,,/x, was first investigated by T. Salat [140]. He
proved

Theorem 134. If d(z,) > 0 or d(z,) = 1, then x,/z,, m,n = 1,2,... is everywhere
dense in [0,00). Also @ /@y is everywhere dense if A(x)/gaz — 1 for @ — oo, where
¢>0,a>0 and Alx) = #{a < z;0 € A}.

Using (281) and (282) Theorem 132 has also the form

Theorem 135. For every increasing integers x,,, if d(z,) + d(z,) > 1 then x,,/z, is
everywhere dense in [0, 00).

Theorem 136. The ratio sequence Tp,/T,, m,n = 1,2,... is everywhere
dense in [0, 1] if

(i) limyeo ﬁ ZZ]':1 |z — x| =0,
(i) liminf, o 7= >0, @ =0,
(i) limsup,, ., == >0 @ = 1.

Proof. Tt follows from Theorem 19. m
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6.2.9 U.d. of X,

By Theorem 124, u.d. of the single block sequence X, implies the u.d. of the
ratio sequence ,,/x,. Applying [174, Th 6.3, (i)] (d/d)x < g(z) < (d/d)z
for every = € [0, 1], we have

Theorem 137. If the increasing sequence x,, of positive integers has a pos-
itiwe asymptotic density, i.e. d = d > 0, then the associated ratio sequence
T /Tp, m=1,2,....n,n=1,2,... is u.d. in [0,1].

Positive asymptotic density is not necessary. According to T. Salat [140]
we can use also a sequence z,, with d = 0.

Theorem 138 ([174, Th. 9.2]). Let x,, be an increasing sequence of positive
integers and h : [0,00) — [0,00) be a function satisfying

(i) A(z) ~ h(z) as © — oo, where
(i) h(xy) ~ xh(y) as y — oo and for every x € [0,1], and
(i) limp—eo % = 1.

Then X,, (and consequently x,,/x,) is u.d. in [0, 1].
Proof. Starting with (33) F(X,,,z)n = A(xx,) it follows from (i) that

F
(X, z)n 1
h(zz,)
as n — oo, then by (ii)
F(X,,x)n )
xh(z,)
which gives by (iii) the limit
n
F Xna TN
(X, ) h) — T
as n — oo. [

Notes 23. Assuming only (i) and (ii), we have liminf, ., n/h(x,) > 1, since otherwise
ng/h(zn, ) = o < 1implies F(X,,,z) = x/a for every x € [0, 1] which is a contradiction.
Also, G(X,,) C {zX; X € [0,1]}.
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6.2.10 L? discrepancy of X,
It has the form

1 1 1
D) =+ >t LS

Proof. Applying (713) we have
1 n
1 Ti T;
(2 - —_2V2dr = — v
DO = [ (F(Xy0) —afe = 5 50 R (252,

where ) ) ) | |
ety r+y T —y
F, E—— _ _ )

Then

Theorem 139. For every increasing sequence x,, of positive integers we have

lim D@ (X,) =0 <= lim F(X,,z)=z.

n—o0 n—oo

Notes 24. The left hand-side can be divided into three limits (cf. [161, Th. 1])

(Z) limy, 00 ﬁ Z:'Lzl Xi = %7
lim D®(X,) =0«= ¢ (i) limy o0 1y Yy 22 = 3,

n— 00 o : n 1
(#42) limy, - 0o e Ei,j:l lzs — 2] = 3.
Also note that if D®(X,,) = 0, then T /Xy 18 everywhere dense.

Notes 25. Weyl’s criterion for u.d. of X,, is not well applicable in our case. It says (cf.
[146, (7)]).

Theorem 140. X, is u.d. if and only if

1 n

. ih Tk
lim — E 2™y =0
n—o00 N

k=1

for all positive integers h.
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6.2.11 Boundaries of g(x) € G(X,,)

Sseb

athg| Theorem 141 ([11, Th. 5]). For every increasing sequence of positive inte-

gers T, n = 1,2,..., there exists g(x) € G(X,) such that g(z) > = for all
z € 0,1].

Proof. 1f d > 0, select n; so that - — d > 0, and F(X,,,r) — g(z). For
Tk
such g(z), (266) implies

and F(X,,,x) — g(z). Then for every z € (0, 1],

Alxxy,) S T 1
TXp, Ty

k

Applying (33) yields
F(X,,,x) ng S T 1

— Y

.

x T,

and taking the limit, as k — oo, we obtain g(z) > x for all z € [0,1]. ¢ O
See [11, Th. 6]:

Th9| Theorem 142 (L. Misik). Let x1 < xy < ... be a sequence of positive in-
tegers with positive lower asymptotic density d > 0, and upper asymptotic
density d. Then all d.f.s g(z) € G(X,) are continuous, non-singular, and
bounded by hy(z) < g(x) < ho(x), where

N

d , _
TS, if x € [0, i_

i) =", J (203)

otherwise,

, d
ho(z) = min (xg, 1) . (294)

I

4L, Misik.
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Moreover, hy(z) and ho(z) are the best possible in the following sense: for

given 0 < d < d, there exists x1 < x5 < ... with lower and upper asymptotic
densities d, d, such that g(x) = hi(x) for x € B%‘;, ]; also, there exists

T <1y < ... with given 0 < d < d such that g(x) = ho(z) € G(X,,).

Proof. For g(z) € G(X,), let ng, k = 1,2,..., be an increasing sequence of
indices such that F(X,,,z) — g(z). From nj, we can select a subsequence
(for simplicity written as the original ny) 4* such that

2k d, >0, (295)

Ty,

Then, by (266), we have

g(x) = xd‘qf), where Alen,) — dg(x) (296)

g Tp,,

for arbitrary = € (0, 1].

We will continue in six steps 1°-6°.

1°. We prove the continuity of g(z) at = 1 (improving (iv) in [174, Th.
6.2]) for each g(z) € G(X,,).

In view of the definition of the counting function A(t)

0 < A(zy,) — Alxzy,,) < T, — TTy,;

thus,
0< Alwn,)  Alzzy,) -1 A(m"’“>x <1l-u,
Tn Tp Tn IL‘I’nk

k k k

and, as k — oo, we have 0 < d;, — d,(z)z < 1 — =, which implies

0<d,—dy(z)+dg(x)(l—2)<1—uzx.
Consequently, lim,_,; d,(z) = d,, and so lim, ,; g(x) = lim, :Edf’d—(gx) = 1.
Since g(x) € G(X,) is arbitrary, [174, Th. 4.1,Th. 6.2] gives continuity of
g(x) in the whole unit interval [0, 1].
20, We prove that g(x) has a bounded right derivative for every x € (0, 1),
and for each g(z) € G(X,,).

“2We call d, a local asymptotic density related to g(z).
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For 0 < x <y <1 again
0< A<yxnk) - A(x'rnk) < (y - x>xnk )

which implies

YT, Ty,

Letting k — oo, we get 0 < d,(y)y — dy(z)x <y — x, hence

de(y)y —d,(x)r  y—=x
0< 4(y) — g(r) = WD GDT VT
g 9
Consequently,
— 1
0< 9(y) — 9(x) < - (297)
y—x dy,

for all z,y € (0,1), z < y, which gives the upper bound of the right deriva-
tives of g(z) for every x € (0,1). Note that a singular d.f. (continuous,
strictly increasing, having zero derivative a.e.) has infinite right Dini deriva-
tives in a dense subset of (0,1).

3%. We prove a local form of Theorem 47.

Asd < d, <d, (296) implies

d d
— < < zr— 298
v <o) <o (295)
for every x € [0, 1]. It follows from (297), that there exists an extreme point
A, = (xg4,y,) on the line y = x% such that g(z) has no common point with

this line for x > x,. This point A, is the intersection of the lines

d 1 1
—r 2 and, y=a—+1— — 299
Y a:dgan,y .tcdg—l— d, (299)
therefore,
1—-d, d1—d
A = = g = 91 .
o = (g, Yy) (1—c_i’dgl—gl) (300)
It means that for a given g(z) € G(X,,), h14(x) < g(x) < ho4(z), where
d : 1-d
T, if v <yo=-"72
hig(e) =4 ¢ _ 4 (301)
l’@‘l—l_@, ifyo < <1,
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, d
hag(x) = min <xd—, 1) : (302)

g

4% Now we find hy(z), and hy(x) such that
hi(z) < hig(x) < hgg(x) < ha(x)

for every g € G(X,,).

In the parametric expression (300) of A,, the local asymptotic density
d, defined by (295) belongs to the interval [d, d]. The well-known Darboux
property of the asymptotic density implies that for an arbitrary d € [d, d]
there exists an increasing ny, k = 1,2,..., such that ;T’“ — d %, and
then the Helly selection principle implies the existence of 3 subsequence of
ny such that F(X,,,z) — g(x) for some g(z) € G(X,). Thus, if g(z)

runs over G(X,), then d, runs over the entire interval [d,d]. Substituting
dg=1—1241—d)in Ay = (x,4,y,) we get

Yg = Yg(Tg) = I-(1—a)

where z, = % runs through the interval I = [%, 1] for d, € [d,d]. By
putting z, = z, and y, = hy we find a part of hy(z) for x € I in (293).
The remaining part of hy(z), and also the whole hy(z), follow from the basic
inequality (298), see [11, Fig. 1.]. The optimality of hy(z) and ho(x) are
proved in 5° and 6° pages 518-522 of [11]. # O

43 A simple proof follows from the fact that for every d € (d,d) there exist infinitely
many n € N such that A(n)/n <d < A(n+1)/(n+1). These n we denote as ny.
441, Misik.

228



h,(x)

I, (x)
h _(x)

l.g

0

QU
fed
=)

Figure 1: Boundaries of g(x) € G(X,,)

6.2.12 Applications of boundaries of g(x)

An application of d.f.s in Theorem 142 to elementary number theory:

Theorem 143 ([11, Th. 7]). For every increasing sequence x1 < x3 < ...
of positive integers with lower and upper asymptotic densities 0 < d < d we

have
| | ;
lims 12“ <Ly L(lomin(Vdd) () 4 ). (304 [bleqst]
n — — <-4 = - .
im sup 2 o =213 1—d min(va, d eq

Here the equations in (303) and (304) can be attained.
Proof. By Helly theorem, if F(X,,,z) — g(z), then

1 1nk T /1 /1
xdF (X, ,x)=— — rdg(x) =1— x)dx.
[ et =30 = [Faag@ =1 [ ot

0 k

N
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If d > 0, then hy(z) < g(x) < hy(z) which implies

1 1 1
— hxdxﬁl—/gxdxgl—/hxdx. 305) |bleq70
/O , () o) e (305) [oLeq7o]

For x; < zy < ... for which hy(z) € G(X,) in the left of (305) we have
equation, but because by (xi) in every case hi(z) ¢ G(X,) for 0 < d < d,
which implies strong inequality in the right, i.e.

n =\ 2

1 T 1d (1—-d d d -

N—00 n

Since for every g(x) € G(X,,) in 3° we have hy 4(z) < g(z) < hgy(z), then

1
hmsup E —< nengX)(l—/ hl,g(:v)dx>. (307) |bleq71
n 0

n—oo N

If the maximum in (307) is attained in go(x) € G(X,,) and hy 4 () € G(X,),
then go(z) = hy4,(x) and we have

1 i !
lim sup — Z L . / hy 4o (z)d. (308) |bleq72
i=1 n 0

—_ /
for d, € [d, d) with derivative ( I8 th(:z:)dx) = i (1 - ﬁ) and which

gives that min fol hy4(z)dx is attained in dg, = min(v/d, d).

Now, to prove (308) we can construct integer x; < 25 < ... with 0 < d <
d such that hy 4 (7) € G(X,,).

We starting with the sequence of indices ny, and then by (107) we must

find indices mj, < my < ny and integers Tt < Ty, < Ty, such that
<1> k- — dgm

o 1-d
.. mk d 90
(ii) == — dgg 1= ’
.. Cbmk 1fdgO
(iii) o - T
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se8

Ty,
(v) 2 =0,
k
(vi) =% — d.
Mk
Then from (i), (i) and (iii) follows - — d. Furthermore we must again
my
assumed

(V) Ty, — xm% 2 my — m;g?
(Vi) Ty — Ty, > Mg — My,
(Vii) Ty | — Ty 2 MGy — M,y
(viii) ng < my,q,
(ix) m} < Ty
It can be solved naturally and complement values z,, we define linearly. [

6.2.13 Lower and upper d.f.s of G(X,,)

In the Introduction 6.2, (xv), we notify the result [11, Th. 7] that for every
integer sequence 1 < 1 < xg < ... with d > 0 and every d.f. g(z) € G(X,)
we have hy(z) < g(x) < ho(z), where hy(z) and he(z) are defined in (14) and
(23), respectively. Furthermore, by [11, 6° of Proof], there exists an integer
sequence 1 < xy < x9 < ... with d > 0 such that hy(z) € G(X,,). In this
case hyo(r) = g(z) and G(X,,) has the following additional properties.

Theorem 144. Let 1 < x1 < x5 < ... be an integer sequence with d > 0
such that he(z) € G(X,). Then the set G(X,) contains uncountable many
different d.f.s go(x), a € [1,00), of the form

:Eaiﬁg if v € [O, %ﬁ},
ga(l') = i fo € [ B?ﬁ}? (309)

d
d
nondecreasing i x € [3,1],

where for = B(a) we have 1 < aff <
G(X,).

[SHisH

. Furthermore, g(x) = x is also in

Proof. We use two steps.
1°. Assume that F(X,,,z) — hao(z) as k — oo for z € [0,1]. For every
a € [1,00) we can choose nj, > ny so that

(i) 2 — o
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From the sequence (n},ny), k = 1,2,..., we can select subsequence (with
the same notation) such that
(ii) 3 — B,
"k
where 3 = f(a) but it is not given uniquely. We have only 1
because

alle.

<p <

Q=
[SHIH|

/

L9
!
n, Ty Tt
k k _ nkk Oéﬁ
Ny Ty —
k Ty

and which gives & < o0 & f > 0. Now, from (n},n) we again select a
subsequence such that

(iii) F(Xn;c,m) — g(x)
for all z € [0,1]. Applying the identity (743)

F(Xo ) = “EF (X 0% (310)

and assuming that d > 0, which implies everywhere continuity of g(z) (see
(174, Th. 6.2]) and g(z) > 0 for 0 < z < 1, then we can take limit in (310)

to obtain
ha(z) = aga(zp) (311)

for x € [0, 1]. Now, using hy(z) = 1 forx € [%, 1], (311) implies gq(z) = L for
T € [%ﬁ,ﬁ] and hy(z) = g for z € [0, %} implies ¢/, (z) = g% for z € [0, %ﬂ].
Then we obtain (309) and since g,(z) < ho(z), then 1 < af.

20, Again, let F(X,,,z) — ha(z) for x € [0,1]. For every limit point *°
B>00f =2, i=1,2,...,n4, k=1,2,..., we can select m; < ny such that

:cnk’

W =g,
(i) 7= = o
(ili) F (X, z) — g(z).

The identity (743) in the form F(X,,, ,z) = MF(Xnk,xz%:) implies

mg

ho(xf3)
) (312

45In the following o and 3 have another meaning as in 1°.

g(x) = ahy(xB) =
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for z € [0,1]. From the form of hy(z) we have guaranteed that 5 € [0, %} is
a limit point of -“- and in this case (312) gives

J?nk

%L (313)

O

Finally, for ho(x) defined in (23) for which he(z) = g(z) for special 1 <
T, < x9 < ..., we see directly that

ha(zy) < ha(w)ha(y) (314)

for every x,y € [0,1]. Also for hy(x) defined in (14), in the case x > /=2

2))

for which there exists a special sequence x,, (see [174, pp. 774-777, Ex. 11.2
such that the lower d.f. g(z) = hy(z) we have *°

d d d
(%—(1—4)) (5—(1—@)) Sm (315)

for xy > ,/}%Z. In the following theorem we extend (314) and (315) for
arbitrary lower g(z) and upper g(z) d.f:s.

[[SHIsH

—

Theorem 145. For every increasing sequence of positive integers 1 < x1 <
Ty < ..., with d >0, the lower d.f. g(x) and the upper d.f. G(x) satisfy

g(x).9(y) < g(zy) <glzy) <g(z).g(y) (316)

for every x,y € (0,1).

46This holds also for arbitrary x,y € (0, 1), since it is equivalent to (1 —y) <1 —y.
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Proof. d > 0 implies that arbitrary ¢g(z) € G(X,,) is everywhere continuous
and g(x) > 0 for x > 0. Let y € (0,1).

1°. Firstly we prove the left-hand side of (316).

) If y is an increasing point 17 of g(x), n = 1,2,... then by (125) we

have 275 ) € G(X,) and thus g(z) < g(éry)) which implies

9(z)g(y) < g(x)g(y) < g(zy) (317)

for every z € (0, 1).
b) Let g(x) does not increase at y. Since every g(r) € G(X,) is continuous
and %x < g(z) < 4z for z € [0,1], there exists the nearest neighboring point

y1 <y, y1 > 0 at which g(x) increases. Thus ggxyyl € G(X,) which implies
g(x) < 42 Because g(y1) = g(y), g(xy1) < g(wy), then again

9(@)g(y) < g(z)g(y) = g(x)g(y1) < g(xy1) < g(zy) (318)

for every z € (0, 1).

Since g € G(X,,) is arbitrary, and for =,y € (0,1) by (316) and (317)
we have g(r)g(y) < g(wy), then the definition of lower d.f. of G(X,) as
g(zy) = infyec(x,) 9(xy) implies g(z)g(y) < g(zy).

20, Now, we prove the right-hand side of (316).

a) Again, if y is an increasing point of g(x), then 224 e G(X,,), thus

9(zy) = L. . 9
o) 9 () which implies

9(zy) < g(y)g(z) <7(y)g() (319)
for z € (0,1).

b) Let g(x) be non increasing at y and let y, be the nearest point to the
right at which g(z) is increasing. Again, by dr < g(z) < 4z, this point exists
and thus for given g(z) € G(X,,) we have ((xyyz)) € G(X,), 99((?22)) < g(x) which
implies

9(zy) < g(zy) < 9(y2)g(z) < 9(y)g(z) < G(y)g(z) (320)

for z € (0,1). Then g(ry) = sup,cq(x,) 9(zy) implies g(z.y) < g(x).g(y) for
2,y € (0,1). 0

Notes 26. By J. Aczél [1, p. 144-145, Th. 4] every continuous d.f. g(zy) = g(x)g(y) has

the form g(z) = x° for a constant ¢ and = € [0, 1].

4TEither g(y —¢) < g(y) or g(y) < g(y + ¢), for arbitrary ¢ > 0.
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6.2.14 Algorithm for constructing §(x) < g(x)

(12, p. 5]: Let 1 < 21 < x5 < ... be an increasing sequence of positive
integers. Put zp = 0 and

th =Ty — Tp_1, n=12 ...
For every n = 1,2,... we compute the finite integer sequence

450,

from tq, 19, ... by the following procedure:

1°. Forn =1, tgl) =11 = T1;

20, For n = 2, t§2) =t +to—1=29—1 andt(f) =1;

3%, Assume that for n — 1 > 2 we have tgnil), i=1,2,...,n—1. For n we

first define the initial auxiliary sequence t},t,, ...t/ such that ¢, = tl(”_l),

i=1,2,...,n—1, and ¢/, = t,. Then we repeatedly modify this sequence
using following steps (a) and (b).

(a) If there exists k, 1 < k < n, such that ¢} =t, =--- =¢,_, >t} and
t/ > 1, then we put ¢ :=t, + 1, ¢, =1t —1 and ¢, := t] in all other
cases.

(b) If such k does not exist and ¢/, > 1, then we put ¢} :=t{+1, ¢, =t/ —1
and t; := t/ in all other cases.
Repeated application of (a) and (b) shows that the step 3° terminates if
t/ =1 and outputs the sequence =t = t.

49 Put n — 1 := n and use the output tﬁ”), .t as the new input in 3°.

Thus the final output of Algorithm is the infinite sequence of finite integers
block £ ¢ . t0 forn=1,2,....
Theorem 146 ([12, Lemma 1]). Assuming that t, # 1 for infinitely many
n, then the output t!" 1, ... " of the Algorithm can be of the following
two possible forms:

(A) tgn):'..:t;?’z):Dn>t£77;b-)l-1Ztg:-)l-QZtgz-)l-:i:"'t?(’Ln):]"
(B) tgn):":t;?):Dn>t£:-)|-1:":tv(v?J)rs:Dn_l
Ztgl_)’_s+1::t£1n):1’

for some m =m(n), s = s(n) and for D,, := t&n).
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Theorem 147 ([12, Lemma 2|). For D,, defined in Theorem 146 there are
two possibilities:

(I) D, is bounded;

(II) D,, — .
In the case (1) we have only the form (A) and D,, = const. = ¢ > 2 for all
sufficiently large n.
In the case (II) both cases (A) and (B) are possible.

Construction of §(z) < g(x)

(12, p. 8]: Assume that, for every n = 1,2,..., we have given n-terms
sequence
AR S
such that for every n =1,2,...
£ < (D) () <y ) <) (321)
Then, we define z,,, x§") and X" as
Ta= Y BV, m=1,2.; (322)
i=1
J
=36 =12 (323)
i=1
(n) _(n) (n)
X = xzn),“”?n),...,x?n) L on=1,2,.... (324)

Clearly 2\ = z, and using (321) we see that

J J
=SS al 1a
=1 =1

which implies
F(XM 2) < F(Xp,z) forallz € [0,1], n=1,2,.... (325)

Selecting a sequence of indices ny, k =1,2,..., such that F'(X,,,x) — g(x)
and F(X{"™ x) — §(z) for all € [0,1], we have

g(x) < g(x) for all z € [0,1]. (326)
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The case d =0

[12, p. 12]: In the case d = 0 the Algorithm implies lim,, Dn oo since if

D, = const. = ¢, then £ 5" ..t satisfy (A) and d, = m >1>0.
Note that, in the opposite dlrection, lim,, ., D,, = o0 need not imply gl =0,
see the Construction.

The following theorem we shall formulate for the case (B), since the case

(A) gives the same result, putting v = 0 and s = 0.

Theorem 148 ([12, Th. 3]). Let z,, n =1,2,..., be an increasing sequence
of positive integers such that d = 0 and let t(ln),tgn), e ,tq(ln) be a sequence
produced by Algorithm. For a selected sequence of indices ny, k = 1,2,...,
assume that

(i) F(Xn,,z) — g(x) and F(Xq(zzk), x) — §( ) for all z € [0,1];

(ii) t(nk) = = tg’:lllf) = an > ti::ll - = tg::-)i-sk = an —1
>t(”’€)+ +1:...:15(7;’“)_1
mip+Sgk n )

(ifi) ™ — oy

(iv) 2 =7,
Then we have g(x) < g(x) for all x € [0, 1], where

(a) If o+~ >0 then dy =0 and g(z) = x(a + ) for all x € [0,1].

(b) Ifa+~ =0 and m’“n—ts’“an — o0 then dy = 0 and g(z) = 0 for all
€ (0,1).
(c)

Ifa+~v=0 andkars’“an—)(S 0 <9 <oo, thend, =

i(z) = 0 ifx<y2:%,
z(0+1)—0 ify, <2 <L

(d) Ifa+~=0 and m’;L—J]:Sank—HS:O, then dy, =1 and §(z) =

5+1 and

6.2.15 g¢(x) € G(X,,) with constant intervals

Theorem 149 ([175]). Assume that d > 0. If there exists an interval (u,v) C
0,1] such that every g € G(X,) has a constant value on (u,v) (may be
different), then every g € G(X,,) has infinitely many intervals wzth constant
values such that g increases at their endpoints.

Proof. Since

:L‘m
T < XLy, = x; < | z— | T,
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then we have (22)
n T,
F(Xpy,x)=—F (Xn,x—) ,
m T,

for every m < n and x € [0,1). Using the Helly selection principle, we can
select a subsequence (my,ng) of the sequence (m,n) such that F(X,,) —
g(x), F(Xpm,) = §(z) as k — oo; furthermore x,,, /x,, — B and ng/my — «a,
but o may be infinity. Assuming 5 > 0 and g(5 — 0) > 0, we have a < o0
and (263)

g(x) = ag(xp) a.e. on [0,1].
Thus, if g(x) has a constant value on (u,v), then g(z) must be constant on

the interval (uf3,vf). Furthermore, if d > 0, then for every g € G(X,,) we
have (268)

(d/d)r < g() < (d/d)x
for every € [0,1]. Thus, there exists a sequence f; € (0,1) such that
Br \( 0 and g(z) increases in B, g(Bx) > 0, k = 1,2,.... For such Gy, g(z),
applying the Helly principle, we can find sequences oy and gx(z) € G(X,)
such that

gr(x) = arg(zfy)

a.e. on [0,1]. Every gi(z) has a constant value on the interval (u,v), hence,
g(x) must be constant on the intervals (ufg,vf) for k =1,2,.... O

6.2.16 Transformation of X, by 1/x mod 1
The mapping 1/x mod 1 transforms the block X, to the block

For example, the block sequence X,, = (l 20, %) , n=1,2 ... which is

n’n’

u.d. is transformed to the block sequence

Z”:G’g"“’%) mod1l, n=1,2,...

which has a.d.f.




se7

where g is Euler’s constant. This was proved by G. Pdlya, (see I.J. Schoen-
berg [144]). The following theorem, which generalizes [92, p.56, Th. 7.6]
describes a relation between G(X,,) and G(Z,,).

Theorem 150 ([66, Th. 7]). If every g(z) € G(X,,) is continuous on [0, 1],
then

G(Zy,) :{ Zg 1/n) — g(1/(n + z)); (:c)eG(Xn)}.

Proof. For f(z) =1/x mod 1 we have f~1([0,t)) = U, (1/(t+1),1/i]. Thus
F(Zurt) = S0 (F(X 1/i) — F(Xo /(1 1))

19, Assume that F'(X,,,z) — g(z), where g(z) is everywhere continuous on
0,1]. Thus

K K

D (F(Xy 1/1) = F(Xo 1/t 1)) = Y (9(1/i) = g(1/(t + 1)),

=1 i=1

o0

Y (F(Xpy 1/i) = F( Xy, 1/(t +1)) < F(Xp, 1/(K +1))

i —g(1/(K+1)) — 0.

Thus F(Z,,, 1) = 3(t) = S5, (g(1/1) — g(1/ (¢ +1))) for ¢ € [0,1].
20, Assume that F(Z,,,t) — g(t) weakly. From ny there can be selected n},
such that F(X,;,2) — g(z). Assuming continuity of g(x), we apply 1°. [

6.2.17 Construction H C G(X,,) of d.f.s

Basic open problem is that characterize a nonempty set H of d.f.s for which
there exists an increasing sequence of positive integers z,, such that G(X,,) =
H. In [11] we found integer sequence 1 < z; < x5 < ... such that the
piecewise linear function hy(z) defined in (23) belongs to G(X,). Now we
are going to extend this construction. In [12] is proved:

Theorem 151. Let H be a nonempty set of d.f.s defined on [0,1]. Then
there exists an integer sequence 1 < xy < 9 < ... such that H C G(X,,).
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Proof. The proof contains the following 5 steps.

1. To the set H it can be constructed a sequence of continuous strictly
increasing piecewise linear functions h,(z), n = 1,2,..., such that every
f(x) € H is a weak limit h,, () — f(x).

20, For every h(x) possessing at points 31 =0 < S < -+ < By 1 < S, =1
the values a1 = 0 < ag < -+ < as_1 < agy = 1, respectively, and being
linear in each interval [3;, 5;+1], we can define a sequence of integer intervals

[m,(cl), ngl, k=1,2,..., and their divisions

(2) (s—1)

mM <m® <. <m! %

in which we can define integers
xmg) < xmg) < < :L‘mésﬂ) < l’mgj) < Ty,

such that for ¢ =1,2,...,s we have
T @
(1) -Tnlz — /Bia

(3)

i) ok

— Q;,

( n )
(iii) Tl = T ) 2 m{) —m{™Y,
(

iv) @, — T, > ny, — mgf).

For other n € [m,gl),nk] we define x,, linearly, i.e. for n € [m,(f_l),m,(j)]

put

(v)

we

Ty = (L’m(i—1) + (n — m,gi_l)) 0) Gi—1)
g My, — My

a:ml(:> — ajm,(j’l) ]

Directly from (i), (ii) and (v) it follows that

7 {n € [my!, ny]; =

P
o m}—>h(x) (327)

for x € (0,1) as k — oc.
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m D

Q41

T T
Bi xm](:) xm;:+1) Bi+1

Tn

k Zn

Figure: A part of graph of h(x) and (i)-(ii) properties.

k

Note that, in this step, the intervals [m,(:), ngl, k=1,2,..., can intersect.
For necessity of pairwise disjointness we use the next step.
T,
:L’ml(:)
:Cm](f)
l‘mil)
m](gl) ml(f) ml(:) ng
Figure: (iii)-(iv) properties.
3%, One solution [m,(:),nk], k= 1,2,... in 2° gives infinitely many so-

lutions by the following: Let Ay < By be two positive integer sequences.

Replace [m,ﬁl), ng| by [Akm,(:), Agnyg| with division

Akm,(:) < Akml(f) < - < Akml(j_l) < Akml(:) < Aknk
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and define the values of z,, as
Z’Akmg) = kamg)’

i=1,2,...,s and x4,,, = BiZ,,. Then the limit (i) and (ii) again hold

$Akml(€i) kam](ci) B Ak‘ml(cl)
= — Ds, — Q4.
T Apny, kank Ay

Also (iii) and (iv) hold, since

X - {L‘Akmgfl) = Bkl‘mg) - Bkl‘ml(jfl)

> Bk(m,(;) — m,(;_l)) > Akml(f) — Akml(f_l).

4% Let hy(x),i=1,2,... be a dense set of d.f. in H and for h;(x) = h(x)

rewrite the interval [m,(:),nk] in 2° as [m,(cl’i), nl(j) ]. Order these intervals to

infinite matrix A

1 L) (1 L) (1
my ,ng)],[mg ),ng)],...,[ (1,1) ()],...

my "1y

1,2) (2 12) (2 1,2) (2
[mg ),ng )],[mé ),ng)],...,[mfC ),n](c)],...

14) (i 19 (@ 19) (@
g™ ), (m 0, Y ),

and reorder it to a linear sequence by diagonals, i.e. to

(LY Wy (1) @) (LD (1)
[ L L oo

my oy L My sy ], My T Ty
and denote it as a new sequence [m,il), ngl, k =1,2,.... Since these intervals
can intersect we use in 3° suitable A, < By, k = 1,2,... such that the
resulting sequence is disjoint and
: 1
(vi) Ty = T > m,(wzl — N,
(vii) x ) > mgl).
1

For n which are not in the intervals [m,gl), ngl, k =1,2,... we can define z,,
linearly. Now, if from ny, k = 1,2, ... we select nj, corresponding to ith line

of A, then F(X,,,x) — hy(x) for x € [0, 1].
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5°. Finally, we give a solution of (i)-(iv) in 2°. We start with increasing
sequence of indices ny, k =1,2,..., and let A > 1 and put (integer parts are
omitted)

Ty, = AN,

0 = Bidng,

mg) = QM.
For (iv) we need

meE) - ﬂfml(jfl) =BiAng — Bica Ay, = N(Bi — Bi1)mx

= m,(f) - m}(j—n = (o — 1)

which gives assumption
A > max F—2i=L, O
ﬁz*ﬁzfl

Notes 27. By Theorem 151 there exists an integer sequence 1 < x; < z2 < ... such that
G(X,) contains all d.f.s. Especially, for every sequence y, € [0,1), n = 1,2,..., there
exists an X,, such that G(y,) C G(X,).

6.2.18 Examples

Example 57. [174]: Put z,, = p,, the nth prime and denote

2 3 n-1 Pn
Xn:<_7_7"'7p 17p_)'
Pn Pn Pn Dn

The sequence of blocks X, is u.d. and therefore the ratio sequence p,,/py,
m=1,2,...,n,n = 1,2,... is u.d. in [0,1]. This generalizes a result of
A. Schinzel (cf. W. Sierpinski (1964, p. 155)). Note that from u.d. of X,
applying for the L? discrepancy of X,, we get the following limit

_ 1 — 1
lim - > -l = 5

n—o0 N2py, byt

Example 58. [174, Ex. 11.1]: Let v, ¢, and a be given real numbers satis-
fying 1 < v < d < a. Let x, be an increasing sequence of all integer points
lying in the intervals

(v,9), (ya,da), ..., (ya*, 6a"),. ...
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Then G(X,,) = {g:(z);t € [0, 1]}, where g;(z) has constant values

B 1 (57 a’7)
9@) = AT =) T i (=)

i=0,1,2,...

and on the component intervals it has a constant derivative

/ o+ (1 —t)y (7,9) '
_ . | —0,1,2,...
gi(x) G- =rn T T wmr . TN
gl
andxe(té—i—(l—t)’y’ )7
where

F(X,,,z) — gi(x) for ny, for which x,, = [a"y + ta"(0 — 7)] (328)

Here we write (zz,y2) = (z,y)z and (x/z,y/2) = (x,y)/z. From it
follows that the set G(X,,) has the following properties:

(i) Every g € G(X,) is continuous.

(ii) Every g € G(X,) has infinitely many intervals with constant values ,
i.e. with ¢'(x) = 0, and in the infinitely many complement intervals it
has a constant derivative ¢'(z) = ¢, where % <c< é and for lower d

and upper d asymptotic density of z, we have d = W(é:’l)), d= %.
(iii) The graph of every g € G(X,,) lies in the intervals [é, 1} X [%, 1} U
[, 5] <[5, L] u...

a2’ a a2’ a

(Here a = 5) Thus, we need to known only the graphs ¢ € G(X,,) in
[%, 1} X [é, 1] . They are of the form displayed in the following figure.
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Q=

9

av T2 1

Sl
|2

T

(Here v =1, 0 = 2 and a = 5). The curves y = y(x1), z1 € (% i),
and y = y(2), T2 € (1,1) are of the form

o= (3 ) w2 )

Moreover, the graph g in X, -] x [, =] is similar to the graph
of g in [, %] X [, 2] with coefficient 1. Using the paramet-

ric expression, it can be written for all x € (#7 ai) that gi(x) =
@) - i=10,1,2
1,2,

at Y

G(X,,) is connected and the upper distribution function g(z) = go(x) €
G(X,) and the lower distribution function g(z) ¢ G(X,). The graph of

-1
g(z)on [1,1]x[1,1] coincides with the graph of y(z2) = (1 + 2 (é — 1))

on [%, 1], further, on [l 1] we have g(z) = %, see

a’d
. 7(x) = g0(x)
1. 9(x) 7

i :

s 3 1
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For the proofs of i-v we only note: Assume that z,, € a*(v,d), 4,4+ 1,7 +
2,-++ € a'(v,0) for some j < k, and let F(X,,z) — g(z) for some se-

?
quence of n. Then g(x) has a constant derivative in the intervals containing
4 i+l 42

s Bl ,..., since
" 1
n Ln
&l _ i
and thus = must be convergent to g'(z), so % < ¢(x) < é For z, =
[ta*s + (1 — t)a*y] we can find
Fs+(1—t
g/(x): hmx—— h - a“( +( )’Y)
nooe Mo koo ST Al (6 — ) + ak(t0 + (1 —t)y) —aby
to+ (1 —t)y
T - GEY

Using Theorem 61 and [11, Ex. 3] we shall add the following properties
moreover:
(vi) By Definition 8 of the local asymptotic density d, and by (328) for

g(x) = gi(x) we have

i T gy D00 L1 G0) _ (6= 4 1o 1)
k=00 Ly, koo aky +ta*(6 — ) (a=1)(y+td—7))
3 (329)
and for ¢ = 0 we have d,, = d and for t = 1 we have d,;, = d and we see

d(z) = di (330)

for x with the constant derivative of g;(x).
(vii) For the function hy 4(z) defined in (301), putting g(z) = g:(x), we
have:

iz 7+t —7) 1_dgt: g i _dgt: 1
dy A0 HHa—1) 1=d A5 Ho—7)dy 1=d  T+ta—1)
Then
d
T, for x € (0, —L— ),
Mg () =4 . . e (331)
gt(:v):x@jtl—d—gt, for z € v+t(—5—7’1 ,

see the following Fig.

246



(1,1)

—~
Q|
Rl

Figure : ¢/(z) and hy 4 ().

(viil) In proof of the upper bound (304) we have proved that 1— fol hy g(x)dx
is maximal for d, = min(v/d, d). Let to € [0, 1] be such that dy, = min(/d, d).
to can be computed by inverse formula to (329)

dg,(a — 1)y — (5 — )

G—a—1){1—d,) (332)

(ix) Let P(t) be the area in [1,1] x [1,1] bounded by the graph of g(z).
Then

t =

/0 gi(z)dx :P(t)l_lLz +a41r1
1 )
2 2(a+ 1) (I+ta—1)(y+tb—7))
1 t(6 — ~ya)

U Ha— 1)+ 10 =)

33)

and since go(x) = g(x) we have that max;cjo 1 fol g¢(x)dz is attained at ¢ = 0.

Using derivative of P(t) it can be see that the mineo 1) fol g¢(x)dz is attained
at t = 1. It also follows from the fact that for z,.1 = =, + 1 we have

n+1 n
n+1 T n T
+ 14 T =1
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1 1 1 1 1 <
= — . — — >0
n+1 <mn+1+n+11—|—xl)(nizlxn>
because ¢;(z) ¢ G(X,,) and thus lim sup7HOO 1 Zl 1 < 1. Now, denoting

the index ny, for z,,, = [a"6], the limsup of £ 37 | o+ is attained over n = ny,
k=0,1,2,... and for such n; we have F(Xnk, z) = g1(x) for z € [0, 1].
(x) Thus we have

x; ! 1 1 1 ya — o
S de = = — —. 4
Tn /090(‘”” 2 2<a+1>( Y ) (834)

‘:1—/01g1<x>dx:%+%.(ail) (”“5‘5). (335)

The upper bound (304) coincide with the maximal value of 1 — fo hy ¢(z)dx
attained for d, = min(v/d,d). Since 1 — fo g1(z)dx is maximal for all 1 —

fo gi(x)dz, t € [0,1] and 1 — fo gi(z)dr <1-— fo hi.4, (x)dz then the upper
bound (335) satisfies (304).
(xi) Using explicit formulas

I e D (oL
C_i_v(a—l)7 d d(a—1)

for asymptotic densities we see again that (334) and (335) satisfy (303) and
(304), respectively, in Theorem 143.

(336)

Example 59. [66, Ex. 2|: Let z, and y,, n = 1,2,..., be two strictly
increasing sequences of positive integers such that for the related block se-

quences X,, = (i—i, .. ) and Y, = (y ey z—:>, we have singleton G(X,,) =
{g1(x)} and G(Y,) = {g2( )}. Furthermore, let ng, £k = 1,2,..., be an
increasing sequence of positive integers such that N, = Zle n; satisfies
]7\1[—’; — 1. Denote by z, the following increasing sequence of positive integers
composed by blocks (here we use the notation a(b, ¢, d, ...) = (ab,ac,ad, . ..))
(xla s 7xn1)7$n1(y17 s 7yn2)7 xnlyng(xla s 7xn3)7 xnlyngxn3<yla s :yn4)7 s

Then the sequence of blocks Z,, = (j—;, e

{91(117), 92(x>’

=) has the set of d.Ls
G(Z,) = co(x)} U{gi(zyn);n=1,2,...}
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U{ga(zx,);n=1,2,...}

U {1 _I_aco(x) +1 +agl(x);oz € [0,00)}
1

- {1 ol ele)iae [0700)},

where g1 (zy,) = 1 if zy,, > 1, similarly for go(zx,).
Proof. For every n = 1,2, ... there exists an integer k such that
N1 <n < N

(here Ny = 0). Put n’ =n — Nj_;. For every n we have

- TpyYny - - - Tny_,Yns  if k is even,
n - . .
TniYng « -« Ynp_ T/ if £ is odd.

Firstly we assume that k is even. Then Z,, has the form

Ly =
( ‘rnlynz . 'ynk—z(‘rh‘ © 7xnk—1) xnlyTLQ . 'xnk—l(ylv coee 7yn’)) —

)
TniYng - - - xnk,1 Yn! TniYng - - - ajnk,l Yn/

( 1 ( % ynk_z) 1 ( T xnk_l) (y1 yi>)
’ xnk_lyn’ ynk_z’ , ynk_g ’ yn/ xnk_l ’ ’ xnk_l ’ yn’, ’ y’n/

1
k-1

and thus for x > we have

T

. Nk’—Z + nk—lF(Xnk_pxyn’) + n/F(Yn’7 I)

F(Z’N,?a:) - Nkfl 4 7/L/
Ni—2 Xij 1
= + —F(X,, . 2yy)+——F( Y, x).
Np1+n' 1+ N (Kocs, ) 14 Nflfl ( )

If n — oo, then the first term tends to zero. If F(Z,,z) — g(x) for some

/
sequence of n, we can select a subsequence of n’s such that NZ - =« for
n/

some a € [0,00), or '~ — oo. For such n’ we distinguish the following
cases:
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(a) If n’ = constant, then

NEg—1
#F(X TYn) = g1(wyw)( here gy (wy,) = 1 for zyy > 1)
Ni_1
1

and thus F(Z,,x) — g1(xy.).
(b) If n — oo, then F(X,, ,,xy,) — 1; precisely F(X,,_,,xyn) — co(x).
(b1) If %~ — 0, then F(Z,,z) — co(z).

Ng-1
(b2) If N:/—l — a € (0,00), then F(Z,,x) = m=co(z) + 125 92(x).
(b3) If N::l — 00, then F(Z,,z) = 0+ go(x).
For k-odd we use a similar computation. O

Now, identify z,, = y, and select x,, such that ¢;(z) =z (e.g., x, = n or
Ty, = pp, the nth prime) and put ny = 2% for k = 1,2,.... Then the set of
all d.f.s

G(Zn) = {g1(x),co(x)} U{gi(zzn);n=1,2,... }

o{ )+ i c0.00)

is disconnected, as can be seen in the following Figures

{Zxe0@) + Za@)sa e b)) {g1(zTa)in =1,2,...}

Example 60. In [55] is proved that 7.2 — 1 does not imply that G(X,) is
a singleton. This is a negative answer to the Problem 1.9.2 in [167].
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Let ay, ng, k=1,2,..., and x,, n = 1,2,... be three increasing integer
sequences and hy; < hs be two positive integers. Assume that

(i) - — 0 for k — oo;
oy Al

(ii) ey — 0 for k — o0;

(iii) for odd k we have

aZQ < 2, = (ag_1 +nk —np_1)™ < (ar, + 1) and

x; = (ap +1— nk)h2 for n, < i < ngiq;

(iv) for even k we have

af' < a2y, = (ap_1 +np —ngp_1)" < (ap +1)M and

T; = (ak +17— nk)hl for np < i < gy

Then -22- — 1 and the set G(X,,) of all distribution functions of the sequence

Tn+1

of blocks X,, is G(X,) = G1 UGy U G5 UGy, where
Gy = {a .t € 0,1]},
Gy = {a (1 —t) + ;¢ € [0,1]},
Gs = {max(O,xlel —(1- mﬁ)u),u € [0,00)} and
Gy = {min(l,xﬁ.v);v € [1,00)}.
In [174, Th. 5.2, p. 762] it is proved that the condition 22— — 1 implies the

T
Tn+1

connectivity of G(X,,)

Proof. 1. Firstly we prove that for any h; < hsy the sequences ay,ny, x,
satisfying (i)—(iv) exist:

For i = 1,...,ny we put z; = ™ and then we find a; such that a}fr" <
T, < (a1+1)"2. If we have selected, for an odd step k, all a;, i = 1,2,...,k—
1, z;,i=1,2,...,n, then we find a; such that aZQ <z, < (ar+1)", and

then we put o; = (a + 1 — ng)" for n, < i < nyyy1, where we choose ny,
sufficiently large to satisfy the limits (i) and (ii). For an even step k we
proceed similarly replacing hy by hy.

2. In contrary to the independence of a; and n;.; we have

afl — 1 for odd k& — oo, a,i — 1 for even k — 0. (337)
n,i” n]:l

This follows from (iii) and (iv), directly, e.g. from (iii) we have

ho h1 ho
a Ap—1 Ng_1 ar + 1

IZ < ( +1-— ) < %
ng' ny Ny ng'
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As an application of (337) we have
Qg
ng ng

3. Now we prove
odd. Then by (iii)

i 1 "
f]fi+1 ak+l+1_nk

and for ¢ = ny, again

Zq
Tit1

k

h2 h2
Tn a 1
> k h>O——)
Tppr1 (ag + 1) ay

— — 0 for odd £ — oo, %—H)oforevenk%oo.

1\
ag

which implies the limit 1 as odd k — oco. Similarly for even k.
4. Let N € [ng, ng41] be an integer sequence (we shall omit the index in

Ny) for k — oo. For x € (0,1) we have

Ty

(338) [6]

— lasi— o0o. Let i € (ng,ngy1) and let e.g. k be

< x}

HL<i<m_y; 2= <a}p FHo <0<y

F(Xy,z) = o :
(X, 2) N N N
#{ <i < N; - <z} A B
- =o(l)+ =+ —.
N N N

To compute % for odd k we use

zi (g1 +i—ng)™

E N (ar + N — ny)h=2

and we have

;“‘,_.

A min(ng — ng_y, max(0, [z

ha

1(CL]€+N—TZ]€)H

1
<x <= i—ng_1 <zh(a,+ N —ng)

~ 1))

N N

Similarly, for even k

hi

2 (ag + N — ny) ke

:“,_.

A min(ng — ng_1, max(0, [z

— @)

N N

For % and odd k we use

x; (ak+i—nk

TN ar + N —ny
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M—ap_y

(340)

(341)

ho
1
) <x <= i—n, <zh(a+ N —ng) — ag



which gives

B min(N — ny, max(0, [a:%(ak + N —nyg) —ag]))

N N

Similarly, for even k we have

1

B min(N — ng, max(0, [z (a + N — ng) — ag)))

N N

In the following we will distinguish three cases

N Nk
— —t>0, — — 0and — 0, and
N N Npt1 k41

5. Now, let & — ¢ >0 as k — oo.

—t>0.

(342)

(343)

a) Assume that k is odd and compute the limit of 4 by (340). We have

DeZBe—1 5t and if t < 1 we see

N
hy
1 a N n M
(o 0w) o
N Fa N Fa
since -8 for hy < hy is unbounded and by (337
N3
2
ay ay [T\ 7 by
RIS (3)"
2 nkQ

is bounded. Thus, for 0 < t < 1, we have
A
— — t for odd k — o0.

al) Let for the moment ¢ = 1. We have %~ — 1 and

1 [ a N-—n\"  a 1 hy
xh il + i - —>xh1(1+u)hf
N k2

(344)



assuming the limit 5" — wu, where u € [0,00) can be arbitrary. Put

N h2
ha

v = (14 wu)™. Thus for t =1 and corresponding v € [1,00) we have

A ) 1

N min(1, z71v) for odd k — 0. (345)
If N_h’f’“ — 00, then

NP2 A
N 1 for odd k — oc. (346)

b) Now, again 0 < ¢ < 1. For even k in (341) we have

since by (337)

ag ag Nng\ ny 22
= ()" o
N h1 n]:;l
Thus A
1
N xhz .t for even k — oo. (347)

c) For the limit £ as odd k — 0o we compute (342) by using 22 — 1—¢
and

A (SE 41— %) _ Ok phs(1 —
o™ | +1 N N 2 (1—1)
since by (338) we have % = "% — 0. Thus
B 1
v (1 —t) for odd k — oco. (348)
d) Again by (338), for even k we have G = "% — oo, then (assuming
r <1)
1 Qg N Qg
e (LA T R AN
o (FH1-F) -y
Thus B
N 0 for even k — oo. (349)
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e) Summing up (344), (347), (348) and (349) we find, for every x € (0, 1),

2(1—1t)+t, forodd k — oo,

(350)
., for even k — oo

l‘%
F(XNax>_> 1
xh

h
for 5 —£,0 <1 < 1 For § —1=1, ¥t —wandv=(1+u)" we have
N 2
applying (345)

F(Xn,z) — min(l,xﬁ.v) for odd k& — oo, (351)
and for ¥ & — 00 we have
Nh2
F(Xy,z) = ¢o(z) for odd k — oo, (352)

where ¢o(x) =1 for z € (0, 1)
6. In the case % — 0 and -2~ — 0 we have 4 = o(1) and then it suffices
to compute the hmlt L by (342) or (343).
a) Assume that odd k — oo. Since £ — 1 and by (338) we have
Sk =22k () and thus

N ng N
1 /ag ag
ho 1 _ ) - = h2
z (N N) g (353)
b) Assume that even k — oo. In this case (by (337) and (ii)) we have
ha ha
ay ay n,i” ag ag L n,’;l
— = —1 —0, ¢t — 0.
N % N’ % T Nk ’ o Nk+1

ny, Ny,
Thus, for any u € [0,00) we can find a subsequence of N such that

hy
hi

"]’\ff . (354)
Then a a
ﬁ k — —) _ Tk hl — — ﬁ
z (N +1-) - et - (e (355)

¢) Summing up (741) and (355) we find for every z € (0,1)

;1:% for odd k — o0, (356)

b“H

maX(O,xﬁ — (1 —x™M)u) for even k — oo

F(XN,(ﬂ) — {
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g N
for 3 — 0, p—

hg

— 0 and for u € (0,00) satisfying (354) if k is even. If

hi
Nk

= — 0 then

F(Xn,z) = c1(x) for even k — oo, (357)

where ¢;(x) = 0 for z € (0,1).

7. Finally, let -*~ — ¢ > 0. Then % — 0, because (i) -2 — 0.
Ng41 Nk+1

Computing the limit £ by (342) or (343) we find

- 31

(358)

F(Ny,2) — {x 2, for odd k — oo,
x Y

>

1 for even k — oo.

8. Now, assume that F(Xy,z) — g(x) for some sequence of N €
[Nk, ngt1], 1e. g(z) € G(X,,). Then we can find subsequence of N (denoting

hg
h1

again as N) such that %, N Sk, mﬁ , and nfv converge. Consequently g(z)
N2 !
is contained in the collection of (350), (351), (352), (353), (356), (357) and
(358).
Thus the proof is finished. m
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6.2.19 Block sequence A, = (1/q¢n,a2/qy, - -, Gyp(q,)/ ) of reduced ra-
tional numbers

Let ¢, be a an infinite sequence of positive integer numbers. Denote

A, = (l%M>
dn dn dn
where g.c.d(a;, q,) = 1. In [155] we have proved: Denote
d;; = (¢i,q;) is a common greatest divisor ¢; and g;,
dij = %?7
pisa pl%ime,
v(n) = ##{p; pIn},
w1 is the Mobius funkction,
¢ is the Euler’s funkction.

For every N =" ¢(q;), n=1,2,..., we have L? discrepancy

2
N2/1 (A([U,I);N; An) _x) dz = N2D®)
0

N

n

:1_12222(:1;) H(1—p>H(1—%)H(1‘§(”l)>

1,7=1 pla;q; pld;;
pld;; plajj plaj;

=3 Z E Z nE h) )" ()

For A; this formula is implicitly in E. Space [151] and explicitly in H. Delange
[36].

6.2.20 Block sequence A, = (1/¢n,2/qn,---,41/q,) of non-reduced
rational numbers

Let ¢, be an infinite sequence of positive integer numbers. Denote
1 2 n
A, = (-,—,...,q—).
dn qn dn
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For N of the form N = N,, + k where N,, = Z?zl ¢ and 0 < k < @uy1 in
[130] for L? discrepancy we have proved

1 1 & (g5,05)° E /1 11
N2DW 2,2 & 0 95 R A
N n°+ E + 3 + 5 +

4 12 i1 44 Gn+1 6

k 2 1 1 1 1 1 1
iy T Ry T R K24+ Zkn+ k) —
+(qn+1><3 2+6)+3 +okn+ ¢ ;qi

k/qn+1 n k/qn+1 n
+2/ {rgui1} Z{xq,} dm—?qn+1/ x E {zq;} | dz
0 i—1 0 i=1

—2k /k/lan (i{qu}) dz

=1

In proof we have used the following formulas

ok/b{xb}{xa}dx :% (z_lg a %( -1 (_a i ) il% 282;;1 {S +m}) |

s=0 =0
t 2t {tay? t{ta}2 t{ta}  {ta}? {ta}
dz = — _
/ r{zajde =7 +12a 2a? 2 % | da2 1242
{ta}2 {ta}
dr =
/{xa} v 2a 2a

The block sequence A, was investigated S. Knapowski [86] who proved the

sufficiency of
. Qn+1
lim = 0. 359) |tag{1}

for the u.d. of A,,, n =1,2,.... In [130] is proved that (359) is also satisfac-
tory and we have the following conditions:

(i) If increasing g, satisfies lim,, o ¢n—1/g, = 1, then g, satisfies (359);
contrary if increasing ¢, satisfies (359), then limsup,, . ¢n—1/¢, = 1.

(ii) Increasing sequence g, with g, = o(n?) satisfies (359).
(iii) Increasing ¢, with positive upper asymptotic density implies (359).

(iv) If g, satisfies (359), then lim, .o n " log(qi + g2 + -+ + ¢) = 0.
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(v) If the sequence g, increase and its subsequence ¢,, satisfies (359), then
¢n also satisfies (359).

(vi) If two increasing sequences p,, and g, satisfies (359), then also p, + ¢,
and the convolution pid, + pegn—1 + - - - + prq1 satisty (359).

(vii) If two increasing sequences p, a ¢, satisfy p, = O(n*?) and ¢, =
o(n®?), then p,q, satisfies (359).

(viii) Let p(z) be a polynomial with integers coefficients, with a positive
leading coefficient. Then increasing ¢, and p(n)q, satisfy (359) simul-
taneously.

(ix) Let g, be increasing linear recurrence with the characteristic polynomial
Q(z). Then g, satisfies (359) if and only if (a) every root of Q(x) is a
root of 1; (b) Q(1) = 0 and the multiplicity of 1 is at least 2 and it is
strongly greater that a multiplicity of any other root of Q(x).

(x) Consequence. Increasing linear recurring sequence ¢, satisfies (359) if
and only if limy, oo Gn_1/¢n = 1.

6.3 The sequence ¢(n)/n, n € (k,k+ N|

In this section we describe result in [10].
Many papers have been devoted to the study of the distribution of the se-
quence

o) 105
n

where ¢ denotes the classical Euler totient function. I. J. Schoenberg [146],
[147] established, among other results, that this sequence has a continuous
and strictly increasing a.d.f. and P. Erdds [45] showed that this function is
singular (i.e., the derivative exists almost everywhere on [0, 1] and is zero,
see [172, p. 2-191]). Recall that the a.d.f. go(x) of p(n)/n, n=1,2,3...,is
defined as

N
1 p(n)
go(x) = lim N E Clo.0) (T) ,  forany z € [0, 1],

n=1

where cp ) (t) denotes the characteristic function of the subinterval [0, x) of
[0,1]. An explicit construction of go(z) can be found in B. A. Venkov [187].
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For any interval (k k + N] define the step distribution function

F(k k+N Z Clo,z) < )) (JI S [0, 1)) and F(k,k+N](1) = 1.

n<k

In this part, convergence properties of Fiy, r,+n, are investigated for se-
quences of intervals (ky,, k,, + Ny], m =1,2,3, ... using and mixing mainly
two methods. The first one designed as the P. Erdds’s approach introduces
a parameter t to separate the prime divisors of integers into those greater
that ¢t and the others. The second one associated to the name of H. Dav-
enport, takes also his foundation from the works of S. Ramanujan [133], P.
Erdés [44, 47], B.A. Venkov [187], and many other people, is related to the
notion of primitive z-abundant number introduced about the divisor func-
tion.

The initial source of this section is the following result of P. Erdds [46]:
if r logloglog ky,

T N,

(for given increasing subsequences k,, and N,, of integers) then

lim F,, ki (2) = go(x), for every z € [0,1]. (360)

m— 00

In the opposite direction, P. Erdos complete his theorem by constructing
log log log ki, 1

sequences k,, and N,, such that lim,, e =g and the sequence of
distribution functions Fiy,, k,.+n,, do not converges in distribution to go.

In the sequel, for short, the indexation by m should be omitted but having
in mind that N,, and k,,, both go to infinity. In that case we write simply
k, N — oo if the constraints on these sequences are unambiguous.

In Section 6.3.1, a necessary and sufficient condition to have (360) is
given, that depends on divisors d of n, d > N, with n € (k, k+ N]|. In Section
6.3.2, we analyze the Erdds approach and improve his result by exhibiting
some error terms. In Section 6.3.3, examples of sequences of intervals (k, k +
N] (k,N — oo) are given such that limy_,., “5°%1°%€* — oo but (360) still
holds. Next, in Section 6.3.4, we analyze the H. Davenport’s method and
find a necessary and sufficient condition such that Fy j4n (x) converges to
a given distribution function g(z) (as N — o0). Finally, applying Schinzel-
Wang’s Theorem [143] in Section 6.3.5, we show that asymptotic distribution
Flopeny(@) = g(z) (k, N = 00), can have the form g(z) = g (£) (z € [0,1]),
where g(z) is an arbitrary given distribution function and « is a related
constant depending on g(x).
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ethil

6.3.1 A necessary and sufficient condition

Theorem 152. For any two increasing sequences of natural numbers N,
and ky,, the limit (360) holds if and only if for every positive integer s,

> > ®.(d) =0,

km<n<km+Nm d>Npm

where

b (d) :

(
pld
(p prime)

dln

-2

for any square-free integer d, ®4(1) :=1 and 4(d) := 0 otherwise.

(361)

(362)

Proof. By applying Weyl’s limit relation (see [172, p. 1-12, Th. 1.8.1.1]) we

get (360) if and only if, for all positive integers s,

>

k <n<km—+Npm

#(n)

D) - [ vanie)

(363)

By a general theorem of H. Delange (see [35, Théoreme 2|) we derive that

1 N
Jim >

n=1

(

#(n)

n

R

p

Now we use the equality >~ , ®s(d) =

To this aim, we write

> -

k<n<k+N djn

1

k<n<k+N

n

()

-2))

( 1
1—>+-=
pop

<M> to expand

(364)

eb2



where [z] denote the integer part of z and {z} the fractional part of x. Since

{ﬁ}_{HN}:{—{%} L e

d d 1—{&} otherwise,

the summation up to k + N can be reduced to N to get

v OB e (- ()
+% > () (366)
it

Let us prove that

D, (D)=} ) @.(d) (367)

N<d<k+N J=1 dlk+j
{&}+5>1 d>N

for any positive integers s, k and N by using the following theorem:

Theorem 153. Let d > N, then {g} + % > 1 if and only if there exists
1 <j < N such that
dlk+7,

and in that case, j is unique.

Proof. Let us start with any integer d, that is to say without assuming d > N.
Let k = mgd + k; and N = nyd + N, be Euclidean divisions, so that myg,
kg, ng and Ny are integers satisfying 0 < k; < d, mg > 0, 0 < Ny < d and

nqg > 0. Readily
k N
{E}+{E} >1<—k;+ Ny > d.

Now we prove the lemma in four steps:

1. If kg + Ny > d, then ky > 0, Ny > 0 and there exists 0 < iy < Ny
such that kg = d — Ny + iq. In particular k = (mg + 1)d — (Ng — iq) with
0< Ng—14 <N, Hence d|]€+] Withj:Nd—id.

2. Reciprocally, assume that d |k + j for an integer j with 1 < j < Nj.
Write j as j = Ny —ig with integers 0 < i3 < N,. From the above notations,

262



erel

k+j =mgd+ kq+ Ny — ig, hence d|kg + Ny — iq, implying kg + Ny > d as
expected.

3. If there exist 1 < j; < Ny and 1 < jp < Ny, such that d|k + j; and
dl]{? +j2, then d|j1 —jQ, but |j1 —j2| <Ny < d, hence jl :jg.

4. Now we assume d > N so that N; = N; that ends the proof. O

Applying Theorem 153 in (366) we obtain the following basic equality

v 2 G n e ({357

k<n<k+N
Z ®,(d) . (368)
k<n<k+N d>N,d|n

+
2|"

Clearly, |®4(d)| < Sw( L if d is square free, where w(d) denote the number of
different primes Wthh divide d and successively, from A. G. Postnikov [131,
p. 361-363 or English trans. p. 264-266],

Z|c1> )| < (1+1logN)®, (369)

i @.(d)] _ 3°(1+log N)*
—_— N b

(370)
d=N+1

()

Notes 28. Using (368) and
1 1 1 o(n)\°
— ®,(d) + — ®,(d) = — —
N2 2 ndtg @) =% ( " >
k<n<k+N cﬁﬁﬁ/ k<n<k+N ddglN k<n<k+N
we obtain

1 RN NT) (1+1log N)®

k<n<k+N d<N d=1
d|n

the error term being independent of k& and thus, when the integer N goes to infinity,
S

the left hand side of this equality converges to Hp (1 - % + ]% (1 — %) ) uniformly with

respect to k.
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6.3.2 The Erd6s’ approach

ese3

For any positive integer n and real number ¢ > 2, set

= Hp, n'( Hp, and P(t Hp, (372) |ell

pln pln p<t
p<t p>t

where p are primes and the empty product is 1. P. Erdés in [46] proved
(without any explicit error term and for s = 1) the following theorem:

Theorem 154. For every positive integers k, N and fort = N, the equality

() R (Y o () o

k<n<k+N

holds for all integers s > 1

Proof. As above, from the definition of ®, we have for any ¢ > 2

SHC D

k<n<k+N k<n<k+N d|n
k+ N k
- ZMQ : HaJ)
a| (1)
k k+ N
-y B0 s ea({gh- {5
d| P(t) d| P(t)
Observe that
s@(d) S
> < 3 S =TI (1+5)
d|P(t) d|P(t) p<t p

and using the classical estimate
1\ \ -1
<H (1 - —) > < (€7 logt) (1 + c(logt)™?))
p<t p

with an absolute constant ¢ > 0 (see J.B. Rosser and L. Schoenfeld L. [137]
for explicit value of ¢) we get

[T(+5) < M0-R)T0-;)

p<t p<t p<t p
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< (3/4)5 s(y+c(logt)~ (10gt>
In particilar, there exists an integer ¢ty > 2 (which is explicit) such that
Z |D(d)| < 3°(logt)*.
d|P(t)

for any t >ty and s > 1.
Now, due to the multiplicativity of n — ®4(n)/n,

Z‘I’S_W)ZH H(l_zlv)S_l

d|P(t) p<t p

and from [131, p. 363, or english trans. p. 264 and p. 265] one has the
quantitative form of the above result of Schur

VEC) (5 () e ()

p

where the constant involved by the big O is absolute and also (see (370)),

I 0-)

Consequently, for all integers s > 1 and N > 2,

05 00)) Il 50))

Taking into account all these bounds leads to (373)). O

S (20| _ 31+ 1o )
{ .

In his work, Erdés used implicitly the following theorem:

Theorem 155. For ecvery two increasing sequences of integers k,, and N,,
and fort = N,, if

lim < H gp(n’(t)))w =1= lim Fli, kn+N.(T) = go()

m—ro0 m—o00
km<n<km+Nm

(374)
holds for all x € [0, 1].
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Proof. We used the following theorem:

Theorem 156. Let z,, n=1,2,..., be a sequence in the interval (0,1). All
the following limits are equivalent:

. N
(i) % Doy T = 1,
(ii) NZn 1xn — 1,

(iii) % Zgzl logz, — 0,
1/N
) (IMoe) =1,

were N — oo. FEvery of the limits (1)-(iv) implies that x, — 1 converges
statistically, i.e. for every e >0 and A. = {n < N;x, < 1— ¢} we have

L2

Proof. The equivalence (iii) and (iv) is clear, and for (i)-(iii) we follow [172].
Define the step distribution function Fy(z) as

#{n < N;x, € [O,x)}.

FN<CC) = N

By Riemann—Stiltjes integration for every continuous function f(x) on [0, 1]
we have + 3V f(x,) fo r)dFy(z). By Helly theorem, if Fy(z) —
g(x), then as N — oo,

[ s - [ i)

Thus the limits (i), (ii) and (iii) separately imply
i) fy adg(e) =1,
(ii) fol x*dg(z) =

(iii) [ logadg(z) = 0 (precise [, logadg(z) = lim._, [ logzdg(z)).
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Any of (i)-(iii) implies that g(z) = ¢i(x)-the d.f. has step 1 at = 1. This
is equivalent that the sequence z,, n = 1,2,... statistically converge to 1.
Note that for every continuous function f(z) we have the ordinary limit

%;f(xn) = /0 F(z)dFn(z) — /0 f(z)dei(z) = f(1)

and the statistical limit f(x,) — f(1). O

Now, we shall return to proof of Theorem 156. The equivalence of limits
(i)—(iv) we apply to the blocks sequence

ne (k,k+ NJ], t=N.
Then by (i)<=>(ii) we have

Gk 3 ()~

k<n<k+N

and assuming (ii) then for

b fe e (S0 )

we have #TAE — 0 for every € > 0. Now, in

p(n) _ p(n(t) p(n'(t))
t t

n n(t)  n/(
we replace “’gf;(g)) by 1 — ¢, then we see that

V2 (s (5 () )uma-u-ak

k<n<k+N k<n<k+N

~—

and the other hand

O ENC )




The Theorem 154 implies
! o1 n)\’ !
(1—2) / dgo(r) < Jim ~ 3 (%) < / +*dgo(x).
0 k<n<k+N 0

Thus we have
Theorem 157. For every two sequences k and N and t = N we have

% 2 SOE:;(S;)) = 1= Fuerrn)(2) = go(@) (376)

for all x € [0, 1].
Finally, Theorem 155 follows from (iv). O

Notes 29. In (374) we have only implication, since the right-hand side of (375) has the
following precise form

Y S e\ 4 1 p(n(t)\*
e (N k<nz<;+N< n(t) >) e (Nk<n<k§;v,neAg< n(t) >)

and it can be (% Y k<n<kiN.meA. (%ZS”) ) —0and £ — 5 > 0.

Finally Erdos proved the following theorem but we give here a more
readable proof for the convenience of the reader.

Theorem 158. For any increasing sequences of integers k,, and N,, such

that
X logloglog kb,

O @
one has
i Pl 00,0 (2) = 0() (375)

for all x € [0, 1].

Proof. The basic fact is that for ¢ = IV the integers n/(¢) such that k < n <
k + N are pairwise relatively prime, because the interval (k, k + N| cannot
contain two different integers divisible by the same prime number p > N.
Set

M(kNt):= [ »® (379)

k<n<k+N
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but use the notation M’(t) for short and let z(k, V) be defined such that the
number of prime numbers p, N < p < z, is equal to w(M'(t)), where t = N.
From the classical Mertens’ formula

E ( _]lj> - 12;;<1+O<102y>> (380)

(see [106, p. 259, VII. 29] for example) we get

e(M'(t)) 1) log N
AN S 1—=)>

v - Al o
N<p<lx
for a constant ¢; > 0. Therefore, for any increasing sequences k,, and
N,,, if (%)1/ Nom converges to 1, then the corresponding sequence

(£ Win))y /o

NN converges also to 1. Having in mind the Landau inequalities

1 1
log2 < liminf—Zbgp < limsup—Zlogp < 2log?2 (381)
e v p<z w00 b p<z

(see [97, p. 83]) we conclude there exist suitable absolute positive constants

C9, €3 such that
eCQm(k,N)—03N < H p
N<p<z(k,N)
and, after considering the inequalities

Il p<G+Dk+2). . (k+N)<(k+N)Y,

N<p<z(k,N)

we obtain x(k, N) < ¢4N log(k + N) with ¢4 > 0.
log N

Consequently, if the sequence ( ))1/ Nom converges to 1, the

same is true for the sequence (%)1/ Nm, hence the corresponding se-
quence (‘p%—g)))l/ Nm also converge to 1 and so, Fik,, k,.+N,,](Z) converges to

go(z) for all x € [0,1] by Theorem 155. The proof ends by noticing that

1
m—00 N,

(10 log N,, )
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Notes 30. Assume that P(t)[k, where P(t) = [[,,p and t = N. As in (372), we
introduce for divisors d of n the integers -

d(t) = Hp and d'(t) = H .

pld p|d,
p<t p>t

Since d(t) | n, n = k+j with j < N and d(¢) | k, it follows that d(t) < N. Hence, if d > N
one has d'(t) > 1. Therefore

Yood)= ) 2u(d) Y 2(d)

d>N d|n(t) d’ | n'(t)
dln d'#1

e ()

leading to

If for all s =1,2,3,... one has

Jnse X (HEE) -

m km <n<kpm+Nm

for a given subsequence of integers k,, and N,, with P(N,,)| k.. By Theorem 152 we
conclude to (360), but in fact Theorem 157 gives the same conclusion without such a
constraint on k,,.

Notice that due to W(I\]}{(gf’]\]/\%)) < “’sﬁ(g)) for k <n < k+ N (with M'(k,N,t) =
[Iicrn<iin ™ (t) as above in (379)) one obtains

Theorem 159. If the sequence W converges to 1 for increasing sequences

of integers kpy, and Ny, then the sequence of distribution functions Fy, . 1. +nN,.,) converges
to the d.f. go.

To end this section we prove the following quantitative version of Theo-
rem 152.

Theorem 160. For any positive integers k, N and s, we have
N
1 1 p(n)ys 1 p(n)y
D Teat T () iE e
LY Sew-k $ () Lsel

k<n<k+N d>‘N k<n<k+N
d|ln

+(,)<(1+logN)“”) (382)

N

and the constant in the big O can be chosen equal to 2.
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Proof. Let t = N. Notice that

Y o (d)= > d(d)+ Y d)

d>N d>N d|n(t)n'(¢)
dln d|n(t) d'(H)#1

and the second sum is equal to (@Tg’zt(; )> ((%) - 1) . Summing from
k+1tok+ N gives

LY Yew=r Y Yewmer Y (AU

k<n<k+N d>N k<n§k+N (§l|>é\7) k<n<k+N
n(t
1 t s
- T (B 359
k<n<k+N n( )

Now, successively

ZZ v 2 ()
T Y Se@iy XY e

k<n<k+N d<N k<n<k+N d>N
d|n(t) d|n(t)

ety ({E-{50)
+% >y @)

k<n<k+N d>N

=

d|n(t)
N
D, (d) (14 log N)®
=Yy Y Y e o
d=1 k<n<l<:+N d>N

and after inserting

S () o5,

d=1 n=1
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which can be obtained from (368) with k = 0, we get

Y Tem-y X () (e

k<n<k+N d>N k<n<k+N n=1
dfn(t)
(14 log)®
o2,
- N
Inserting this equality in (383) gives (382). Finally, notice that the error
term comes from the bound (369) used twice. [

6.3.3 Examples

To show that his assumption in Theorem 158 is optimal, Erdés gave the
following example.

Example 61. Take ¢ large enough to write P(t) =[] -, p as the product of
N numbers Ay, As, ..., Ay such that
(i) A;,i=1,..., N, are relatively prime,

(i) 24 < Lforj=1,...,N,
(iii) if p is the maximal prime in A;, then for A, = A;/p one has %’22) > 1.

The part (iii) implies % > 1 and thus

1\ 1 A A 1\
(Z) <H(1——):¢E41>¢E4N)<(§) .
<t p 1 N
From it, applying (380), we find N < ¢; loglogt. By Chinese theorem there

exists kg < Aj...Ax such that kg = —i (mod A;) for ¢ = 1,...,N. Put
k=ky+ A;... Ay, then we have

662t<P(t>:A1...AN<]€

which implies £ < c3log k and loglogt < ¢4 logloglog k. Thus
log log log k - 1 loglogt

N cieq loglogt”

Furthermore, for these k and IV, the sequence of d.f.s F{; r4n)(2) does not
converge to go(x) due to (ii) that gives

1 en) 1 1 a on) 6 log N
N 2 S TyX, c=toly )

k<n<k+N
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Example 62. In Example 61, replace in (ii) the ratio 1/2 by 1/N and use the
corresponding definition of the A,, as above. Then, by the Chinese theorem,
for every N we can find k such that A,|k+n,n =1,..., N, and consequently

N

LR 2

k<n<k+N n=1

Now select sequences of such integers k and N, but with a distribution func-
tion g(x) such that limy e Firrrn)(2) = g(x) a.e. in [0,1]. By this con-
struction, we obtain fol xdg(z) = 0. Therefore g(x) is the the Heaviside
distribution function (jump 1 at z = 0).

In the next example we construct sequences of integers k, N, for which

(360) holds but limy_o, 2E8I8E — o0,

Example 63. For any integer N > 1, let z = x(N) be a real number, x > N,

that will be chosen later but very large with respect to N (like z(NN) = e
for example). Let k := [[ ., p, (where p are primes), consider the interval
(k, N+k] and define M* := [],_, <., P where y() is chosen such that M~
has the same number of prime divisors than the product M’(k, N,t) (t = N)
defined in (379). Presently, if a prime number p verifies p > N and p|k + j

with 7 < N then p > x. Thus, ¢%*) < ‘p%l(g)) and to satisfy the assumption

M*
to 1 as x tends to infinity. According to the Mertens’ formula it is equivalent

to have
log (1 + @)
lim ———~

T—00 log x

of Theorem 159 it suffices that the ratio £22) — HKpngry(m) (1—%) converge

=0. (384)
The inequalities

M <M= [ o) <k+N)N <@k

k<n<k+N

lead to > ylogp <2N - _ logp and thus

z<plzty(x

> logp< (2N +1)) logp. (385)

p<z+y(z) p<z
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Using (381) in (385), we see that for any € > 0, there exists z such that
x > xo(e) implies

(log2 —e)(z +y(z)) < (2N +1)(2log2 + ¢)x,

so that Y% < ¢N for a positive constant ¢. Therefore, (384) holds and

T

consequently (360) holds also, if we chose x = z(N) > eV. Since k(N) =
€N . .
[L<.ovyp = e W) by taking x(N) = e the limit

i loglogloghk
Noos N B

holds as expected.

6.3.4 zx-numbers

Let f: N — (0,1] be a multiplicative function i.e. f(1) =1 and f(mn) =
f(m)f(n) if (m,n) = 1. Assume that 0 < f(n) < 1 for all n; it is useful to
introduce for any = € (0,1) the increasing sequence ax(z) of all integers a
such that f(a) < z but f(d) > x for every divisor d of a, d # a. In the case
f(n) =n/o(n) (where o(n) is the sum of divisors of n) such an integer a is
classically called primitive z-abundant number. In 1933, H. Davenport [34]
using this notion proved that the sequence n/c(n) has a d.f. and found an
explicit construction of it. In addition he gave sufficient conditions for f to
have a d.f. These conditions are easily verified for both sequences n/o(n)
and ¢(n)/n.

B.A. Venkov applied the same method in his paper [187] but for the
sequence of ratios #. Following him, we introduce, for convenience, the
definition of z-numbers (also called primitive x-numbers in [131]), that is to

say integers a > 0 such that €@ < 2 and for every d|a but d # a one has

%d) > x. We denote by A(x) the set of all z-numbers ordering in increase
magnitude i.e.,

ai(x) < ag(z) < asz(x) < ...

From now on, the sequence pq, pa, p3, . . . denotes the increasing sequence of all
prime numbers. From the above definitions we get the following properties.

(i) Every z-number is square-free.
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(i)

(vii)

Every square-free a is an x-number for some x. Concretely, if a =
qQ1qs - .. ¢ With ¢4 < g < -+ < @, all prime numbers, then a is

. . m 1 m—1 1
x-number for every x in the interval |:Hi:1 (1- E)’ [T (1— E))'
For every i < j we have a;(z) { a;(x).
Let ps be the s-th prime number and choose x € [1 — pig, 1>. Then
a1(x) = p1 = 2, as(xr) = po = 3 and so on, as(x) = ps. Furthermore, if
r<l1l-— zﬁ then for every j > s, the integer a;(z) cannot be a prime
and p; { aj(x) fori =1,2,...,s.

Proof. By (ii), prime numbers py, ps, ..., ps are z-numbers for z > 1 —
pis. If for some j we have p; < a;(z) < p, and p|a;(z), p prime, then
p < ps and a;(x) = p, since pq|a;(x) with ¢ > 1 contradicts (iii).

Now, z < 1— zﬁ implies that p,.1 and any pp > ps is not an z-number
and by (iii) p; { a;(z) for i =1,...,s. O

If x € [Hle (1 — p%) N (1 — é)), then a1 (z) = [[;_; pi-

Proof. By contradiction. The integer a = [[_, p; is an z-number,
hence ai(z) < a. Assume that a;(z) < a and let ai(z) = pypi, - - - Di,
with i1 < iy < --- <y, then k < s. By definition,

cefiie-Hife-2)

j=1 i=1

hence Hle <1 -1 > < 11 (1 — p%) which implies £ > s — 1, a

pi ;
contradiction. O

For every positive integer n and every x € (0,1) we have

# <z <= Ji € N(a;(x)|n).

Assume that 0 < x < 2/ < 1. Then for every z-number a;(z) there
exists an #’-number a;(z") such that a;(2")|a;(x). This property follows

from (vi) and the fact that for n = a;(x) one has @ <.
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(viii) Let [by,...,b;] denote the least common multiple of the integers by, . .., b;,
then the asymptotic density of the set

{n € N;an(x)|n,a1(z)tn,a(z) 1 n, ..., am_1(x)fn}

is given by

Ap(z) = ! —i—Z_ Z (=1

an(@) 2 2 Tag (), (@) ()]

(ix) Define
Bn(x) ={a€Nj;a|nand 3i e N (a =a;(x))}. (386) |e4l

Applying (vi) we see that 4

Fupsn(a) = T E R +]§V J: Bul) # 0} (387) [e55

(x) Directly from (vi) and (ix) we have by B.A. Venkov [187] (see also H.
Davenport [34]) the theorem:

Theorem 161. The a.d.f. go(x) of the sequence @, n=123...,
can be expressed by

go(x) = An(x). (388) [e68

=1

Proof. In fact, the right hand side of (388) is the asymptotic density
of all integers n divisible by some z-number. O]

In this part we prove that the asymptotic distribution function g(x) in
(360) cannot be arbitrary. The proof of the following theorem combines
Erdés’ Lemma 154 and (388).

Theorem 162. Assume that lim,, oo Fii,, kN, (@) = g(z) for all x €
[0,1]. Then go(z) < g(zx) for all x € [0,1].

48Tn this paper we have defined Fiopen(x) = % Zk<n§k+N c[o’x)(M) but in this

n
part, due to the definition of z-number, we use ¢y ;] in place of c[g ;)-
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Proof. Set

RE?HN](@ =
#{n € (k,k+ N]; By(z) # 0,3a € B,(z)(Vp (pprimeand pla = p < N))}
N 7

(389)

R® (x) =
(kk+N]
#{n € (k,k+ NJ|; B,(x) #0,Va € B,(x )(Elp(pprime,p|aandp>N))}'

N
(390) |e70
By (387),
Flewsn)(@) = Ry (@) + RG g (@). (391) [e71
The monotonicity of R( ; k (@) (z € [0,1]) follows from (vii) and then for the

d.f.s Firen(2) and rY n N]( x) we can apply Helly selection principle to ex-
hibit a subsequence of the intervals (K., k+ Ny, still denoted (K, K+ Nonl,
such that for every x € (0,1) we have both limy, o Fik,, kn+Nm](€) = g(2)

and lim,,_,eo R} (z) = gW(x) for a suitable d.f. g (z). Therefore,

(K km+Nim]
we also have the limit

lim R o (2) = gD (2) = g(z) — ¢V (x).

m—r00

Now we prove the equality

9D(z) = golw) (392) [o80
for all z, that is to say
g(x) = go(x) + g2 (). (393) [e72
For the sequence ((g) .n € (k,k+ NJ|, n(t) = [14_7[1 p, where t = N, define
p<t

#{n € (k,k+ N]; 20l < o
¥ © }. (394) [e73

Fogin(z) =

By property (vi), if %g))
a;(x) | n(t). Since n(t) | n it follows that a;(x)|n and furthermore for all prime

< x, then there exists z-number a;(x) such that
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numbers p, p|a;(z) implies p < t (= N). Reciprocally, if a;(x)|n and for all
prime numbers p, p|a;(x) implies p < t, then a;(z) |n(t) and % < .
Thus ~

Fiopem () = R, (@) (395) [e74

and consequently, Fij, 4 n1(z) = g (2) too. By Erdds’ Theorem 154

1 1
/ xsdg(l)(:c) = / x*dgo(x)
0 0

for s =1,2,3... and thus gV)(z) = go(z) for z € (0,1) a.e.

[
Theorem 163. For every d.f. g(x) such that
i Fig,, g on,) (2) = 9()
a.e. on [0,1] (with ky,, N, — 00), there ezists a constant ¢y such that
1 1 o
r’dg(z) < ’dgo(r) < —————, 396 34
[ o) < [ wamio) < 2 (396) [2

for every positive integer s.

Proof. The first inequality in (396) follows from Lemma 154, since (@)S <
<%) ", Tt also follows from Theorem 162, because fol z*dg(z) < fol *dgo(x)
is equivalent to fol r*g(x)dr > fol 2% 1go(z)dz. The second inequality in
(396) was proved by B.A. Venkov [187, Theorem 3| in the form

1
lim (/ xsdgo(x)) logs =¢e 7,
S§—00 0

where 7 is the Euler’s constant. O]

Theorem 164. For every a € (0,1) there ezists a sequence of intervals
(Fms km + Np) (ki Ny — 00) such that Fi,, k,,+n,,) (%) converges to a dis-
tribution function g(x) with g(x) =1 for a <z < 1.
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Proof. Let a € (0,1) be fixed and let ps be the greatest prime number p;
1
pi
a subsequence of them ag, (o) < ag,(a) < ag (@) < ... pairwise co-prime.
By Chinese theorem, there exists a positive integer k such that £k +1¢ = 0

(mod as,(a)) for i =1,..., N. Therefore

verifying (1 — > < a. The a-numbers being square free, we can select

#1n € (k,k+ N];Bo(a) #0} = N

and thus, by (387),
F(k,k+N]<05) =1. (397) e65

]

Notes 31. If 1 — L <z, then readily 1 < go(x) + [[;_,(1 — p; ') since the second term
of this sum is the density of natural numbers coprime to p;y - - - ps. So,

C2

gox)>1- ] (1_1)>1_10g(1im) (398) |eB7

p<L p

S13

for all € (0,1). This inequality was first proved by B.A. Venkov [187]. He also proved

(i) hmmﬁll(l — go(z))log = =e™7.

. . 1 -
(ii) hmigg(x loglog o~ = €7,

(iii) Let p be a prime number. If 1 — % < z, then

p= 2o (1))

p

(iv) The function go(z) at every value x = @, n = 1,2,3,..., has an infinite left

derivative.

6.3.5 Schinzel-Wang theorem

A. Schinzel and Y. Wang [143] proved that for every fixed integer N the
(N — 1)-dimensional sequence

ok +2) pk+3) o(k+ N) B
(so(k+1)’go(k+2)""’go(k+N—1)>’ k=1,2,3... (399) [e46
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is dense in [0,00)Yt. Thus, for any given N-tuple (ay,as,...,an_1) in
[0,00)¥ =1 we can select an increasing sequence of integers k,,, such that the

sequence of N-tuples

(gp(km +2) ¢k +3) o(km + N) )
Ok +1) 0k +2) " plkm + N —1)

converge to (v, as, ..., ay_1). Using the factorization
ok +n) ok+n) ek+n—-1) @k+2)pk+1)k+1
= e (400)
k+n ek+n—1)pk+n—-2) @k+1) k+1 k+n
we can chose integers k,, such that the sequence of ratios “ng:fll) converges,

say to a, hence

i ((PEm + 1) p(kn +2) ¢(km + N)
m—00 km+1 7 kn+2 777 kn+ N
= (o, aaq, aciag, ..., a0 ... aN_1).

In the following we apply the above fact but for an infinite sequence «,,,
n=12,3....

Theorem 165. Let g(x) be an arbitrary d.f. There exists a € (0,1] and a se-
quence of intervals (km, kp+Np| such that the sequence of d.f.s Fiy,, k4N (2)
converges to a d.f. g(x) such that for a.e. x € [0,1) one has

ofe) = {g @) gzebo), (a0
1 if v € [a, 1].
Proof. For arbitrary d.f. §(x) there exists a sequence oy, n = 1,2,... in
(0,00) such that for every n = 1,2,3,... we have ajas...q, € (0,1) and
the sequence
Qg ..., n=12,... (402)

has a.d.f. g(z). Now, using density of (399), for an arbitrary sequence (V)
with e(N) > 0 and (V) — 0, there exist integers k = k(IN) such that

ok +2) p(k+3) ok +n)

o(k+1) ok +2) "'¢(k+n_ 0 — Qg ...y 1| < &(N) (403)
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for every n =2,..., N and

'k+1

v 1’ < (N). (404)

From the sequence of couples (k(N),N), N =1,2,3,..., we select a subse-
quence (k', N'), k' = E(N"), such that

o(k' +1)
E+1
for some « in (0, 1], but a cannot be arbitrary. Then, from (403), (404) and

(405) there exists a sequence of positive real numbers £'(N’) that tends to 0
as N’ go to infinity along a subsequence of integers such that

o(k' +n)
K +n

— aas N' — oo, (405)

— a1 ...0pn 1

< &(N) (406)

forn=1,...,N".
Now we use the following fact: let x,, and y, in [0,1) forn =1,2,... N
and define on [0, 1] the step d.f.s

N
F](\,l)(x : NZCM (@n), F(2) : Z

n=1

By triangular inequality one has

1 N 1
1 2 1
[ 1@ = PR @ldr < 5532 [ (o) = con ()l
n=1
| XN
= NZm—yﬂy (407)
n=1
Choose o )
+n
n = SOk/ﬁ and Yy, =aay...q, 1
for n = 1,..., N'. By construction of y,, the sequence of d.f. r® (x) con-

verges to g (£) and from (406) and (407) the distribution function F J(Vl,) (x),
that is to say Flu won1(x), converges along a subsequence of integers N’ to
g(x) almost every where and so, g(z) satisfies (401). O
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Notes 32. As we already have mentioned, the value of « in (405) cannot be arbitrary.

Applying (396) we see that

/0“ g (2) = /lesdg(x) = /01 z*dgo(x), (408)

for every positive integer s. Recall that for s = 1 we have the classical result

1
6
/ rdgo(z) = —
0 n

and more generally, we have (364). Consequently, with the d.f. g(z) = 22 on [0, 1] and

s = 1 we obtain a < 2% and the case where §(x) is the step d.f. with jump 1 at z = 1
™

gives the inequality o < %. It can be compared with Theorem 164 in which « is arbitrary
but g(x) is a special d.f.

6.3.6 Additional property of p(n)/n

As in above, let go(x) be the a.d.f. of the sequence (¢(n)/n), n=1,2,.... It
is proved that go(x) is singular. In the connection of the body €2 of the form

(/Olg(x)dx, /Olmg(x)dx, /Ong(x)dx) ’

where g(x) run the set of all d.f.s, the point corresponding to go(z)

1 1 1
x© — (Xl(o),XQ(O),X?EO)) = (/ go(l’)dl‘;/ xgo(l’)dxa/ gg(x)dx)
0 0 0

is an interior point of 2. Using the following (409) we have

) 6 (0)_1 1 2 1 B
X =1-— X =55 11 (1—]§+E —0.285....

p—prime
Intersect §2 by straight line (X', X{”, X;) and then we find boundary 4

0.250- -+ = min X3 < X3 < max X3 = 0.307.. ..

49The point (X{O), Xéo)) lies in the projections II; and II5 to the plane X; x X5. Then
we use expression of II4 and II5 by X3 and then we find

4X(0)3 1_X(0)3
(X ) amaxX3:2X1(0)—1+( 1)

minXg = ———7"7-—"— —_—
9(x(” - x{) 1—2x5"
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For better estimation we need better computation of

[ s

We shall transform it to compute the limit

p(m) _ p(n)

m n

Proof. Applying H. Delange [35] we can compute all moments of go(x) (s =

1,2,...) as
' 1 (o))
Axwmﬁﬁﬁﬁg(7ﬁ
I (1-3+1(1-3)) (109)
= - - - - = . €
p—prime p p p :
Using
1 1 1 1
| [ = vistaat) =2 ([ gtonte - [ o)
o Jo 0 0
and
1(1()_1_1()d_1 lié(n)—nl 1y 1 6
, P = 1= fraode =t w3 SE=1(1-5) = 55 =
we find
! 6 1 L <= |@élm)  ¢(n)
2 PR L ¢im) ¢n)
/0 gO(JT)dQS' - 7T2 2 ]\;—mo NQ an:I m n
]
6.3.7 Upper bound of Nhgéo w7z nym:l @ — ‘b(n")

Expressing the L? discrepancy in the form

/01 <—A([0’;‘3’WN) - g(x)>2dm _
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:1+/01§2(x)dx—2/01 i/wné

1 N 1 N
N 2 gy 2 o=l (410)
n=1

m,n=1

Applying

<%;f<xn>— | f<x>d§<w>> s (P =afes [
- (411)

to L? discrepancy (410) we find

%i: _xn|<2<1+/0192(x)dx—2/ r)dr + — Z/
(330 ) = fi £ )).

— fo f/(z))2dx
a2

It hold for arbitrary index N, for arbitrary sequence z,, in [0, 1], for arbitrary
d.f. g(z) and arbitrary f : [0,1] — R with continuous derivative f’(x) on
[0,1]. Putting §(0) = 0 and §(z) = 1 for = € (0,1], f(z) = >.*_, a.,z* and
x, = @(n)/n, then

ij=1 J
and (412) has the form
L~ |em)  é(n) 1
B e D §21}(1‘]¥)‘

p—prime

Sl (0 (0-)) 1L (30 0-2))

T -
Zi,j 1a1a.77,+] 1



For &k = 1 we have the limit

<2| ] <1—]%)—< 11 (1—%))2 :2%(1—%):0.476....

p—prime p—prime

6.3.8 Lover bound of lim -+ Zivmzl )@ O

To do this we use (see [161])

1 & 1 &
NZf(l‘n)—f<N;l‘n>

n=1

N
C

m,n=1

with holds for arbitrary N, for arbitrary x,, € [0, 1] assuming |f'(z)| < ¢ for
z € [0,1]. Putting f(x) = 2* and using moments (409) for s = 1,2 then we
find

0|

using the first term p = 2 we have

plm) _ pln)|

1 R
1 (H(zfﬂrl)?(p—l))_l)SNhgiom 2

p—prime m,n=1

plm) _¢(n)

= L.

For L we have L € [0.021,0.392].

Notes 33. J.-Ch. Schlage-Puchta (2009) have a method which gives L € [0.27425,0.274465].

6.4 Benford’s law (continuation of 3.9)
6.4.1 D.f. of sequences involving logarithm

D.f.s of logy x, mod 1 which we need in (88) can be computed by Theorem
48. We repeat it:

Theorem 166 ([170]). Let the real-valued function f(x) be strictly increas-
ing for x > 1 and let
f~Yx) be its inverse function and
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Fy(z) = +#{n < N; f(n) mod 1 € [0,z)}.
Assume that
(i) limg oo f'(z) = 0,
(ii) limgyoo f7H(k+ 1) — f7H(K) = 00,
(ii1) limg oo %w = (w) for every sequence w(k) € [0, 1] for which
limy 0o w(k) = w, where this limit defines the function v : [0,1] — [1,(1)],
(iv) (1) > 1.

Then for the sequence f(n) mod 1, n=1,2,..., we have

1 ¢(x)—1 min(y(x),Y(w)) — 1‘w
Sw) o) —1 () Jw e [0,1]},
(413)

Now, if f(N;) mod 1 is a subsequence f(n) mod 1 such that f(N;) mod 1 —
w then Fy,(x) — gy(x) for every x € [0, 1].

G(f(n) mod 1) = {gw(x) =

Similar Theorem 53 valid also for f(p,), where p,, are primes. We repeat
it:

Theorem 167 ([122]). Let Fy(z) = ~#{n < N; f(p,) mod 1 € [0,2)} for
x € [0,1], where p, is the increasing sequence of all primes. Assume (i)-(iv)
from Theorem 166. Then the sequence f(p,) mod 1, n=1,2,..., has

G(f(pn) mod 1) = G(f(n) mod 1).

Now, if f(pn,) mod 1 is a subsequence f(p,) mod 1 such that f(py,) mod
1 — w then Fy,(x) — guw(z) for every x € [0, 1].

A proof of Theorem 166 and 167 can be found in p. 77.

6.4.2 B.L. for natural numbers
Applying Theorem 166 to the sequence

f(n) = logbxnr, n=1,2,... we have
fH @) =0,

. -1 w ktw A

limy, 00 ff—(f(Z) =¥ E =br = ¢(w)u

G(log,n" mod 1) = {g,(z) = L%lﬁ_

lim #{n < N;; first s digits of n" are kiko ... ks}
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= gw(logb kl . ]{321{33 ce (k}s + ]_)) — gw(logb kl.kzkg e ks) (414)

Some examples of w :
1. Assume that N; = b® and r is a positive integer then
lim; o {log, (")} = 0 = w and thus for (414) we have

b(logb k1~k2...(ks+1))/7" _ 1 b(logb kl'k2~~-ks)/r — 1

b/ —1 a bl —1
(kyoks - (kg 4+ 1) 3 = (kg Rk . y)) /)
B bl/r —1
1 1
= if r =1.
pp—1
2. Put N; = [b"+], where i is a positive integer. The lim; . {log,(N7)} =
w. Proof. ‘ o

We have N; = [b"+°] = b+ where w' < w and {log,(N7)} = w'. Further
b = b = [ — w].b T log bl
Since [b™*" — b < 1, then |w’ — w| — 0.

Thus lim; o {log, (N])} = w.

6.4.3 B.L. for primes

Applying Theorem 123 for the sequence
f(pn) =logypi, n=1,2,..., p, is the nth prime we have
f(z) = log, x", .

G(log, p,, mod 1) = {gu(x) = gl {y=} + #HEE==w € 0,1},

If {f(pn,)} = {logy(py,)} = w then

lim #{n < N;; first s digits of pl = kiky ... ks}
= guw(logy k1 - kaks ... (ks + 1)) — gu (log, ki .koks .. . ky).
Some examples of w:
1. If N; = m(b"+"), then lim; o0 {log, Pl ny) } = w.
Proof. Denote Fy(z) = ~#{n < N; f(p,) mod 1 € [0,z)}. As we see in
(429)

o ((f (k4 2) = 7(f71(K))
Fn(z) =%£ N +
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n min(r(f (K + @), 7(f (K +w))) — «(f~(K))
N

O(K)  O(f~'(0))
ty TN

where fH(K + w) = py but for Fr(n)(x) we have f~'(K +w) = N.
2. If N; =" and r = 1, then {log, pn,} — {log; logb}. Proof.

Pn = n(logn—i—loglogn— 1 _|_0(10g1ﬂ)

logn

log®n

log, p, = log,n + log, logn<1 + _1og11;>§;z—1 + 0(—1°g1°g")))

log, p,, = log, n + log; log n + log;, (1 4 loglogn—1 O(IOglogn))

logn log? n
If n = b, then
{log, pn} = {log, log b} + o(1) = {log, i + log, log b}
for sufficiently large n. Thus
If N; = b then {log, pn,} — {log, logb}.

6.4.4 The same B.L. for natural and prime numbers

From Section 6.4.2 and 6.4.3 follows that the sequences
logyn" mod 1, n=1,2,...,
log,p;, mod 1, n=1,2,...,
have the same distributjon functions
1 br—1 min(b7 ,br )—1
Guw(T) = = + b w € [0,1].

w 1
br pr—1 br
x
Since lim, ﬁ = z then lim, ., g,(z) = z.
1_

Thus, as 7 — oo the sequences n" and p; tends to B.L.
This is qualitative proof of results in [42].
6.4.5 Rate of convergence of Fy(z) of the sequence log, n” mod 1

All the following results are from Y. Ohkubo and O. Strauch[123]:

Theorem 168. Let N,b be positive integers, b > 1, r > 0, wy € [0,1].
Denote

_ #{n < N;log,(n") mod 1 € [0,x)}

FN(ZL’) N ;
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1 br—1 min(br,b+) —1
gwo(@:b@'b%_l‘l- D ;

K = [rlog, N],w = {rlog, N}.
Then for every x € [0, 1] we have

|w — wy 3 rlog, N

oghbr - (b7 +1) + 1+ . (415)

Proof. Firstly we repeat a proof of (29).
For a positive integer N define

[Fn () = guy (7)] <

o Ky =[f(N)], abbreviating Ky = K,
e wy = {f(N)}, abbreviating wy = w,

o An([z,y)) = #{n < N; f(n) € [z,y)},

) FN(,I) — #{nSN;f(n)Nrnod 1e[07x)}.

Clearly f~!(K +w) = N and for every z € [0,1] and Fy(z) in (108) we have

S An(lkk+ @)
N
L AN(E K +2) 0K K +w) | O(Ax([1,57(0))
N N

FN(~:C)

From monotonicity of f(z) it follows An([z,y)) = f~'(y) — f~'(x) +0, where
6] < 1. Thus

Pute) =D U0 =20

n min(f (K +2), fTH (K +w) - fTH(E) | OK)  O(f1(0))
N N N
(416)
O(K) < K +1and O(f(0)) < £ 0). (417)

The assumption (ii) implies 1/(f~'(k+1)— f~'(k)) — 0 which together with
Cauchy-Stolz (other name is Stolz-Cesaro, see [172, p. 4-7]) lemma implies

where
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that K/f 1(K) — 0 and thus K/N — 0. Furthermore we can express the
first term of Fy(z) in (416) as

Yo (f Mk +a) = f7U(R) ) = £7H(0) .
SR D ) TR ) e
and the second term as

min <f}1_(K+x) f*l_(K—i-w)) 1

&) K
Dl —. (1)

fHEK)

Using the assumption (ii) and (iii) the Cauchy-Stolz lemma implies

SIS )~ ) k)= ) @) -1
R TN ) - ) A D = ) () -1
(420)
where K = [f(N)], N = 1,2,.... Now, for increasing subsequence N; of
indices N, denote K; = [f(1V;)] and w; = {f( )} If w; — w, then by (iii)
)/ G + w) — 1f(w), and f(K; + )/ f(K) — (). Thus
(418), (419), (420) imply (413)

L () =1 min(e), () -
o) P11 o(w)

FNz(m) — gw(x) =

for all z € [0,1).
In the following we prove a quantitative form of (413). Put
o K =[f(N)],
o w={f(N)},
o N=fYK+w).
Then

FN(I gwo =

Shco (ko) — f7UR) FTUE) - FTHO) (@) -1 1
SES k) - oLk fTHE Fw) 9(1) =1 (wo)
(m (5 (5}5””)»’0 (523””))—1_min(w(x),w(wo))—1>

X (o)

O(K) , O(f7(0))
()

+

+
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(S k) - R () 1 (fUE) - £H0)
(I)<ZkK—_01(fl(k+]‘)fl(k)) w(l)—1>< UK +w) ) (421)
U -0 1\ (v -1
“II)( K +w) w<wo)><w<1)—1> (422)
] YK +2) UK +w . 1
+wun<mm(fﬁw;51ffﬂ@g))—mmwumwm@0<f;%;?><@m
FUE +w) | (min(e(@), (wo)) — 1
+ (V)| ¥(wo) — : e 424
+(V)<o§éf<>+0<fN1<o>>>_ (125

Every second term in (I)=(421), (I1)=(422), (I1I)=(423) and (IV)
bounded, precisely

fHUK) = f71(0) Y(z) —1
< K +w) )51’ ((1)—1)51’

<T%EJSL Gﬁﬂﬁwwm‘jg¢m_1

oK) f*l(;;v) - b (wy)

(424) is

S

Now put f(z) = log,(z"). This function satisfies Theorem 166 and

[ @) =07,
[N k) b e
ey S
1 br—1  min(b,b+) -1
wo\l) = g " 71 + w
G () b+ br —1 b+

F7H0)=br =1,9(1) =br,
K = [rlog, N],w = {rlog, N}, N = b +".

Then for first terms (I)=(421), (I1)=(422), (I11)=(423) and (IV)=(424) we
have:

o (f ke 2) — fY(R))
SISk — k) w(1) -1

(1)

leq25

leq26

leq27

leq28

leq24



Doy e LD B T § B

T

TGO S (O S NN e N O 1 B

S I v p B e R [

o (B +@) fl(K+w)>  in
= |min(yp(z), P (w)) — min(y(z), P (wo))]
< [b(w) — h(wo)| = [b¥ — b+ |( a proof see in appendix),
(v o) - LD wa) = 1) = o =076 — 1),
(V)<o%<> . O(f]—\;(()))> K+ 1]+vf—1<0) . rlogb]\][\f—i-z

In the end of proof we use
by — b < M-logb-b%.

(426)

O

Example 64. Let 7 > 0, w = {rlog, N}. Then for D = dydy---d, the *

fraction

%#{1 < n < N;the leading block of s digits of n” is equal to D}

it can be approximated by

D+1
gw| logy | ==~

with the error term

3
2 =

bsfl

)) o ()

rlog, N\ 0 log N
N — Yb,r N .

50Previously, we have used K = kiky ... k.
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Proof. We have

1
N#{l < n < N;the leading block of s digits of n” is equal to K}

:FN<logb (iﬁ)) —FN<logb (bfl) )

Applying Theorem 168 with wg = w, we have

(@) = gu(2)] < § + =5

[l
For example: Let » > 0 and ¢ be a positive integer. By (427), (428) for
D = dydsy - - - dg the fraction

bl#{l < n < b';the leading block of s digits of n” is equal to D}
it can be approximated by

1 1
(FH)" — (=)°

—1
with the error term

2r1 +
b

6.4.6 Rate of convergence of Fy(z) for log, p/, mod 1 with primes p,

Similar method it can be used to approximate |Fy(z) — g, ()| for

n < N;log,(p,”) mod 1 € [0,z
(o) = H = i) 0.0)}
1 br—1 min(br,br)—1
w(l) = 7w 73 + m )
9(®) =g Ty b
K = [rlog,pn],w = {rlog,pn}.

We have

flpn) <z <=,0< f(pn) —k <z
k< flpn) <k+a = [TH(k) <p. < [k +2).

Let m(x) = #{p < x; p— prime }. Using 7(z) = #{p < x; p— prime }+0O(1),
then we have
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S (7 k) — 7 (L))

Fn(x) N +
L min(e(f K+ ), (7 ) — ()
N
+ OE\I[{) + O(f]\;(o)) (429)
As in (421), (422), (423), (424), (425), then we have
() — guola)] <
I k2) — 7)) — 1
O STk 1) (7 (k) oD 1 30
() w7 0) 1
P e O sy
(AU ) A )
1) min (LA ey ) — minv(a) )
(432)
CANEAw)|
) (og\ff) ., ou;m»). -

But the following upper bounds in (430), (431), (432), (433), and (434) are
very unclear. Now in the following we use Prime number theorem in the
form

n(z) = 10;[;9("”)’ 0(x) = 1, it & — oo. (435)

Using (see Wikipedia, Prime number theorem, p. 12)

x x
< < 436
log x + 2 (@) logx — 4 (436)
for x > 55 then we have
log x log x

<f(x) < . 437
logx + 2 (z) logx — 4 (437)
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In our case
f(z) = log, 27,

=) = b7,
v(e) = . 0

L 1 min(bFp -1
Gun(() = -

For an upper bound of (I)=(430) we use the inequality proved later

()| i (R Mk ) =7 () le)
Sico (r(f7H(k+ 1) = n(f71 (k) w1 1

e

s

Applying (435) to (439) we have

k+x
(o) _ o .
br ((’fﬂ“) o(b") 1) thr=1 ey

P, = — 440) |11
g (Yo ) Lpt g br — 1 (440) [11]
T k_H e(bé) T
For (ITI)=(431) we have
(0 a(br)—w(1) 1 ZL<K+w> o) 1
(") b |br N K Tty b
1| /K+wy\ 0(b%) 1
< w _1 + Tw w,
~ b ( K )9(;)’2*“’) by b
(441) |211

For (III)=(432) we use

(AU ) wGPE )Y
i (LD T B ) i), viw)

+ | min(i(2), (w)) — min((x). (o)) (442)
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n(f (K +x))

— ()

?

K )
(1K) Ay )|)

K \op™) doel( K o) X
K+x) g@b7) ’ K+w) gbr)
+b¥ — b, (443)

For (IV)=(725) we have

K+w
wo (b
e TO)

m(b+)

v - 1)
K+w
< ‘bw%_b% K G(b;)_
K+w] g(b+)
For V=(337) we have

W) <0<K> . o<f—1<o>>> _ KAL) K+

1

(V)

+br

[flon)] +1 _ rlogypy +1
N - N '
In all (I)=(440), (II):(441) (IIT)=(443) and (IV)= (444) we have common

K o(b i K+w) 6007
<K+w) o) 1‘our ( K >e(bK+w

then (437) implies

factors

logb— L (b
(

and we have

—Zlogh—6 ko) o) —Zlogh+6
k+7;c < o 1< I<:+1;:

which gives

ko) o) log b + 6r
1< — 44 2eq99
‘(l{:—kx) y ~ klogb—4r (445)



or
log b + 67

1< —. 446) |2eq100
~ klogb—A4r ( )

Qb% log b+6r

k1 log b—4r
¢k1 S bl _ 1 _ :I‘l_gbl logb+6r : (447)

k1 log b—4r

In this case (447) is decreasing with respect to k and in (15) it can be using
®,. Then for approximate (I) we need approximate second term in (438):

()~ O)| w0 K 160
TFUE) 20|~ 25 ks

Also for (I)=(438), (II)=(441), (II11)=(443) and (IV)=(444) then we find
Theorem 169.

| Fn () = Guo ()] <
2b% log b+67

=
o

%1 log b—4r 1 Klogb+2r
bl 1 bl log b+-67 + Sl i 10gb—47”
r o— — rm b r 1
1 logb+ 6r 1 1
11 o 5y — Tm
+ () b Klogb—4r+ b+ br
VI bh 2O e g

"Klogb— 4r
w1 log b + 6r 1 wo w

1 br(br —1)—=—"————+(br —1).]b — b~
+{V) b ( )Klogb—47’+( )-| |

rlogypy +1
~ :

Notes 34. Proof of the inequality (438). Denote W}, = supys;, @ and

+(V)

o _ |TUT B ) 7 () @) —1
k

m(f7HE+ 1) = w(f7HR) (1) - 1)

For k > k; we have




o L @) =1 N (T k) — (T ¥(z) — 1
W“*WD—l*ZﬁMﬂf« D) wgim) - T em
Abbreviated
K-—1
A= S (x(f " k+2)) —n(f 1K)
k=kq
B=Y(r(f 'k +1) —n(f\(k)))
k=k1
ki1—1
C= " (x(f Hk+a) —n(f (k)
k=
k1701
D= (r(f 1k +1) —a(f (k)
k=0
Then
31D — B B+ D where
os%s1os%s10=wu*wm—wu*m»B+D=wU”Mw—ﬂU”®D
From it

A+C A

A| i k) — wf0))
B+D B

— w(f7HE)) =7 (f7H(0))
A+C p(x)—1| |A+C A
B+D «¢(1)—1|-|B+D B

and using

A ) -1
B Y(1)-1

this implies (438).
Proof of the inequality (426) and (442).

A = |min(y (), ¥ (w)) — min((2), ¥ (wo))| < [¥(w) — ¥ (wo)
in (426) and (442).
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We compute all cases:

r<w<wy; A=x—x,
r<wy<w; A=zx-—zx,

wo < x < w; A= |x—wy| < |wy — w|
wo <w < x; A=|w—wol,
w<wy < x; A= |w—w,

w<x<wy A=|w—1x| <wy—wl.

6.4.7 Discrepancy Dy of the sequence log,n" mod 1

We have the sequence {log, 1"}, {log, 2"}, {log, 3"}, . .. {log, N"}. Put
Fy(z) = x#{n < N;{log,n"} € [0,2)}. Then discrepancy is defined as
Dy = sup,¢(o 1) |[Fn(z) — x|. Clearly we have

D < sup |Fx(2) = guy ()] + g (2) = . (149)

xz€[0,1]

For the first part of (449) we use Theorem 168. Now we put wy = 0 and for
the second part we need found upper bound of

br —1
br — 1

x—go(x) =1z

By Lagrange theorem

T z11 b
b —1=(z— 0+ Of , 21 €(0,2),

1 e log b
b?—lz(l—O)bTOf, s € (0,1).

Thus

Tr1—T x ].O b
x—go(x):x(l—b = 2) :x(O—(xl—xg))bTS f . x3 € (21, 12).

The upper bound is

log b
lz — go(z)| < 1.br -2

and applying Theorem 168 we have

11 3 rlog, N 1logh
logb- b - (b +1)+N+ N +b o (450)

Thus is of the type O(1/r) as in [42].

DN<M
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6.4.8 Benford’s law of z,, and properties of G(z,,)

In this Section we characterize u.d. of log, z,, mod 1 by d.f.s in G(z,). We
proceed from [13].

Theorem 170. Let x,, n = 1,2,..., be a sequence in (0,1) and G(x,) be
the set of all d.f.s of x,,. Assume that every d.f. g(x) € G(x,) is continuous
at x = 0. Then the sequence x,, satisfies B.L. in the base b if and only if for
every g(z) € G(z,) we have

x:i(g (bl)— (blﬂ)) for x € [0,1]. (451)

=0

Proof. Firstly we note that the sequences log, x,, mod 1 and —log;, x,, mod 1
are u.d. simultaneously and in the following we study — log, z, mod 1, n =

1,2,.... Now, considering the function — log, x defined on the domain (0, 1].
The domain (0, 1] is divided into infinitely many parts (bi%, b—lz], for i =
0,1,2,... and on each part (32, %] denote

fi(z) = —log,  mod 1 = —log, x — i.

Then, for every term z,, € (0,1) and z € [0, 1] we have
0< —log,z, mod 1 <z<=3ie{0,1,2,... }(:L‘n € f;l([O,x))>, (452)

where fi_l([O,;E)) = (bi}rﬂw é} ‘

—log, x mod 1

0 1

1

bl b

111 1
b33 b2 b b
Figure: Intervals fi_l([(),l‘)), 1=0,1,2,...

1
)
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Following (2), denote two types of step d.f.s

F](Vl)(m) _ #{n < N; —logb;n mod 1 € [O,x)}7
< N:z, mod 1€ [0,
F](\,Q)(m) _ #{n < N;x, mo €0 af))}

N
Then (452) has the form

= 1 1
FY (@) =Y FY <b—) ~FY <ﬁ) . (453)
=0

Moreover, by definition of F' ](\,2 ) (x) we see

- 1 1 1

(2) (2) 2)
> Fy (E) —Fy (W) < Fy (b_K) (454)
=K

Now, assume that d.f. g(z) € G(z,), i.e. there exist a sequence of indices
Ny < Ny < ... such that limy, e F](\,Qk)(x) = g(x) for every x € [0,1]. By
Helly theorem from Nj, can be select Ny such that also limyy o F](Vll,j (x) =
g(x). Summing up (453) and (454) we find

SO RIES) ES

1=

for € [0,1]. The continuity implies g (biK) — 0 and we have

g(x):x<:>x:§:<g <b1)—g(b1+>) (456)

1=0

Conclusion of proof: If z,, satisfies B.L., i.e. g(z) = z, then (451) holds for
every g(x) € G(z,). Vice verse (451) implies g(z) = z for every d.f. of
—log z,, mod 1, since we can starting with limy, o F](Vlk) (x) = g(z) and then

select Ny, such that limy, FJ(V? () = g(x). O

Notes 35. The continuity of g(x) at = 0 is necessary, since the sequence z,, = a”,

n=12,...,0 < a<1,log, « is irrational, satisfies B.L. in base b, but G(z,,) = {co(2)},
where d.f. ¢g(z) defined as co(x) =1 for « € (0, 1], does not satisfy (451).
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The following criterion of continuity directly follows from [90, Th. 2.1]

Theorem 171. Every d.f. g(x) € G(x,) is continuous at x = 0 if and only
if for every subsequence x,, — 0 (k — o0) the asymptotic density d(ny) = 0.

In the following Examples 65, 66 and 67 we shall find some partial so-
lutions of the equation (451). It is motivated by the following construction
of sequences z,, satisfying B.L.: Let g(z) be the d.f. continuous at z = 0,
which solves (451). Then by [92, p. 140, Th. 4.4] there exists a sequence
x, € (0,1) with a.d.f. g(z) and by Theorem 170, this x,, satisfies B.L. Note
that if g1(x), ..., gr(x) are solutions of (451) and ay + -+ ax =1, ay > 0,
i=1,2,...k, then ayg;(z) + - - - + aggr(x) also satisfies (451). Finally, note
that by [172, p. 1-9], if H is nonempty, closed and connected set of solutions
of (451) and continuous at x = 0, then there exists a sequence z,, € (0, 1),
n=1,2,..., such that H = G(x,) and this z,, satisfies B.L.

Example 65. We can find a solution g(x) satisfying (451) such that we
choice increasing g(z) on the interval [O, ﬂ, g(0) = 0, and then g(z) on
(%, 1] must satisfy

TOR ST RIES) R

Such defined g : [0,1] — [0, 1] will be d.f. if the following conditions hold:

(i) g(x) is nondecreasing for = € (3,1],
(i) g (5) <lmesi0g ().
(ili) lim, o9 (&) < 1.

We assume further that g(z) is differentiable on (,1]. Then by differenti-
ating (451) , the condition (i) is equivalent to

1 > 1 1
"= =0v*" - " = —>0. 4

Now, we put g(z) = z on the interval [0, ]. Then (458) has the form
1 =1 1
(=)= -S 2=t - —— >0
g(m) Z;w b—1°-
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For (ii) we compute (457) and we find

o) (6) ()-8 o

Thus g(z) = = for z € [0, 1] satisfies (451) because

() g (£) < i g () =l 14 (1 ) g = &
(iii) lim,—o0g (&) = 1.

Replacing ;= by « in (457) we find g(x) for = € [1, 1] which satisfies (i)—(iii)

and thus we have the following solution g(z) of (451)

x if x € [0, L],
o) = | eells (460)
1+logyz+ (1 —2)5 ifze[t,1].

Definition 9. For every term z,, of a sequence, x,, = 0.00...0a as ..., where
ay is the first nonzero digit of x,,, define:

Zp = 0.a1ay ..., i.e. the first zero digits are omitted.

x; = 0.0a1as ..., i.e. we add in the first position a zero digit.

Note that if one of three sequences z,, ,, and z;, satisfies B.L. then all
three sequences x,, T,, and z7 satisfy B.L. simultaneously. 5!

Example 66. By definition of B.L. the sequence z,, € (0,1), n = 1,2,...,
and T,, n = 1,2,..., satisfy B.L. simultaneously. Since z, € [%, 1) every
g(x) € G(&,) is continuous in z = 0 and thus z,, satisfies B.L. if and only if
for every g(z) € G(&,) the equation (451) holds. Since g(z) = 0 for z € [0, 1]
the equation (451) has the form x =1 — g (b%) + 0, for € [0,1] and thus

- 0 if x € [0, ﬂ ,
_ 461
9(x) {1+1;;§§f if z € [1,1]. (461)

51For a sequence z,, € (0,1) the set of all d.f.s G(z,) does not depend on a base b in
which x,, are expressed, but the sequence z,, is depend.
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Example 67. A.d.f. g*(z) of 27 can be computed by g*(x) = g(f*(2)),
where f(r) = 7. Thus we have

0 if x € [0,%],
g (x) =2+ 2F e g, (462)
1 if v € [§.1]

again for g*(x) the equation (451) holds. Similarly, putting z* = 0.00a,as . . .,
the a.d.f. of 27", n=1,2,...,is

0 if z€[0,5%],
g (x) = {3+ 25 ifwe [f g (463)
1 if € [,1]

and ¢**(z) again satisfies (451) again.

A.d.f g(x) of the sequence Z,, n = 1,2,..., can be computed directly
from a.d.f g(z) of x,, n=1,2,....

Theorem 172. Assume that x, € (0,1) has an a.d.f. g(z) continuous at
x = 0. Then the sequence Z,, has a.d.f. g(x) of the form

10 =3 (o (5) -9 (5%)) (464)

1=0

for xz € [%, 1} and g(x) =0 for x € [O, ﬂ

Proof. Every t € [b%, bl) has the first 7 digits equal to zero and thus tb’ €

%, 1). Thus, for every x & [%, 1) we have unique ¢ = ;> such that ¢ €
biil, #) Moreover

#{HSN;$n€ i}rlvﬂi} 1
- 5 ) ﬁg(%)—g(biﬂ) (465)

o

and the expression (464) follows from the continuity of g(x) at = 0. O

Example 68. Let z,, n = 1,2,..., be a sequence in (0,1) with the a.d.f.
g(x) defined by (460). By Theorem 170 the sequence z,, satisfies B.L. in the
base b. By Theorem 172 if x € [%, 1} then we have

g(x) = i (g (;) —g (b1+1>)

1=0
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1 1 1 1
:1+10gbx+(l—x)b_1—g+(m——)

which gives 1 + log, « equal to (461) which we are expecting.
From Example 66 directly follows

Theorem 173. The sequence x, € (0,1), n =1,2,..., satisfies B.L. in the
base b if and only if the sequence T,, n = 1,2,..., has an a.d.f of the form
(461). Moreover, if the sequence x, € (0,1) has a.d.f. (461), then this a.d.f.
has also T,,.

The following theorem simplified functional equation (451) in Theorem 170.

Theorem 174. Assume that every d.f. g(x) € G(x,,) is continuous at x = 0.
Then x, satisfies B.L. in the base b if and only if

1+logbxzz (g (%) —g(biil))fmwé [%,1} (466)

1=0

for every d.f. g(x) € G(z,,).

Proof. Assume d.f. g(x) € G(z,), g(x) is continuous in x = 0 and Fy;,(z) —
g(x) as i — oo. Similarly as in Theorem 172 the sequence Z,, has d.f. g(z)
of the form (464) and for the same sequence of indices V;. It follows from
Theorem 173 that g(z), for every sequence of indices N;, must have the form
(461), which gives (466).

An alternative proof follows directly from (451), transforming 5~ — 2. [

As we can see in the following Examples 69 and 70 there exist integer
sequences satisfying strong B.L. for arbitrary base b, but it does not hold for
sequences z, € (0, 1).

Example 69. By [172, p. 2-117, 2.12.14], the sequence

anlog"nmod 1, a=#0,0<7 <1, (467)

is u.d. From this follows that x, = n" satisfies strong B.L. for arbitrary

integer base b, because log, n" = nlog nlolgb. In this case ﬁ € (0,1) has the

a.d.f. ¢y(z), which is discontinuous at x = 0.
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Example 70. By [172, p. 2-117, 2.12.15], the sequence
an*log" nmod 1, a#0,0<7<1, (468)

is u.d. From this follows that z, = n" satisfies B.L. for arbitrary integer
base b. Again, the reciprocal sequence % has the a.d.f. ¢o(x).

Example 71. The sequence z, = b"@, n = 1,2,..., where « is an irra-
tional, satisfies strong B.L. in the base b, but not strong in the base 0" for
r > 2, since

logy,. bt = @ € [0,1/7).

Moreover, x,, does not satisfy B.L. in the base 0" of order 1, because every d.f.
g(x) of {na}/r is constant on [1/r, 1] and for z = 0.(b—1)(b—1)...(b—1)
we have 1 —x = 1/b". Thus g(z) # z and the criterion in Theorem 44 does
not hold.

In the following example we can see that there exists a sequence x, €
(0,1), which satisfies B.L. with respect to a finite set of different bases.

Example 72. Let z,, € (0,1) be a sequence with a.d.f. ¢;(x) of the form
(461), i.c.
0 if 2. € (0,7,
1

g(x) = (469)
1+log, » ifxe i,l .

Then by Example 22 this sequence satisfies strong B.L. with respect to b;.
Now we compute all basis b for which z,, satisfies B.L. simultaneously. Every
such b must satisfy (466) with g(z) = ¢1(z) and for z € [1,1]. This gives
inequality (473) of the form

1
1+logyz < gi(x) <1+log,x+ g1 (5> :
a) Let by < b.
Then for x € [%, i} we have g;(z) = 0, which contradicts to (473).

b) Let b < b;.
Let k be the first positive integer such that

1
< =

1 1
b1 bk_l

b’fS
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Then (466) has the form

k—1
x 1

i

Il
o

where

T 1 T 1
0 () = o () = (1o ) = (1 Tom

fori=1,2,...,k—2. Fori:k—lwehavegl(i

T z pE—1
g1 (F) =1+ 10gb1 bk_—l for x € |:—, 1:| .
Thus (470) has the form

x x 1 1
1+log, x = logy, (xg e F) —log,, (5 o F) +1 = 1+log, z* (471)

and the equation (471) holds if and only if 128% = KO8T 'which is equivalent

logb log b1
by = b*. In the case b; = b* we have z € [Z’I;—;l, 1} = [%,1} and thus z,,
n=1,2,..., satisfies B.L. also for bases b, which are integer roots of b;.

Similar result we find also for d.f of the type (460).

Example 73. Let x,, n = 1,2,..., be a sequence in (0, 1) with a.d.f. g(x)
defined by (460) for b = by, i.e.

x if x € O,bi,

g(x) = L (472)

1+log, +(1 — )5 ifxe g,

Then by Theorem 170 the sequence x,, satisfies B.L. in the base b;. In the
following we find all other basis b for which x,, satisfies B.L. again. Every
such b must satisfy (466) with g(z) = g1(z) and for z € [3,1].

a) Assume that b; < b. Then for z € [%, 1] we have 37, bl% € [O, %} for
i=1,2,... and (106) has the form

1 —~(z 1
1 +log,x = gi(x) — ¢ (g) +Z (E - bi+1>
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and for z € [%7 é} we have g1(z) — g1 (§) =« — 3 and

1 b
141 = - =] —
+ log, x (x b) 7
a contradiction.

b) Let b < b; and let k be integer such that ;5 < L bkl,l. In every
cases T € [b, 1] implies > € [ . ,—] In the case b) we have

(i) In the intervals [, %], i = 1,2,...,k — 2, d.f. gi(z) has the form
g1(x) = 1+ logy, x + (1 — 1)

(ii) The same form of g;(x

<)

b

i

S
>_‘I_l&

we have also in [bi L 1]

ok
l.i=kk+1,..., the df. gi(z)=uz.
r), g1 (755) and g1 (7). we find (466) in the

»—IQJ.|>—‘ \/ |

(iii) In the intervals [;4r,

Using (i)-(iii) for g1 (£), 01 (5

form

T T 1 1
1—|—10gb($):logblxg...w—logblg...w

S YIS T U
b — 1 b 2 ) T —1\b b

T T 1 1
+ 1+10gblm+<1—bk 1)[)1—_1 _b_k

r 1 1 1
1k 1 1°
P

+

Summing this we have, for 7% € [%, bk%l],

b(bF — 1) b
R R T3

1+log,z =1+log, 2"+ (1 —x)

which holds only if b; = b*. In this case the assumption T € [é, bk%l] &

x € [bl;)—zl, 1] S € [%, 1} and (466) holds. Thus the sequence z,, satisfies
B.L. also for the base b = /b;.

The Example 72 and 73 give an impulse to the following theorem:

Theorem 175. For a sequence z,, € (0,1), n =1,2,..., assume that every

d.f. g(z) € G(z,) is continuous at x = 0. Then there exist only finitely many
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different integer bases b for which the sequence x,, satisfies B.L. simultane-
ously. Moreover, if the sequence x,, satisfies B.L. in base b, and for some
k=1,2,... there exists kth integer root /b, then x, satisfies B.L. also in
the base /b.

Proof. 1°. Assume that x, satisfies B.L. in the base b and and let g(z) €
G(z,). Then by Theorem 174 for z € [+, 1] we have (466). Rewrite it in the

o g(r) =1+log,z +g (%) - i (g <§) ) <b21+1)>

i=1

this gives
1
1+log,z < g(x) <1+log,z+g <5> . (473)
If the sequence x,, satisfies B.L. for infinitely many b, then (473) implies
g(x) = 1 for = € (0,1], a contradiction. Quantitatively, if g(x¢) < 1, then
either zy < ,i.e., b < m—lo, or 1 < zo and by (473) we have 1+log, o < g(o),

then 1 — g(zg) < 711(‘:5;0, which gives

1 —logzg

b < max (—, 619(10)) . (474)
Zo

20, Now, assume that x, satisfies B.L. in the base b, i.e. the sequence

log, x, mod 1 is u.d. Applying well known Weyl’s criterion we have the
following chain of implications.

(i) & S°N  emihlosen 0 as N — oo and for every h = 1,2, ..., thus
(if) & SN e2mifklogan 5 (0 as N — oo and for every b,k = 1,2,... and

then we obtain

(iii) 2% satisfies B.L. in base b again.

(iv) Thus, if g(x) € G(x,) then g(¥/x) € G(x¥) and vice versa, because
ot <1 e, < Y

(v) Furthermore, for every d.f. g(x) continuous at = = 0, the g(x) and
g(Vx), k=1,2,..., solve (466) simultaneously.
Thus (466) implies

- T 1 1
1+logbxzz<g(kﬁ)_ (km>>7forx€{g,1]. (475)
1=0
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For technical necessity using

we rewrite (466) to the form

[e.o]

1—|—10gbx:1—2(g (g) —g<§>)fom:e {%1}

=0

and (475) to

(76)

- 1 1
l—i-logbx:l—Z(g(kE)_g(k§)>,forx€[6,1}. (477)

=0

Let for integer & we have integer root v/b. Using
(i) 1+ log, » = 1+ log g5 ¥/,

9 (3/3) =0 (VD) =9 () =9 (7).
(i) v € [1,1] & ¢z € [4.1]
and exchanging /x — x, then (477) has the form

s —1-3 (o) o ()

By Theorem 174 the sequence x,, satisfies B.L. in the base /b.

6.4.9 Two-dimensional Benford’s law

Let z,, >0, y, >0,n=1,2,... and b is an integer base,
K, = /{;El kél) e k;,(»i) in base b,
Ky = kf)k;f) o kzg) in base b,

By (83) we have
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first r digits (starting a non-zero digit) of z,, = K; <= {log, x,} € [u1,us),
first o digits (starting a non-zero digit) of y,, = Ky <= {log, y,} € [v1, v2).
Denote 72

#{n < N;{log, z,,} <z and {log, y»} <y}
= .

Theorem 176. Let g(z,y) € G({log, z,,}, {log, yn}) and limy_, Fy, (z,y) =
g(x,y) for (x,y) € 0,1]*. Then

FN(IE,?/) =

li #{n < Ny; first ry digits of x, = Ky and first ro digits of y, = K,
im
k—o0 Nk

= g(u2,v2) + g(ur, v1) — guz,v1) — g(u1, va). (479)
Example 74. We have (see (750))

G({log, n}, {log,(n +1)})
bmin(a:,y) ~-11 bmin(x,y,u) -1

:{gu(x,y)z T et m ;ue[(),l]}.

Another, by Sklar’s theorem 209

gu(r,y) = min(g,(v), gu(y)), where
( ) b —1 1 bmin(fmu) -1
W(T) = —
g b—1 b b
Thus
i #{n < Ny; first ry digits of x,, = K7 and first ry digits of y,, = K>
im

k—o0 Nk:

= gu(u2,v2) + gulur,v1) — gu(u2,v1) — gu(ur, v2). (480)
If Ky = Ky then = g,(u2) — gu(uy). It can be found directly.

In the following examples we use known examples of statistical indepen-
dent sequences:

Let xz, € [0,1), n =1,2,..., be an u.d. sequence. Then

(I) x,, and log, n mod 1 are statistically independent (Theorem 92 accord-
ing to G. Rauzy (1973) [135] also see [172, p. 2-27, 2.3.6.]).

52In the following the sentence ” starting a non-zero digit” we will not mention.
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(IT) z,, and logy(nlogn) mod 1 are statistically independent (Theorem 93
according to Y. Ohkubo (2011) [122]).

(III) x,, and log, p,, mod 1 are statistically independent (Theorem 94 ac-
cording to Y. Ohkubo (2011) [122]).

Example 75. Let z, € [0,1), n =1,2,..., be u.d. sequence. Then

G(w, {logyn}) = {gu(®,y) = 2.9.(y);u € [0,1]},
where .
( ) B —1 1 N bmln(ax,u) -1
)= e b

and Fi, (z,y) = gu(z,y) if {log, N} — u.

Example 76. Let z, € [0,1), n =1,2,..., be u.d. sequence. Then

G(xn, {logy pn}) = {gu(z,y) = 2.9.(y);u € [0, 1]},

where .
( ) b —1 1 N bmm(x,u) -1
wT) = R -
J b—1 b b

and Fiy, (z,y) = gu(z,y) if {log, N} — u.
Example 77. We have
G({log, Fn}, {log, pn}) = {z.gu(y); u € 0, 1]}
and let {log, Nx} — u. Then
#{n < Ni; F}, has the first r, digits = K; and p,, has the first r, digits = K}

li
= ’Lngu("Uz) + ulgu(vl) - UZQU(UI) - ulgu(UQ)a (481)
where

= log,

= log, ( >
=1 Kot 1
br? Ogb br2 1 )

= b—l bu+ b




This Section 6.4.9 has been inspired by F. Luca and P. Stanica [101]:

Theorem 177. There exists infinite many n such that Fibonacct number F,
starts with digits K1 and @o(F,) starts with digits Ko in the base b represen-
tation. Here Ky and Ky are arbitrary and o(x) is the Euler function.

In the following we see that this claim is equivalent that the sequence
(logy Fy,log, (F,)) mod 1, n=1,2,...,

is everywhere dense in [0, 1]%, but the authors use the following method:
(i) By the first author ¢(F,,)/F, is dense in [0, 1]. Thus, for an interval I
with arbitrary small length and containing K5/ K, there exists ¢(F,)/F, € 1.
(ii) Then p(F,,)/Fu, € I for all sufficiently large prime p.
(ili) There exists infinitely many primes p such that F,, starts with K.
(iv) Finally, multiplying I by Fy, they find ¢(F,,) which starts with K.

no4| Notes 36. The 3z + 1 function T'(n) is given by T'(n) = 2%tL if n is odd, and T'(n) = 2

if n is even. J.C. Lagarias and K. Soundararajan [95] shows that for most initial values
n the sequence z;, = T'F) (n), k=1,2,..., N approximately satisfy B.L. in the sense that
the discrepancy of the sequence log,(xg), k =1,2,..., N is small.

The 3z 4+ 1 Conjecture asserts when started from any positive integer n, some iterate
T® (n) = 1.

6.5 Gauss-Kuzmin theorem and g(z) = g¢(x)

Denote

f(z) =1/x mod 1,

o5(x) = ig(%) _ g(nix) for d.t. g(z),z € [0,1],

n=1

gr(z) = / 1.dg(z),
F=1([0,x))

(gpn)f(x) = gpnir (),
_ log(1+ x)

go(w) =

log 2

The problem is to find all solutions g(z) of the functional equation

g(x) = gs(x) for x € [0,1], where (482)

313



g5(z) = fy(%) —g(nix) for z € [0, 1], (483)

n=1

Proof of (483). We have

F7H0,2)) = U, (fy Y(2), £), where
fi '(z) = = and thus

gr

(x) = 320 (9(f1(0)) = g(fi () for 2 € [0, 1].

The following is known:

(1)
(IT)
(111)

go(z) satisfies (482).

Theorem 178 (Gauss-Kuzmin). If g(z) = z, then gm(z) — go(z)
and the rate of convergence is O(q¥V™), 0 < ¢ < 1.

Theorem 178 was proved by R. Kuzmin [94] and for a starting function
g(x) for which

(i) 0 < ¢'(z) < M and

(ii) |g"(2)] < -

Thus, if g(z) satisfies (i), (ii), and (482), then g¢(z) = go(x).
Theorem 178 it was inspired by Gauss, who conjectured m,,(z) — go(z),
where m,,(z) = [{a € [0,1];1/r,(a)) < z}| and for continued fraction

expansion « = [ag(a); ai(a), as(@),...], rp(@) = [ap1(@); anio(a), ..., ].
In this case m,,(z) = g (x) for g(z) = z, since f(1/r,(a)) = 1/rps1 ().

Theorem 178 can be extended to
Theorem 179 (P. Lévy [99]).
g(z) =log(l+x)/log2+0O(8") (0<6<1)

for every starting d.f. g(x) two-times differentiable and f(x) = (1/z) mod
1.

Theorem 180 (E.A. Wirsing [196]).
g (x) =log(l+x)/log2 4+ O(0") + (—\)"V¥(x) + O(z(1 — x)6"),

where d.f. g(x) is two-times differentiable, the constants 0 < 6 < A =
0.303... are independent on g(x) and V is a function defined on [0, 1]
independent on g(x) with continuous second derivatives, V(0) = U(1) =
0. The O constant depend on g(z). Again f(x) = (1/x) mod 1.
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(IV) For starting point g € [0, 1] we define the iterate sequence z,, as

r1 = f(x0), 22 = f(f(20)), 25 = f(f(f(20))), .-

Then every g(x) € G(x,) solve (482). For example, the sequence x; =

1/ri, 29 = 1/rg, ... for @ =[0;1,1,1,...] produces solution g(z) =
(V) If g1(x) and go(x) solve the equation g(x) = gf(x) and g1 (x) = go(z) for

x € [0,1/2) then g;(x) and go(x) coincide on the whole interval [0, 1].

Notes 37. The above method can be used to proving uniqueness of g = gy also for other
function as f(z) = 1/xz mod 1. In M.Y. Goh and E. Schmutz [60] and in generalization of
P. Schatte [142] is proved

gy (@) = gola) + O(6"), (0 <6 <1)
where
f=95"° foogo;
fo is pairwise monotone uniform distribution preserving function (see Section 12.3);

go is d.f., go € C%([0,1]) and gf(x) > & > 0.
For example, if

(2 if 2 € [0,1/2],
f(x){Q_Qx if z € [1/2,1].

then the functional equation g(z) = g¢(z) i.e.
9(x) = g(x/2) + 1 —g(1 - (2/2))
has a unique solution g(x) = z on d.f. in C?([0,1]). 53

Notes 38. For two-dimensional function
fla,y) = A/ —[1/2], ([1/2] +y)7")
H. Nakada [112] proved the solution of g = g5 in the form
g9(z,y) = log(1 + zy)/log 2.
K. Dajani and C. Kraaikap [33] proved an iteration
g (z,y) = log(1 + zy)/log2 + O(6")

for starting g(z,y) = xy.

53C2([0,1]) is the set of all f : [0,1] — R with continuous second derivative.
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Theorem 181. Let
f(z)=1Lmod 1 and

xi(t) = (i—lt)t—i-l where i =1,2,... and
gr(x) = 320219(5) — 9(55) for z € [0,1].
Then

[ o) -ty - [/Qt%(Z(g(xi(t))—g@i(t))) ar (4s4)

=1

Proof. By the proof in (483) we have
gr(x) = 3202 (9(f7(0)) — g(f'(w))) for = € [0,1]. Thus

(1)

> (st ) - st o) ) o (450

Applying substitution
fi_l(x) = IL_H =Y,

T = i — 1,

der = —%dy,

7@ = 25

fjil(gl/ - 2) = (jff;yﬂ

to the one part of (485) we find

/ (<g<f;1<x>> U @) (9 @) - g(ff(x))))dx -
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1/(i+1) i 1 Y ~ y
/m (9(4) = 9») ( - E) <g(<j Sy s VAV e 1)>dy’
(487)

Using substitution
y = o = 2ilt)
= ai(t)
L dy = 1 —dt

on (487) then we find

which gives (484).

6.6 Uniformly maldistributed sequences (continuation

of 3.7)
Here we repeat and extend the results of Section 3.7.
Let x,, n=1,2,..., be a given sequence.

The sequence z,, is said to be uniformly maldistributed (u.m.) if for every
nonempty proper subinterval I C [0, 1] we have both

hmmf—#{n < N;z, € I} =0 and limsup — #{n <N;z,el}=1.

N—o0 N—o00
The definition of uniform maldistribution is due to G. Myerson [109] , who
mentioned that the first condition is superfluous, and showed the following
three properties:

The sequence z,, = {loglogn} of fractional parts of the iterated logarithm
is u.m.

Let My, k =1,2,... be a sequence of natural numbers with hm (M1 +

-+ My)/M; =1, and let y,, n = 1,2,... by dense in [0, 1). Flnally, let z,,
be defined by z,, = y;, if Zf;ll M, <n< Zle M;. Then x,, is u.m.

Theorem 182. The sequence x,, is u.m. if and only if

liminf — Z f(z,) = min f, limsup — Z f(z,) = max f

N—oo N—oo
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for every function f continuous on [0, 1].

In the following we comment results from [161]:
It is easily seen that

Theorem 183. The sequence x,, is u.m. if and only if
{cale)ia € [0,1]} € Glan).

Thus, in the theory of u.m. we need not consider d.f.s other than one-
jump d.f. ¢,(z) which has a jump of size 1 at «. This suggests the definition

Definition 10. The sequence x,, is said to be uniformly maldistributed in
the strict sense (u.m.s.) if G(z,) = {ca(z); 0 € [0, 1]}.

Let us consider the following moment problem

/01 /OlF(x’y)dg(:v)dg(y) =0

in df. g :[0,1] — [0,1], where F(z,y) is continuous on the unit square
[0,1]2.  As before we denote G(F) as the set of all solutions g(z) of this
moment problem. By Theorem 56 necessary and sufficient conditions for the
set inclusion G(z,) C G(F) is that 1\}520 = SN F(p,x,) = 0.

m,n=1

By Theorem 58 for any sequence x,, € [0, 1) we have

N
. 1
Glzn) € {ca(w)sa € (0,1} &= lim — > |om — 2| =0

m,n=1

and if G(z,) C {cqa(z); 0 € [0,1]}, then G(x,,) = {ca(x); € I}, where [ is a
closed subinterval

1 & 1 &
I = l%vrriioréfﬁz;xn, limsupﬁz;xn ,

N—oo

with the length |I| = limsup Zi\f:l Zi:;l |z — x,]. The following asser-
,IN—00

tion is evident from the preceding.
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Theorem 184. The sequence x,, € [0,1) is u.m.s. if and only if
' | X . | M
Nh—Igoﬁm;ﬂ | Ty — x| =0 and %\I/IH}VTOEW”;; T — 0| = 1,
or alternatively
1 — 1
lijréljolipﬁnzzlxn — l%anio%fN;x” =1.

Example 78. Let {x} be the fractional part of . It is shown Theorem 48,
(102) ([27, p. 58]) that, for z,, = {logn}, n=1,2,...,

1e*—1 emin(x,u) -1 .

7u€[0,1]}.

G(z,) =
() {e“ e—1 ev
Starting with z, = {loglogn} all the sequences {loglog...logn}, n =
ng,no + 1,..., have

G(zn) = {ca(@); a0 € [0, 1]} U {ha(x); a € [0, 1]}
and thus are u.m.

Proof. For the first iterated logarithm we chose an index-sequence Ny, with
Ni = [expexp(k + «)]. Then we have limy_,o Fi, (z) = co(x). For Ny =
lexp exp(k +€x)], where € — 0 such that (expexp(k+¢x))/(expexpk) — 5,
we have limg_,o0 Fi, () = ho(x), where a = (8 — 1) /5.

On the other hand, let lim,, o Fi, (z) = g(x). Then N,, = expexp(k, +
en), where k, = [loglog N,,], €, = {loglog N,,}, and the sequence ¢, cannot
have different limit points.

The same distribution function are of course obtained if we replace log log ¢
by log...logt and expexpt by exp...expt in the above limits. O]

By Example 24: Let x,, n =1,2,... be defined as

Ty = {1 + (1) lViviosan] {\/[\/@]}},

were [z] denotes the integral part and {z} the fractional part of . Then
G(zn) = {calz); a0 € [0,1]}.
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From [184, Satz 9] follows the fact that any everywhere dense sequence
in [0,1) can be rearranged to a sequence z,, for which G(z,,) is the set of all
distribution functions g : [0,1] — [0, 1]. Application of Theorem 183 to z,
gives immediately that this z,, is u.m.

Theorem 185. Suppose the continuous function f(z) which map [0,1] onto
itself has bounded derivative |f'| < c. Let x, € [0,1) be u.m.s. Then so is

flzn), n=1,2,....

Proof. This follows from criterion in Theorem 184, since it can be easily
verified that

N N
1 c
e > @m) = flan) < el > |t — anl,
m,n=1 m,n=1

and

N: f(xn)_f AT Tn §_2 |C(3m—.l’n.

N n=1 N n=1 N m,n=1

O

Notes 39. Consider a given sequence z,, € [0,1), n = 1,2,.... For every continuous

function f : [0,1] — R the set of limit points of the sequence +; ZnN:]_ flzn), N=1,2,...
coincides with the set

{ ' fa)dgayg € o}

Moreover, this set constitutes a subinterval of [min f,max f]. If for d.f. g(x) we have
max f = fol f(x)dg(z), then g(x) has a special structure e.g. f[o V-1 1.dg(x) = 0.

Thus we can find information about G(zx,,) whenever

max f)

1
max f € {/ f(x)dg(z);9 € G(wn)}-
0
Similarly for min f. Using this we can rewrite Theorem 182 in the form
1
{ca(z); € ]0,1]} C G(zy) < {/ f(z)dg(z);g € G(xn)} = [min f, max f]
0

for every continuous f : [0,1] — R.

Note that we do not consider all continuous f, but only such f with f~!(max f) consisting
of only one point. This suggests the following result.
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Theorem 186. The sequence x,, € [0,1) is u.m. if and only if

N—o0

| XN
limsupN nz::lfa(xn) =1
for every a € (0,1). Here fq(x) are triangular functions defined by

2) = z/a, if x €[0,a),
fote) {(1—x>/<1—a>, faelol]

6.6.1 Applications of u.m. sequences

A quasi-Monte Carlo method for the approximate evaluation of the extreme

values of a function was proposed by H. Niederreiter [128]. He shows that

the error between the approximate value max f(z,) and the correct value
n

m[ax] f(z) can be estimated in terms of dispersion of Ty, s, ..., zx and the
z€|0,1

modulus of continuity of f (cf. [119, Theorem 1]). The dispersion of a finite
sequence xi, s, ..., xryN is defined as

dy = max min |z — z,[;
z€[0,1] 1<n<N
it is a measure of the denseness of a sequence.
The dispersion is related to the well-known discrepancy of x1, o, ..., x N,
which is a measure of the uniform distribution of a sequence (cf.[119, Theorem
3]). An analogous relation between u.m.s. and denseness of a sequence can

be derived on the basis of Theorem 184 and the following bound of dispersion
(see [161]).

Theorem 187. For a given finite sequence x1, s, ..., xy in (0,1) define the
numbers Ay and By by

1 X 1 <
Ay = min —Zx By = max —Zw
1<SM<N M 4=~ " LSM<N M “~ "

n= n=

Assume that these min and max are attained in M; and M, respectively,
and denote Cy by

M
1
Cy = max — E | T — T
min(My,Ma)<M<max(M;, M) M .
m,n=
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Then,
dN S maX(AN, 1-— BN> QCN)

and the limit limy_,o, max(Ay, 1 — By,2Cx) = 0 characterize u.m.s.

Proof. Let x; < x; be neighbouring points from 1, xs, ..., zx (l.e. (x;,2;) N
{x1,29,...,25} = 0) and consider the mean (z; +x;)/2. We distinguish two
cases.

1° We either have (x; + x;)/2 € [0, Ay] U [By,1] and then z; — z; <
2max(Ay,1 — By), or

2° (z;4+x;)/2 € (AN, By). If we assume that My < M, (the case My < M;
is completely similar), then there is an integer M’ such that M’ M’ + 1 €
[My, M5 and

M'+1

i+
an_aj x]_M/+1ZZEn

There are four possibilities for the situation of z;, z;, 1 ZM_/ zn(= A),

n=1
and 1 SV g, (= B),

(i) either z;,z; € [A, B], or

)
(i) A € (2;,x;) and B ¢ (x;, ), or
(ii) B € (x;,x;) and A & (z;,2;), or
v)

( A,B € (ZL‘Z‘,I'J‘).

There is a simple relationship between the configurations (i)—(iv) and the
bound of z; — x; which we shall establish by using the following properties:

For any finite sequence x1,xs, ..., x), we have
LM | M M+1
— Y — — m— Tnl. 489
M;x M+1;x M+1 mz 2 (489)
Assuming 5; M a, € (w,v) C[0,1] and (u,v) N {zy, 2o, ..., 20} = 0, we
have

LM M
min (M;xn— u, ; > 7 Z | T — Xy (490)

m,n=1
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It follows from the above inequalities that z; — z; < 2Cy for (i), and
x; —x; < 4Cy for (ii),(iii) and (iv).

Since (489) is evident, we shall begin with proving (490).

Integration by parts shows that every continuous f with piecewise con-
tinuous derivative f’

/O (Fur(@) — ca(2)) f'(2)dz| . (491)

1 X 1
TR G

Now let us take as f the following function

0, if x € [0,u),
T —u, if x € [u,a),
fa =377 et
Uy —x), ifx€la,v),
0, if x € [v,1],

where o € (u,v) and & — u = min(a — u, v — «). Then, after the application
of Cauchy inequality, we obtain

min(a — u,v — a) < 2/0 (Far(z) — co())?da.

By an easy computation, we evaluate

/0 (Far(z) — co(2))2dz = %nzlm—m _ 2]\142 S fom =l (492)

m,n=1

Setting o = 57 SM 2, we thus conclude (490). O

6.6.2 The multidimensional u.m.

The following Theorems are from P.J. Grabner, O. Strauch and R.F. Tichy
[63]:

Theorem 188. Let M;,i = 1,2,... be a sequence of positive numbers sat-

isfying limy,_, oo Zf;ll M; /My = 0. For a given sequence yy, k = 1,2,... in
0,1]%, let the sequence xp,mn = 1,2,... in [0,1]° be constructed by x, = yy
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for Zi‘:f M, <n< Zle M;. Finally, let H C [0,1]° x [0,1]° denote the set
of all limit points of the sequence (Yr—1,¥x), k =2,3,.... Then

G(x,) = {tca(x) + (1 —t)cg(x) : t € [0,1], (o, B) € H}

where

() = {1, forx € e, 1],

0, otherwise.
Proof. For N = Zf;ll M; + 0. My, 0 < 0, < 1, we have
A([0,x); Nixp) = B([0,%), (Yr-1,¥k)) + o(N),
where

My, if yr—1 € [0,x) and y; ¢ [0,x%),
O My, if yr_1 ¢ [0,x) and y; € [0, x),
My_1+ 0, My., if yi_1,yr € [0,%x) and
0, if yp_1,¥% ¢ [0,%).

B([0,x), (Yk-1,¥%)) =

Assume that A([0,x),wy)/N — g(x), x € [0,1]* for selected sequences of
indices N = Zf’;l M; + 6, My., k = k(N). Then we can further chose N such
that (Yk—17Yk) — (a,ﬁ), Mk—l/(Mk—l + HkMk) — 1, and QkMk/(Mk—l +
0, M) — (t — 1), for some o, 3, and t. Thus g(x) = tca(x) + (1 — t)ca(x).
On the other hand we can construct a sequence N = Zf:_ll M;+0,. M, sat-
isfying My_1 /(My_1+0; M) — t for any t € [0, 1] provided that (yx_1,yx) —
(a, 8). Then A([0,x),wn,)/Ni = tca(x) + (1 —t)ca(x). O

This theorem has the following consequences:

Theorem 189. For a given H C [0,1]® suppose that there exist a sequence
Vi, k=1,2,... in [0,1]° such that

(i) H coincides with the set of limit points of o,
(ii)) lim yx —yx_1 = 0.
k—o00
Then there exists a sequence X, n = 1,2 ... in [0,1]°

G(x,) = {ca(x) : @ € H}.
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Proof. According to (i) and (ii), we have H, = {(a, @) : & € H}. Hence,
Theorem 189 is a consequence of Theorem 188. O

Theorem 190. Let H C [0,1)° be such that there exists a continuous func-
tion ¢;10,1] — [0,1]%, for which H = {¢(t);t € [0,1]}. Then there ezists a
sequence X,, n=1,2,... in [0,1]* such that G(x,) = {ca(x) : @ € H}.

Proof. For the proof, we note that (i) and (ii) from Theorem 189 hold for
v = &(yx), k =1,2,..., where

ye = {(-1)VAVE},

Here [z] denotes the integral part and {z} the fractional part of z. The

density of yx, £ = 1,2,... and klim Yr — Yr—1 = 0 are proved (in a more
—00
general form) in Theorem 191, below. O]

Theorem 191. [63], [172, 3.13.1., p. 3-49]. Let p1,...,ps be mutually
co-prime positive integers and 7 > 1. Then the set of all d.f.s of the s—
dimensional sequence

X, = ((_1)[[10g(j)n]“”l}[log(j) n]r L (= 1)les? nl el () n]l/ps> mod 1
(493)
18

G(x,) = {ca(x);a € [0,1]°}, (494)

Proof. The line of construction of the sequence (493) is the same as in Theo-
rem 188. Precisely, for exp) k < n < expW) (k+1), (exp¥) k = exp...expk)
we have x,, = yx, where

Vi = ((—1)[k1/p11k1/P1, . (—1)[k1/ps]k1/ps) mod 1. (495)
Thus, in order to show (494) it suffices to prove that
(i) yx, k=1,2,... is dense in [0, 1]*, and
(i) Tim yi — yi. = 0.
k—o00

Condition (i) follows from Propositions 3,4 and Remark 2 in [63], see:
Notes 40.
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Definition 11. Let mq,...,ms be integers > 2. A sequence (X,) = (Tpi,-..,Tns)
in R® is called (myq,..., ms)-uniformly distributed, if the sequence (zn,1,...,Zns, [Tn1]
mod my,...,[Tns] mod my) is uniformly distributed in R®/Z* X Zy,, X -+ X Ly,

Theorem 192 ([63], Proposition 3). A sequence x, in R® is (my,...,ms)-uniformly
distributed, if and only if (xp1/ma, ..., Tns/ms) is uniformly distributed modulo 1.

Theorem 193 ([63], Corollary 3). Let 1,aq,...,as be linearly independent over the ra-
tionals and set a = (a,...,as). Then the sequence (na) is (mq,...,ms)-uniformly
distributed for any choice of (my,...,msg).

Theorem 194 ([63], Remark 2). If a sequence (Tp1,...,Tns) 15 (2,...,2)-uniformly dis-
tributed, then ((—1)=nilz, o0 (=1)Frelz, ) ds u.d. modl.

Theorem 195 ([63], Proposition 4). Let a;,b;,c; be real numbers with a;,b; # 0 (i =
1,...,8) and 0 < w; < 1 and let v; be given such that 0 < u1v1 < ugve < -+ < UsvVs and
wiv; €7 for alli=1,...,s. Set

Tpg = (az[bznvl] + Cz)u1 y

and X, = (Tpi,...,Tns). Then the s-dimensional sequence x,, n = 1,2,... is u.d.
mod 1.

Condition (ii) follows from the expression

{kPi} for k € U2y [(2n)P:, (2n + 1)77)
Yki = /s , ,
1— {kYPi} for k € U2, [(2n + 1)1, (2n + 2)P1).

Y, for k € [(2n)Pi, (2n + 1)P%), increases from 0 to ((2n + 1) — 1)1/” —2n
(— 1 as n — oo) with differences yr; — yg_1y = kP — (k — 1)V/P (= 0
as k — o0), and, for k € [(2n + 1)P, (2n + 2)P7), yi; decreases from 1 to
1— (((2n + 2)7 — 1)1/]" — (2n+ 1)) (= 0 as n — oco) with differences
Yki — Y—1yi = (k — 1)1/” — kA/pi (— 0 as k — oo). Thus kll_g)lo Yki — Yk—1)i =
0. [
Theorem 196. [63], [172, 3.13.2., p. 3-49]. Let pi,...,ps be mutually

coprime positive integers and 7 > 1. Then the set of all d.f.s of the s—
dimensional sequence

X, = ([log(j) n)YPr . [log? n]l/ps) mod 1.
G(x,) = {tea(x) + (1 — t)eg(x)},

where t € [0,1], @ = (aq,...,a5),8 = (B1,...,0s) € [0,1]%, and if a; # B;
then a; = 1,8, =0 fori=1,...,s.
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Proof. As in Theorem 188, for exp¥) k < n < exp")(k+1), we have x,, = y,
where
Vi = (l-cl/pl, cee kl/ps) mod 1.

First we show that the sequence (yx_1,yx),k = 2,3,... has two types of
limit points:

(i) (e, @), where a € [0,1]° is arbitrary, and

(i) (e, 3), where a # B € [0,1]° and oy # B = a; = 1,8, = 0 fori =
1,...,s.

Proof:

1°. Let us assume k # nPi, forn = 1,2,... and ¢ = 1,2,...,s. Then
there exist positive integers ni, ..., n, such that k € (nf", (n + 1)P") N--- N
(n?, (ns + 1)P*), and so,

Yoo — Yeor), = (0P + )P = (P 4 — 1) 0,

as k — oo. By applying [92, Th. 3.5] to yx one shows that yx, k =1,2,...
is u.d. in [0, 1]°. But the k& with k = n?* have zero density, and so we derive
that the sequence (yx—1,¥x),k = 2,3,..., k # nPi forn = 1,2,... and
i=1,2,...,s has limit points of type (i).

2°. Now we take k = nl" for i € I, and assume that k # n?, for
n=12,...and j € {1,2,...,5} \ I. Then y;, =0 and

Y1y, = (P =) = (n;—1) > 1.

Put [[,.;pi = Aand {1,2,...,s}\I = {ji...,Ji}. Because of the assumption
A/pj, ..., A/pj, are pairwise different and nonintegers. Thus, using [92, Th.
3.5], the sequence ((nA)l/pjl,...,(nA)l/pjl),n = 1,2,... is u.d. mod 1.
This property remains, if we restrict n to be # mPi, for m = 1,2,... and
i = 1,...,0. This shows that the sequence (yx_1,yx),k = 2,3,..., where
k=nt and n # mP form =1,2,... and j € {1,2,...,s}\ I, has a limit
point of type (ii) with coordinates o; = 1 and §; = 0 for ¢ € I, and a; = f3;
for j € {1,2,...,s}\ I for arbitrary «; € [0, 1]. Finally, we apply Theorem
188, and the proof is complete. O

Example 79. [172, 3.13.3., p. 3-50]. Let 1,aq,...,as be linearly indepen-
dent over the rationals. Then the set G(x,) of all d.f.s of the sequence

x, = (a1 loglogn, ... asloglogn) mod 1
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se3

satisfies

D {calx);a €[0,1°}.
In other words, the sequence is u.m. Thls example was given by G. Myerson
[109].

Notes 41. G. Myerson [109] notes that if the sequence z,, n =1,2,...,in [0,1) is u.m.
then the s dimensional sequence

Xp = (In+1,l’n+2, e 7xn+s)
does not u.m. but for every interval ) # I C [0,1]* we have

A(I; N; 1
lim sup AL Nix,) 1
s’

>
N —oco N

7 The multi-dimensional d.f.s

7.1 The two-dimensional d.f.s.: basic results

In the multi-dimensional case we can proceed in a manner similar to the
one-dimensional one. A basic notion is a differential:

dody F'(z, y)

=F(z+de,y+dy) + F(x,y) — F(x + dz,y) — F(z,y + dy), (496)
d,d,d. F(z,y, 2)

=F(r+dz,y+dy,z+dz) — F(z,y, 2)

+ F(z+dz,y,2) + F(z,y+dy, 2) + F(z,y,z + dz)

— Fz+dz,y +dy,2) — F(z,y +dy, z +dz) — F(x 4+ dx,y, 2z + dz) (497)

Note that

0°F(z,y)
8:6—(9ydxdy’ dpd,d. F(z,y, 2) =
if the needs partial derivatives exist.

Now we starting with s = 2.

Let (zn,yn), n =1,2,..., be two-dimensional sequence in the unit square
0,1)%. Define a step d.f. Fy(z,y) of (x1,41),. .., (zn,yn) by

dpd, F(z,y) =

Fy(2,) = 3 #0 < N: (2, 30) € 0,2) x 0,9))

and put Fy(1,1) = 1. We have
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() Fn(z+ Az, y+Ay) + Fn(z,y) — Fn(z 4+ Qg y) — Fn(z,y + Ay)
= 30 < N;(@n,00) €[22+ A0) X [y, +A)} 2 0;
for [z, 4+ A,) X [y,y +4,) C [0,1)2

(ii) Fn(0,0) = Fn(x,0) = Fy(0,y) =0 for z,y € [0, 1].

Since a two-dimensional d.f. g(z,y) is a limit of Fiy(z,y) we have the follow-
ing definition:

Definition 12. A two-dimensional function g : [0,1]*> — [0, 1] is d.f. if

(i) dg(z,y) = g(z +dz,y +dy) +g(z,y) — g(z + dz,y) — g(z,y +dy) > 0,
for (z,y) € (0,1)% and dz,dy > 0.

(ii) ¢(0,0) = g(x,0) = g(0,y) = 0 for z,y € [0, 1].

From (i) and (ii) directly follows that g(z,y) is non-decreasing for every
variable x and y.

Example 80. Define g(z,y) = 0 for (z,y) € [0,1)* and g(z,1) = x and
g(1,y) =y. Then g(x,y) is not d.f. since the differential

9@+ Asy+Ay) +9(z,y) —g(z,y +Ay) —glx+Apy) =1—-—2—-y <0

for z,y, A,, A, given by Figure:

(957?J+A

(x+ A, y+A,)=(1,1)

—i

(z,9)

0 1

g(x,y) is not d.f.
Other examples can be found in R.G. Nelsen [114, p. 6] (1999), c.f.
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Example 81. For g(z,y) = max(z,y) we have d,d,g(x,y) = —dz for x = v,
dr = dy > 0, thus by (i) it is not d.f.

Example 82. For g(x,y) = (20 — 1)(2y — 1) we have d,d,g(z,y) = 4dzdy
for z,y € (0,1), but (ii) not holds and thus it is not d.f.

Y. Ohkubo [122] generalized Theorem 10 to the following two-dimensional
form. 54

Theorem 197. Let (x,,y,) and (2, y.), n = 1,2,... be two-dimensional
sequences. Assume:
(1) |z — 27|l = 0 and |[yn — v, || = 0.
(i) Every d.f. g(z,y) € G((xn,yn)) is continuous in (0,0),(0,1), (1,0)
and (1,1).
Then G((ta, 1)) = (e, 41).

Proof. For g1(x,y) € G((xn,y,)) there exists Ny, k =1,2,... and go(z,y) €
G((7y,,yy,)) such that Fy, (v,y) — gi1(z,y) and Fy, (z,y) — g2(,y), where
Fn(z,y) and F}(x,y) are step function defined for (z,,y,) and (x),y.),
respectively. By Riemann-Stieltjes integration we have

Ng

1 1
/ / 62m(h$+ky)dxdyFNk (I, y) _ N E e?m(hxn-l-kyn)’
0 0 k

n=1

1 pl ' 1 Ng '
/ / 627r1(hx+ky)dzdyF]/Vk (.CE, y) _ F Z eQﬂ'z(hxn—i-kyn)’
o Jo k=1

Put
. - / /
An _ |627rz(hxn+kyn) . esz(hxn—l—kyn)’

forn=1,2,.... If A, — 0, then

- § :627ri(h;tn+kyn) o E 627Ti(hzil+ky;b) -0
Nk Nk ’
n=1 n=1

which implies, by Helly theorem,

1 1 1 1
/ / 627rz‘(hx+k‘y)dxdyg1 (x’ y) — / / 627Ti(h$+ky)dxdy92 (x’ y) (498)
0 0 0 0

54He also describe multidimensional form.
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for every integer h and k. The two-dimensional Weierstrass theorem on
approximation of continuous functions by trigonometric polynomials follows
that (498) implies: For every continuous F(z,y) on [0, 1]? for which F(0,0) =
F(0,1) = F(1,0) = F(1,1) we have

/01 /01 F(@y)dg(z.y) :/01 /01 F(z,y)dgs(z, y). (499)

Note that by a classical inequality

Ay < 27|hay 4 kyn — (hay, + ky,,)|,

A, <21 (hlz, — o) + Ely, — Y4l),

A, < 2m(h{z, — 2} + k{yn — yo}),

An <2m(h{zn} — {20} + E{yn} — {un D),

A, < 2m(hl|2, — || + Ky — yil)),

A, < 2m(h|z, — 2, — Al + kly, — v, — B]) (500)

for A,, — 0 it can be used not only assumption (i) but also arbitrary from
(500).

In the following we modify Ohkubo’s proof by applying (534). Fori = 1,2
we have

/ / (z,y)dedygi(z,y) = F(1,1) —/lgi(l,y)dyF(l,y)

/gz(xl)del //glxyddF(xy)

Applying Theorem 10, the assumption (i) implies that
(j) 91(x, 1) = go(2, 1) and

(U3) 911, y) = g2(1,9)
in the points (z,y) of continuity. Then (499) implies

/01 /01 g1(z,y)d.dy F(z,y) = /01 /Olgz(x,y)dwdyF(g;’y). (501)

Now, we define F(z,y) as

(502)

0 otherwise.

F(zx,y) = {1 if (z,y) € [z, 22] X [y1, 4],
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Note that the function F'(x,y) is not continuous, but its little change gives
a continuous function. For F'(x,y) defined by (501) we have

(LA F@,9)] 0 = L [ded, Flz,)] ,, o =1,

[dedy F(2,9)] ), oy = — 1 [dady F (2, )] — 1.

(w2,y1)
This implies by (501)
gi(w1,y1) + g1(22,y2) — 91(21,92) — g1(z1,41)
= 92(1‘1791) + 92(%,?92) - 92(951, yz) - 92@17 yl) (503>

for arbitrary (z1,y;) and (z2,y2) in [0,1)2. Putting (z1,y1) = (z,y) and
(x2,91) = (1,1) the (503) implies

91(x,y) = g2(, y)
for (z,y) € [0, 1]% O

Theorem 198. Let (z1,y1) and (x2,y2) be any points in [0,1]* and g(z,y)
be a d.f. Then

19(x2,y2) — g(z1, )| < |g(x2, 1) — g(@1, V)] + |g(1,92) — g(L,y1)|  (504)

Proof. R.B. Nelson [114, p.7]: From the triangle inequality

19(2,92) — g(z1,y1)| < [g(22,92) — g(21,92)| + [9(21, ¥2) — g(@1, 91)|-

If 21 < @9, then g(z2,92) — g(z1,y1) < g(22,1) — g(21,1). An analogous
inequality holds when x5 < x7. Thus

|9(z2, y2) — g1, y1)| < [g(w2,1) — g(21,1)].

Similarly for any y, yo. O

Theorem 199. Every two-dimensional d.f. g(x,y) satisfies

g9(z,y) < min(g(z,Ya) + g(X1,y) — 9(X1,Y2), 9(z, Y1) + 9(X2,y) — 9(X2, Y1),
(505)

9(x,y) > max(g(x,Ys) + g(Xz,y) — 9(X2,Y2), g(x, Y1) + 9(X1,y) — 9(X1, 1))

(506)
for every (x,y) € [ X1, Xa] x [Y1,Ya].

Proof. Schematically, for minimum
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(X1,Y2)  (2,Y2) (X2,Y2)

(X1, 9@ EE(XZ’y)

n d
(X1,Y1)  (z,Y1) (X2, Y1)

Here, if in point (u,v) we have add @ or © then in g(x,y) we add +g(u,v)
or —g(u,v), respectively.
Schematically for maximum

(X1,Y2)  (z,Y2) (X2,Y2)

D g
(th)@ ) @(Xa,y)
© d@
(X1,Y1)  (2,Y1) (X2, Y1)

7.2 The multidimensional d.f.s

Let x = (21,...,25), z; € [0,1), i =1,...,s and x,, = (T 1,...,Tns) € R,
n=12...
e Define the s—dimensional step d.f. Fy(x) of the sequence x,, as

(i) Fn(x) = +#{n < N;{zp1} € [0,71),..., {xns} € [0,24)},

N

(
(ii) Fn(x) = 0 for every x having a vanishing coordinate,
(

(iV FN(L---;17%‘171,---,1,%2717---,1,%1,1---,1) = FN(%N%’@‘Q,---,»’UQ)
for every restricted I-dimensional face sequence (%, ;,, T igs - - - s Tny,) Of
x, forl =1,2,...,s.
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Then
o If f:]0,1]® — R is continuous, again

N
%; Foxamod )= [ f9aFy(x)

Definition 13. An s-dimensional function g : [0, 1]* — [0, 1] is d.f. if

(1) g(1) =1,

(ii) ¢g(0) =0, and also g(x) = 0 for every x with a vanishing coordinate,
(iii) g(x) is non—decreasing, i.e.

Z Z 1)ttty g)’.“’ 28)) 0 (507)

E1= 1 8571

for every interval J = [2{", 28] x [, 28] x -+ x [2{7, 28] < [0, 1)*.

(iv) For every [ =1,2,...,s — 1 the [-dimensional marginal d.f.
g(1,.. . L a1, 00 Lag,, 1, .. Loy, 1...,1) of g in variables
([Eil,ZEiQ, ce ,J/’Z’Z) S (0, 1)1, is d.f.

e The differential dg(x) of g(x) at the point x = (xy,...,z,) is defined by
dg(x) = A(g, J), where J = [z, 21 + day] X -+ X |25, x5 + dzg, and g(x) is
non—decreasing if and only if dg(x) > 0 for every x € [0,1)".

Example 83. Putting F(xy,zo,...,75) = max(zy,Ta,...,Ts), T1 = -+ =
rs = x, then we have

dF(z,...,z) = (-1 1+1+ +1x+2 Z 51+ +ss (z + dz)

e1=1 es=1

(e1,...,85) #(1,...,1)

N
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o If g is an s-dimensional d.f. then f[o s dg(x) = 1.
e We shall identify two d.f.s g(x) and g(x) if:

(i) g(x) = g(x) at every common point x € (0, 1)® of continuity, and

(i) g(1,..., L@y, 1, Ly, 1oy L, 100 1) =
=31, L, 1. Ly, 1 L, 1. 1)
at every common point (z;,, %, ..., x;) € (0,1)! of continuity in every
[-dimensional marginal d.f. of gand g, [ =1,2,...,s — 1.

e The s—dimensional d.f. g(x) is a d.f. of the sequence x,, mod 1 if

(i) g(x) = limy_ Fi, (x) for all continuity points x € (0,1)° of g (the
so—called weak limit) and,

(i) g(1,...,,xs, 1, o0 Loy, 1, oo Lo, 100 1) =
= hmk—)oo FNk (mila Ligy - axil)

weakly over (0,1)! and every I-dimensional marginal sequence of x,, for

l=1,2,...,5s—1, and for a suitable sequence of indices N; < Ny < ....
e The Second Helly theorem (see Theorem 2) shows that the weak limit*®
Fn, (x) — g(x) implies

(x)dFy, (x) = f(x)dg(x)
0.1)° 0,1)¢

for every continuous f : [0,1]* — R.
e (G(x, mod 1) is the set of all d.f.s of x,, mod 1.

Theorem 200. G(x, mod 1) is again a non—empty, closed and connected
set, and either it is a singleton or it has infinitely many elements.

Proof can be found in R. Winkler (1997) (cf. [194, p. 1-9]). Note that
the connection is in the weak topology on which is metrizable by the metric

1/2

ilon0) = ([ 0~ ga0ax)

SSthat is (i), and (ii) above are fulfilled
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7.3 L? discrepancies

The following discrepancies are known, see [92, Chap. 2], [38, Chap. 1] and
172, p. 1-40, 1.9; p. 1-71, 1.11.4].

For sequences z,, € [0,1), n = 1,2,..., 4y, € [0,1), n = 1,2,..., 2, €
0,1), n =1,2,..., (Tp,yn), n = 1,2,..., and (Zn, Yn, 2n), n = 1,2,... we
denote

F](Vl)(x) - the step d.f. of the sequence x,, n =1,2,...;

F](\,Z)(y) - the step d.f. of the sequence y,, n =1,2,....

FJ(VS)(Z) - the step d.f. of the sequence z,, n=1,2,....

Fn(z,y) - the step d.f. of the sequence (x,,y,), n=1,2,...;

Fn(z,y,z) - the step d.f. of the sequence (x,, yn,2,), n =1,2,...;
We use the following L? discrepancies:

(i) fol(F](Vl)(m) — z)?dx - the L?-discrepancy of xy, ..., xy;

(ii) fol fol(FN(x, y)—zy)?dedy - the L? discrepancy of (z1,y1),. - -, (Tn5, yn);

(iii) fol fol fol(FN([E, Yy, 2)—zyz)?dedydz - the L? discrepancy of (1, y1, 21),- - -
(TN, YN 2N );

(iv) fol fol(FN(:zr, y)— F(2)F? (y))2dzdy - the L? discrepancy of statis-

tical independence of x1,...,zy and yy,...,yN-
(v) fol fol fOI(FN(x, Y, 2)— F](\,l)(x)F](VQ) (y)F](\?)(z))dedydz - the L? discrep-
ancy of statistical independence of x1,..., N, y1,...,yn, and z1,..., 2N.
(vi) fol fol fol(FN(a:, y,2) — Fy(z,y)FP(2))2dzdydz - the L? discrepancy
of statistical independence of (z1,41) ..., (zN,yn) and z1, ..., 2x.

Every L? discrepancy can be expressed as arithmetic mean of relevant func-
tions, see [159]. In the cases (i)—(iv) we use
1 1—a% 1—y?

2 = - -

+ (1 — max(z,y)); (508)

Fo((2,), (u,0)) = (1)2_ l-2’1—y* 1-uw’1-2

3 2 2 9 9

+ (1 — max(x,u))(1 — max(y,v)); (509) |eq310
1\* 1—221—9%1—-22 1—u?l1—0v%1—w?

F —(Z) = _

0((x7y7 2)7(u7v7w)) ( ) 2 2 2 2 2 2

3
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+ (1 — max(z,u))(1 — max(y,v))(1 — max(z,w)); (510)

Fi((2,9), (u,0), (5,1), (2,0)) = (1 = max(z, u))(1 - max(y, v))
+ (1 — max(z, s))(1 — max(v,w)) — 2(1 — max(x, s))(1 — max(y, w)).

511)

We have
1 1 N
0) [ (FP) = afde = 55 3 Fulana) =
m,n=1

//Foxy dFy ():

(i / / Fiv(,) — ay)*dady = — LS B i) (o) =

ni

////FO z,y), (u,v))dFx(z,y)dFy(u,v);
1,1 gl
111/// Fn(z,y,z) — xyz) 2dzdydz =

- Z Fo((Zm, Yms Zm) s (T Yy 20)) =

mnl

-, 1/ Iy 1/ l/ 1/ ). o) 5.2 00

(iv // (Fy(z,y) (z)F (y))*dady

— Z Fi(m, Ym)s (Tn, Yn), (@, Yr), (2, m0)) =

/l/l/l/l/l/l/l/va (23100 e
d(Fy(z,y) — F () FY (1) d(F (u, v) - F“( VED ().

From (i)—(iv), Helly and Lebesgue theorems imply

0 | () — )de = / 1 / By )y ()da(y)
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(i / / — ay)dady =

- / / / / Fil(,y), (. v))dg(z, »)dg(u, v);

(i) /0 1 /O 1 /0 (. 2) — ayePdrdyds —

= /01/01/01/01/01/01 Fo((z,y, 2), (u,v,w))dg(x,y, z)dg(u, v, w);

(iv) / / (9(z.y) — g(z, 1)g(1,))*dady

////////Fw (0 5 00

y) — gz, 1)g(1,y)d(g(u, v) — g(u, 1)g(1,v)),

for arbitrary d.f.s g(x), g(x,y) and g(z,y, 2).
Similarly, we can compute L? discrepancy of statistical independence of
coordinate sequences of (Z,, Yn,2n), n =1,2,..., N, i.e.,

) [ ][ e - R @R 0 PR ()P drdya

We apply the method described in (29) and (30) from [159, Th. 3|: Denote
the set X, .1 C [0,1]?

Xppms = 1(2,9,2) € [0, 1% (X, Y, 2) € [0,2) x [0,y) x [0,2)}

and cx(z,v, 2) is the characteristic function of X C [0, 1]*. Then

2
/// (NZCXMna:y, Z CX i (T, Y, 2 )) dzdydz

m,n,k=1
1 N
N2 E |Xnnn N Xn n'n’ | + E |Xm,n,k N Xm’,n’,k’|
n,n’=1 m,n,k,m’,n/,k’zl
9 N
- m E |Xm,m,m N Xm’,n’,k’|'

m,m’ n' k'=1
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Because

| X N X | = (1 — max(xy,, Tpy) ) (1 — max(yp, yn)) (1 — max(2y, 25/))
- (]' - max(x, ZE/))<]. - max(y, yl))(l - max(z, Z/>>dFN<I7 Y, Z)dFN<I/7 yla Z/)

for (z,y,2) = (Tm, Yn, 2), (&', Y,2") = (T, Ynr, 21 ), We have

/ 1 / 1 / (B, 2) — FIO ()P () F () Pdadyds — (512)

/01/01/01/01/01/01(1—max(x,u))(l—max(yaU»(l_maX(z’w))'

(513)
~d(Fn(z,y.2) — FY (@) FY () FY (2))d(Fy (w, v, w) — P (W) FY (0) FY (w)

(511) [eateo

which gives (v). Proof of (vi) is similar. Note that using, for the left hand
side of (514), the Lebesgue theorem of dominant convergence and in the right
the Helly second theorem we find that for every d.f. g(z,y, 2), g1(x), 92(y),
g3(2) we have

/1 /1 /l(g@y?z) — g1(2)g2(y)g3(2))*dadydz =
/ / A / / / (1~ s )L ()1~ ()

g(x,y, 2 92(¥)93(2))d(g(u, v, w) — g1 (u)ga(v)gs(w)),

and also similarly

/// 9(x,y,2) — g1 (2,y, 2))*dedydz =
////// (1 — max(x,u))(1 — max(y,v))(1 — max(z, w))-

9(w,9,2) — g (2., 2))d(glu, v, w) — gy (v, w)). (515)

This gives the following generalization
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7.4 Multidimensional generalization of L? discrepancy
For x = (z1,...,zs) and y = (y1, ..., ys) denote

(1 —max(x,y)) = (1 — max(z1,y1)) ... (1 — max(zs,ys)) (516)

and 0 = (0,...,0) and 1 = (1,...,1). Using [159] the (515) can be general-
ized to

/0 (91 (%)—g2(x))?dx = / / (1—max(x, ¥))d(g1 () —g2(x))d (g2 (¥) —2(¥))
o1

directly, for every two d.f.s g;(x) and go(x) defined i [0,1]*. Now, divide
the vector x = (x1,...,x,) into two face vectors x!) = (z;,,..., ;) and
x? = (zj,,...,7;), | + k = 5. Similarly divide

the s-dimensional sequence x,,, n = 1,2,... in [0, 1)® with step d.f.
Frn(x) = Fx(x®,x®)) into two face sequences

I-dimensional x” ,n=1,2,..., with step d.f. Fy(x,1), and

k-dimensional X,(l) n=1,2,..., with step d.f. Fy(1,x®).
Using (517) we see that the L? discrepancy (with respect to g(x)) and the
statistical L? discrepancy have the following similar structures

| Pt = gl (518)
/ / (1 — max(x, y))d(Fx (x) - gx))d(Fx(y) — g(y)),  (519)

/0 () = s ) F (L x)ax = [ [0 = o))
X, 1) (L x®)d(F(y) — Ful(y, 1) Fy(L.y®)) =

//// (1 — max(x, y™M))(1 — max(x®, y®))).

x, x¥) = Fy(xV,1,) Fy(1,x%))-
'd(FN<y< >,y< ’) —~ Fy(y" >, 1)Fx(1,y®)). (520)

Expressing L? discrepancy (519) as
1

| (B = gtax =
0
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+ (Fv(x",1) — g(x™, 1)) Fy(1,x®

)
+9(x, 1) (P (1,x2) — g(1,x%)) +
2
+ (g0, 1)g(1,x) — g(xV, x®)) | dxx

_|_

/ / { (Fn(xW,x®) — Fy(x™, 1) Fx(1,x@))+
(x
)

the Cauchy inequality implies

¢ [0 = st <

\// / FN x(@)) — Fy(xM 1) Fy(1,x( )) dxMdx®)

+ \// / (g(x(l), x(@)) — g(xM 1)g(1, X(Z)))2dx(1)dx(2)
0 0
1 ) 1
+ / (Fnv(x™,1) — g(x(1),1)) dx(l)/ F2(1,x®)dx®+
0 0

1 1
4 / Fa(1,x2) — g(1, x))2dx® / 20, 1)dx1).  (521) [eqi63
[ o |

Thus in (521) we have an upper bound of the classical L? discrepancy (519)

of X1,...,Xy which contains the L? discrepancy of statistical independence

of partial sequences Xgl), .. Xg\l,) and x(2) ...,XE\Q,). Note that the infinite

partial sequences XS), n =12 ..., and Xn), n = 1,2,... of the sequence
Xn, n = 1,2,... are statistically independent if and only if for every d.f.

g(x) € G(x,) we have

9(x) = g(xV,1) - g(1,x?) (522)

in common points of continuity od d.f.s. It can be used as a definition of
independence, cf. [172, p. 1-17, 1.8.9].

By the formula (519) the s—dimensional L? discrepancy of Xy, ..., Xy in
[0,1)%, where x,, = (Zp1,...,Tns) can be expressed in the form

/OI(FN(X) — 21T ... 2g)2dx =
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N s

N s
= 31 + % > T = max(a,,;, 20,) — ﬁ S IJa-a2).

m,n=1 j=1 n=1 j=1

This formula can be found in T.T. Warnock (1972) (see [172, p. 1-71]).

7.5 A.d.f. of (Tn, Tuiky, Trihys - Tnika )

In Section 8.10.1 we have proved that two, three end four-dimensional van
der Corput shifted sequences have an a.d.f. It would be appropriate to prove
the following theorem.

Theorem 201. Let z,, n = 1,2,..., be a u.d. sequence in [0,1) and let
ki, ko, ..., ks_1 be the increasing sequence of nonnegative integers. Then the

sequence

Xn = (Tny Tntkys Tntkgs - s Tndha_y)y T =1,2,... (523)
has in some cases an a.d.f., e.g. G(x,) is singleton.
Proposal. We are starting with

Xn = (:Ena Tn+1) Lnt+2s - - - al‘n—&-s—l)a n= 17 2a s (524)

and let Fiy(x) be the step d.f. of (524). Insert it to (517), then

/0 (Far(x) — Fy(x))2dx

M

:/0 /0 (1 —max(x,y))d(Fu(x) — Fy(x))d(Fum(y) — Fn(y))
1 Z (1 — max (X, X,))

1
N2

m,n:l m,n=1
M N
MN Z Z 1 — max (X, Xn))- (525)
m=1n=1
Expressing 1 — max(x,,, X,) by (516) we find (525) as
1
el Z (1 — max(Tm, z,)) .- (1 — max(Tpys—1, Tnas_1))
m,n=1
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1
+ N2 Z (1 — max(Tm, zp)) ... (1 — max(Tmis—1, Tnis—1))
m,n:l
- 2— Z (1 — max(Ty,, z,)) ... (1 — max(Tpmys—1, Tnts—1)). (526)
=1 n=1
Now, the sequence z,, n = 1,2,..., has an a.d.f. if and only if the limit
M,N,— oo of
1 < 1 &
e > (1= max(wy, za)) + e > (1= max(zm, 2,))
m,n=1 m,n=1
| MoN
— 2— Z Z (1 — max(zy,, z,)) (527)
m:l n=1

tends to zero. In some cases (526) is bounded by (527), then (525) tend to
zero. [

Generally Theorem 201 not holds for all u.d. z,,. In the following we give
u.d. sequence z, such that (z,, z,+1) not have an a.d.f.

Example 84. Let n=1,2,...

Let (2, yn) by two-dimensional sequence in [0, 1)2.

Assume that G(x,,y,) coincide with the set of all copulas. Thus z,, and
Yn are u.d.

The sequence x1, y1, T2, Y2, T3, Y3, T4, Y4, . . . We denote as z,, n =1,2,...

The two-dimensional sequence (zy, z,+1) can be divided on two subse-
quences

(T, Yn), and

(Yn, Tnt1). We have

A(n < 2N; (2n, 2nt1) € [0,2) x [0,9))

o (528)

_ A(n < Ni; (wn, yn) € 0,2) x [0,9))

- N (529)
A(n < Ni; (Yn, Tng1) € [0,2) X [0,5))

n o . (530)

Assume that as & — oo
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(528) tends to g(z,y),

(529) tens to (1/2)g:(x,y),

(530) tens to (1/2)g:(x,y).
Then we find

Here g;(z,y) is an arbitrary copula. The equation (531) not holds for fixed
g(x,y) since we can find g¢(x,y) such that

g(z,y) +9(x,y) — g:i(z,y) (532)

is not a copula. This (532) can be proved by using one-dimensional d.f.

Notes 42. Let 8 be a PV-number. Using S-adic expansion of n the authors [98] define
Monna map ¢g(n) and they study the s-dimensional sequence

(dp(kn +11),.. ., da(kn +74))n=1,2,... (533)

Assuming that the sequence of integers k,, n = 1,2, ... is Hartman uniformly distributed
and LP-good universal for a p € [1, 00|, the authors prove that the sequence (533) has an
a.d.f. (Also see Section 11.7.)

7.6 Computation of integrals by d.f.s

In Riemann-Siltjes integral the integration by parts can be used, see:

Theorem 202. For every continuous F(xz,y) and arbitrary d.f. g(x,y) we
have

// (e, u)dod g y) = F(LL1) — / o(1,5)d, F (1, )

—/ g(z,1)d, F(z,1) // (z,y)d.d, F(x,y). (534) [eq54]

Proof. Integration by parts

// :z:yddyg(fﬂy)
:{/OF( ,y)dyg:ty] // dyg(z,y)do F(z,y)
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:/OlF(l,y)dyg(l,y)—/ol /01 dyg(z,y)d F'(z,y)

Z[F(l,y)g(l,y)]izé—/o 9(L,y)d, F(1,y)

- e, P, w [ [ swnaarey,

Here we use ¢(0,y) = g(z,0) = 0 for every z,y € [0, 1]. O

Notes 43. Main part in the above proof is integration by parts

1 1
Jo f(@)dg(z) = [f(2)g(2)]5 — [, 9(x)df(z)
It holds for every Riemann-Stieltjes integrable functions f(x), g(x), which not have com-

mon points od discontinuity.

Example 85. Put F(z,y) = 2*y®, g(x,y) = zy. Then (534) has the form

1,1 1 1 1,1
/ / 2y dedy = 1 —/ xdz® —/ ydy” —I—/ / dxdyxo‘yﬁ
o Jo 0 0 0o Jo

which gives

11 a 3 11
—=1- — +af
18+1 a+1l p[f+1 a+18+1

what is true.
Repeating (534) we can find:

Theorem 203. For every continuous F(x,y,u,v) and any d.f. g(z,y) we
have

fo fo fo fo :Uy,uvddyg(:c y)da dvg(u v) =
F(1,1,1,1) — [Lg(1,0)d, F(1,1,1,0) — [} g(u, 1)duF(1,1,u,1)
+f0f0 (u,v)d,dy F (1,1, u, v)

—fo (1 y )d, F 1Ly, 1,1) +f0 fo v)g(1,v)d,d, F(1,y,1,v)
+f0 fo g(u, 1)d,d, F(1,y,u, 1)

fo fo fo uv)dddF(l y,u U)
—fo r,1) d F :z:,l,l,l —i—fo fo )9(1,v)d,d, F(x,1,1,v)
+f0 fo g(u, 1)d d.F(z,1,u, 1)

fo fo fo g(u,v)dydd, Fz,1,u,v)
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—I—fo fo xyddF(x y,1,1)

_fofofo g(1,v)d,d,d, F(z,y,1,v)
fofofo U1)dddF(fE?J7U1)
+fofofofo )g(u, v)dy,d,dyd, F (7, y,u,v).

Theorem 204. For every continuous F(x,y,z) defined on [0,1]* and any
3-dimensional d.f. g(x,y,z) we have

fo fo fo (x,y, 2)d,dyd.g(z,y, 2) = F(1,1,1)

—fo (1,1,2)d.F(1,1,2)— [, g(1,y, )d, F(1,y, 1)~ [} g(z,1,1)d, F(z,1,1)
+f0f0 (Ly, 2)dyd-F(1,y, 2 +f0f0 x,l,zddF(x,l,z)

+Jo Jo 90wy, Ddady Fa,y,1) = [3 [y fy 9(2,, 2)dedydo F (2, y, 2).

Theorem 205. Assume that F(x,y, z,u) is a continuous in [0, 1]* and g(z,y, z,u)
1 a 4-dimensional d.f. Then

1 1 p1 gl
/ / / / F(z,y, z,u)d,dyd,dyg(z,y, z,u) = F(1,1,1,1)
o Jo Jo Jo

1 1
_/ g(xvlala]-)d:cF<x717171)_/ g(Lyalal)dyF(layal?l)
0 0

[y

Q

1
(1,1,2,1)sz(1,1,z,1)—/ g(1,1,1,uw)d, F(1,1,1,u)
0

—
—

+

1 1
g9(z,y,1,1)d,dy F(x,y,1,1) + / / g(x, 1,2z, )d,d, F(z,1,2,1)
o Jo

1 1

+

1,1
g(l,y,z,l)dysz(l,y,z,l)+/ / g(x, 1,1, u)d,d, F(z,1,1,u)

_l_

N:\N%o\o\c\%

g(l y, 1L, u)d,d, F(1,y,1,u) / / (1,1, z,u)d, d, F (1,1, z,u)
/g:cy,zldddF(xy,z 1)

/gly,zudddF(ly,zu)

—_
=]

o\o\o\c\c\ﬁc\

11
/ g(x, 1, z,u)d,d,d, F(z, 1, z,u)

o

1 1
/ g(z,y, 1, u)d,dyd, F(z,y, 1, u)
0
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1 1 1 1
+ / / / / g(z,y, z,u)d,dyd.d, F(z,y, z,u).
0 0 0 0

Theorem 206. Let F' : [0,1] — R and Q : [0,1]° — [0,1] be continuous

functions. Then

1
/ F(Q(uy,ug, ..., us))duidusy . .. dus = / F(z)dg(x),
[0,1]° 0

where g(x) is the a.d.f. of the sequence Q(Tpy, Tnyy -« Tn,)s N1, N2y v oy Mg =
1,2,..., where x,,, n =1,2,..., is u.d. in [0,1] and s-dimensional sequence
(Tnys Ty - -y Tpy) 18 ordered such that (Tpy, Tpyy .. Tp,), N1,N2, ... N =

1,2,..., N formed first N° terms.

Proof. By generalized Weyl’s limit relation

N

1
Nz > F(Q(xnl,...,a:ns)):/ F(Q(uy, ... uy))du . .. dug

0,1]s

lim
N—o0

Niseey Ns [

- /0 l F(2)dg(z).

In another direction, define

A
C
1—|u—v| B

0 lu—vl 1
Figure: Division of [0, 1]2.

347



and

( if (z,y) € A,
y— A —lu—v]) if(z,y) € B,
x+y—1 if (x,y) € C,
o, y) = 535) [eql53
guo(2:Y) 0 if (z,y) € D, ( )
T —|u—vl if (z,y) € E,
LY if (z,y) € F.

Then we have

Theorem 207. Let K(x,y) be continued function defined on [0,1]>. Then
for every (u,v) € [0,1]* we have

| Etur o= [ [ Kepdag e 63)

Proof. For the sequence (u + z,,v + z,) mod 1, z,, n = 1,2,..., 2z, is u.d.
we denote a.d.f. as g,.(z,y). Then

lim lX:K({u+zn,v+zn}):/0 K{u+ 2z}, {v+z})dz

N%ooN
1 1
= / / K(z,y)ddyguy(z,y).  (537)
0 0

By Weyl’s limit relation (537) implies (710). In the following, for g, ,(x,y),
we prove (535).
Let 0 <u <wv <1 be fixed and z,y € [0, 1] be variables and define
hy(x) = xu mod 1, h,(y) = yv mod 1. Then
Gunl,y) = 1 (0,2)) (1 Ay (0, )]
Using the following graphs of h,(z)
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T
u
T
0 z—ul—-u l—u+z 1
Figure: The graph of h,(z).
then we see
1—u,1— if x <
0 R A S S
0,2 —u]U[l —u,1] ifu<uz.
Hence
Gun(T,Y)
I—u,l—u+az]N[l—v,1—v+y]| if v <wu,y <o,
)t =ul—u+a]n([0,y —v] Ul —v,1])| ite <wu,y >,
(0,2 =) Ul —u, 1) N[L —v,1—v+y]| if x >u,y <w,
(0,2 =] Ul =, 1)) N ([0,y —v] Ul —v,1])| if x> u,y>v.

(539

Now we using minimum and maximum formula for the length of intersection
of two intervals [, 5] and [y, J]

Ha,ﬁ] N[y, (5]’ = max (min(ﬂ, 0) — max(a, ), O). (540)

Insert (540) into (539) we see
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Gun(T,Y)

max(min(y,:z:—u—l—v),O) if v <w,y <w,

B max(min(x,y —v—1 +u),0) +max(v —u+z,0) ifx <wu,y>wv,

B Y ifx>u,y<w,

min(z —u +v,y) + max(y —v — 1+ u,0) it v >u,y >,
(541)

which implies (535). ]

Note that g, ,(x,y) is a copula.

8 Copulas

We denote by G . the set of all d.f.s g(x) on [0, 1]* for which all k-dimensional
marginal (i.e. face) d.f.s satisfy

gL, o Ly oo Lo, Lo L, 1, ) = o
For k =1, these d.f.s are called copulas, which were introduced by M. Sklar
(1959)[149]. Basic properties of copulas can be found in monographs R.B. Nelsen
(1999) [114], N. Balakrishnan and Chin-Diew Lai [6], and in Proccedings of
EDS: P. Jaworski, F. Durante, W. Hérdle and T. Rychlik [80].

Let
Xn = (xn,lv Tn,2y - -+ 71:7178)7 n = 17 2a ceey

be an infinite s-dimensional sequence in the unit cube [0,1)°. We assume

that, for fixed k < s, all k-dimensional marginal sequences (2, .., Tni,)
are uniformly distributed (abbreviating u.d.) We introduce the following two
problems:

(I) If x,, is not u.d., find all possible d.f.s of x,,.

(IT) Find some (possible "minimal”) criterions which imply u.d. of the origi-
nal sequence x,,, n = 1,2, .... Toillustrate (II) we give the following non-u.d.
sequence:

Example 86. Let 0 be an algebraic number of the degree s such that for
its minimal polynomial p(x) = >_;_, a;a’ we have a; # 0 for i = 0,1,...,s.
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Define the sequence x, = (Tn1,...,%Tns), n = 1,2,..., with coordinate se-
quences z,; = nf*mod 1, i = 1,2,...,s. Applying the well-known Kro-
necker theorem (cf. [DT, p. 15, Coroll. 1.20], [SP, p. 3-9, 3.4.1]) all marginal
sequences with dimensions £k =1,2,...,s — 1 are u.d. but x,, is not.

Figure 2: Graph of ¢g(x,y) = min(x, y)

8.1 The set of s-dimensional copulas G

Theorem 208 (Frécet-Hoeffding copula bounds). For any copula g(x1,. .., xs) €
Gs1 and any (1,...,zs) € [0,1]° the following bounds hold:

max(1l — s+ Z z;,0) < g(xq,...,25) < min(xy, ..., ). (542)
i=1

Here min(zy,...,z,) is always a copula. The lower bound is a copula
only in two dimensions. It is only point-wise sharp, in the sense that for
fixed (uq, ..., us) there exists a copula g(x1, ..., z4) such that g(uy, ..., us) =
max(l — s+ > 7 u;,0), see [81] and [28].

Theorem 209 (Sklar’s theorem). A multivariete d.f. g(xq,. .., xs) with marginals
gi(z;) =g(1,...,1,x;,1,...,1) can be written as

g(x1, ... xs) = c(gi(x1),. .., 9s(xs)), (543)
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sse7

Figure 3: Graph of g(z,y) = zy

where c(x1,...,xs) is a copula. This copula is defined unique, assuming that
the marginals g; are continuous.

This theorem provides the theoretical foundation for the application of
copulas.

8.2 Dimension s = 2

As we denoted in Section 8, Gg; is the set of all two-dimensional d.f.s
g(z,y) defined on [0,1]* such that their marginal d.f.s satisfy g(x,1) = x
and ¢(1,y) = y. Telegraphically, to illustrate Go; we give copulas:

(z,y
(z,9)
g93(x,y) = max(z +y — 1,0),
(z,y) = (min(z, y))? (zy)' ¢, where 0 € [0, 1] (Cuadras-Augé family, cf.
(114, p. 12, Ex. 2.5]),

ga(@,y) = ;5 (see [114, p. 19, 2.3.4]),

gx,y) =x4+y—1+g(l —a,1—y) for every g(z,y) € Go1 (Survival
copula, see [114, p. 28, 2.6.1]),

Somin(x,y) < j% for every = > 0,y > 0.
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Figure 4: Graph of g(z,y) = max(z +y — 1,0)

g5(z,y) = min(ya(x), zb(y)), where a(0) = b(0) =0, a(1) = b(1) = 1 and
a(x)/z, b(y)/y are both decreasing on (0, 1] (Marshall copula, cf. [114, p. 51,
Exerc. 3.3]).

8.3 Basic properties of Gy

There are some basic properties of Gy :

(I) Ga, is closed under pointwise limit and convex linear combinations.

(IT) For every g(x,y) € G2 and every (z1,v1), (T2, y2) € [0,1]* we have

|9(2,92) — g(@1, y1)| < |22 — 1] + [y2 — wal.

L.e. every copula is uniformly continuous, c.f. [115, p. 9]. Furthermore, The
horizontal, vertical and diagonal sections of copula are all nondecreasing and
uniformly continuous on [0, 1], see [115, p. 9, Cor.2.26].

(ITI) For every g(x,y) € Ga1

g3(z,y) = max(z +y — 1,0) < g(z,y) < min(x,y) = ga(x,y) (Fréchet-
Hoeffding bounds [114, p. 9]).

(IV) M. Sklar (1959) proved that for every d.f. g(z,y) on [0,1]* there
exists c¢(x,y) € Go, such that g(x,y) = c(g(x,1),9(1,y)) for every (z,y) €
0, 1]%. If g(z, 1) and ¢(1,y) are continuous, then ¢(z, y) is defined unique (cf.
(114, p. 15, Th. 2.3.3] and for multidimensional case see Theorem 209).

(V) For d.f. g(z,y) denote the marginal g,(x) = g(z,1) and g¢2(y) =
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g(1,y) and by Sklar g(z,y) = ¢(g1(x),92(y)). Then for every continuous
F(z,y) we have

/01 /01 F(z,y)dg(x,y) = /01 /01 F(g (@), ¢SV ())de(z, v), (544)

see M. Hofer and M.R. Taco [75].
Here are some new copulas:
(VI) gs(z,y) = % min(zy, x2o, yzo) for fixed zp, 0 < 2o < 1.

(VII) g7(x,y) = Zoluo min(zy 2o, TYUo, T2oUo, Y2oUo) for fixed 2y, uy € (0, 1]%.
In Definition 14 is a copula called shuffle of M. Here we give the following
generalization:

(VIII) Let f:[0,1] — [0,1] be a function and denote

graph f = {(=, f(x));z € [0,1]}.

Then
Coraphs (7, y) = |Project, (graph f N [0,2] x [0,y))] (545)

is a copula if and only if the function f preserve the Lebesgue measure (called
measure preserving)

In the books [6] and [80] copulas are studied in the position d.f.s of ran-
dom variables. In the following we apply some parts of uniform distribution
theory.

(IX) Let f; and fo be measure preserving functions [0,1] — [0,1] (cf.
Section 12.3). Then

Cf17f2($7y) = ‘fl_l[oax] N f{l[oay]l (546)

is a copula. Furthermore, for every copula c¢(z,y) there exist measure pre-
serving fi, fo such that c(z,y) = ¢, 1, (2, y).
(X) If ¢ is a measure preserving function, then

Cf1,f2 (m,y) = Cf10¢,f20¢(xvy)' (547>

(XI) Examples:
¢t f(x,y) = min(z,y) for arbitrary measure preserving f.

Cgraphf(xay) = cflvf(l‘ay) if fl(x) =T.
thfz(x»y) = min(x +y+ 170) if fl('x) =z and f2($) =1-ux
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(XID) If (2, yn), n = 1,2,..., is u.d. sequence in [0,1)* and fi, f are
u.d.p. functions, then the sequence (fi(z,), f2(yn)), n = 1,2,..., has a.d.f.
the copula ¢y, 1, (z,y).

(XIII) A copula c is called Archimedean if it admits the representation

c(xy,...,x5) = v o) + -+ xy)), (548)

where the kth derivatives of generator (z) satisfy (—1)%®)(z) > 0 for all
x>0and k = 0,1,...,5 — 2 and (—1)*2~?(z) is nonincreasing and
convex. In the following are the most popular ones:

(a) =Lt € (0,1) Ali-Mikhail-Haq;

t?

(b) (14 tx)~Yt t € (0,00) Clayton;
(c) et € [1,00) Gumbel;
(d) 1 - ( —e )Vt t e [1,00) Joe.

8.4 Dimension s =3

Let G32 be the set of all three-dimensional d.f.s g(z,y, 2) defined on [0,1]3
such that their two-dimensional marginals (or faces) d.f.s satisty g(x,y,1) =
zy, 9(1,y,2) = yz and g(x, 1, z) = zz. E.g., the G35 contains

g1(2,y,2) = zyz,
gz(r y,z) = mln(:vy,xz yz),
g3(z,y,2) = — mm(xyz TYUg, T2U, Y2Uy), for fixed ug, 0 < ug < 1,

Example 87. Let g4(x,y, 2) be the a.d.f. of a three-dimensional sequence
(tn, U, {tn — v, }), where two-dimensional (u,,v,) is u.d. in [0, 1]%. Applying
Weyl’s criterion (cf. [38, p. 14], [172, p. 3—1]) we see that also (u,, {u, —v,})
and (v, {u, —v,}) are u.d., thus the marginal d.f.s are

94(1;952,$3) = Ta3, 94@1, 17$3) = X123, 94(%,9027 1) = X122.

The d.f. g4(z1, 22, x3) has the following explicit form: Divide the unit square
0,1]? into regions A, B,C, D, E, F,G, H, I as shown on the following Fig.
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i)

F
A
B
G
E
(0,z3) (1,23)
C H
p I
T
(0,0) (1 —x3,0) (1,0)
Then
(

T1T2, if (x1,29) € A,
—2(2% + 23 + 23) + 1122 + 2013, if (z1,29) € B,
—%x% + 7122, if (1, 29) € C,
%xg, if ($1,$2) € D,
ga(1, 02, 23) = § —323 + 2213, if (z1,22) € E,
—3T3 4 21Ty + Ty + Toxz — 21 — X3+ 3, if (21,22) € F,
%x%—i—xlxquxga:g—xl —x3—|—%, if (x1,29) € G,
(@ + 2 +af) + 2173 — 21 — 23+ 3, if (21, 22) € H,
\‘Tlxg + Tox3 — Tg if (.ZCl,.Z'Q) el

Proof. If (u,,v,) is u.d. in [0,1]?, then (u,, {v, —u,}) is also u.d. It follows
from Weyl criterion

eQﬁi((kl 7k:2)un+k21)n)

WE

1 & 1
~ Zezm(kluﬁm(kun)) - ~
n=1

n=1

and (ki, ko) # (0,0) <= (k1 — k2, k2) # (0,0). Another proof follows directly
from that

0<y—zx<zxs ify>u,

0<l+y—= ify < x.

{y—:z:}<x3<:>{
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Thus the set {(x,y) € [0,1)% {y — x} < x3} has the form

1 y=z+x3

T3 y=x—1+2x3

0 1 — X3 :.%‘1 1

which gives [{(z,y) € [0,1]%0 < x < x1,{y — 2} < 23}| = z173. The a.d.f.
ga(x1, 22, 23) is the Lebesgue measure

ga(1, 9, 23) = {(z,9,2) € [0, 110 <z < 21,0 <y < 29, {y — 2} < 23}].

We are investigate nine cases:

1 Yy=x+x3

(9517%2)

xg/ y=x—1+x;3

X

0 1-— I3 1
In this case g(z1, x9, x3) = x123, where z1 + 23 < xo.
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1 y=z+mxs3

(z1,22)
T3 y=z—1+z3

- 1 r

0 1 3
In this case g(z1, x9, x3) = —5 (2] + 23 + 23) + 2122 + To23, where 1 < x5 <
r1+2x3and 1 <1 — x3.

1 y=x+2x3
(w1, 22)
3 y=x—1+uz3
‘ | 1= 3 "
In this case g(z1,x2, x3) = —5x§+x2x3, where 2o < 11 < 1—23 and 23 < xo.
1 Yy=r+x3
Z3 (wlaxQ y:$—1+$3
' 0o, =23 17
In this case g(z1, x2, x3) = —5T7+ 2129, where 1 <y < wzand vy < 1—x3.
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1 y=x+ T3

(xlvx-)

T3 y=z—1+z3

0 Tz 1.7

In this case g(x1, 2, x3) = %+%xf—x1 — T3+ xox3+x123, where x5 < x5 < 24
and z; > 1 — x3.

1 y=z+ 3
(z1,x

T3 y=z—14+ux3

X

1 — I3 1
. . 1 1 2
In this case g(x1,29,23) = 5 — 1 — T3 + L1203 + 1103 + Tox3 — 57, wWhere
1 <x9 and z1 > 1 — x3.

1 y=x+x3

=zrz—-1+z
(z1,22)17 s

T

0 17.‘53 1
In this case g(z1, T2, x3) = 3+ 3 (21 + 23+ 23) — 21 — 23+ 125 where 15 < 73
and r; — 22 <1 — 23 < x3.
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1 y=x+ T3

=z —1+x:
(21, 22) Y i

xr
01 ].7.%3 1
= —x% where zo < z3 and 21 < 1 — z3.

In this case g(z1, 2, x3) 5

1 y=x+x3
T3 y=z—14+x3
4/@
£ x
0 1—903 1

In this case g(x1, %9, 23) = 2122 + X223 — T2 where x9 < 3 and 9 < 21 —
(1 - .173).
L]

G392 has the following properties:
e For every g(x,y, z) € G32 and fixed 29, 0 < 29 < 1 we have ig(:c,y, 29) €
Ga1. Vice versa, if g,(z,y), z € [0, 1] is a system of d.f.s in G5, such that

(i) g1(z,y) = zy;
(ii) for every 2’ < z, we have 2'd,d,g./(z,y) < 2d,d,g.(x,y) on [0, 1]?,

then g(z,y, z) = z¢.(z,y) € G32.

This directly follows from definition of G5, and G52 and that g(z,y, 2)
is non-decreasing on [0,1]3 if every (z1,y1,21), (T2, Y2, 22) € [0,1]3, 21 < o,
Y1 < Yo, 21 < 2y satisfies

(1, y1, 22) + (22, Y2, 22) — 9(w1, Y2, 22) — g(@2, Y1, 22)
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—(9($1,y1721) +g(x2,y2, Zl) - g(xly?/z, 21) - 9(9527?/17 21)) > 0.

8.5 Sequences (z,,y,) with both u.d. z, and y,

See also Section 3.10:

Let (n,9n), n = 1,2,..., be a sequence in [0,1)? such that both the
coordinate sequences x,, n = 1,2,..., and y,, n = 1,2,... are u.d. Then
the set G((x,,yy,)) of all d.f. of (z,,y,), n =1,2,... satisfies

(1) G((l‘n, yn)) - G2,1a
(ii) G((zn,yn)) is nonempty, closed and connected, and vice-versa

(iii) for every nonempty, closed and connected H C Ga;, there exists a
sequence (,,y,) € [0,1)? such that G((z,,y,)) = H.

This is a two-dimensional version of Theorem 2002W1th the metric

p(g1, 92) (fo Sy (g1, y) — gala, y))Qde’dy)
Directly, from the theory of L? discrepancies [159] in Section 7.3 it follows:

Theorem 210. Let (z,,yn), n = 1,2,..., be a sequence in [0,1)* such that
both the coordinate sequences x,, n =1,2,..., and y,, n =1,2,... are u.d.
Then the sequence (n,y,), n = 1,2,... is u.d. if and only if one of the
following conditions is satisfies:

(1) th—)oo # ngzl FO(($m7 ym); (xn7 yn)) = O;
(11) th—>OO ﬁ Z’r]X,n,kJ:l Fl((zmv ym)> (mm yn)v (xka yk)> (xla yl)) =0.

Applying [159, Th. 4] (cf. [172, p. 1-56, 1.10.9]) for searching G((xy, y»))
the following theorem can be used.

Theorem 211. Let (z,,y,), n=1,2,..., be a sequence in [0,1)? for which
both coordinate sequences x,, n=1,2,... and y,, n =1,2,... are u.d. Let
F(x,y,u,v,) be a continuous function defined on [0,1]* and assume that

N
1

m,n=1

Then every d.f. g(z,y) € G((zn,yn)) is a copula which satisfies the following
equation:
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fo fo u,v)d,d, F(1, 1, u,v)
—l—fo fo z,y)d.d, F(z,y,1,1)
fofofo uvydddF(l Y, U, )
—fo fo fo ,0)ad,d,d, F(x, 1, u,v)
fo fo fo z, y)vdydedy F(z, y,1,0)
_fofofo LY )udddF(xy,u 1)
LS 9, y)g(u, v)dydydody F o, y, u,v)
= —F(1,1,1,1) +f0 vd, F(1,1,1,v) +f0 ud, F(1,1,u,1)
+ Jy edo P, 1L,1,1) + [ yd, F(Ly, 1, 1)
—fol fol yod,d, F(1,y,1,v) — fol fol yud,d, F(1,y,u,1)
— [ [ 2vd,d F(2,1,1,0) — [i [ zud,d, F(z,1,u,1) = 0.
Proof. By Helly theorem
limy_ o < N7 Zmn VF (T, Yo Ty )

- fo fo fo fo 37 Y, U,V dg(x y)dg(u U) =0
for Fy, (z,y) — g(z,y). Next, for the 4-dimensional integral we use Theorem

203 and then apply that g(z,1) = x and g(1,y) = y. 57 ]

As an application we give the following example.

Example 88. Let p,, n =1,2,..., be the increasing sequence of all primes.
For the two-dimensional sequence

(Zny yn) = (ﬁ,l>, i=1,2,....n

Pn N

the coordinate sequences x, and y, are u.d., see [174] (cf. [172, p. 2-181,
2.19.16]). Using the well-known p,, = nlogn + o(nlogn) we have that
le=pii 1

n <= pnn 3

Putting F(z,y,u,v) = zyuv — l and applying Theorem 211 we find that

every d.f. g(z,y) € G((zn,Yn)) satlsﬁes

// a:yda:dy—

5TExtending one-dimensional additional assumptions of [S2, Lemma 4](cf. [SP, p. 1-56,
Th. 1.10.9.1]) to the two-dimensional sequence (z,,yn), n = 1,2,..., G((xn,yn)) it can
be characterized by Theorem 211.

OO
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thus the sequence (z,,y,), n=1,2,... is not u.d. in [0, 1)

Example 89. By Theorem 5 in [127] for z, = namod 1, n = 1,2,..
« irrational, we have

)

N-1
) 1
A D b =l = 20} 1 = (o) (549)
Proof. Applying d.f. Because

) {na} +{a}, if {na} +{a} <1,
{n Lo = {{n&} +{a} -1, if {na}+{a}>1, (550)

then every point ({na},{(n + 1)a}) lies on the line Y = X + {a} mod 1.
Using this and u.d. of {na} we can compute a.d.f. g(x,y) of the sequence
({na},{(n + 1)a}), n = 1,2,... by the following Figure and similarly to

(586).
B/ D
{a}
N E
F
U 1

Figure: Graph of the line Y = z + {a} mod 1.

If {o} > 1, then the copula g(z,y) has the form

(0, if (x,y) € A,
x, if (m,y) - B,
o}~y if (z,y) € C, v
D= Vo —yto—(—{ah), Hwyen,
z—(1—{a}), if (v,y) € E,
LY, if (x,y) € F
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and from it follows
0, if x € 0,1 —{a}],

gz, 2) = o — (1~ {a}) itrel—{ah{al, (55
r— 1 —A{a})+z—{a}, ifze[{a}1].

Then (552) and (572) implies (549), since

lim %;Hna}—«wl)aﬂ =12 [ glaa)da =2{a}(1 - {a})

Similarly for {a} < 3. O
Note that simplify (550) to

{na} +{a}, if {na} €10,1—{a}),

{(n + 1)0&} - {{TLOé} + {a} — 1, if {nOé} € [1 - {a}v 1)

we have

), if {na} €10,1—{a}),
[+ Daj = {najf = {1 Cfa) iffnalell—{a}y) O

and then for F'(z,y) = |z — y| we can use
1 X 1 1
¥ L Fnal {n+ vah = [ [ Fddgoy)
n=1 0 0

1—{a} 1
= / F(z,z 4+ {a})dz + / F(z,z +{a} —1)dx
0 1—{a}

which gives (549), again.
More generally: Let

x, € [0,1) be u.d.,

Yn = f(x,), where f:]0,1) — [0,1) be continuous,

F(z,y) be continuous,

g(z,y) be d.f. of (z,,y,). Then, simultaneously

N 1 rl

1

N § F(xmyn) _>/0 /D F(xay>d$dyg(x7y>
n=1
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1 & L
~ ;F(a:n, Flxn)) — /0 F(z, f(z))dz.

Example 90. Similar method can be used to prove Steinerberger [152] result

that

Wl

N—oo

N
1
limsup > (wn = ya)? <
n=1

for every two u.d. sequences z,, and ¥, in [0, 1).
Put F(z,y) = (r — y)% Then
F(1,1) = 0;
dyF'(1,y) = =2(1 — y)dy;
dF(z,1) = =2(1 — z)dz;
d,d, F(z,y) = —2dzdy.
Applying (566) then for every copula g(z,y) we have

1 1 2 1 1
/ / (z —y)*d.dyg(z,y) = 3 2/ / g(z,y)dady.
0 0 0 0

Now, using lower bound in (568) and computing

11

1
//max(m—i—y—l,O)da:dy:—
o Jo 6

then we have (554) in the form

1 1 1
/ / (z — y)*d.dyg(z,y) < =
0 0 3

for an arbitrary copula g(z,y).

Theorem 212. For every copula g(z,y) we have

1 1 1
/ / |z — y|d.dyg(z,y) < 3
0 0

(550

Proof. Input F(z,y) = |z — y| to (534) and bearing in mind F(1,1) = 0,

F(l,y)=1-y, F(z,1) =1—x,
d,dy|z — ¥

= d.dy(y—2) = (y+dy—(z+dz))+(y—2)—(y— (r+dz)) - (y+dy—z) =0

for y > x, similarly for y < x and for y =z, do = dy
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d,dy|z — y
=|lz+dr—(r+da)|+ |z —2z|—|(r+dz) — 2| — |z — (x + dz)| = —2dx

we have . )
| [ o= vt = 1-2 [ gt (555)
0 0 0

Thus if gl(w7y) < 92(:Ca y) for (ZE, y) < [Oa 1]27 then

//Ix yldadyga(z,y) < //\x yldodygi(z,y).

The lower bond max(z +y — 1,0) < g(z,y) and

/ / |z —y|d,dy max(zx +y — 1,0) =

implies theorem. [

New, let again x, and y,, n = 1,2,..., be two u.d. sequences in the
unit interval [0,1). F. Pillichshammer and S. Steinerberger in [127] study
the sequence SN &0 — ya| and proved that

1
lljr;ljup—z o0 =yl < 5 (556)
Putting y,, = x,,41, n =1,2,..., they found a new necessary condition
1 — 1
h}\}lj;ip N ; |Tpi1 — zp| < 5 (557)

for u.d. of the sequence x,,. They also found

lim —Z\xnﬂ T,| = ( D

N—)oo

for van der Corput sequence z,, = v,(n) in the base b and

lim — Z |Tpt1 — zp| = 2{a}(1 — {a})

N—oo N

for z,, = na mod 1, where « is irrational. Alternative proofs via d.f.s are in
Examples 92 and 89.
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8.6 Sequences (z,, Yn, z,) Where (x,,yn), (Tn, 2,), and (Y, 2,)

are u.d.
Theorem 213. Let (T, Yn, 20), n = 1,2,..., be a sequence in [0,1)% such
that both the marginal sequences (Tp,Yn), n=1,2,..., (Tp,2n), n=1,2,...
and (Yn,2n), n = 1,2,... are u.d. in [0,1)%. Then the sequence (Tpn, Yn, 2n),
n=12,... is u.d. if and only if one of the following conditions is satisfies:
| N
(1> ]\}l—rgclxz N2 2—1 FO((xm’ Yms Zm)s (Tny Yn, 2n)) = 0;
] N
(11) ]\}IE)I;O m zk:l_l F1<<xm; Ym, Zm)7 (ZEn, Yn, Zn)a (xlm Yk, Zk:)a (ZL‘m/, Ym Zm’)a
(:En’a Yn',y zn’)a (:L‘k’a Yk Zk’)) = Oa
1 N
(9 Y g D Fil(ns i 2, (s 20): (s s ),

(In/v Yn', Zn')) = 0.
Here

Fl(($m7 Ym, Zm)a (xm Yn, Zn)a (xka Yk, Zk); ($m’> Ym/ Zm’)a (l'n/a Yn', Zn’)7
(Ter, Y, 20)) =

= ((1 — max (L, Ty ) ) (1 — max(Ym, Yo )) (1 — max(zy,, 2m))
+ (1 — max(x,,, Ty ) (1 — max(yy,, Yo ) ) (1 — max(zx, 2x/))

—2(1 — max(x,, ) (1 — max(Ym, Yn ) ) (1 — max(z,,, zk/))>;

= ((1 — max(Tm, Z,)) (1 — max(Ym, yn)) (1 — max(z,, z,))

)

Fy((@ms Yms 2m ), (T Ynos 2n) (Tt s Yty 2 ), (Tt Yo s 20)) =
(

+ (1 — max(x,,, Ty ) (1 — max(Ym, Ym:) ) (1 — max(z,, 2,/))

—2(1 — max(x,, ) (1 — max(Ym, Ymr) ) (1 — max(zy,, zn/))>;

and Fo((Tm, Yms 2m), (Tn,s Yny 2n)) 18 given in (510).

367



Proof. Assume that the marginal sequences (2., yn), (Yn, 2,) and (z,, z,) of
(T, Yn, 2n) are u.d. Using the theory of L? discrepancy, every of the following
zero-limits

) lim / / / w(z,y, 2) — 2yz)*dedydz = 0,
N—>oo

hm/// Fn(z,y,2) F()( )FJ(\?)(?/)F](\?)(Z))dedde:O,

N—ro0
(iii) hm/// Fy(z,y, 2) FN(x,y)FJ(\}g)(z))dedydz:O,

implies the u.d. of the sequence (z,,yn,2,). Here (i) is the limit of the
classical L? discrepancy characterizing u.d. of (z,,¥n,2,) and limits (ii)
and (iii) are of L? discrepancies of statistical independence. The (ii) im-
plies that every d.f. g¢(z,y,2) € G((Tn,Yn, 2n)) has the form g(z,y,2) =
g(x,1,1).9(1,y,1).9(1,1, 2)(= x.y.z) and (iii) implies

9(r,y,2) = g(x,y,1).9(1,1,2)(= vy.2)

8.7 Method of d.f.s for SN F(z, )

Let F(z,y) be a continuous function defined on [0,1]* and z,, y,, n =
1,2,..., be two sequences in [0, 1). In this section we study the limit points
of the sequence of arithmetic means

1 N
NZ (Zn, Yn), =1,2,.... (558)
=1

To do this we use a theory of distribution functions (d.f.s). This theory we
also use for computing integrals of the type

/0 £1(®(2)) fo(W(2))da (559)

where fi, f are Riemann integrable functions and ®, ¥ : [0,1] — [0, 1] are
so called uniformly distribution preserving (u.d.p.) map (see Section 12.3).
This problem was introduced by Steinerberger [152, p. 127].
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Recapitulation:

Let z, and y,, n = 1,2,..., be an arbitrary two sequences in [0, 1).
Denote the step d.f.
() - 20 N5l ) € 0) x 0.))
and let G((xn,y,)) be the set of all possible limits Fy, (z,y) — ¢g(z,y),
which hold for all continuity points (x,y) of g(x,y). These g(x,y) are called
d.f.s of the sequence (zn,y,), n = 1,2,.... If G((x,,y,)) is singleton, i.e.,
G((zn,yn)) = {9(z,y)} then g(z,y) is called asymptotic d.f. (a.d.f.) of

(TnyYn), n=1,2,....
By Riemann-Stieltjes integration we have

%ZF(-fn,yn) :/0 /0 F(x,y)dady Fy(z, y) (560)

a) If Fy, (x,y) = g(x,y) as k — oo then by the second Helly theorem the
equation (560) implies

N 11
1
Ele(:Emyn)%/o /0 F(z,y)d.dyg(x,y) ask — oo. (561)

b) If N%c 2221 F(x,,y,) — A as k — oo then by the first Helly theorem there
exists subsequence N; of Ny such that for some d.f. g(z,y) of (z,,y,) we
have Fy, (z,y) = g(z,y).

Summary, the set of limit points of (558) has the form

{/01 /01 F(z,y)d.dyg(z,y); 9(z,y) € G((xn’yn))}‘ (562)

In (562) we can apply

/ / (z,y)dodyg(z,y) = F(1,1) — /1 (L,y)d,F(1,y)

_/ g(2.1)d, Pz, 1) // (2, y)dod, F(z, ). (563)

It is proved by integration by parts in Riemann-Stieltjes integration in The-
orem 202, or by induction in Theorem 216, p. 374.

Thus problem is to find extreme values of fol fol F(z,y)d,dyg(x,y), where
g(x,y) is a copula.
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: N
8.8 Boundaries of + >, F(z,, yn)

Let ,,y, € [0,1), n = 1,2,..., both u.d. sequences. In this case two-
dimensional sequence (z,,¥y,) need not be u.d. but every d.f. g(z,y) €
G((xn, yn)) satisfies

(i) g(x,1) = x for z € [0,1] and

(i) g(1,y) =y for y € [0,1].
The d.f. g(x,y) satisfying (i) and (ii) is called copula and its basic theory
can be found in R.B. Nelsen [114]. Applying this theory we find (see also
Theorem 217)

Theorem 214. Let F(x,y) be a continuous function defined on [0,1]2. For
differential of F(x,y) assume that d,d,F(z,y) > 0 for every (z,y) € [0, 1]*.

Then for every two u.d. sequences x,,y, € [0,1), n =1,2,..., we have
1 & !
lizr;fo%pﬁ ZlF(a:n,yn) S/o F(z,z)dx, (564)
1 & !
li]VHLiOIéf N ; F(zp,yn) > /0 F(z,1—z)dx. (565)
Furthermore, for the sequence (zn,y,), n=1,2,..., we have
S !
Nh_r)nOo N ; F(zp,yn) = /0 F(z,x)dx

if and only if (T, yn) has a.d.f. g(x,y) = min(z,y), and we have

N—oo

N 1
1
lim N;F(xn,yn) :/0 F(z,1 —z)dz

if and only if g(z,y) = max(z +y — 1,0).
If d,d,F(x,y) < 0 the right hand sides of (564) and (565) are exchanged.

Proof. For a copula g(x,y) the equation (563) has the form
11 1
|| Fenddgten = Fu) - [ 4a,ra)
o Jo 0
1 11
- e+ [ [ g ndd,Fe) (566) [seq?
| [ stewa
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Thus the set (562) of limit points of (558) coincide with

{ /0 1 /0 1g<x,y>dxdyF<x,y>} (567)

shifting by F(1,1) — fol yd, F(1l,y) — fol xd,F(z,1). Then we use Fréchet-
Hoeffding bounds [114, p. 9]

max(z +y — 1,0) < g(z,y) < min(z, y) (568)
which holds for every (z,y) € [0,1]* and for every copula g(z,y). The as-

sumption d,d,F'(z,y) > 0 implies

1 1 1 1
[ ] maste sy - 1004, P < [ g, Fa)
0 0 01 O1
§/ / min(z, y)d,d, F(z,y).
0 0

Since every copula is continuous, then the left inequality is attained if and
only if g(z,y) = max(x + y — 1,0) and the right if and only if g(x,y) =
min(z,y).

Directly by definition of a.d.f., for every u.d. sequence z,, € [0,1), it can
be proved that

a) the sequence (z,,z,), n = 1,2,..., z, is not u.d., has the a.d.f.
g(x,y) = min(z,y) and

b) the sequence (z,, 1—x,), n = 1,2,..., hasthe a.d.f. g(z,y) = max(z+
y —1,0). From it

N—oo

N 1 1
1
lim NZF(:U”,JC”):/ F(m,x)dx:/ / F(z,y)d,d, min(z,y),
— 0 0 Jo
(569)

N 1
1
]&EI})ON;F(xn,l—xn):/o F(z,1—z)dz

11
= / / F(z,y)d,d, max(z +y —1,0). (570)
0 Jo

]
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Once again in the following we prove the result (556) appeared in Pil-
lichshammer and Steinerberger [127] repeating the proof of Theorem 212.

Example 91. Putting F(z,y) = |z—y|, we have F'(1,1) =0, F(1,z) = 1—x,
F(y,1) =1 —y, and computing, for y > x,

dpdyly—2| = (y+dy— (z+dz)) = (y—2) — (y— (z+dz)) — (y+dy —z) =0,
and for y = z, dy = dx,
dudyly—a| = [o-+de—(a-+da)| +]a—a] | o+ dz) —z| ~ |z~ (r-+da)| = ~2dz

and then applying (566) we have

1 1 1 1 1
/ / 12— yldud, gz, y) — / oz, 1)da + / o1, y)dy — 2 / oo, 2)de.
0 0 0 0 0

571)

Thus for a copula g(z,y), g(x,1) =z, g(1,y) = y we have

1 p1 1
x —y|d.d,g(x,y :1—2/gx,xdx. 572) |seq60
| [ e=vidagtan) [y (572) [seq60)

Finally, the lower bound in (568) for copulas g(x,y) give F. Pillichshammer
and S. Steinerberger result [127] in the form

//|x yldd,g(z,y) < //|x yldud, max(z+y—1, 0)—%. (573)

8.9 D.f. g(z,y) with given marginal ¢(1,y) and g(z,1)

In the following theorem the sequences x, and ¥, are not be u.d., but with
assigned a.d.f. ¢g;(z) and go(x), respectively.

Theorem 215. Let x, € [0,1) be a sequence with an a.d.f. gi(z) and y, €
0,1) with an a.d.f. go(x). Assume that F(x,y) is a continuous function such
that d,d,F(z,y) > 0 for every (x,y) € [0,1]*. Then we have

1
hmsup—zmn,ynL | Pl @0 @)a, (574)

N—oo
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N—oo

N 1
1
i inf 3" F(,, ) 2/ Pl (), g5 (1 — 2))da.  (575)
n=1 0

Furthermore, for the sequence (zn,y,), n =1,2,..., we have

dm S ) = [ PG e 67

if (Tn,yn) has the a.d.f. g(x,y) = min(g;(x), g2(y)) and we have

lim %;F(xn,yn) = /0 F(g7 Y (2),95 (1 — 2))da (577)

N—o0

if 9(x,y) = max(gi(z) + g2(y) — 1,0).
If d,d,F(z,y) <0 the right hand sides of (574) and (575) are exchanged.

Proof. Let g(x,y) be a d.f. of the sequence (x,,y,), i.e. there exists a
sequence Ny — oo such that Fy, (z,y) — g(z,y) and

1 N, 1 pl
n=1 0 0

k—oo IV,

Furthermore we have g(z,1) = g1(z) and ¢g(1,y) = g2(y). Then by the Sklar’s
theorem for any such d.f. g(x,y) there exists a copula ¢(z,y) such that

g(z,y) = c(g1(x), 92())

for every (x,y) € [0,1]%. Applying the Fréchet-Hoeffding bounds (568) we
find

max(g;(7) + g2(y) — 1,0) < g(x,y) < min(g1(z), g2(y))- (578)

Now, apply (566) we find (574) and (575).

Let z,, n =1,2,..., be u.d. sequence in [0, 1). Then the sequence

(i) (91" (2n); g5 ' (20)) has the a.d.f. g(z,y) = min(g1(z), g2(y)), and

(ii) (g7 ' (2n), g2 ' (1—2,)) has the a.d.f. g(x,y) = max(gi(x)+g2(y) —1,0).
By Helly theorem, for sequences (i) and (ii) we have (576) and (577)

lim Nik;F@fl(zn),g;l(zn)H /0 F(gy ' (2), 95 ' (z))dx
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_ / 1 / P, y)dod, min(on(2), g2(0)).

Ny, 1
. 1 -1 -1 -1 -1
lim E;F(ﬁh (z0), 92 (1 = 20)) = / Flgr'(x). g5 (1 = 2))da

_ / / F(z,y)d.d, max(g: (x) + ga(y) — 1,0).

Proof of (i) and (ii):

Assume that g;(x) and go(x) are strictly increasing.
For (i) we note that g; '(2,) < & < 2, < g1(7) and g5 *(2,) < Y < 2, < G2(y)
and thus (g;"(2.), 95 ' (20)) € [0,2) X [0,y) & 2, € [0, min(g1(z), g2(1))).
For (ii) we note that g;'(z,) < 2 & 2z, < gi(z) and g; ' (1 — 2,) <y & 1 —
20 < G2(y)s 1 =20 < ga2(y) & 1= g2(y) < 2, and thus (g7 (), 92 (1 - 2,)) €
[0,2) x [0,y) & 2, € (1 = g2(y), g1 (2)).

On the contrary, if a d.f. g(z) is constant on the interval I = (a,f3)
with value ¢ and to the left of o and to the right of g d.f. g(z) increases
simultaneously, then we put in (i) and (ii)

9 (e)=p (579)

because in this case the g7 '(z,) < ¥ & 2, < g1(x) also holds for z, = c.
Finally, the uniqueness of extremal d.f. g(x,y) follows from the existence
of common point (x,y) of continuity for any two d.f.s g(z,y). O

Completing the above proof we prove (566) in the following discrete form
(580) assuming Fy(z,y) — g(x,y).

Theorem 216. Let F(x,y) be a continuous function defined on [0,1]*>. Then
for arbitrary N-terms sequence (z1,y1),- .., (xx,yn) n [0,1)? with the step
d.f. Fy(z,y,) we have

N/o /0 F(x,y)dxdyFN(m,y):NF(l,l)—N/O Fy(1,y)d, F(1,y)

_N /0 Fa(e DA, F(r.1) + N /0 1 /0 Ry, Py, (550)

Proof. We employ induction. Assume that for N the equation (580) holds
and add in (z1,v1),...,(zy,yn) a new point (zyi1,ynv+1) and exchange
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Fn(z,y) by Fxi1(z,y). We have (N + 1)F(1,1) = NF(1,1) + F(1,1) and

(N+1 // (z,y)dpdy Fnya(z,y) N// (x,y)dudy Fn(z,y)

+ F(xN+17 yN+l)7

(N4 1) /1 Fyor(z, D F(z, 1) = — N/1 Fa(w, D)d, Pz, 1)
— 1L(F(1,1) = Fzn+1, 1)),

(V1) / Fya(1Ly)d,F(Ly) = — N / Fy(Ly)d,F(1,y)
- 1'<F(17 1) - F(L?JN—H))a

(N+1 //FNHa:yddey N//FnyddF(xy)
F(1,1) + F(zni1, ynv+1) — Fania, 1) — F(1Lynsa)).
Summing up

F(1,1) - 1.(F(1,1) = F(xny1,1)) — L(F(1,1) — F(1,yn+1))
+(F(1,1) + F(rny1,yve1) — Flang, 1) = F(Lyvg))

= F(33N+1, yN+1)

we have that (580) valid also for N + 1. O
8.10 D.f. of (z,, %411, %Tnss—1) Where x, is u.d.
8.10.1 Two-dimensional shifted van der Corput sequence
sse43
sex10| Example 92. For van der Corput sequence z,, = v,(n), n =0,1,..., in the
base ¢ we have
hm—Z|x 1 — Tp| = ( ) (581)
N—oo N et "
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Proof. Every point (y,(n),v,(n+1)),n =0,1,2,..., lie on the line segments

1 1
Yox4i xelor-:). (552)

q q
1 1

1 1 :
V=X-ltgaom Xell-nao gl isia. 6w

q'

Proof. Express an n in the base ¢
— ok k—1
n=ngq +ng_1q- "+ +nq -+ no,

where n; < ¢ and n; > 0. We consider two following cases:

19 ng<q—1,
20 ng=q—1.
Let

1%ng < ¢ — 1. Then
n:nqu+---+no,
n+1=n,g"+ - +no+1and by (11)

Y(n+1) —,(n ) = .. In this case
Ta(n) =T+ g S R4 = 0
Thus such (v,(n),, ( 1)) hes on the line-segment (582).

Let
2°ng = ¢ — 1. Then
no=ngg" + - g™ (g -1+ (g —1)¢" " 4+ (¢ — 1) and
nHl<q—l,wherei:O,1,2,....Then
n+1=nkq —|—---+(nz+1—|—1) 14+ 0.4+ 0.¢" ' +---+0. Thus
Yo(n) =45+ + z+1+"z£+---+q%,

Yo +1) = ”’;j;ijl + -+ + ifr, and we have

Yg(n+1) = 4(n) = qi}rQ —%(1+§+'--+$)= qiiz —1‘1‘# and

1= g =%+-~+;j;i < %(n )and

Yg(n) < I I+ E2 gt = 1— k. Thus such (y,(n), g (n+
1)) lies on the segment (583) Thus for 1°, the sequence (v,(n),v,(n + 1))

lies on the diagonal of the interval

1 1
Ix x Iy = {0,1 — —} X {—,1} (584)

q q
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and for 2°, the sequence (7,(n),v,(n+1)) lies on the diagonals of the intervals

o 1 1 1 1 _
1V % 1) = {1—5,1—%1]4%,?}, i=1,2,... (585)

These intervals are maximal with respect to inclusion. O

Adding the maps (582) and (583) we found so-called the von Neumann-
Kakutani transformation 7" : [0,1] — [0, 1], see the following Fig. Because
v,(n) is u.d., the sequence (v,(n),v,(n + 1)) has a.d.f. copula g(z,y) of the
form

g9(z,y) = [Projectx(([0, z] x [0,y]) N graph T)|
= min (HO,Q?] N IX|, ’[O,y] N [yD

+ Z min ([0, z] N [g?

i=1

0.yl n 1Y), (586)

where Project y is the projection of a two dimensional set to the X-axis.

D,

Ch

le = le =

X

T T T
1 q 1 'S 1 a3
Figure: Line segments containing (v4(n),v4(n +1)),n =1,2,... The graph of the von
Neumann-Kakutani transformation 7.

The sum (586) implies
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0 if (z,y) € A,
1-(1—-y)—(1l—2z)=s4+y—1 if(z,y) € B,
yY) = 587
9(z,y) 1 ity ec, O
r—1+ 4 if (x,y) € D;,
1=1,2,... Thus
0, if v e [0, %],
g(z,x) = x—%, if x € E,l—ﬂ, (588)
20 —1, ifzell-11]
q
and by (572)
N— 1
.1 B _2(g—1)
ngr;oﬁzo () =l -+ 1) =12 [ gla,a)de = 2
]
s:n2| Example 93. All terms of the sequence (y,(n),7,(n+2)),n =1,2,..., lie in
the line segments
2 2
Y=X+2, Xelo,1-2), o (589)
q q
1 1 1 [ 1 1 1 1
Y=X4-4—F— 1, Xe|lo-— —1-=__ )or
qz+2

q H—l

1 1
Y= X+q+qz+1+

fort=0,1,....

qi+2 I q

1 [ 1 1

gt g
(590)

(591)

This is the second iteration T2 of the von Neumann-Kakutany transfor-

mation 7" : [0, 1] —

0, 1].

Proof. Express an n in the base ¢

n=npq" +np1g" 4+ -

+ n1q + no, (592)
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where n; < ¢ and n; > 0. We consider three following cases:
19 ng < q—2,

20 ng =q — 2,
3% ng=¢q— 1.
Let

1%ng < ¢ — 2. Then

n:nqu+---+no,

n+2=mnpg"+---+nog+2and

Yo(n+2) —y,(n) = 2 In this case

0<(n)="2+-- +k+1 224 4 =22 and
thus such (y,(n),v,(n 2)) lies on the hne segment (589).

Let
20 ng = q — 2. Then

n=mng"+ o+ gt + (@ - 1)¢ + (@ —1)¢" + -+ (¢ —2) and
ni < q—1, then

n+2=mnpg" + -+ (nzﬂ + )¢ +0.¢" + 0.¢" ' +---+ 0. Thus

Yo(n) =12+ + I3 +"zi§ +e

Y(n+2) = ”’q*—gl + -+ 7k, and we have

Yg(n +2) = yy(n) = qi£2+§—q;ql(1+§+m+§):qi%+§—1+qi%.
Furthermore

-2 ... 14 z+1 <7q( )and

Yq(n )_%JF -+ z+1+ z+2+ z+3Jr =1- qz+2_%'
Thus in this case (y,(n ) Yqe(n + 2)) hes on the line-segment (590).
Let
3% ng =q— 1. then
n=mng"+ - +n¢d"+q—-1¢+(q@—1)¢g '+ +(¢g—1) and
Nit1 < q—1, then
n+2= nkq +o (n1+1 +1)¢"™ +0.¢" +0.¢"t +---+ 1. Thus
7q(n):%+ +1+1+n2121+”'+qg%7
Yo(n+2) =+ "lqtijl + -+ 7%, and we have
Yg(n +2) — 74(n) :§+q,-1+2 — (4t D) = et -1 A
Furthermore
1—#=q;—1+---+";ﬁ < a(n) and
I e = = B R =T
This gives (591).

1
= —
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Summary, if the n satisfies 1%, then (y,(n),v,(n + 2)) is contained in the
diagonal of

2 2
IXXIZ = |:O,1——:| X [—,1:|, (593)
q q
for 2° in the diagonal
; ; 1 1 1 1 1 1
19 % 19 = {1——,,1—.—} X [—+,—,—+—},z‘:1,2,..., 594
X Z qz q2+1 q qz+1 q qz ( )

and for 3" in the diagonals

, A 1 1
J)(g)XJg) = |:1————.,1———.—:| X [F7E:|’j:1’2’ (595)

O

The results (589), (590) and (591) gives the following graph of line seg-
ments

LSRN

Q=

0 1—2 1-1
q q

Figure: Straight lines containing (v4(n),v4(n +2)),n = 01,2, ... This is the second
iteration T2 of the von Neumann-Kakutany transformation.

Here the interval [1 — %, 1 - %) on X-axis is divided by

| |

I I
1 1 1 1

- I=y—2 lt-o-% oo 1=

1

QN
Q=

Q=
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and the interval [1 - 5, 1) is divided as

| |

1 —'% -5 - 1— oo 1
On Y-axes the interval [0, i) is divided as
iO 1 1 1 i1
gt 7 ¢ q
and the interval [%, %) is divided as
g |
e :

and in all above cases ¢ = 1,2,... Note that for ¢ = 2, the interval [O, 1—

2] x [2,1] s zero. Similarly as in (586) we have a.d.f. g(x,y) of the sequence

(Y9(n), g (n + 2)) is

g(z.y) = min (|[0, 2] N Ix], [[0,5] N Iy|)

+ Zmin (][0,2] N [é?], 1[0,y] N Ig)\)

i=1
+ > min (|[0,2] NS 1[0,9] 057 ). (596)
k=1
Divide [0, 1]? in the following figure
DO BO
Co
2
d D//
4 B//
Eo i -
A// C,
T
D ¢ B’ .
1B} 0
A
0 1—2 1-1 1
q q



we have the following explicit d.f. g(z,y) of the sequence (7y,(n),v,(n + 2)).

v if (z,y) € Dy,
y—% if (x,y) € Cy,
0 if (z,y) € Ay,
y+z—1 if (z,y) € Bo,
x—1+§ if (z,y) € Ey,
y if (x,y) € Fy,
0 if (l’,y) 614’7
_ 597

1 1 . /
r—1+,+ 5 if(z,y) €D
5 if (I,y) S A”J
q;—|—y—1 jf(:)j,y)GB”,
v—l4g+g ey eDy
Ly — 7 if (z,y) € ¢

8.10.2 Three-dimensional shifted van der Corput sequence
Cf. [52]:

Example 94. Firstly we find all maximal 3-dimensional intervals I contain-
ing points (v,(n),v,(n + 1),7,(n + 2)) in the form I = (Ix, Iy, Iz), where
Ix, Iy, 17 are projection of I to X,Y, Z, axes respectively. These intervals
Ix, Iy, I, are constructed in Example 92 and 93 such that if v,(n) € Ix
then v,(n + 1) € Iy and 7,(n +2) € Iz. Thus for the lengths we have
|Ix| = |Iy| = |Iz|. Combining intervals (584), (585), (593), (594), (595) of
equal lengths by following Fig.
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Ix
]KZ
)
) Ix
1
70)
X
NG LV
’ 7t
Ixy
Y

Figure: Mapping between intervals with equal lengths.

we find two following infinite sequences of intervals and an one separate
interval:

(b} o2 )

70 (_1 1 1 1 } [ 1 1} {1+ 1 1+1}> 19
= —— =, | ==, |~ 1 - yb=1,4,..,
qz qH—l qH—l qz q qz—‘rl q qz

[ 1 1 1 1 1 1 1 1
(k) _ I R R R B - —
J ( 1 q qk’l q qk+1]’{1 qk’l qk+1}{qk+1’qk])’k1’2""’

(60)
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All these interval are maximal with respect to inclusion. Similarly as in (586),
let D be a union of diagonals of (598), (599) and (600). Then

g(x,y, z) = [Project ([0, z] x [0,y] x [0,2] N D) (601)
and it can be rewritten as
g(I,y,Z) = min (HO,LE’] N [X|7 Hovy] N [Y’7 |[07Z] N [Z’)
+ " min ([0,2] 1Y), 1[0,5) 0 1) ][0, 2] N 1))

i=1
+ > min (|[0.] VL]0, 0 AL 0,2 0 ). (602)
k=1

To calculate minimums in (602) we can use the following Fig. (here ¢ = 3):

5 |
0 1
Y |
0 1
4 |
0 1

Figure: Projections of intervals I, IV J®) on axes X,Y, Z.

As an example of application of (108) and Fig. 4 we compute g(x,z,x) for

q > 3 without the need to know of g(z,y, z), *®
0 if z € o,g],
g(z,z,x) = x—% ifx e %,1—% , (603)
3vr—2 ifzxe 1—%,1 .

%8For ¢ = 3 the middle member in (603) is omitting.
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Proof. 1. Let z € [0, %]
Then |[0,2] N Iz]| =0, |[0,z] N I(Zi)\ =0, [[0,z] N Ji(/k)| = 0, consequently
g(x,z,z) = 0.
2. Let z € [£, 2].
a’q '
Then |[0,2] N Iz]| =0, |[0,z] N Jx(,k)] =0, [[0,z] N [g?| = 0, consequently
g(xz,x,x) = 0.
3. Let z € 2,1 —1].
" g
Then |[0, z] N I)(Z-) =0, [[0,z] N Ji(/k)| = 0, consequently

i 2 1 2\ _ 2
g(x,z, ) —mln(l—a,x—a,x—a) =z— =

4. Let v € [1 - ,1].
Specify = € [)(?1), T € Jl(/kl). Then |[0,z] N I)(f)] =0, |[0,z] N Jx(,k)\ =0 for
k > ki. Thus (108) implies
1 1 2

) = i 1_7a1_7_7a -
g(z,z,z) = min ( . . qm q)

k1
+ 3 min (|[0,2] N I 10,41 0 11, 1[0, 2] N 15)
=1
k1
. k k k
+ > min (|[0,2] N I, 1[0, 5] 0 S, ([0, 2] 0 TS

k=1
k1—1

2 1 1 1
=r— -+ — = —0 +r—14 —
q ;<qz qL-‘rl) qk1

Ml 1 1
+ - ) 4r—14— =3z-2

For ¢ = 2 we have

0 if x € [0,3],
glx,z,2) =z -1 ifzels 3, (604)
3r—2 ifxel31].

Explicit form of g(x,y, z). Let ¢ > 3 be an integer.
Motivated by the abode Fig. we decompose the unit interval [0,1] on X, Y
and Z axes in the following Fig. of intervals (here ¢ = 4):
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1-2 1-1 1

q q
i i | i
1 11 1

q q
i i | |
1 2 1

q q

Figure: Divisions of the unit intervals.

In this decomposition, for (x,y, z) € [0, 1], we have 27 possibilities. All cases
can be found in [52]:

Notes 44. This is the most complicated d.f. in this book.

1. Let z € [0,1 - 2],y € [0, ],z € [0, ¢]. Then
g9(z,y,2) = 0. , X L

2. Let T € [0, 1-— E]’y S [0, g],Z S [E, E] Then
g9(z,y,2) = 0. , ) ,

8. Let z €[0,1 - 2],y €[0, ],z € [7,1]. Then
g9(z,y,2) = 0. , X X X

4. Let 2 € (0,1 -2,y €[5, 1= ;]2 €[0,7]. Then
g9(z,y,2) = 0. , X X L

5. Let T € [07 1-— E],y S [67 1-— E],Z (S [5, 5] Then
g(z,y,z) =0.

6. Let © € [0,1 — %],y € [%, 1- %],z € [%,1]. Then

g(z,y,2) = min (z,y — £, 2 - 2).

7. Letz € 0,1 -2,y e [1 - ,1],2 €0, ;]. Then
g(z,y,2) = 0. , X L

8. Let x € (0,1 - 2],y e[l -y 1],z €[y, 2]. Then
g(z,y,2) = 0.

9. Let x € [0,1 — %],y el- %,1],2 € [%,1]. Then

g(z,y,z) = min (ac, z— %)

10. Let z € [1 - 2,1 2],y € [0, 7],z € [0, ]. Then

§(11i7i;i)xzeot1 —21-11ye0,1],2 €[, 2]. Then
_o q’ qb T qb q9’4q

g(;’%ei)x el- %, 1- %],y € [0, %],z € [%, 1]. Then

gg?%ei)xzeo[.l - %, 1- %],y € [é, 1- %],z eo, é] Then
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g(z7y7 Z) = O'

14. Let x € [1- 21— ye[;,1—- ],z €[, 2]. Then
g(z,y,2) =0.
15. Let x € [1 - 2,12,y e [;,1— 7],z € [2,1]. Then
g(m,y,z):min(y—f z—%).
16. Let z € | _5’1_5] ye[l—%,l],ze[o,%}.
Specify x € J)((kl), Yy € J§,k2)7 z € J(Zk3). Then
0, if min(ky, k2) < ks,
mln(x—1+ + k37y L+ %5, —qu%), if kg = ky = ko,
m1n(9:71+ + k3, qk;+1), if ks = k1 < ko,
g(x,y,z) = { min (y — 1+ ,C,S, —quﬂ), if kg = ko < kq,
z+x—1+a, if k3 < k1 < ko,
z—i—min(m—l—i—%,y—l), if kg < k1 = ko,
z4+y—1 if k3 < ko < k.
17. Letxe[l—2 1—1] ye[l—— 1], ze[l %]
SpemfyacEJ(k1 ,yeJkZ) Then
min(m—l—i—%,y—l—i—%), if k1 = ko,
g(z,y,2) = x—l—i—%, if k1 < ko,
y—1+$, if k1 > ko.

18. Letze[l-21-1ye[l—,1],2€[21]
Specify x € J)((kl), y € Jl(/kQ). Then

min (¢~ 1+2,y—1+7)+z-2

q7
g(xayvz): .13—|—Z—1,
1
yt+z—1-1¢,
19. Let z € [1 — 2,1,y € [0, 7],z € [0, ;]. Then

g(x,y,z) = 0.
20. Letxe[lf%,l],ye[() 1], ze[q q]

Specify z € I;l), Yy E I}(, ), z € I(ZZS). Then we have

0,
m1n(z—1—|— Y~ Illﬂ,z—%—qil%),
mln(y,z )+1'71

g(z,y,2) = < min (x—l—i— 7Y~ qlﬂ)
mln(x—l—i— ll,z—%—ﬁ)
x—i—z—l—g,
z+y—1,

387

i ky = ko,
if k1 < kz,
if ko < kq.

if i1 < maX(ig,ig),
if i3 =19 = iy,
if 13 =1 < il,
if i3 <9 = 11,
if i9 < i3 = i1,
if 19 < 13 < 11,
if i3 < ig < 4.



. q’ .
Specify x € I;l), y € I)(,”). Then

21. Let z € [1- 1,1,y € [0, 1),z € [2,1].

0, if 11 < 19,
g(xayaz): min('x_l_‘_qzllvy_qil%)a ifilziQa
$+y71, if 49 < iq.
22. Let x € [1 — %,1],y € [%,1 - %],z e [o, %] Then

glw,y,2) =0. L o
23. Letw e[l -, 1lyel;, 1 -5l 2 €[5, 5]

Specify x € Iggl), z € Igz). Then

O7 ifi1<i2,

; 1 1 1 s .

g(z,y,2) = mln(x—l—i—q,il,z—a—m), if 11 = 19,
x—l—z—l—%, if 49 < 77.

1 1 1 2
24. Let z € [1 - 0, 1],y € [;,1— 2],z € [£,1]. Then
g(z,y,2) :min(y—%,z— %) —1—33—1—1—%.
25. Let z € [1— ¢, 1],y e[l —,1,2€0,].

Specify y € Ji(/kl), z € Jg%). Then

0, ifk1</€2,
9(x,y,2) = min(yflJrq%,Z*qkl%), if ky = ko,
y+z—1, if ko < k1.

1 1 1 2
26. Let z € [1_631]7y€ [1_671],26 [675]

Specify z € I;l), yE J}(,kl) and z € I(ZQ). Then

y—l+g if i1 <g,

gz z) =S y—1+2+min(z—1+ L 2-2 - L) ifi; =i,
s I q g1 q g1t ) s
1’+y+z—2, ifi2<i1.

27. Let x € [1 — %,1],y el- %,1],26 [%,1]. Then
9(2,y,2) =r+y+z-2

Example 95. The sequence (7,(n),v,(n+3)),n =1,2,... lies on the diag-
onals of the following intervals

b= )

I - LA L R

qi+2 ’ qi—i—l
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1 1 1 1 1 1 1 1] .
[1—5—F,1—P—51 X |:qi+2+57F+a:|722071727"'7

1 1 1 2 1 2
I | TR NE R SO

¢ ¢t g

These intervals are maximal. This is the third iteration 7% of the von
Neumann-Kakutany transformation 7" : [0, 1] — [0, 1].

8.10.3 Four-dimensional shifted van der Corput sequence
Cf. [7]:

Example 96. The sequence (7,(n),v,(n + 1),7,(n + 2),v,(n + 3)), n =
0,1,2,..., lies in the diagonals of the following 4-dimensional maximal in-
tervals:

3 1 2 2 1 3
N Nt N

q q

, 1 1 1 1 1 1 1 1
IO = {1——.,1— ; 1 X {——] X {—+.—,—+—}
qz qz+1 qz+1 qz q qz+1 q qz

q
J(]):{l_g_i 2 11}X[1_1_i1_1_ 11]
q ¢ q ¢t q ¢ q ¢t
1 1 1 1
- g x| oma] e (608)
11 1 1 1 1 1 1
k) _ |7 _ 1 Lot o L
K {1 q qF ! q qk“} [1 q*’ qk“] [qk“’qk}

11 1 1
x{&+w,5+q—k},k‘:1,2,... (609)

Proof: We started with 2-dimensional intervals in (X,Y
axis, respectively, containing (v,(n),v,(n + 1)), n =0, 1,
By [52] they are:

01— [o1]

(Y, Z)=(Z,U)

) =
2,...,in diagonals.



Adding intervals in (X, U) axis containing (y,(n),v,(n+3)) in their diagonal,
see (117), (118), (119) and (174):

g By
[ 2 1 2 1 11| )
_1_5_?’1_5_q"“ X[?’F’Z_l’z'”’

11 1 1 1 101, 1] ;5 _ )
_1—6—?71_a_q1+1i|><|:E+qi+175+;j|77/—1727""
1 1 2 102, 1] 5 _ )

-tk x [Frg gl i=

All this we plotted in the following Fig. Collecting intervals of equal length
A

o Iy

Izu Iy,z

Ul Y

Iy, Ixy]

I Ig(’
JK)
Ky
X
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we find that maximal 4-dimensional intervals containing points
(7a(n), Y(n + 1),%(n +2),7%(n +3)), n=0,1,2,...
Now, let D be a union of diagonals of (606), (607), (608) and (609). Then
9(2,y, 2,u) = [Project((0,2] x [0,5] x [0,2] x [0,u] N D) (610)

and it can be rewritten as
9(x,y, z,u)
= min (][O,x] N Ix|,][0,y] N Iy|, ][0, 2] N I£],][0,u] N IU])

+ > min ([0, N 1] 10,91 0 BP0, 2 0 7], 1[0, u] 0 1)

=1

+ > " min ([0,2] N JL]1[0,5] 0 A] 1[0, 2] 0 TS, 1[0,4] 0 TP

j=1
+ > min (|[0.2] 0 K57 1[0,9) 0 K10, 2] 0 K [0,w] 0 KY])(611)
k=1

Computing g(z,y, z,u) is complicated. By using the following picture

- |
0 1
Y |
0 1
4 |
0 1
Up ey |y |
1 2 3
0 = O Lt stoE A GtoaT 2t a 1

Figure: Projections of intervals I, 1), J@) K®) on axes X,Y, Z,U.
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it can be find

-3, 12
i

for g > 4.
Application. We apply Weyl’s limit relation

lim _ZF Ya(1),Yg(n + 1), 7¢(n + 2),74(n + 3))

N—>oo

= F(x,y,z,u)d,d,d,dyg(x,y, z,u). 613) |3eqll
//// (e, 7 w)dody dodygle,.2). (613) [Seld]

Assume that F(z,y,2,u) is a continuous in [0,1]* and g(z,y, z,u) is a d.f.
Then

1 1 1 gl
/ / / / F(z,y, z,u)d,dyd,dyg(z,y, z,u) = F(1,1,1,1)
o Jo Jo Jo

1 1
—/ g(:p,l,l,l)dwF(a:,l,l,l)—/ g(l,y,1,1)d, F(1,y,1,1)

0 0

[aiy

Q

1
(11,2 DA F(1,1,2,1) / o(1 1,1, W)y F(1,1,1, )

+

1
g9(x,y,1,1)d,d, F(x,y, 1, // (x,1,2,1)d,d, F(x,1,2,1)

1 1

+

g(l,y,z,l)dysz(l,y,z,l)+/ / g(x, 1,1, u)dd, F(z,1,1,u)
o Jo

—
—

+
Q

1 1
(1,y,1,u)dyduF(1,y,1,u)+/ / g(1,1, z,u)d,d F (1,1, z,u)
o Jo

[y

g(z,y,2,1)d,dyd, F(z,y,2,1)

[y

o\c\o\o\:o\mo\

[y
[y

g<17 Y, z, u)dudysz(la Y, z, U)

—
—

C\hc\o\,

g(x, 1, z,u)d,d,d, F(z, 1, z,u)

—_
—_
[y

— — — T — T — —

g(l’, Y, 17 u)dudysz(‘Ta Y, 17 U)
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1 1 1 1
+ / / / / g(z,y, z,u)d,dyd.d, F(z,y, z,u).
0 0 0 0

Put F(z,y, z,u) = max(x,y, z,u). Then
4, F(2,1,1,1) = d,F(1,5,1,1) = d,F(1,1,2,1) = d,F(1,1,1,u) = 0,

d,dyF(z,y,1,1) = d,d. F(x,1,2,1) =d,d, F(1,y,2,1) = d,d, F(z,1,1,u) =
dyd, F(l,y,1,u) =d,d,F(1,1,2,u) =0,

d,d,d. F(z,y, 2,1) = dydyd, F(z,y,1,u) = dpd.d, F(x, 1, 2, u)
=d,d,d, F(1,y,z,u) =0.
The differential d,d,d.d,F(z,y, z,u) is non-zero if and only if

r=y=z=u

and in this case

d,d,d.d,F(z,y, z,u) = —dx.

1 1 1 1
/ / / / F(I’y72au)dxdydzdug($7y7z’u)
0 0 0 0
1 1 1 1
N 1 * / / / / g(x,y,z,u)dmdydzduF(x,y,Z,U)
0 0 0 0

1
=1 —/ g(x,x,x,x)d. (614) |2eql4
0

For ¢ > 4 and by (123) we have

1 -2 3 1
/ g(x,z,z,x)dr = / (x — —) dor + / (4x — 3)dx =
0 3 q 1—

Also see [7].

Then

=
N | —
W

»leo)

QW

8.10.4 s-th iteration of von Neumann-Kakutani transformation

In this part we study distribution of the sequence (y,(n),v,(n + s)), n =
0,1,2,..., where ¢ is an integer, ¢ > s. Let n = nqu + nk_lq’“*1 + -4
n1q + ng. We investigate the following cases:
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1. ng < q—s,
2. ng =q — s,
3. ng=q—s+1,

l.ng=q—s+1—2,

(24s—1).ng=q—1.

In the general case [, ng = q — s+ [ — 2, we have
n=mnd"+ - +ngd T+ (g 1)g' +(¢— 1)+ +(g—1)g+g—s+1-2,
where n;,1 <g—1land:=0,1,2,...,

n+s=mnq" 4+ -+ i1+ 1)¢ +0¢" +0¢ "+ +0g+1-2,

qg—s+l—-2 q-1 g—1 q—1  mnin N,
7a(n) = p T e Tt " gt qi+2+'”+F’
I—2 0 0 0 Nit1 + 1 ng
’yq(n+8)—7+?+"'+a+qi+l+ prIs) +"'+F,
s—1 1 1
’Yq(n+ S) - 7‘1(”) = q + qi+2 + qi+1 - ]- )
s—=1+1 1 g—s+1—2 q—1 g—1 0 1
1- q ¢t < q - ¢ Tt gt +qz‘+2+' ' '+q_k < 74(n)
q q q q q q qt

Thus, if n satisfies the case [, then the point (v,(n),v,(n + s)) lie in the line
segment

Z:X—i_%_l—'_qil—i_qiiw
Xe€ 1_S_é+1_qil’l_qiiz_s_f]—i_l} (615)
and in the diagonal of
1_8—l+1_ .1 _ ‘1 _s—l—i-l]x{l—Z ‘1 l—2+ ‘1
q ¢t gt q a ¢t g ¢’

616)
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1sse

where i = 0,1,2,.... In the following we shall reduce (i + 1) — ¢ and (615)
gives sth iteration of von Neumann-Kakutani transformation T’

T°(x)

;

\

m+§ ifxE[O,l—ﬂ,
pret 44 ifre 1t - L1l Ly
s—2 1 s—2 1
Ot = -1 =23 — gm]U
—1+1 1 —1-1 1
U[l : q E?l : q _qz+1]U
U[l—%,l—#], where
i=1,2

(617)

Also the points (y,(n),v,(n+s)),n=0,1,2,..., are contained in diagonals

of

S S
71_E]X[a71:|7
s—1 1 s—1 1 1 1 ) —
1————2»,1—__7;4_1 X 'L+17_2'77/_1727‘7
q q q q q q
s—2 1 s—2 1 1 1 1 1 _
-2 - n -2 = I x [T+t gli=12.,
s—3 1 s—3 1 2 1 2 1 M
1—7—?,1—7—(1”1})([a+qi+1,g+;}7l—1727" )
s—4 1 s—4 1 3 1 3 1 ;o
L -l == x P+ i+ pli=12
(4) s=l41 1 s—1+1 1 -2 1 1=2, 17
Il—l_[l q qt’ q qi“] [q +qi+1’ q +ql}’2_1’2’ ’
1 1 s—1 1 s—1 1 A
L= l-gr] x ['T+gm T +ali=12

9 Extremes of fol fol F(z,y)d,d,g(x,y) over cop-
ulas gz, y)

In this section we comments [53] and [14].
In the previous Section 8.8 we were looking for the extreme limit points of

(558) &

27]2[:1 F(.’L’m yn)

which related to the extremes of

(562) fy Jo Flx,y)dadyg(x,y).

But the problem of optimizing the integral fol fol F(z,y)dC(z,y) over cop-
ulas C(z,y) belongs to the mass transportation problems, or the Monge-
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Kantorovich transportation problem, see e.g. L. Ambrosio and N. Gigli
(2013) [4] or S.T. Rachev and L. Riischendorf, Mass Transportation Prob-
lems, Volume I: Theory (1998) [132]. In this section we give a criterion for
the copula which maximizes (562). The minimum can be studied similarly.

First of all we repeated and reformulated Theorem 214 and 215 from
Section 8.8 to the following Theorem 217 and 218, respectively.

Theorem 217. Let F(x,y) be a Riemann integrable function defined on
0,1]2. Assume that d,d,F(z,y) > 0 for (x,y) € (0,1)%. Then

max / / (x,y)d.dyg(z,y) = / F(z,z)dx,
g(z,y)-copula

min / / (x,y)dydyg(z,y) = / F(z,1—z)dz,
g(z,y)-copula

where the max is attained in g(xr,y) = min(x,y) and min in g(x,y) =
max(x +y — 1,0), uniquely.

Theorem 218. Let us assume that F(x,y) is a continuous function such
that d,d,F(z,y) > 0 for every (x,y) € (0,1)>. Then for the extremes of

the integral fol fol (x,y)ddyg(z,y) for g(z,y) for which g(z,1) = g1(z) and
9(1,y) = g2(y) we have

s / / (2, 9)dudyg, ) = / Fo7 (@), 97 (@),
min / / (2, 9)dadyg(z, ) = / Flgr!(x), 95 (1 — 2))d,

where the maximum is attained in g(x,y) = min(g;(x), g2(y)) and minimum
in g(z,y) = max(gi(z) + ga(y) — 1,0), uniquely.

9.1 Criterion for maximality

Now, applying Theorem 218 we find the following criterion of a maximality
in [53]:

Theorem 219. Let us assume that a copula g(x,y) mazimizes the integral
fo fo (z,y)d.dyg(z,y) and let [X1, Xa] x [Y1,Ys] be an interval in [0,1]?
such that the differential

g(XQa}/?) +g(X17}/1) - g(X27}/1> - g(Xb}/Q) > 0.
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If for every interior point (x,y) of [ X1, Xo|x[Y1, Ys] the differential d,d, F (z,y)
has a constant sign, then:
(i) if dpd, F(x,y) > 0, then

g(x,y) = min(g(x, Ys) + g(X1,y) — 9(X1, Y2), 9(z, Y1) + 9( X2, y) — 9(X2, 1))

615)

Schematically,

(X1,Y2)  (2,Y2) (X2,Y2)
© &

(X1, 9@ om EE(XQ,y)

o d
(X1,Y1)  (2,Y1) (X2, Y1)

Here, if in point (u,v) we have add & or © then in g(z,y) we add +g(u,v)
or —g(u,v), respectively.
(i) of dpdy F'(z,y) <0, then

g(z,y) = max(g(z,Ys) + g(Xa,y) — (X2, Y2), g(x, Y1) + g(X1,y) — 9(X1,Y1))

(1)

for every (x,y) € [ X1, Xa| x [Y1,Ya]. Schematically

(X1,Y2)  (2,Y2) (X2,Y2)

&) S
(X1,y)@ om @(Xa,y)
© d@
(X1,Y1)  (z,Y1) (X2, Y1)

Proof. 1°. We start with a linear map [X1, X»] X [V, Y] — [0,1]?
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(0,1) g (@', 1)

(X1,Y2) g(z,Y2) (Xo,Y3)
(2 y)

F(z,y) o

g(z,y) 3(X2,y) g (', y')

(x,y) (=',y")
(X1,71) (X2, Y1)

(0,0)
Figure: Linear map (z,y) — (2/,y').
defined by

with inverse

€r = .T/<X2 — Xl) + Xl,

I_Xl / y_Yi /

X-X 7 va-v, Y

y=y' (Yo —Y1)+ V1.

Using this map [X1, Xy] x [V1,Ys] — [0,1] to the F(z,y) and g(x,y) in
(X1, Xo] x [V1,Y5] — [0,1]? we define the following related F*(x,y’) and
g*(',y') in [0, 1]%:

(0,1)

(620)

(621)

(2 y) = [F(2,9)]a=a (o x0) 430, = F(2' (X = X0) + X0,y (Y2 = V1) + 1)

y=y' (Yo—Y1)+Y1

for (2,y') € [0,1]2. We have

dpdy F* (2", y') = dody F(z,y)(Xe — X1) (Yo — 7).

(622)

So the differential of F'(x,y) has the same sign as the differential of F* (2, /).

For a definition of g*(2’,3’) we use auxiliary g(x,y) defined by the fol-
lowing: Let us assume that from (z1,y1) ..., (zx,yy) there are M-points in

[ X1, Xo] x [V1,Y5] with the local step d.f.

FM(xuy) =

%#{n < N; (mn,yn) S [07317> X [Ovy)}

and assume Fy(x,y) = §(x,y) a.e. on [X1, X,] x [Y7, Y], Since

FM(xvy)

C OFN(X, Y2) + Fn(X1, Y1) — Fn(X2, Y1) — Fn(X1,Ys)'

Fn(z,y) + Fn(X1, Y1) — Fy(x, Y1) — Fn(Xq,y)
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we have

g(x,y) + g(X1, Y1) — g(z,Y1) — g(X1,9)
X27§/2) + g(XhYVl) - g(X27Y1) - g(XhYQ)

9(z,y) = ol (623)

Now, we put

g*(]f/,y/) = [Q(I‘?y)]I:Z/(AZ(Qleg%*Xl, = .g(I,(XQ - Xl) + ley/(n - 1/71> + 1/Fl>
y=y'(Ya=Y1)+11

(624)
for 2/, 3 € [0,1]2. Since
1 & 1 X
_ * / /
M;F(xnayn) = M;F (Zl?n,yn), (625)
1 M
ar F('Tnayn) — // F(a:,y)dxd §(m,y), (626)
M ; [X1,X2]x[Y1,Y2] Y

1 41
F (2, y,) — / / F* (o' y")dwdy g* (2, ) (627)
o Jo

| MHi

M

n=1

and the differential of F*(z/,y') has a constant sign on the open unit square,
it follows from the Theorem 218 that the integral (627) is maximal if and
only if:

(i) dyd, F*(2',y') > 0 implies g*(2',3') = min(g* (2", 1), 9*(1,9')) and

(i) d,d, F* (2, ") < 0 implies g*(2', ') = max(g*(2’, 1) + g*(1,') — 1,0).
From maps g*(2/,1) «— g(z,Y2), ¢*(1,¥') <— §(Xs,y) and from (625), it
follows that the integral (626) is maximal if and only if:

(i) dpdy F'(z,y) > 0 implies g(z,y) = min(g(z, ¥2), (X2, y)) and

(ii) dd,F(x,y) < 0 implies §(x,y) = max(g(z, Ys) + §(X2,y) — 1,0).
Here from (623) we have

3. vy) = I Y2) £ 9N 1) = g(@, 1) = 9(Xo, ¥a)
2 (X2, Y2) + 9(X1,Y1) — 9(Xo, V1) — g(X1,Y2)’
9(X2,y) + 9(X1, Y1) — g(Xp, Y1) — (X4, 9)
I0) = 00 V) T (V) — g V) — 9K Ye) )
Using (628) in (i) and (ii) we find (618) and (619). O

For a fixed F(x,y), the criterion in Theorem 219 can be fulfilling for
several copulas, which form local extremes of fol fol F(z,y)d,dyg(x,y). For
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a global extreme of fol fol F(z,y)d,d,g(x,y) we need to choose g(z,Y;) and
g(Xi,y) optimally in Theorem 219, see the following theorem.

Theorem 220. Let us divide [0, 1] to two parts [0, 1] x[Y, 1] and [0, 1] x[0, Y]
and define continuous F(x,y) by a composition

F(l‘ ) — F1<m7y)7 if (IE,y) S [0,1] X [K 1],
N Fy(w,y), if (z,y) €[0,1] x [0,Y],

where d,d, Fi(z,y) > 0 for interior points of [0,1] x [Y, 1] and d,d, Fi(z,y) <
0 for interior points of [0,1] x [0,Y]. Then we have

s [ [ romaan
= max </0 Fi(z,z — h(z)+Y)(1 = h'(x))dz + /01 Fy(z,Y — h(x))h’(x)dx),
(629)

where the maximum in (629) is over nondecreasing h(x), h(0) =0, h(1) =Y
and max(zx +Y — 1,0) < h(z) < min(z,Y).

Proof. As in the proof of Theorem 219 we start with two linear maps:

2 r_ r_ Y- Y

[0, ]_] X D/, ]_] — [O, 1] , where 2’ = T, Yy = ﬁ, (630) seq44
2 r_ P Y

[0,1] x [0,Y] — [0,1]%, where 2’ =z, ¢ = v (631) |seq45

Then, from (623) and from the properties ¢(0,0) = ¢(0,y) = g(x,0) = 0,
g(1,1) =1, g(1,Y) =Y of copulas g(z,y) we find

g(m,y) — g(l’,Y)

N ~g(z,y)
—y 0 Ry =75 (632)

Using transformation (630) and (631) we find

gl(xay) =

g’y 1 =Y) +Y) —g(="Y)

* / N _ [ _ I 9
g1 (ZE 7y) - [91(%9)] =z, - -V (633)

y=y'(1-Y)+Y

/
Y
g (2" ) = [g2(2,y)] smw, = g(:vy, ) see following Fig. (634)

yyY
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ol i
0,1 gi(@, 1) = LD )

Ff(z',y")
g7 (', y") g1 (Ly') =79
(@', y")
0,1) G1(z,1) = 27 4 4 "
Fy(z,y)
?;(z’)y) (0,0) (1,0)
v ’ a1y = =5
§2(Z;1):@ g2(1,9) = ¢ !
Fa(a,v) 0,1 g3 =21 ()
g2(z,y)
(@, 9) o
(0,0) 1,0)
ey | s =
g5 (=, y")
\ @y
(0,0) (1,0)

Figure: Linear maps [0,1] x [Y;1] — [0,1]* and [0,1] x [0,Y] — [0, 1]%.
Put g(z,Y) = h(x). Since g(x,y) is a copula and for every copula max(z+

y—1,0) < g(z,y) < min(z,y), then we have h(0) = 0, h(1) =Y, h(z) is
nondecreasing and max(z +Y — 1,0) < h(x) < min(z,Y’). Now, from (633)
x' — h(x)

and (634) we find
* / _ * AN /
i@\ 1) = 47— gi(Ly) =1 (635)
h(z')
*( I o * N1
(2, 1) = == g(Ly) =y (636)

Then by Theorem 218 the d.f. g}(2’,y") maximize fol fol Fy (2, y)dwdyg(2',y)
and g;3(2',y") maximize fol fol Fy (2, y)dydyg(2',y) for fixes (635) and (636)

iff
o
gf(x/’y’) = min (.T—(l’)’ y/)’ (637)
h(x'
g;(a:/’y/) = max ( (;/L: y, — 17 O) (638)

Now, from (632) it follows

g(w):{gl(:c,y;(l—ywh(x), i Ex,yii[O,l}x[Y,l]], 639)
g X .
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From backward transformations of (630) and (631) we find

d1(@.y) = [91(a",y)] wos, = min ( = _Y)

y=Y
o (M2 L 10) (60
Y Y ’

Y
Y=1—7v

Ga(,y) = 932", 4]

~le 8

By inserting (640) to (639) we find

~Jmin(z — h(z),y = Y) +h(z), ifye[Y, 1],
gl@,y) = {max(h(x) +y—-Y,0), if y €10,Y] (641)

and for every x € [0, 1]. It can be seen that g(z,y) has a nonzero differential
on the curves y =z — h(z) +Y and y =Y — h(x) only, where

(1—"A(x))de, ify=x—h(z)+Y,

dydyg(z,y) = 642 65
w9(@y) {h’(x)dx, ity =Y — hz). (642)

Finally, (642) implies
/0 /Y Fi(z,y)d,dyg(z,y) = /0 Fi(z,x — h(z) +Y)(1 - h'(x))dz
/0 /0 Fy(z,y)d,dyg(z,y) = /0 Fy(z,Y — h(x))h (z)dz.

[]

Notes 45. Rewrite (629) in the form fol G(z,h,h")dz. Then for searching optimal h(x)
we can apply Euler-Lagrange differential equation in variation method (see [150, p. 208]):

If the integral fol G(z,h,h")dz takes on ho(x) a local extreme over all continuous h(z)
with continuous derivative h'(z), h(0) = ho(0) =0, h(1) = ho(1) = 1, then ho(z) satisfies

oG d oG
o arow (643)

see the following example.

Example 97. Put Y = 1 and define, for z € [0, 1]

B Fl(x,y):2(y— )x, ifye[%,l},
F(x’y)_{pg(x,y)zz(%_ o, tyefd]. O



Then the integral in (629) has the form

/0 Fi(z,z — h(z) +Y)(1 = h'(x))dz + /0 Fo(z,Y — h(x))h (z)dz
1

=5+2 /0 (zh(z) — h*(z))dz. (645)

By Euler equation (643) we have

O(xh — h?)

pu— —_ 2 pr—
5 x—2h(x)=0

which gives h(z) = £. Such h(z) is nondecreasing, satisfies max(z+3—1,0) <
h(z) < min(z, 3) and thus the searched global extreme is

1 1 1
)d,d SR T
g(aczn?f)(pula/ / :E y yg(m y) 6 + 12 3

This maximum also holds omitting continuous derivative of h. It follows from

the fact the point
! I 1
/ zh(x)dz = —,/ h*(z)dr = —
] 6/, 12

lie on the boundary of the projection X3 x X5 of the body (X1, Xo, X3), where

fo r)dz, Xy = fol rg(r)dz, X3 = fo r)dz and g(z) run over all
d. fs The stralght line X, — X3 = & touches to this projection, see [160]
and Section 4.10 in this book.

From example of the form

(0,1) (1,1)

O F(z,y)
ozxdy <0 Y

OF(zy)
0xdy >0

(0,0) (1,0)

we go to (see [14])
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(1,1)

(0,1)
0’°F 8%F
0xdy > 082F 0xdy >10
0xdy <|0
(0,0) (1,0)

In this case we divide unit square [0, 1]? on [0, z1] x [0,1], [z1, 2] x [0, 1] and

(29, 1] x [0, 1], see following Fig.

8% F(z, 8% F (1 621'7'(:1:, )
Bz((?yy) >0 Bx((’)yy) <0 B:C(')yy >0
(0,1) (xal) (1'1,1) (:La]-) (1’2,1) (1’,1) (1,1)
[© d D SS) d
0,y (@:y) {@1y) (@29l (2.y) (1,y)
(1,9 (2:8) ()
(0,0) &= olo a @ (1,0
(Il,O) (I,O) (I270) (:L',O)

(z,0)

For computing a form of copula g(z, y) which maximize fol fol F(z,y)d.dyg(z,y)
we use (618) if z € (0,21) U (z9,1) and (619) if z € (z1,x2). Denote
Q(I1,y) = hl(y>7
9(x2,y) = ha(y).
If z € (0,2), then
9(z,y) = min(g(0,y) + g(z,1) — 9(0,1), g(z,0) + g(x1,y) — g(x1,0))
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=min(0+ 2 — 0,0 + hy(y) — 0) = min(x, hi(y)). (646) |A20
If x € (x1,22), then

g9(z,y) = max(g(z,1) + g(x2,y) — g(22,1), 9(x1,9) + g(x,0) — g(z1,0))
= max(x + hao(y) — 2, hi(y) + 0 — 0) = max(x + hao(y) — xa, 1 (y)).
(647) |A21

If © € (x9,1), then

g(x7y) = min(g(z%y) —|—g(l’, 1) o g(x% 1),g<1‘,0) + g(lay) - g(l,()))
=min(he(y) + = — 22,0 +y — 0) = min(z — 22 + ha(y),y). (648) [A22

The differential d,d,g(x,y) of the copula g(z,y) defined by (646), (647) and
(648) is nonzero only for points (z,y) on the curves

Tr = hl(y)ay € [07 1]7
x =13 — ha(y) + ha1(y),y € [0, 1],
r=x9— ho(y) +y,y € [0,1]. (649) |A49

Formally, y

= x2 — hy(y) + h1(y)

Fig.1 Fig.

On the rectangle
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(r,y +dy) (x+dr,y+dy)

(z,9) (z +dz,y)
Figure 1.

the differential is defined as

d.dyg(z,y) = g(z,y) + g(z + dz,y + dy) — g(z,y + dy) — g(x + dz). (650)

For the case z € (0, 1)
we have x = hq(y) and g(x,y) = min(z, hi(y)) and for the vertices of Fig. 1
we have
(i) g(z,y) =z = hi(y);
(il) g(z + do,y + dy) =z +doe = hy(y + dy) = h(y) + Ry (y)dy;
(iii) g(z,y + dy) = min(z, h(y + dy) = 2 = M (y);
(iv) g(z + dz,y) = min(zx + dx, hi(y)) = hi(y) = z.
Thus by (650)

d.dyg(z,y) = hi(y) + (ha(y) + Ay (y)dy) — hi(y) — haly) = Pi(y)dy. (651)

For the case = € (21, x2)
we have © = x5 — ha(y) + h1(y) and g(z,y) = max(z + ha(y) — x2, hi(y)) and
the differential in the rectangle

(x+dz,y +dy) (z,y+dy)

(z +dz,y) (z,9)
Figure 2.

is equal
d.dyg(z,y) = g(z+dz,y) + g(z,y + dy) — g(z + dz,y + dy) — g(z,y) (652)

406



For the vertices of g(x,y) in Fig. 2 we have

(i) g(z,y) = max(z + ha(y) — 22, (y)) = = + ha(y) — z2 = ha(y);

(il) g(z+dz, y+dy) = z+dr+hs(y+dy) —z2 = hi(y+dy) = ha(y)+hi(y);

(ili) g(z,y + dy) = max(z + ha(y + dy) — 2, ha(y + dy))

= max(hi(y) + hy(y)dy, h1(y) + b (y)dy)

=hi1(y) + hy(y)dy

since for (z,y) in the curve x + ho(y) — z2 = hi(y) we have

S—z + hi(y) = hi(y) and j—z < 0.

(iv) g(z + dz,y) = max(zx + dz + ha(y) — 22, hi(y)) = max(hi(y) +
dz, hi(y)) = hi(y) since dz < 0. Thus by (652) we have

dodyg(z,y) = hi(y) + (ha(y) + hy(y)dy) — ha(y) — Ri(y) — ha(y)dy
= (hy(y) — hi(y))dy (653) [A23

In the case x € (22, 1)
we have © = x9 — ho(y) + v and g(z,y) = min(z — z2 + h2(y), y) and we use
Fig. 1 and the differential (725). In this case in vertices of Fig. 1 we have
(i) g(z,y) = min(z — 2 + ha(y),y) = = — x2 + ha(y) = y;
(ii) g(x + dz,y + dy) = min(x + dz — x9 + ho(y + dy), y + dy)
= min(z + do — z2 + ho(y) + h5(y)dy, y + dy)
= min(y + dz + hy(y)dy,y + dy) = y + dy
since for (x,y) in the curve x — x9 4+ ho(y) = y we have dz + hi(y)dy = dy.
(ili) g(z,y + dy) = min(z — x5 + ha(y + dy), y + dy)
= min(z — x5 + ha(y) + hy(y)dy, y + dy) = min(y + k5 (y)dy, y + dy)
=y -+ hy(y)dy
since hi(y) < 1, a proof follows.
(iv) g(x + dz,y) = min(z + dz — x5 + ha(y),y) = min(y + dz,y) =y
since dz > 0. By (725) we have

dedyg(z,y) = g(z,y) + g(z + dz,y + dy) — g(z,y + dy) — g(z + dz)
=y+y+dy— (y+hy(y)dy) —y = (1 —hy(y))dy.  (654) [A24

9.2 Summarization

[14]: Let
Fi(z,y) ifze(0,29), 625;_((;;4/) <0
F(z,y) = Fa(z,y) if z € (21,29), 825;—%’?’) <0 (655) |A53
Fs(z,y) ifx € (29,1), 825;_(89;1/) <0
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A54

By (646), (647) and (648) the copulas which maximize fol fol F(z,y)d,dyg(x,y)
has the form

min(z, hq(y)) if z € [0, 1],
g9(z,y) = < max(z + ho(y) — w2, hi(y)) if @ € [11, 23], (656)
min(x — x2 + ha(y),y) if © € [29,1]

where y € [0,1] and hy(y) and ho(y) are variable functions which we need to
calculate. By (651), (653) and (654) for nonzero differential d,d,g(x,y) we
have

by (y)dy if v €0, 21], 2 = ha(y),
d,dyg(z,y) = { (hy(y) — hi(y))dy  if @ € [21, 5], 2 = 22 — ha(y) + M (y),
(1= h5(y))dy if v € [22,1],0 =25 — ha(y) +y.
(657)
Now, we return to the integral (430).
Theorem 221. Denote
G(y, hl, hg, h/17 h/2>
= Fi(hi(y), y)h, (y) + Fa(ma — ha(y) + ha(y), y) (R5(y) — Ky (y))
+ F3(w2 — ha(y) +y,9) (1 — hy(y)). (658)

Then

max / / (z,y)d.dyg(z,y) = max/ G(y, ha, ha, B, hy)dy,

(z,y)— copula
(659)
where hy, hy give a copula in (656). If the solutions (hy, ha) of (659) not give
a copula in (656), then we have an upper bound

max / / (z,y)d,dyg(z,y) < / G(y, hi1, ha, b, hy)dy.  (660)
0

—copula

Proof. The two-dimensional Stieltjes integral f01 fol F(z,y)d.d,g(x,y) over
F(z,y) in (655) and over g(z,y) defined by (656) with differential (657) and
d,dyg(z,y) = 0 others, is calculated as the following one-dimensional integral

/O/OF(w,y)dzdyg(x,y)z/o Fy(ha(y), y)hy (y)dy (661)
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+Aﬂw@—m@+M@wwmw—M@My (662) [227

+Azw@—m@+%ma—%@My (663) [428

]

To compute extremes in fol G(y, hy, he, b, h})dy we can apply calculus of
variation (cf [192, p. 33]): If (hy, hy) extremize the integral fol G(y, hy, ho, b, hb)dy
then (hi, he) must be satisfied the following system of Euler-Lagrange differ-
ential equations

G  d oG

_— — = 664 A42
oh  agon; (664)

G  d 8G

g 82 - 0. A56
ohs ~ ag o, =" (665) [A5

The solution (hy, hy) maximize fol G(y, hy, ha, b, bY)dy if

aQG 82G 82G
ECIA Oh} EIGIA Ohl,
<0 b L2 <O0. (666) |A50
/ ;) = _0°G_ 904G | —
ahlahl Bh’ oh) 6h’ Ohl,

Theorem 222. The function g(x,y) defined by (656) is a copula if and only
i
f
(i) hl( ) and ho(y) are increasing;
(ii) h1(0) =0, ho(0) =0;
(iil) hi(1) = 21, ho(l) = xo;
(iv) 0 < M(y) < ha(y) < y;
(v) 0 < hi(y) < hh(y) < 1

Proof. 1°. Necessary. Let g(z,y) be a copula and hy(y) = g(x1,y) and
ha(y) = g(z2,y). The properties (i)-(iii) are clear.

Now we prove (v).
For an arbitrary copula g(z,y) the differential g(z,y) on the rectangle
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(xva) (1’3/2)

(mayl) (Lyl)

1s
g(z, 1) +9(Lye) —g(z,y2) —g(L,y1) = g(x, y1) +y2— 9(x,y2) —y1 >0 (667)

which gives

Y2 — Y1 > 9(z,92) — g(z,y1), which gives

g'(z,y) <1 a.e. and which implies

h'(y) < 1 ae. for h(y) = g(z,y) (see also [114, p. 11, Th. 2.2.7] ).
Furthermore

Ri(y) < Rh4y(y) because for (z,y) on the curve z + ho(y) — xo = hi(y),
x € [z1, 2] we have

i—z + hi(y) = hi(y) and j—z < 0. This is the end of proof (v).

Proof of (iv).
The differential of g(z,y) on the rectangle in Fig.

(xvyl) (Lyl)

1s
9(x,0) +9(1, 1) —g(x,11) —9(1,0) =0 +y1 — g(z,y1) —0>0, (668) |A38

thus y; > g(x,y;). This is the end of proof (iv).
2°. Sufficiency. From (v) and (657) follows that the differential d,d,g(z, y)
of (656) is nonnegative for every (z,y) € [0,1]%. Also by (656) g(z,0) =
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9(0,y) = 0. Thus g(z,y) is a distribution function. Now, for copula we need
to show g(x,1) = z and ¢(1,y) = y for every (z,y) € [0,1]?. Indeed we have

min(z, hy(1)) = min(z, ;) =z if x € [0, 24],
g(z,1) = < max(x + ho(1) — 29, hy (1)) = max(z,z1) = if x € 11,29,
min(x — xg + he(1),1) = min(z, 1) =z if © € [29,1].

For z = 1 we need
g(1,y) = min(l — 9 + ha(y),y) = y. (669) |A39
Since ho(1) = x2, then (669) is equivalent
1 —y > he(l) — ha(y). (670) |A40

It holds, since ho(1) — ho(y) = (1 — y)h4(y*) and the derivative satisfies
(v). O

Theorem 222 implies the following boundaries

1 ]
hi
1 —ay ho(y B
hi(y) ha () ha(y)
hy(y) L — g

X1 z1 x2
— y ify e |0,zq], 0 ifyel0,1—ua4],
hi(y) = . 0,2] hy(y) = . vel !
ry  ify € [xq,1], y—(1—z) ifyell—ux,1],
— Y if y € [0, 2], 0 ifye|0,1— x5,
haly) = tyelml )= Hyel 2
ry  ify € [xe,1], y—(1—z) ifye[l—mxl],

where _ B

hy(y) < ha(y) <ha(y),  ho(y) < ha(y) < ha(y). (671) [As1



Example 98. In (655) define F(z,y) = f(z).y, where f(z) is given by Fig.

and denote

To—T
To—1T1

I

T2

Fi(z,y) = -y, and the integrand in (661) has the form

11—z

Fy(zy — ha(y) +y,y)(1 — hy(y)) =

z1

2

Ty — ha(y) + hi(y), y)(hy(y) — hi(y)) =

T—x9

Bty (hy — hY).
y, and the integrand in (663) has the form

y—he
1—x2 Y

Summing up this, then G in (658) has the form

ha

ho — hy

Y

(1 —hi).

— hy

(

Fy(w,y) = ;2="y, and the integrand in (662) has the form
(
(

G = —yh/ hl, — k' 1—hl
131y 1+:1:2—:c1y( 2 1)+ 1_@3/( 2);
0_G_18G_h_’1 _h/g—h’1 _ﬁ_i_hg—hl_o
Ohy, dyoht  x; T —xly r1  To—1x1
Ohs  dy Oh _.ivg—xly 1— a2y To—21 1—x9 1—29
Now, ((673) + (674)).(*=7) gives
W 1— 2 +h'2:E 1— 2y @_1’
T Yy I Yy
and (673).(*4*) gives
— h h
() - = (B0 - B
T Y T Y

412



Summing up (675) and (676) and by some simple operation we find
hi

hy = — — 1. 677
1= (677)
Insert (677) to (676) we find
h
hy = i — . (678)

The general solution h(y) of the differential equation

b = o (679)

has the form

h(y) = c.y — zy.logy. (680)
Assuming boundary assumptions h(1) = xz and h(0) = 0, then A(y) = zy(1 —
logy) and K (y) = z(—logy). Thus

hi(y) = z1y(1 —logy), ha(y) = v2y(l —logy) (681)

not satisfy the condition (v) in Theorem 222. Here G in (672) imputing (681)
has the form

xXr xXr
G =y’ 1ogy(1—2xz) + yQ(logy)2(1 _2@) +y’

1
i) 1 1
Gdy = — )+ 682
/0 Y 1-3;2( 27>+3 (682)

In other case imputing hi(y) = x1y and hy(y) = z9y in G in (672) gives
G = y? and fol Gdy = 3. Thus (681) not maximize fol Gdy.

Note that for F(z,y) = f(x).y, where f(z) is uniformly distributed pre-
serving map (u.d.p.) * we have

which gives

N 1 1
1
ma w3 fegn = wax [ [ F@g)ddgo)
n=1 0 0

Zn,yn are u.d. N—oo [V g(z,y)—copula
(683)

5 Definition: For every u.d sequence x,, the mapping sequence f(x,) is also u.d., see
Section 12.3.
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Then (684) is small that (683). By [53, p. 123, Corollary 3] for u.d.p. f(x)

we have -
@r_I}ﬁf_(p_/ / f@)®(x)de = =

Then fo fo (z,y)d,dyg(x,v) > :

9.3 Extremes of fol fol F(z,y)d,dyg(z,y) attained at shuf-
fles of M

Definition 14. Let [;, i = 1,2,...,n be a decomposition of the unit interval
0,1], let m be a permutation of (1,2,...,n), and let T : [0,1] — [0,1] be an
one-to-one map whose graph T is formed by diagonals or anti-diagonals of
squares I; x I, 1 =1,2,...,n. Then the copula C(z,y) defined by

C(x,y) = [Project, (([0,2) x [0,y)) N T)| (685)

is called the shuffle of M.
Note that if x,, n = 1,2,..., is an u.d. sequence, then two-dimensional
sequence (z,,T(z,)) has a.d.f C(z,y) and thus for every continuous F(x,y)

e [ [ et~ [ ror 6

For example (587), (597), (551) are shuffles of M.
M. Hofer and M.R. laco [75] was proved:

Theorem 223. Let (a;;), 1,7 = 1,2,...,n be a real-valued n X n matrizx.

Let I; ; = [%, ’} X [7%1, %], 1,7 =1,2,...,n and let the piecewise constant

function F(x,y) be defined as
F(x,y) =a;; if (x,y) € I;;,i,j =1,2,...,n.
Then

max / / (z,y)ddyg(z,y) Zam (i) (687)

)-copula
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Here ©* (i) maximize Y . | G;r@;), where w is a permutation of (1,2,...,n).
The mazimum in (687) is attained at g(z,y) = C(z,y), where C(x,y) is
the shuffle of M whose graph T is formed by diagonals or anti-diagonals in
Ii,w*(i); 1= 17 2, o, N

Proof. a) Let Cy(x, ylzr, k=1,2,...,n! = N be all copulas defined by shuffles
of M and t;, > 0, S0t = 1. Then C(x,y) = Son_, txCi(z,y) is a copula
and satisfies [, 1, f(2,9)dC(z,y) < 3 200, Ginegi)-

b) To every copula C(z,y) we add the matrix

C(i,j)=n fIi ; 1.dC(z,y). Then C(i, 5) is a doubly-stochastic and Cy (4, )
is a permutation matrix. By Birkhoff theorem [22] (see [104]) the set of
doubly-stochastic matrices is identical with the convex hull of the set of of
permutation matrices. Thus there exists ¢ > 0, Z,ivzl trx = 1 such that

C(i,j) = S, trCili, ) for every i, 7,
La;;C(i,7) = SV trta; ;Cy(i,7), and thus

f[071}2 f(!ﬂ, ’y)dC(Z’, y) = ngvzl tk f[oJP f(SL’, y)dck(‘r7 y) S % Z?:l ai,w*(i)-
]

Applying Theorem 223 M. Hofer and M.R. Iaco [75] approximate extremes
of fol fol F(z,y)dg(z,y) which respect to copulas g(z,y) by the following.

Theorem 224. For continuous F(z,y) on [0,1]* define piecewise constant
functions Fy(x,y), Fa(x,y) as

Fl(xvy) :( H;IEI} F(U,U) Zf(l’,y) € Ii,jaiaj = 1727--'ana
u,v)€l; ;

Fy(x,y) = ( m)%)lc F(u,v) if (x,y) € I, 5,4, = 1,2,...,n, where
u,v .7

e[ 5]
n 'n n 'n
Let Co(x,y), Ci(z,y), Co(z,y) be copulas such that

Ci(x,y) mazimize fol [} Fi(z,y)dg(z,y),
Co(x,y) maximize fol fol Fy(z,y)dg(x,y) and

Co(x,y) mazimize fol fol F(z,y)dg(z,y)
over all copulas g(x,y). Then

/01 /01 F(z,y)dCo(z,y)

415



:hm//leydClxy hm//FQxyngxy).
n—oo n—oo

Proof. Directly from definition we have

1 1
//leydClxyS//Fl‘ydCol’yy)
o Jo
//FgasydCQxy)
o Jo

From continuity of F'(z,y) follows that
Fg(l',y) < Fl(x7y) te

for all sufficiently large n, for every (x,y) € [0,1]%. Then

[ [ mewacen s [ [ G oy
< /01 /01 Fi(z,9)dCy(z,y) + e < /01 /01 Fi(z,y)dCy(z,y) + ¢

]

9.4 Extremes of fol fol F(z,y)d.d,g(z,y) for F(z,y) of the
form F(z,y) = ®(x + )
Uckelmann (1997) [183] was proved: Let
F(z,y) = ®(x +y) for (v,y) € [0,1]%
For 0 < k; < kg < 2 let ®(z) be a twice differentiable function such that
®(x) is strictly convex on [0, k1] U [ko, 2] and concave on [ky, ks, i.e
¢ (x) > 0 for x € [0, k1) U (ko, 2],
@ (x) > 0 for x € [0, k1) U (ko, 2].
If « and ( are the solutions of

O(2a) — P(a+B) + (8 —a)®'(a+ B) =0,
®(28) = @(a+ B) + (a— )P (a+B) =0

such that 0 < a < 8 < 1, then the optimal copula C(x,y) is the shuffle of M
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(0%
0 Py B 1
with the support
I(z) = x for x € [0,0] U [8,1],
a+f—x forxe (ap).

Then

1

max/ol/olF(x,y)dC(:p,y):/Oa<1>(2x)dx+(ﬁ—a)<l>(0)+/ B(20)dz.

B

9.5 Extremes of [ f1(®(z))fo(¥(z))dx

The problem of this part was introduced by S. Steinerberger [152]. Moti-
vation is a study of extremes of (558) for F(x,y) = fi(x)f2(z) and for u.d.
sequences x, = ®(z,) and y, = ¥(z,), where ®(z) and ¥(x) are u.d.p.
functions and z, is a u.d. sequence. His solution is given in the following
Theorem 225, where given proof does not contain a theory of d.f.s.

Definition 15. Let f : [0,1] — R be a Lebesgue measurable function, we
see it as a random variable, and g(x) = |f~1([0,z))| be its d.f. Put

[ (@) =g~ ().
Here, if g(x) is constantly equal to ¢ on interval («, 5) (maximal with respect
to inclusion) then we put g~!(c) = 8 In the following we shall write such

g(z) as Gy(z). ©

Notes 46. In Example 36 we have notion g(x) = x(z) and in the following Theorems
226, 227, 229 and 232 we used

Gy(x) = [f71([0,2))] (688)

60the same value as in the end of the proof of Theorem 215.

417



Theorem 225. Let fi, fo be the Riemann integrable functions on [0,1]. Let
O(z), ¥(x) be arbitrary u.d.p. transformations. Then

/f1 fgl—:cda:</f1 dx</f1 Vi (x)dz (689)

and these bounds are the best possible. Also, every number within the bounds
is attained by some u.d.p. ®(x), V(x).

In his proof Steinerberger used the Hardy-Littlewood inequality [Hardy,
Littlewood and Pélya [1934, Th. 378]:

/0 ful@) i)z < / f(@) f3 (@)da. (690)

9.6 Extremes of folf(a:)fl)(x)dx

Now, we consider F(z,y) in the form F(z,y) = f(x) - y and study the limit
points of + Zﬁf:l f(zy) - yn, where z,, is u.d. sequence and u.d. sequence y,
is given by vy, = ®(x,,), where ®(z) is a u.d.p. This problem is equivalent to
calculate

1
ma x) min )P (x)dz. 691 37
max / f , min / f(2)(x) (691)

—u.d.p.
Theorem 225 implies
Theorem 226. For every Riemann integrable f(x) we have

max /f dx:/0 f(2)Gs(f(x))dx, (692)

P(z)—wu.d.p.

,min / f@@@)ds = [ o)1= Gylfa)ar. (o9

Proof.

e [ aaens = [ pio = [ 67
- [ 67 @rone e = [ we.
1)
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Analogously,
@(xr)liiur.ld.p./o f(m)@(a:)dx:/o f*(a:)(l—m)dx:/o G;l(x)(l—x)d:v
:/0 F@)(1 - U(x))de. (695)

Here ¥(z) = G¢(f(x)) is an u.d.p. map. It follows from that G(f(x,) is
u.d. for an arbitrary u.d. sequence z,, n = 1,2,..., see [172, 2.3.7, pp.
2-28]. O

In the following part we will find an explicit form of u.d.p. ¥(z) =
G(f(x)) for piecewise linear function f : [0, 1] — [0, 1].

9.6.1 Piecewise linear f(x)

Definition 16. A function f : [0, 1] — [0, 1] is piecewise linear (p.l.) if there
exists a system of ordinate intervals J;, j = 1,2,..., k which are disjoint and
fulfil the unit interval [0,1]. For every J; there exists a related system of
abscissa intervals [;;, ¢ = 1,2,...,[;, such that f(z)/l;; is the increasing or
decreasing diagonal of I;; x J;.

So every p.l. function can be defined by the sets J; and I;; and a sign of

derivative on each I;; x J;. For example
1
Ja

J3

Jo

Ji

0 Ly Loy I3n 1y Lo [3,2[2,21

Figure: A piecewise linear function.
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In J. Fialova [51] is proved:

Theorem 227. Let f : [0,1] — [0, 1] be a p.l. function with ordinate decom-
position J;, 7 = 1,2,...,k, and abscissa decomposition I;, i = 1,2,...,1;.
Define a p.l. function U(x) in the same abscissa decomposition 1;; but in a

new ordinate decomposition J;, with the lengths

L

=310l =12k, (696)

=1

and with the same ordering as J;, j =1,2,..., k. Put the graph of V(z)/1;;
on Ij; x Ji as the increasing diagonal ,/* or decreasing ~ if and only if
f(x)/ 1L, is the /* or ™\ diagonal. Note that if f(x) is a constant on the in-
terval 1;;, then J; is a point, and the graph ¥ (z)/1;; can be defined arbitrary,
either increasing or decreasing in Ij; X J}.

Then V(z) is the u.d.p. map and

/01 f(@)¥(z)dr = max /01 F(2)®(x)dz.

O(x)-u.d.p.

For example

v
1 (@) 1 (@)
J}
le J
JA
J:
J
J]
Ji
0 10 1

Figure: The best u.d.p. approximation.

Proof. By Theorem 226 it is sufficed to prove that W(x) defined in Theorem
227 is equal to U(z) = G(f(x)). Without loos of generality, we transform
the p.l. function f(z) in the following way: the intervals [;; are rearranged
such that, for the same j the intervals /;; are fused into I; and these are
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ordered according to j from the left to the right. This can be done also
backwards, so the following picture shows that the function G;(f(z)) is the
same as the function W(z). Note that for such reorganized f(z) the function
G (z) is still the same one.

1 f(x) Gy(z) Gy(f(x))
Jg [3 [3
]2 IQ
J3
L L
J
O L L A Js L L I

Figure: The equality between ¥(x) and G (f(x)).
[

In the originally proof of Theorem 227 presented in the Strobl UDT2010
conference, J. Fialova uses the following basic property of an extreme.

Theorem 228. For an arbitrary Riemann integrable f : [0,1] — R we have

/01 f(@)¥(z)dr = max /01 f(2)®(z)de

P(z)-u.d.p.
if and only iof
1 1
/ (f(z) — ¥(x))*dz = min / (f(z) — ®(z))*dx.
0 ®(z)-u.d.p. Jo
We will call such u.d.p. V(x) as the best u.d.p. approximation of f(x).
Proof. Let W(x),Vy(x) be two u.d.p. functions, and f(z) is given. Then

/01<f(56) — Wy () < /Ol(f(:c) ~Wy(2)2da o
/01 f(2)Vy(x)dz > /01 f(2)Us(z)da.
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Here the following property of u.d.p. functions is used
1 1 1 1
/ U3 (z)dr = / Ui (x)de = / ridr = 3
0 0 0

By using Theorem 228, for some special cases, it can be proved that ¥(z)
is the best approximation of p.l. function f(x). But the proof of Theorem 123
via Steinerberger’s Theorem 225 is to simple. Here we add some consequences
of Theorem 228, 227 and 226:

Theorem 229. If f(x) is u.d.p. function, then

]

D(z)-u.d.p.

max /0 1 F(2)®(x)de = /0 1 F2(x)dz. (697)

Theorem 230 ([51)). The best u.d.p. approzimation of the function f(x) is
independent of the lengths of the ordinate intervals J;. Thus, for the given
u.d.p. function V(x) there are infinity many functions f(x) for which V(z)

15 the best u.d.p. approrimation, e.g.
1 1 1

0 10 1 1

U(z) f(x)
Theorem 231 ([51]). For u.d.p. function ¥(z) in Theorem 227, ¥(x)/I;;
can be expressed as

|/ /]
U(z) = 7 (@) + 54 — iy,
R S
where |J}| = Zi;l 1], and t} is given recurrently as t; = 0 and t; =

tiy +|Jj|. So the integral folf(:c)‘lf(x)da: can be calculated directly from

Jj = (tj—latj) and JJ/ = (t;il,t;> as

1 k
1 1 1
/0 f@)¥(z)de =Y || <tj1t;1 + gt i+ 5ol ]+ §|Jj||J§|> ~
j=1
(698)
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Theorem 232. Let f : [0,1] — [0,1] be a Riemann-integrable function.

sseed

sth43

Then

1
max /f dq:—/ zgr(x)dGy(x <1—/ GH(x d:c)
P(z)—wu.d.p. 0

(699)

Proof. Here as in Definition 15, G;(z) = |f~*[0,z)| for € [0, 1]. For every
u.d. sequence x,, n =1,2,..., the sequence f(xz,) has a.d.f. G¢(z) and then
Gf(f(zy)) is u.d. sequence. By Helly theorem we have two alternatives

1 !
¥ 2 )Gl @) = [ 260Gl (700
n=1
- / F@)G(f (701)
In (700) we use integration by parts and (701) is in (692). O

9.7 Computation of fol f1(®(x)) fo(¥(x))dz

Theorem 233. Let fi(x) and fa(x) be two functions defined on [0, 1] having
continuous derivatives fi(x) and fj(x). Let ®(x) and V(z) be two u.d.p maps
on [0,1] and put for (z,y) € [0,1]?

g(z,y) = 127([0,2)) N T([0,))], (702)

where | X| is the Lebesque measure of the set X. Then

/ £1(®()) fo((2))dr =1 (1) fol1) — (1) / u )y — fo(1) / £f|(2)dz

1 1
[ s nsi@sasdy (703)

o Jo
Proof. Let z,, n =1,2,..., be a u.d. sequence in [0,1) and let g(z,y) be a
d.f. of the two dimensional sequence (®(z,), ¥(z,)), n = 1,2,.... Then by

Weyl and by Helly theorem the limit of the following arithmetic means can
be computed by two methods

¥ 2 A@@) L)~ [ A@@)AFE), (704)
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—>/0 /0 fi(@) f2(2)dadyg (2, y). (705)
Since

(D(xn) < 2) A (¥(z0) <y) & (20 € 27([0,2))) A (2 € ¥TH([0,9)))
and x, is u.d. then the sequence (®(x,), ¥(z,)) has d.f

#{n < Nyzn € ©73([0,2)) N ¥71([0, )}
N

which is furthermore a.d.f.
Now, to computing (705) we apply (566) for F(x,y) = f(z)g(y). O

Notes 47. 1°. Steinerberger [152] generalized (559) to extremes of

= |271([0,2)) N TH([0, )]

/ F1(®1(2) fo(@2()) . . fo(Py(2))dz (706)

for Riemann integrable f1,..., fs and u.d.p. maps ®1,...,P,. He proved, e.g., the follow-
ing partial results:

a) maxy, g fo f1(®1(2))fo(@a(x)) ... fo(®y(x))da
< (I Jo it |d:c)

b) ming, 4, fo (x)...P4(x)dx > ei
¢) ming, . fo ) B, (z)dx < ess 41
Using d.f.s theory, (706) can be reformulated: Let z,, n = 1,2,..., be a u.d. sequence

in [0,1) and g(t1,...,ts) be an a.d.f. of the s-dimensional sequence (®1(zy,),. .., Ps(xy)),
n=1,2... We have

gltr, - sts) = [@71([0,t2)) N - N @7H([0,£5))],
g(l...,t;,1...,1)=¢t; fori=1,...,s, ie., it is a copula and
/ Fi@1@) - L@u)de = [ i) flt gl )
[0,1])

Thus, we arrive to the open problem: Find extreme values of f[o 1 F(x)dg(x), where
g(x) is a copula.

20, Steinerberger [153] generalized (556) to give bounds for the asymptotic behavior
of

1 N
NZIIXn—anI, (707)
n=1

where x,,,y, are u.d. sequences in a bounded Jordan measurable domain 2. E.g., for

s-dimensional ball he found the sharp inequality 4 ZTJLI % — yull < 2

s+1
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9.8 Extremes of fol fol folF(:U,y,z)dxdydzg(a:,y,z)
The result (563) can be extend for s = 3 (cf. Theorem 204)

Theorem 234. Assume that F(x,y, z) is a continuous in [0,1]* and g(z,y, 2)
1s a d.f. Then

1 1 1
/ / / F(z,y,2)d,d,d.g(z,y, 2)
0 0 0

:F(l,l,l,)—/lg(l,l,z)dZF(l,l,z)—/1g(l,y,1)dyF(1,y, 3
—/1g(x,1,1)dF(91:,1,1 // (1, v, )ddF(ly, 2)

// (x,1,2)d,d, F(z,1,2) + // g(x,y,1)d,d, F(z,y,1)
—/ / / g(x,y, 2)dodyd. F(x,y, 2). (708)
o Jo Jo

This gives the following generalization of Theorem 214:

Theorem 235. Let ©,, yn, 2, are u.d. sequences in [0,1) such that (x,,yn),
(0, 20), (Yns 2n) are u.d. in [0,1)2. If dpd,d. F(z,y,2) <0 in (0,1)3, then

1 1 1
lim sup — Z F(xn, Yn, 2n) / / / F(x,y, 2)d,d,d, min(zy, 2z, yz).
o Jo Jo

N—oo
(709)

10 Solution of fol fol F(x,y)dg(z)dg(y) = 0 in d.f.s
g(x)

These investigation is motivated by Theorem 56 and mostly published in
[165]. Also extend Section 4.4. Again, for a given continuous F : [0,1]* — R,
let G(F') denote the set of all d.f.s g(z) which solve the moment problem

| [ Fa st = o. (710)
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10.1 Examples of calculations of fol fol F(z,y)dg(x)dg(y)
exl| Example 99. Following [159, p. 618] let us denote

Fg(x,y):/o g?(t)dt—/ g(t)dt—/ G0dt + 1 — max(z,y),  (711)

or alternatively

:/Olgz(t)dtJr/Oxg(t)dt+/0y§(t)dt—2/Olg(t)dt

T+y+ |z —y
) (n2)

From the relation (see (30))

| 6@ -swypa= [ [ e, @

we see that the moment problem (710) with F'(x,y) = Fj(z,y) has the unique
solution g(x) = g(x). Applying (713) to g(z) = (g1(x) + g=(x))/2 also holds

/0 / Fy (. y)dgy (2)dgaly) = / (91(2) — () (gala) — §(a))d,

The function Fj for §(x) = = will be denoted by Fy and
2, 2

1z +
Fo(ey) =5+ —max(z,y)
_1+x2+y2_x+y_]x—y]
-3 2 2 2
1 T +y -

1 1
= - — —|—ﬁ;FCOSQﬂ'h<I—y)

1 1 ! 1 1
. N - - = t}— =) dt
() (rmg) o [ (v =g (wrn )
where the final equation can be found in [92, p. 144, Th. 5.2]. This function
Fy(z,y) is inspired by the classical L? discrepancy [, (Fy(z) — z)*dz since

1 N

/0 (Fy(z) = 2)*dw = > Fo(wm, ).

m,n=1

426



Example 100. In connection with a diaphony (cf. [159, p. 620]) we intro-

duce
He = [ goa- ([ g(t)dtf ~Go) [ s
+ /Ox g(t)dt + /Oy g(t)dt + min(z,y) — zy.
Since
[ [ #wviswas) =[] @6 - - 6 - o(a))aray

0<zr<y<l

_ /Ol@(gg) —g(x))*dx — (/Ol(g(x) - g(x))d$)2>

the moment problem (710) with F' = F. §(1) is equivalent to g(x)—g(x) =constant
in every point z of continuity and thus has a unique solution g(z) = g(x) if,
e.g. g(x) is continuous at 0 and 1.

Example 101. For a continuous distribution function g, the moment prob-

. //Fo ),9(y))dg(z)dg(y) =0

has the unique solution g(z) = g(z). This is a consequence of [92, Exerc.
7.19, p. 68] which states that if g is a continuous limit law of the sequence
xp in [0, 1], then the sequence g(z,) is u.d. in [0, 1].

Example 102. For a d.f. g(x) and a piecewise continuous f : [0,1] — [0, 1]
we denote by gy the d.f. (see Section 4.8.1)

or@) = [ Ldgl)
f=1([0,2))
In [159, p. 628] we have proved, for two piecewise continuous f, g,
1 1 1
[ st —a@yas= [ [ Fraeises)
where

Fya(z,y) = max(f(z), h(y)) + max(f(y), h(z)) — max(f(z), f(y))
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—max(h(x), h(y)). (714)

Thus, the moment problem (710) with F' = F}, is equivalent to the functional
equation gf(x) = gn(x) a.e. on [0,1]. For f(z) = {1/z} and h(z) = x
and applying the Gauss-Kuzmin theorem (see Theorem 178), the functional
equation g = ¢ has unique solution g(z) = log(1 + x)/log2 on the set
G’ of all distribution functions having continuous first derivative. Thus, for
F = Fy),, the moment problem (710) has a unique solution on G’. Here

Fyn(e,y) = max({1/x},y) + max({1/y}, v) — max(z, y)

— max({1/z}, {1/y})
= %(\{1/3?} —yl+ {1y} =zl = |z =yl = {1/2} = {1/y})

(715)
gf(z) = g (9 (%) -9 (nix» :

ex5| Example 103. Combining examples 100 and 101 we can define

and

[ ((956) ~ 95@) — (1) — gn(2))” oy
:/0 /O Fi(x,9)dg(2)dg(y),

where

FO(2,y) = Fyule,y) — (f(z) — h(@)(f(y) = h(y))-

Moment problems (710) with F' = Fyj, and F' = F ;1,3 have the same solutions
assuming some additional conditions on ¢, f and h.

Example 104. Since
/0 (90(x) — g7(x))2da = / / Fyo(£(2), () dg(e)dg(y)

the moment problem (710) with F(x,y) = Fy,(f(z), f(y)) is equivalent to
the functional equation go(z) = g¢(z) a.e.
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Example 105. Define F¥ _ (z,y) as Fi(z,y) in Theorem 63, i.e.

91,92

[ [ Ftrisornon) = [ 66 - p@a [ - a6

2

- ( / <g<x>—gz<x>><g2<x>—gl<m>>dx) .
Then
/ / * (@ y)dg(e)dg(y) = 0 <= 3(t € R)g(x) = tgr () (1—t)ga(x) ne

If we assume that given gy, go have derivatives ¢/, g5, then the parameter ¢
must satisfy

tgy(z) + (L = t)gy(x) 2 0 <= t(gy(x) — ga(x)) = —g5(2).
Putting

X, ={z € [0,1];gi(z) — gy(x) > 0}, Xy = {z €[0,1};91(x) — go(z) <0},

we cal express

. . uﬂmﬂ
ClFgr0) = %%@+“‘”M@¢€b£%<>gﬂ)méﬁ@—%wﬂ}

Here we have the explicit form
1
Fg; gg( ,y) = Fy, (x»y)/o (92@) - gl(x))2dx — Fy 00 <x)F91792(y)7
where Fy,(x,y) is defined by Example 99 and
T 1
Fon(®) = [ (@t) = 00t = [ (1= 0a(0)(g2(a) - 1))
0 0

Example 106. We repeat Theorem 23: For every polynomial ¢ (y) = a(z)y*+
b(x)y—+c(x) with continuous coefficients the one-dimensional integral fol Y(g(x))dx
can be express as the double integral

[ stanie= [ [ P

for every d.f. g, where

1 1 1 1 1 1
ﬂ%m:/ a@&+§/b@&+§/b®&+/c@&
max(z,y) T Y 0
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Notes 48. Assume that
F( y) = Zz 1 Fi(z,y), and
fo fo (z, y )dg(z)dg(y) = 0 has a unique solution g(x) = go(z).
Denote fo fo (z,y)dgo(x)dgo(y) = a3, i=1,2,..., k. Then the system of equations

1 .1
/ / Fi(z,y)dg(x)dg(y) =y, i=1,2,... k.
o Jo

has a unique solution g(z) = go(x).

10.2 Theorems of calculations of fol fol F(x,y)dg(x)dg(y)

Here we apply Riemann-Stieltjes integration and as usually

d.F(z,y) = F(z +dz,y) — F(z,y), d.F(2,1)=[dF(z,y)]

y=1>
dody F(2,y) = F(z +do,y + dy) — F(z + dz,y) — F(z,y + dy) + F(z,y)

and
d.F(z,y) = Fl(z,y)dz, d.d,F(z,y) = Fy (z,y)dzdy

provided that related partial derivatives F! = % and F, = 82;; (gl’ly) are

exist. For an introduction we mention the following simple properties.

Theorem 236. Assume that F(x,y) = 0 for (x, y) € {(xz,xj);i,j =1,2,...,
Then any step d.f. g(x) having jumps only in x;, i = 1,2,...,m is a solution
of (710).

Theorem 237. If F(x,y) and H(x,y) are continuous symmetric and for
every d.f. g

// (z,y)dg(z)dg(y //Ha:ydg )dg(y),

then F(x,y) = H(x,y) for all (z,y) € [0,1]2.

Proof. Indeed, F(a, ) = H(av, ) follows from the assumed integral equation
with g(z) = co(2z) and F(a, 5) = H(a, 5) we find by using g(x) = tc,(z) +
(1= t)es(x). O
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Theorem 238. Let I : [0,1]*> — R be a continuous and symmetric function.
For every d.f.s g(x), g(x) we have

// (2, 1)dg(2)dg(y _0<:>// (2, )d3(2)diy
/0 (o) = ) (200 1) - / (9(9) + 3)dy e F y>)

Proof. Using integration by parts, for any two d.f.s g, g we have

// (x,y)dg(x)dg(y // (z,y)dg(x)dg(y

// (z,y)d (2))d(g(y) + 3(v))
[ ([ 60 - anapien ) o) + o)

y=1

— [/Ol(g(x) — 9(x))dF(z,y) - (9(y) + §(y))]

+ /Ol(g(y) + g(y))d, (/Ol(g(g;) — §(2))d. F(z, yj) ‘

This implies

// (2, y)dg(x)dg(y // (2, )dg(x)dg(y
_ / () = 3(a) (-2, 1) + / (o(0) + <>>ddF<x,y>) (716)
= [ [ 66~ 06)600) ~ 500, o

+2 [ (o) - i) (~aF@ )+ [ a0y, (117)

and (716) implies theorem. O

Example 107. Especially, putting §(z) = ¢o(z), we have

/o1 /01 F(z,y)dg(x)dg(y) = 0 <
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F(0,0) = / (9(z) — 1) (2dxF<x,1>— / <g<y>+1>dydxF<x,y>). (718)

For F(z,y) = Fy(x,y), where Fo(z,y) = 5 + IQZLyQ — max(x,y) is defined in
Example 99, we have (718) in the form

g(x )—:r<=> / )(2x — g(x))da.

Here d,d, Fy(z,y) =0if v #y and for x =y

Then

/0 / (9(2) — )(gy) + Ddyd,Fol,y) = / (9(x) — 1)(gla) + 1)da.

A direct proof of (718) can be found by using theory [160] of the moment
problem 4.10.

Example 108. For control, if F(z,y) = zy, then (718) has the form

/01 /01 zydg(x)dg(y) = 0 <=

0= /0 (@) - 1) (2dx— /0 o) + 1)dydx>

_ /Ol(g(x) ~ 1) (2—/01(g(y) —i—l)dy) dz

- [ -var (1= [ owar) =~( [ o)~ ar)

Thus fol rdg(z) = 0 < fol g(z)dz = 1 which is trivial.
Example 109. For F(z,y) = x + vy, g(x), g(z) the (716) gives

// (z + y)da?dy? —// x+ydxdy——2/(x — r)da.

This holds since 8(1/3)(1/2) — 2(1/2) = 1/3.
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Theorem 239. Assume that continuous f : [0,1] — [0,1] has finitely many

inverse functions f;*,..., f-1 such that, for everyi = 1,2,..
71 :[0,1] = [ag, Bi]. Then

.,m we have

/0 (95(2) — gu, (2))?dz = / (9(2) — 92(2) 1) (g7 (F(x)) — gn, (F(x)))dlz

(19)

Proof. We give a simple proof for the special f(x) = 2z mod 1. Firstly split

the integral (719) on two parts f01/2 and f11/2. Substitute
y=f(z)
f=filly) ==

into f01/2 we find

1/2
/0 (9(2) — 9u(@)) /(@) g5 (F(@)) — g, (f(2)))dlz
dy

- / U W) — (7 @))2005() — g0, () L.

2

Substitute
y = f(z) )
e =fty) ==

into f11/2 we find

/1/2(9(35) — 91(2)) f'(@) (g7 (f () — 91, (f ()))da

- / (0 @) — a1 (7 ))2005(w) — g, () L.

2
Summing up (720) and (721) then we find (719).

Example 110. Once again (719): Put
g1(z) = x, and g(z) is an arbitrary d.f.,

fa) = {Qx, z €0,1/2];

2 -2z, x€[l/2,1]
fri(z) = 2/2 and fy'(x) =1~ (2/2);
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gr(@) = g(fi (@) + 1 = g(f3 " (2));

917(7) = ;

€ [1/2,1);
[ (f(@) = {"f’_ . i E/;/ﬂ
S A
Then we have
o[
gis((f(@) = {3_ . m/ ﬂ

The (719) has the form
/Ol(g(x/Q) F1—g(1l—2/2) — 2)2dz
= [t~ 020) +1 - 90— ) - 20000
|/ :2<g<x> )29~ @) + 1 - glx) — (2 - 20))da

which holds for every d.f. g(x).
e In the following we denote the set of jumps of Fl(x,y) as
H(F) = {(r.) € 0,1, F(,0) £ 0 as dy 5 0}, (722)
Furthermore assume that H(F') can be expressed as
H(F)={(z,u(x));i=1,2,... k,x € [0,1]}, (723)

and we denote a jump of partial derivative F) at the point (z,u;(x)) as v;(x),
Le.

vi(z) = Fl(z,u;(x) + 0) — Fi(z,u;(z) — 0). (724)
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Theorem 240. Let F(x,y) be a continuous, symmetric and F,, = 0 a.e.
and such that the set H(F') of jumps of F.(x,y) satisfies (723) and (724).
Furthermore assume that u;(x) and v;(x), fori=1,2,... k, are continuous.
Then for every solution g, of the moment problem (710) we have

/01 /01 F(z,y)dg(r)dg(y)

= /0 (9(z) = g1(x)) (—2F;(93, 1)+ Z(g(ui(l‘)) + gﬂ%(%)))%(fﬂ)) dz.
(725)

for any d.f. g.
Proof. Directly from (716) and by using Riemann-Stieltjes integration. [
Theorem 241. From assumption of Theorem 240 follows

/ (Zguz )d:c—/ (Zgl e )d:c (726)

for every d.f. g(z).

Proof. From symmetry of I we see that partial derivative F(r,y) has jumps
n (y,u;(y)) of size v;(y). Thus

// ) — 01 (0) (9(y) + 01(9))dyde F (2, y)

10.3 Copositive F(z,y)

A symmetric matrix A is called copositive if the quadratic form xAx” is non-
negative for all nonnegative values of the variables (x1,zo, ..., x,) = x. This
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generalization of positive definiteness was first discussed by T. S. Motzkin
[108]. All criteria for copositivity of real symmetric matrices A of order n
are inductive, e.g. (cf. K. P. Hadeler [67, Th. 2]): A real symmetric matrix
A of order n is copositive if and only if

(i) every principal submatrix of order n — 1 is copositive,

(ii) det A > 0 or the matrix of signed cofactors adj A contains a negative
element.

In the following we give an extension of copositivity to F'(x,y) for which
the moment problem (710) can be transformed to some simple integral equa-
tion.

Definition 17. A symmetric continuous F(z,y) defined on [0,1]? is called

copositive if o
/0 /0 F(z,y)dg(z)dg(y) = 0
[0,1]

for all d.fs g :[0,1] = [0,1

Theorem 242. (I) A copositive F(z,y) need not have F(x,y) > 0 for every
(z,y) € [0,1]? but for every (z,y) € [0,1]* it must be F(z,z) >0, F(y,y) >0
and F(z,2)F(y,y) > F*(z,y) or F(z,y) >

(IT) A real continuous symmetric F(z, y) is copositive if and only if for
every finite sequence w1, ..., xy in [0,1] the matriz A = (F(Zm, Tn))1<mn<n
1S copositive.

(IT1) If Fy(x,y) is copositive and F(x,y) > Fy(z,y) on [0,1]?, then F(z,y)
is copositive. If Fy(x,y) and Fy(x,y) are copositive, then Fi(x,y) + Fy(z,y)
and max(Fi(x,y), Fy(x,y)) are also copositive.

(IV) Copositivity of F(x,y) implies copositivity of F(f(x), f(y)) for every
continuous f : [0,1] — [0, 1].

Proof. (I) The known criterion of copositivity for symmetric matrix A = (a;;)
of rank 2 states: The matrix A is copositive if and only if a;; > 0, as > 0
and a11a99 — CL%Q Z 0 or a19 Z 0.

(IT) Sufficiency follows from the Helly theorem.

(III) Clearly.

(IV) It follows from

Jo Jo F( f(y))dg(x = [ [ F(z,y)dgs(x)dgs(y). O
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Theorem 243. (1) If F(z,y) > max (Fy, (z,y), Fy,(z,y)), for some two dif-

ferent distribution functions g1, g2, then the moment problem (710) has no
solution.

(IT) If continuous symmetric F(x,y) is not copositive together with —F (z,y),
then the moment problem (710) has infinitely many solutions g.

Proof. (I) G(F') C G( gl)mG( 92)—(2)

(IT) Assume that, for given distribution functions ¢g; and g2, we have

// (x,y)dg1(x)dg:(y >Oand// (x,y)dga(x)dg2(y) < 0.

For these g1, go we can find (in the interval [0, 1]) finite sequences x,, and y,,
n=1,2,..., N with step d.f.s.

N N
1 1
F](Vl)(x) = NZC[O,x)(xn)aF](VQ)(‘I) = N ZC[O,x)(yn)a
n=1 n=1
such that
| X
/ / ()P @AFL W) = <13 3 Flag,a) > 0,
m,n=1
| X
[ [ Feias@war @) = 4 3 Flm) <o
m,n=1

From continuity of F(x,y) it follows the existence of a sequence z,, n =
1,2,..., N in [0, 1] for which its step distribution function

F(g) Z Clo, :E) Zn

solves (710). This can be realized for every sufficiently large N. Moreover,
for any given ty,ts,...,t; in [0,1] and for sufficiently large N > N(k) we
can ﬁnd such z, with the initial k-terms segment ¢4, s, ..., t;. Furthermore,
if F ( ) = F )( ), then either (N7, No) = d > 1, or F ( ) = F](V?’Z)(a:) =
Col ) Then the infinitely many solutions of (710) can be ‘realized by using
t1 # ty and an infinite sequence N; < Ny < ... of pairwise coprime terms. []
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Theorem 244. Let F(x,y) be a copositive function having continuous F.(x,1)
a.e. and let gi(x) be a strictly increasing solution of the moment problem
(710). Then for every strictly increasing d.f. g(x) we have

/ / F(z,y)dg(x)dg(y) = 0 <> Fi(z,1) = / 9)d, Fl(z,y) a.c. on [0,1],
o Jo 0 (727)

Proof. Let gi(x) be a solution of (710). Assume that z is a common point of
continuity of ¢;(z) and F.(z,1). Furthermore, assume that g;(z) is strictly
increasing on the interval I, = [xg — &, x¢+¢€]|. Then there exists z(x) defined
on [0, 1] such that

(i) z(z) =0 for z € [0,1] — L,

(ii) z(x) # 0 for x € I,

(iii) g(x) = g1(x) + z(x) is nondecreasing.
Then by (717) we have

// (x,y)dg(x)dg(y // (y)dpdy F(z,y)

+ 2/15 2(z) (—dxF(x, 1)+ /Olgl(y)dydxF(x,y)> . (728)

Assuming (—d F(x 1) + fo g1(y)dyd, F(z,y)) # 0, the sign of the double

integral fo fo (x,y)dg(z)dg(y) is dependent on sign of z(z) which is a con-
tradiction and thus we have the
(—d F(x, 1)+ fo g1(y)d,d. F(x, y)) =0 a.e. and thus we have

( d F(z,1) + fo y)d,d, F(z, y)) = 0 a.e. for every strictly increasing
(

solution g(z) of fo fo (z,y)dg(x)dg(y) = 0.
Thus we have = implication in (727). Opposite implication < in (727)

follows from (729). O

Theorem 245. The equation (716) can be reduced as

/01 /OlF(x,y)dg(:v)dg(y)
- [0 -06) (£ + [swapen)e @)
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- [ ) - >>( Fi(z,1) + Zgwxm(m))dx (730)

/ / 9)(9() — 91(9))dud, P ) (731)

where F(x,y) is copositive, symmetric and continuous and gi(x) is a strictly
increasing solution of the moment problem (710).

Proof. The equation (729) follows from (716) and (727). The (731) follows
from (717) and (727). O

Difference of (731) for two increasing solutions g;(z) and go(z) of (710)
gives

0= /0 (92(7) — g1(x)) (—Fé(l’, 1)+ Zg(ui(x))w(x)> dz. (732)

Since (732) holds for arbitrary d.f. g(z) then

0= / (92(2) — gr(2)) (e, 1)dz (733)
0= [ (auto) - g1<x>>(ng(a:))vi(x))dx, (734)

for arbitrary d.f. g(x).

Theorem 246. Let gi(z) be a strictly increasing solution of (710) with
copositive F(x,y). Then

0= / F(z,y)dg(y) (735)

for every x € |0, 1].
Proof. Instead of g(x) with (g(x) + g1(2))/2 in the formula (731):

// (2.9) ( );gl(x)>d<g<y)+291(y))

/0 ( g(x )4;91( x)  golz );go(fﬂ)>x
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Then

/01 /01 F(z,y)dg(z)dgi(y)
L

= 5/ (9(2) = go(x)) (-Fé(% 1)+ Zgl(ui(m))vz‘(ﬂc)> dz

+3 | 0@~ afa) (—F;<x, 1)+ ;m(ui(x))w(@) da.

Assuming that g;(z) is an increasing solution of (710), then bearing in mind
(727) and (732)

k

0=—Fi(z,1) + ) gi(us(x))vi(x),

i=1

0= /0 (g1(2) = go(x)) (—F;(x, 1)+ Zgl<ui(x))vi<x)> dz

=1

and we find

| [ P st =o (736)

for any d.f. g(x). Putting g(x) = c,(x) we have 0 = fol F(o,y)dg:1(y) then

| Fenint =0 (737)

for a.e. x € [0, 1] and for every increasing solution g;(z) of (710), i.e.
Jo Jo F(x,y)dgi()dgu(y) = 0. O
Example 111. We have

1 1 2 2
/ (— +2 Yy max(z, y))dy =0
o \3 2

/01 (é * : ; v max(x’y))dxd?/ = /Ol(g(x) — 2)%dz.

In this case ¢g;(z) = x.

and
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Theorem 247. (1) If g1(z) and g2(x) are two strictly increasing solutions of
the moment problem (710) with copositive F(x,y), then their convexr linear
combination tg,(x) + (1 — t)ga(x), t € [0, 1] also solved (710).

(IT) Let g1(x) be a strictly increasing solution of (710). with continuous
symmetric and copositive F(z,y). Then F(1,1) = fol g1(z)Fl(z, 1)dx.

(IIT) If (710) with copositive F(z,y) has a strictly increasing solution
91(x), then F} (v,x) > 0 for any common point v € [0, 1] of continuity of
Fy (z,x) and gi(x).

Proof. (I) It follows directly from (727)).
(IT) Putting g(x) = ¢1(z) in (729) we find the desired result.
(III) Directly from (728). O

For some copositive F'(x,y) the moment problem can be transform to
functional equation

10.4 Copositive F(z,y) having F; =0

Theorem 248. Let F(x,y) be copositive and F), = 0 a.e. such that the
set H(F) of jumps of Fl.(z,y) satisfies (723) and (724) and moreover u;(z)

and v;(z), fori =1,2,... k, are continuous. Finally, let gi(x) be a strictly
increasing solution of (710). Then for every strictly increasing d.f. g(z) we
have

k

/0 /0 F(x,y)dg(x)dg(y) = 0 < F.(z,1) = Zg(uz(m))vl(aﬁ) a.e. on [0,1].
- (738)

Proof. Immediately follows from Theorem 244. [

To Theorem 248 we can add that for any distribution function g(z) we

have
/0 /0 F(x,y)dg(x)dg(y)
1 k
~ [ tole) e <Z<g<ui<x>>—gl<uz-<x>>>vi<x>) de  (739)

0

- / (9(x) - g1 2)) (—F;@c,l)+Zg<ui<x>>vi<x>> de.  (740)



Let ¢g1(x) and go(x) be two strictly increasing solutions of (430). Then for
every two distribution functions g(z) and g(x) we have

k

0= /O (92(7) — 91(x)) (Z(?}(ui(&?)) - g(ui(x)))vz(x)> dz. (741)

=1

10.5 The matrix form of fol fol F(x,y)dg(x)dg(y)

In the following we shall transform the moment problem (710) to a matrix
form. To do this we cover H(F),

H(F) & @) 2,0 € [, )} (142
where the sets
{1t € [a, B)}, .. {zm(t);t € [, B)} (743)

are pairwise disjoint. For this F' and z;(t) we define an associated matrix
A(t) as follows,

(A1), = % (dy B (i), 2 (0) |25 (0)] + dy F ( (8), () |25 (B)]) - (744)

Finally we denote by

g(t) = (g(x1(1)), g(22(1)), - .., g(zue (1))
the vector associated with g : [0, 1] — [0, 1].

Theorem 249. Let F'(z,y) be continuous, symmetric, copositive and Fy, =
0 a.e. such that the set H(F) of jumps of F.(x,y) is covered by (742)
with pairwise disjoint sets (743). Assume that the derivatives xi(t), i =
1,2,..., M, are continuous and let A(t) denote the associated matriz de-
fined by (744). Finally, let g, be a strictly increasing solution of the moment
problem (710). Then we have

1 1 B
/0 / Fz,y)dg(z)dg(y) = / (1) — £1(6) A()((t) — ga(£)7dt (745)

for all distribution functions g : [0,1] — [0,1]. If det A(t) # 0 a.e., then the
moment problem (710) has the unique solution g .
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sse45
ex27

Proof. Let g; be a strictly increasing solution of (710). Suppose that the set
of points (z;(t), xz;(t)), t € [, B), covers (with disjoint sets (743)) H(F') and
denote {z;(t);t € [a, B)} = [, 5;). Then

Bi

| 6@ = 9o g(0s0) = gr (a0 e)da
B

= [ (otault)) = aulase) (o(a(0) = ey () vulale)l o).

where u,(x;(t)) = z;(t) and vs(x;(t)) = dy F(;(t), z;(t)). If we sum the last
integral over ¢ and j, and according to (731), we obtain

[ [ Femastaon) =

8 M
/ D (glza() =gu@a(t))) (g0 (1) =g (5(8))) dy Fy (a(0) (1)) | (1) |,

4,j=1

and the desired formula (745)) follows immediately. O

10.6 Examples of the matrix forms

Example 112. For continuous f(z) the function F(x,y) = Fy,(f(z), f(v))
described in example (338) is continuous, symmetric and copositive on the
unit square [0, 1]%. The first partial derivative of F(x,y) use

5 —f'(x), if flx) > f(y),
B (—max(f(z), f(y))) = { 0, if f(x) < f(?zj) =)

is piecewise independent of the variable y and the set H(F') of points (z,y)
in which F/(z,y) has a jump has a form

H(F) = {(z,y) € [0,1]% f(z) = f(y)}- (747)

In all cases the absolute value of a jump in (z,y) € H(F) is |v;(x)| = | f'(z)].
Assuming that go(z) = ¢1,(z) for some strictly increasing d.f. ¢,(x) and
applying (739) we find

A(%@%ﬂA@V¢V—A(ﬁ@—m@»<§]MW@D—%&M@DM@Od$

i=1
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for every distribution function g(z). In the following, for special f, we shall
find this formula and also matrix formula directly.

Assume that continuous f : [0, 1] — [0, 1] has finitely many inverse func-
tions f; ', ..., f-! such that, for every i = 1,2,...,m we have f; ' : [0,1] —

i, Bi], [ (f(x)) = @ for @ € [oy, Bi], [0,1] = U [, Bi] and f; < iy
Furthermore, denote f; *(f(t)) = x;(t) for t € [ay, B1]. In this case

gi(z) = Z eig(fi ' (z) +e

where ¢; = sign(f; ' (z))" and £ = (1 — sign(f; ' (x))(—1)™)/2. Finally, as-

(2 m
sume that go(z) = g1,(z) a.e. for some (not necessarily strictly increasing)

distribution function gy ().
Integration by change of variables gives

/0 (g¢(x) — g1, (x))*dx = /0 (9(x) — g1 (2)) () (g7 (f(2)) — g1, (f(x)))da
m_ m
= Z/ (9(z) — g1(2)) f'(x) (Z(g(fj_l(f(x))) — gl(fj—l(f(x))))gj) dr

=1

m B1
= > / (g(@i(t)) — gul@a(t)) [ (i(t))e |2 (8)] (g(2; (1)) — gr(w;()))dt,

ij=1"

where in the final step we substitute x = x;(t) and apply
[ @a(®) = 7171 () = y(0).
Directly, the associated m x m matrix A(t) = (a;;(t)) has the terms

J'(i@))eg|lwi ()] + ' ((1))eal} (1))
2

a;;(t) =

and for every distribution functions g(x) and g;(z) we have

1 B1
/0 (95(2) — g1, (2))"da = / (&(t) — £.(1) A1) (g(t) — ga(t))7dt

1

where g(t) = (g(z1(1)), .- -, g(wm(t))) and similarly g () = (g1(21(1)), .- -, g1(wm(t)))
for ¢ € [Oél,ﬂl].
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Example 113. Now denote

{2x, z e [0,1/2];

2 -2z, xell/2,1],

3, z € [0,1/3];
h(z)=1<2-3z, z€[1/3,2/3];
3r—2, xe€l2/3,1].
and define F(z,y) by

/Ol(x — gp(z))*dz + /01($ — gn(x))?dz = /01 /01 F(z,y)dg(z)dg(y).

Using definition of Fy(x,y) in Example 99 we have F'(z,y) = Fo(f(x), f(y))+
Fy(h(z),h(y)). Thus

Py =4+ T (@), s+
% + w —max(h(zx), h(y)).

The set H(F) is equal to

H(F) ={(z,y) € [0,1]% f(z) = f(»)} U{(z,y) € [0,1]* h(z) = h(y)}

and has the form
H(F)

Fig. 3.
It can be covered by (z;(t),z;(t)), where

l‘l(t) = t, l'z(t) = 2/6 — t, [L’g(t) = 2/6—|—t,
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This gives

23 -30 0 5
The matrix A can be decomposed as A = BTDB, where

10 0 —3/5 3/5 —2/5
01 =35 0 —2/5 3/5 090 0 00

B=|oo0o 1 0o 0 -1 D— (0000 00
00—-1/10 1/10 0 0 g 000260 00
00—1/10 —=1/10 1/5 1/5 000 0 0o
00 0 0o o0 1

and applying Theorem 249 to ¢;(z) = x we have

/ (o — gy(a)d + / (2 - gu(e))da

1/6
/ [5(<g<x1> — 1) — 3/5(g(ws) — w4) + 3/3(g(s) — a5) — 2/5(g(e) — a5)

zg(t) =1—t pret € [0,1/6].

2

+5((g(s) — 2) = 3/5(g(xs) — w3) — 2/5(g(ws) — w5) + 3/5(g(w6) — 76))”

+260(—1/10(g(w3) — 23) + 1/10(g(z4) — 1))
+60(—1/10(g(x3) — 23) — 1/10(g(21) — z4) + 1/5(g(5) — 5)

+1/5(g(ws) — 26))° | dt

for every d.f. g :[0,1] — [0,1].

2

(71)

Example 114. To testing (748) we putt g(x) and compute gs(z) and g (x)

by the following Fig.

9(x)

gs(z)

gn(z)

2/:

1/2
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Then . ) .
/0 (z — gs(w))dz + /0 (z — gn(z))*dz = 57 33

which is the same as (748). Note that fol(x — g¢(x))*dz = 0.

Example 115. In the following we consider three functions

go(x) = %arcsin(\/i), f(z) =4x(1 — ), h(z) = 9z — 242 + 162,

on the unit interval [0, 1]. Let us study the function F'(x,y) defined by

/0 1(go(a:) — gs(x))?dz + /0 1(go(:ﬂ) — gn(w))*dz = /0 1 /0 1 F(z,y)dg(z)dg(y).

Here we have

gr(x) = g(fi ' (2)) + 1= g(f5 ' (2)),
gn(x) = g(hy'(x)) + g(hy " (2)) — g(hy " (),
where f; '(2) = (1— /1 —1)/2 and f; '(x) = (1++/1 — 2)/2 are the inverse

functions to f, and hy*(z), hy'(z) and h3'(z) denote the inverse functions
to h (these functions do not admit simple explicit forms). The explicit ex-
pression for F'(x,y) can be determined according to

Fx,y) = Fyo (f(x), f(y)) + Foo (h(2), h(y)),

where F,(x,y) is defined in Example 99 as (711) or (712). It is readily seen
that

A F2to0) = (= g max(F@), F)) + (=5 max(hte) b))

and

H(F) = {(z,y) € [0,1% f(z) = f(y)} U{(z,y) € [0,1]* h(z) = h(y)}
Let us consider two roots

3—2z 3z(l —x)

yl(l’) - 4 2 Y
3—2x 3x(l—=x
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of the equation h(z) = h(y). The set H(F') can be covered by the set of
1,] =

1,...,6, where

points (z;(t), x;(t)), i,J
ri(t) = t,
wa(t) = 1—ys(t),
z3(t) = 1—w(t),
ra(t) = (),
z5(t) = wyalt),
re(t) = 1-t,

and t € [0, (2 — V/3)/4].
The matrix (d,F)(z;, xj))Gj:1 has the form

/L‘?

0 h'(z4) B (z5) I (z6)

f(z1) + h'(x1) 0
0 f'(z2) + 1 (x2) ' (z3)

0 I/ (z5) B (wg)
0 —h/(z32) I/ (x3) — W' (z3) I (z4) 0 —h/(z6)
—h'(z1) 0 —f'(z3) —f'(z4) — W' (z4) —h'(z5) 0
B/ (1) —f'(22) 0 B (z4) —f(@5) + b/ (25) 0
—f'(z1) B (w2) B (@3) 0 0 —f'(z6) + 1/ (w6)

For our further aims we need the diagonal matrix

diag (|21 (t)], ..., |=5(t)]) =

diag (1,a(t) — 1/2,a(t) + 1/2,a(t) + 1/2,a(t) — 1/2,1),

where o 31— 21)
=)
Putting
C(t) = (d,F(:,2,));,_, - diag (|2 (t)], .. |z6(0)]),
then we have 1
At) = 5(C(t) +C'(t))

Computing the determinant of A(¢) we find det A(¢) = 0 which does not give
uniqueness for solutions of (710). For the expression (745)

/01 /01 F(x,y)dg(z)dg(y)
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54@mwqum+A@mwmem

(2—V3)/4
:A (g(t) — go(£)) A1) (g(t) — go(t))dt

we need to prove that go(z) is a solution of gs(z) = gn(z).

Proof. Denote f(x) = 22 mod 1 and h;(x) = 3x mod 1 and s(z) = sin® 2mx.
Clearly fos=so f;, hos = so hy. Thus for every distribution function ¢
we have

(gs)f = Gfos = Gsofy = (gfl)s
(gs)h = Ghos = Gsohy = (Ghy)s-
For g(z) = « we have gy = g, and gy, = g5, which gives the proof. [

Discrete solutions of gy = g, are

co(x), 65_8\/5 (x), C5+8\/g (x).

Other solutions can be found by using solutions of g, = g5, in Section 6.1.10
or [163].

Notes 49. Note that the above example is motivated by the fact that any distribution
function g(x) of the sequence

sin?(27(3/2)"), n=1,2,...
satisfies gf = g, since all distribution functions of (3/2)" mod 1 satisfy gy, = gs,, cf.
Section 3.8 (XV) or [163].

11 Miscellaneous examples of d.f.s

In [172] the following sequences involving trigonometric and logarithmic func-
tions can be found:
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11.1 Trigonometric sequences

Example 116. [172, 3.12.1., p. 3-49]. Let 1,w;,ws be linearly independent
over the rational numbers. Then the sequence

(cos 2mnwy , cos 2mnws)

has the a.d.f.
g9(z,y) =4 G — 91(I)> Gl - gl(y)> +2 G - 91(13)) (1 —2g2())

+2(1 = 2gs()) (i - gl<y>> + (1= 2ga(2)) (1 — 292(y)),

where

1
g1(x) = 5, arccos and go(z) = o arccos(x — 1).
This was proved by R.F. Tichy [179].

Example 117. Denote
xp is u.d. sequence in [0, 1),
Yp = SIN 27T,
Zp = COS 2TZ,,.
For a.d.f.s we have:
(i) yn has a.d.f. g1(z) = 5=(7 + 2arcsinz) in [-1,1].
(i) z, has a.d.f. go(2) = 5-(2m — 2arccos x) in [—1,1].
(iii) (Y, 2n) is u.d. on the unit circle and has a.d.f. g(z,y) in [-1,1]? by

the Fig.

gi(z g1(a) + g2(y) — 1

(91(7) + g2(y))/2 — 1/4

|
—_
—_
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Now, put

(iv) 2, = log(2)” mod 1 = nlog(2) mod 1.
Then from

2(3) = 3(2)"

lo

2 have
log2+ (n+1)

we
g(3) =log3 + nlog(2). Applying sin 27z we find
sin(2mlog 2).z,41 + cos(2m log 2)yn+1 = sin(27 log 3).z,, + cos(27 log 3)ys,

Thus the sequences wﬁl and w'? of inner product

U’SL = sin(2710g 2). 2,11 + cos(2m10g 2)yn 1 = € - (Yny1, Zn11),
w) = sin(2mlog 3).2, + cos(27log 3)y, = €@ - (Ypi1, Zny1)

have the same a.d.f.

1 1
g(x) ]\}LH})O N#{n < Nyw,’ <z} ]\}131)0 N#{n < Nyw,” < x}. (749) |eqi67

By the following Fig. we see that (749) is not only property of z, =
log(2)” mod 1 but for arbitrary u.d. x,, for arbitrary unit vector e, and
(Yn, 2n) = (sin 2wz, cos Tx,) we have the same

(ym Zn) e

—1 1

because for a fixed = the length of the family of arcs is constant, independent
on X.
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11.2 Logarithmic sequences

Example 118. Let g(z,y) be a d.f. of the sequence ({logn},{log(n + 1)}),
n=1,2,.... All such d.f.s. can be computed by following:
We have {logn} € [0,z) & n € U2, (eF, e**®) and put N = X", Then

Fy(z,y) :{n < N; ({logn}, {log(?j’LVJr D}) €[0,2) x [0,9)}

2(:—01 (ek+nlin($,y) _ ek + O(l)) N €K+min(:57y7u) _ €K
N N

Now, if N letting the sequence of integers such that {log N} — u, then
Fy(z,y) = gu(z,y), where

emin(m,y) -1 1 emin(m,y,u) —1

gu(,y) = T 1 e T a (750)

By the formula (571) we compute

1 1 1 min(z,1) _ 1 1 min(z,1l,u) _ 1
(& e
Cyldedygu(ey) = | (S T T2
/0/0“1. yld.dygu(z, y) /0( e — 1 €u+ ou ) x
/1 <emin(1,y) -1 1 emin(l,y,u) - 1)
+ e e
0 e—1 ev ev

1 .
r_ 1 1 min(z,u) -1
=1 ( ~—+€—)dx:0
0 e—1 ev el

which implies

A}gnoo—ZHlogn%—l)} {logn}| = 0. (751)

This result also follows direct from the fact, that for almost all n we have
[logn] = [log(n + 1)] and so |{log(n+ 1)} — {logn}| = |log(n + 1) —logn| =
log(n 4 1) — logn. From this follows

=

%Z {log(n + 1)} — {logn}| = Z log(n + 1) —logn) + o(N)

n=1

—_

:Nl og(N + 1)+ o(N) — 0.
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11.3 Sequence involving na mod 1
Example 119. (J. Fialova [51].) Let o be an irrational number smaller than
: and
T, = o, o, 20, 20, {3a ), {3a}, {4at, ...
yn = «, 20, {3a}, {4a}, {5a}, {6a}, ...

Both sequences are u.d. modl and of the two dimensional sequence
(Tn,yn) we can take out two subsequences with different a.d.f.s. First is
the subsequence ({na}, {2na}) and the second is ({na},{(2n — 1)a}):

min (x, £ if v <1
gl(x7y):{y ( 2> 1 y f %
§—|—mm(x—§,§) nx>;

0 1
Figure: Straight lines containing ({na}, {2na})

0 if (x,y) € A,
x if (z,y) € By,
y_(é_a) if (x,y) € Bs,
r—$ if (x,y) € C,
ga(r,y) = 4 if (x,y) € Cy,
Y+r—5 if(z,y) €D,
T — e if (z,y) € Ey,
Y if (z,y) € E»,
r+y—1 if (z,y) e F

where
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B/l b F
By
l—«
AlCy/ Cy |Ey
By
0 o Ta 1
2 2

Figure: Straight lines containing ({na}, {(2n — 1)a})

Then the sequence (z,,y,), n =1,2,..., has the a.d.f.

1 1

g(r,y) = 591(90,@/) + 592(93, Y).

In the following example we shall find d.f.s of the given two-dimensional
sequences ({2z,}, {3z,}).

Example 120 ([51]). Let x,, n = 1,2,... be u.d. sequence in [0,1) and
consider two u.d.p. maps ®(z) = 2z mod 1 and ¥(x) = 3z mod 1. %' Then
we can compute a.d.f. g(x,y) of the sequence ({2z,},{3z,}) applying the
formula (117) g(z,y) = |®7([0,z))N¥~1([0,y))| and by the following graphs

P(x) ¥ (x)
Y
x
0 z z+1 1 0 Y y+l y+2 1
2 2 3 3 3

Figure 9: Intervals ®1([0,z)) and ¥~1([0,y)).

61Before referred to as f(z) and h(z).
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(min (£,%), ifreA,
r—1 : z+1 +1 3
s fwin (L), e,
by | () e
ag\x,y) = x —1 x 1
§+yT+m1n(§,%), ifxreD,
2y—1 : z ytl i
B in (5, 41) foeE,
z—1 2y—2 : z+1 y+2 3
(55 + 27 +min (5, 57), ifz el
where
1
B| D| F
1
2
Al C| E
0 L 2 1
3 3

Figure 10: Areas A, ..., F of (z,y).

11.4 Sequence ({na},{(n+ 1)a}, {(n+2)a})
Example 121. Let a be irrational and 1/3 < a < 1/2. Then the points

({na},{(n+Da},{(n+2)a}),n=0,1,2,... (752)

lie on diagonals
I=00,1-2a] x[a,1—0a] x[20,1] = (Ix,Iy,Yz),
J = [1 —Q, 1] X [O,C‘é] X [a, 20&] = (JX,Jy,Jz),
K=[1-20,1—qa|x[1,1—a] x[0,a] = (Kx, Ky, Kz)
Let T be a sum of diagonals I, J, K and let g(x,y, z) be a.d.f. of the sequence
(752). Then

g(z,y,2) = Proj x([0,2] x [0,4] x [0,2] N T)
=min ([0, 2] N Ix,[0,y] N Iy,[0,z] N 1z)
+min ([0, z] N Jx, [0,y] N Jy, [0,2] N Jz)
+min ([0, 2] N Kx, [0,y] N Ky, [0,2] N Ky)

To calculate minimums we can use the following Fig.:
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| Ix | Kx | Jx |
| | [ |
1 —2a 1—a 1
| Jy | Iy | Ky |
| [ [ |
« 1—a 1
| Ky | Jz | Iz |
| [ [ |
« 2c 1

For example

0 if x €[0,1—q,
g(z,z,2) = ¢ 2(x — (1 —a)) if x € [1 —a,2a], (753)

[\

(x—(1—a))+z—2a ifzxe2a,1].

11.5 Sequences of the type f(z),)

In the next example we shall listed some simple d.f. of a sequence (z,,yn),
n=12,..., Ty y, €[0,1).

Example 122. (i) If (z,,y,) has a.d.f. g(x,y) then the sequence (z,,1—y,),
n=1,2,..., has a.d.f g(z,y) = g(z,1) — g(z,1 — y) because

Tn <z ANl—y, <y<=ax, <zAN1l—y <yn,.

(ii) For u.d. sequence x,, € [0, 1), the sequence (x,, z,) has a.d.f. g(z,y) =
min(x,y) and the sequence (z,,1 —z,) has a.d.f. §(z,y) = g(z,1) —g(x,1—
y) = o —min(z,1 —y) = max(x + y — 1,0). Thus we find upper and lower
copulas.

(iii) Let x, be u.d. sequence in [0,1) and ¥ : [0,1] — [0,1] be u.d.p.
Then the sequence (z,,V(x,)) has as an a.d.f. the following copula

g(z,y) = 1[0,2) N TH([0,y))],
because
T, < T AV(1,) <y<= 1z, €[0,2) Am, € U([0,7)).

(iv) The a.d.f. in (iii) (see (702)) can also be extend to non-u.d.p. func-
tions: If z, € [0,1) is u.d. sequence and f; : [0,1] — [0,1],i=1,2,...,s are
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Riemann’s integrable, then the s-dimensional sequence (f1(z,,), fa(zn), ..., fs(xn))
has a.d.f.

g(y1,y2, ce ays) = ’fl_l([()?yl)) N f2_l<[0>y2)) n---N fs_l([oays))l

(iv) ([51]) For u.d. sequence z,, € (0,1) the sequence (z,, {logz,}) has
a.d.f

= if z € (ev71,1),
ee(?;j) +z—1 ifze(l e,
g(z,y) = :(Zj), if v € (ev 2, 1), (754)
6265:—11) +r—=% ifze(F,e?),
¢
It follows from intervals f;'([0,)), i =0,1,2, ...
—logy x mod 1
|
‘E .
i
L
Lo
i
Xz
0 1
11 1 1 1 1
b5 B b b BT
(v) Every u.d. sequence z, € [0,1), n =1,2,..., is statistically indepen-
dent with the sequence {logn}, n = 1,2,.... Then every d.f. g(z,y) of the

two-dimensional sequence (x,,, {logn}) has the form g(z,y) = zg,(y), where

v —11 eminw) _1

e—1ev * el ’ (755)
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u € [0,1] all d.f. of {logn}, n=1,2,.... For a proof see Theorem 91.
(vi) For u.d. sequence z,, in [0, 1) the sequence (x,,{2z,}) has a.d.f

_ min(x,%) ifo%,
g<m7y)_{%+min(:ﬂ—l Y it (756)

272

Example 123. Let z,, n =1,2,..., be u.d. sequence in [0, 1).
For f:[0,1] — [0,1] denote g(z) = |f~([0,z))|.
Then the sequence f(x,) has a.d.f. g(z).
Assume that the sequence (z,, f(z,)) has a.d.f. g(z,y).

By Helly theorem

( fol x2dg(1’),
1 N fol fQ(IE)d:p,
dim = fle)fle) = o Jy F@yded,g(z,y),
n=1 F(U) = [y zf'(@)da — [} g(y)f(1)dy
L+ Sy 9l y) f/(z)dady.

11.6 Sequence of a scalar product

Example 124. See [166]:
Define

gs(t) = [{(b,x) € [0,1]*;b-x < t}, te€]l0,s]

For s =1 we have
gi(t) =t —tlogt, tel0,1]

with the density ¢}(t) = —logt. The g4(¢) is an a.d.f. of the sequence
bn'Xn:Zbi,n$i,n> n=12...,
i=1
where b, = (b, ..., bsyn) and x,, = (214, ..., Zs,) are statistically indepen-
dent and u.d. in [0, 1]°. Since the s-dimensional sequence

(bl,nxl,m s ;bs,nms,n>

also has statistically independent coordinates, it has a.d.f. g(t), t = (¢1,...,t),
of the form

g(t) = (t1 —tilogty) ... (ts — tslogty)
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which gives

gs(t) = (=1)* N 1.logty ... logt.dt; ...dt,.

0<t1<1,...,0<ts <1

In particular, for any decomposition S; U Sy = {1,..., s}, the coordinates of

the sequence
(Z bi,nxi,n; Z bi,nxi,n>

1€51 1€Ss
are also statistically independent. Thus

9s(t)

/ L.dg;(2)dge, ()
r+y<t
and the Fig. 1

s — f t—s+j

+y=t

s — 27

r+y=

T+y=1 ]x
Fig. 1
implies that

Jo dg; (@) Jy™" dgej(y) for ¢ € [0, j],
j t—x . .
f()J dgj(x) 0 dgs—j(y) for t € [j, s — 3]7
t—s+j j t—x .
fo +J dg] (:E) + j;j_s_i_j dg](l') f() ng—j(y) fort € [S - 8]7
for j < s —j. Its densities are

gs(t)

Jy di(2)g._;(t — x)dw for t € [0, 5],
gi(t) = [ gi(x)g, st —x)de  forte[js—j],  (757)
Sl 0(@)gs;(t — x)da

fort € [s — 7, 5].
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Applying (757) we find
Theorem 250. Fort € [0,1],

1. gao(t) = & ((logt)®> — 3logt + L — Lx?),
2. g3(t) = ;—37 ( — J(logt)® + Z(logt)? 4 (— 22 + 37?) logt + 22 — Bn? —
9c(3)).

where ((s) is the classical Riemann’s zeta function.

Applying substitution z; = %4, i =1,2,...,s, fort € (0,1), L. Habsieger

t?
(Bordeaux) found (personal communication) that

gs(t) = (=1)°t° (logt +logxy) ... (logt + logxs)dxy ... dx,
o<§f<+i;if,%s<§i<1

Z ( ) logt)*~7g;,
=0
and then using substitution 1 +---+x; =1 —y; ... y;, he found

g; = logz;...logz;dx; ...dx;
T+ Frs<l
0<z1<1,..., 0<zs<1

= /[ | H logyy + -+ +logy;_1 +log(1 —y;))y; " .. .y;*jdyl .
0,17

(s —7)!
He also observed that g; is a composition of integrals

1
/0 (lngL’) z"dx = m,
1

1 e}
log z)"z" log(1 — = (=1)""'m!
| o togt =yt = (S

=ap+a1((2) + - + an((m+ 1) for some a; € Q.

Notes 50. The explicit form of g4(t), for t € [1, s], is open even for s = 2,3.

460



ssb

11.7 [-van der Corput sequence

In [98] is proved: Let
e 3 be a PV-number;
e ¢3(n) be the Monna map, and ¢z(n), n =0,1,2,... is f-van der Corput
sequence; %2
o7 :[0,1) = [0,1) be von Neumann-Kakutani map defined by ¢z(n), i.e.
T7(0) = 65(n);
® ny,...,ns be non-negative integers.
e k,,n=1,2,... be Hartman uniformly distributed and LP-good universal
for a p € [1,00].

Then the sequence

(¢5(kn+n1),...,gb5(k:n—l—ns)),n:1,2,... (758)

has an a.d.f in [0, 1)°. Moreover,
e ([0,1],7) is uniquely ergodic and

N-1 1
.1 k
Jim HZ:O f(T* ) = /0 Fy)du(y)
for all z € [0,1] and all continuous f : [0, 1] — [0, 1].
e Using y(t) = (T™(t),...), T™(t)) and I' = {~(¢);t € [0,1]},

then the a.d.f 7 of (758) as a measure i of Jordan measurable B C [0, 1]*
has the form

Ai(B) = p(proj,(BNT)). (759)
11.8 Jager’s example

Example 125. H. Jager [78] proved: Let (z,,y,), n = 1,2,..., be a two-
dimensional sequence in [0, 1)? having a.d.f.

g(r,y) = /Om /Oy f(u,v)dudv,

1 1 .
flu,v) = 4 P VT itu+v<l
7 0 others.

with density

623-adic van der Corput sequence was introduced by G. Barat and P.J. Grabner (1996)
[15].
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Then the sequences
1. (z, +y,) mod 1 has a.d.f.

g1(x) = 21ig2((1 +z)log(l + ) + (1 — z)log(1l — x)) if z € [0, 1].

2. |z, — y,| has a.d.f.

1
~ log?2

(am — 2z arctanz + log(1 + 2%)) if z € [0, 1].

92($) 2

3. xpy, has a.d.f.

0 if1/4 < <1,
gs(x) = ¢ V1 —dz — 1022\/1 —4xlog(l + 1 — 4x)
53l — V1 —4x)logx if0<z<1/4

4. x, has a.d.f.

log 2

s(1—z+log2r) if1/2<z<1.

z if0<ax<1/2,
ga(x) = { /

11.9 Uniformly quick sequences

| sseds]

For a given infinite sequence x,, in [0, 1] and a subset X C [0, 1] the classical
counting function Ay (X, x,) is defined as

An(X,z,) = #{n < N;z, € X}.

For X C [0,1] which can be represented by an infinite union of pairwise
disjoint intervals I,, (possible open, closed, semiclosed and empty), say X =
Us? 1 1, we define the following new type of counting function:

By(X,z,) =#{m=1,2,...; Ay(I,») > 0}.
It should be noted that By(X,z,) is dependent on the expression X =

U, I,..
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Definition 18. [200]: The sequence x,, is said to be the uniformly quick
(abbreviated u.q.) in [0, 1] if the limit relation

N—o00 N

= |X]

holds for every X C [0,1] which can be represented as X = U I, with
pairwise disjoint subintervals I,, of [0, 1].

Notes 51. The defining relation can be instead by

lim BN(Xa xn) + AN([Ov 1] - X)’xn)
N—o0 N

—1-1x|

and if we assume (without loos of generality) z,, € X for all n, then the defining relation

is changed to

i B
It follows immediately that whenever the sequence x,, is u.q., then z,, is u.d. The converse
is not true: Suppose we are given an infinite sequence x, and consider the sequence
X1, &1, X2, L2, ..., Ly, Ly, .... One easily sees that if x,, is u.d. in [0, 1], then this sequence

is also u.d., but not u.q.

(I) For irrational « the sequence na (mod 1) is u.q. if and only if « has
bounded partial quotients.

(IT) The u.d. sequence z, in [0, 1] is u.q. if there exist, for infinitely many
M, the constants ¢, cpy and No(M) such that ¢, — 0 as M — oo and

> < emt(N = M)+ dy (N = M)

\zlf‘L] <t
M<i£j<N

for all N > Ny(M) and for every t > 0.
(III) We shall returning to D.S.C. in Section 3.6: (R. J. Duffin and A. C.
Schaeffer [199], abreviated D.S.C.). Let f be a nonnegative real functions

on reals. If the series > .~ ¢(g;)f(g;) diverges, then for almost all z and
infinitely many n the diophantine inequality

< f(qn)

a
xr — —
n

has an integer solutions a coprime with ¢,.
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In 1941 R. J. Duffin and A. C. Schaeffer conjectured this property for
every one-to-one sequence ¢,. Some historical remarks can be found in G.
Harman [41].

(IV) Let ¢, be a (not necessarily increasing) one-to-one sequence of positive
integers. The associated block sequence A,

An — (i7%"”7a¢(Qn)> 7
n dn dn

is said to be u.q. if the defining limit relation limpy_ o w = |X]
holds over indices N of the form N = " | ¢(¢;). We have proved [200]:
Every sequence ¢, for which the associated sequence of blocks A, is u.q.
satisfies D.S.C. with every nonincreasing f.

(V) Assume that, for given one-to-one sequence of positive integer g, there
exists for infinitely many m positive reals ¢, and ¢, such that ¢, — 0 as
m — 0o and

Z < Cm33< Z Cb((h)) + ( Z Cb(qz')) (760)

(a,q;)=(b,q5)=1,m<i,j<n

for every > 0 and for all n > n(m). Then the sequence ¢, satisfies D.S.C.
with every nonincreasing f. If (760) holds for every permutation of ¢, and
every subsequences of ¢, then ¢, satisfies D.S.C. with every nonnegative f,
where zero values also available.

11.10 Benford’s law of binomial coefficients

The sequence of blocks X,,, n =1,2,..., with blocks

X, = <log (g),log (T) , ..., log (Z)) mod 1

is u.d. and thus binomial coefficients (Z), k=0,1,2,...,n, satisfy the Ben-

ford law. This was firstly proved by P. Diaconis [201]. He proved that
\ZZZO ?mihlos (2)‘ = O(nzlogn). In the following we give an alternative
proof from [164]:
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Proof. T function gives

(ZL) T(z+ E)?(nt i)g; 1)

[(z) =2"Y2e7"V27x(1 + O(1/x)).

From it
m (m + 1)"+1/2 e 1
= 1+0 - :
z (z 4 1)e+1/2 (m — x4 1)m—2+1/2 /2 min(m, z, m — )
Denote

flx) = (m + %) log(m+1)— (x + %) log(x+1)— (m —x+ %) log(m—z+1).

For x € [m — m* m|, 0 < a < 1, we have

log (T;L) — flz)=1- %logﬂ—klog (1+O (%)) .

Furthermore N N
m—m%) —m
lim ( ) =1,
m—o00 m

so it is enough to prove
A0, )5 f () mod 1)

=1.

For Weyl’s trigonometric criterion we use van der Corput lemma which gives

S 20| < (17(0) — f/(m)] +2) (% n 3)

where f”(z) < —p < 0 on [0,m]. In our case

f(z) =—log(x+1) — x;i:f

J@) == (x+12 m—-z+1 (m—z+1)*

Just use the estimate

m—x+1/2
m—x+1

+log(m —x +1) +

1 1 4
+ > ,
r+1 m-—xz+1~" m+2

from where the left side comes minimum at x = m/2. O
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12 Different themes

12.1 The mean square worst-case error

Example 126. In [8] we have defined:

o x =% 4 2 4+ ... is a b-adic representation of z € [0, 1), and
e x =%+ 2 4+ . isa b-adic representation of z € [0,1), and
eo =12+ % .. then

er Do = zo+0o0 b(mod b) + x1+01bgmod b) +o

eo;,i=0,1,...,is a ud. sequence in [0, 1),

® gmn(2,y) is the asymptotic distribution function (a.d.f.) of the sequence
(T @ oy Do), 1 =0,1,2,...,

e H is Hilbert space with reproducing kernel K (x,y),

o Let K(z,y) = max(zx,y).

The one-dimensional tent map ®(x) = 1 — |22 — 1| we extend to the map

®(x): Putting I; = [%, Z’—)), i=1,2,...,b, we define

o = 761 155

with a graph in the following Fig.
1

Qyf | \Wa | @3 | Wy

0

1

0
b]lb ]2

(S9N
S

SN

Is ° 1y

In [8] we express the mean square worst-case error as
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1 sup %N 1f 0)) —/Olf(x)dx 2da:
i< n=0
/ / (N2 Z Gmn(2,Y) —xy)d d K((I)( ), @(y))' (762)

m,n=0

Putting K (®(z), ®(y)) = F(z,y) and gmn(z,y) = g(z,y) to compute (762)
we need computed the Riemann-Stiltjes integral

(z,y)ddy F(z,y) = // g(z,y)d,d, F(z,y 763) |eq323
// I;x1; ( ) ( )

In the following we describe a method of expression of (763). We distinguish
four cases:
1°. 4, j-are even.

®(x)-tent function

W x) W ?J)

N

\I/i(af):\lfj(y)(:)b(%—x> :b(%_y)@y:H%
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—
[S 1N
S,
~—

B i
Uy (z)
‘Ifl(%) 1 0 A-bdx
i(y)
ao
dz 0

(55 5) W) =1

where the differential OF (z,y) on the squares A, B, C can be computed by
definition:

AF(z,y) = (Yi(ar) = V() + (Vi(zrr1) = V5 (yig)) — Vilaw) — Vi(u)
= Vi(z41) — Vilzr) = —b(Tp41 — 2),
BF (x,y) = (Vi(zr) = V() + (Vi(zrs1) = Vi (y41) = 0) — Wilzy) — Ui(y) =
= Vizki1) — Wilar) = —b(Tp41 — @),
CF(x,y) = Y;(y) + Vi(yie1) — Vi) — ¥ (yig1) = 0.
From it
| sataren = [ o(nes 5 e o
Similarly

20 4, j-are odd.
®(x) = tent u.d.p. map

Pj() Dji(y)

x y
4} =1 2 =1 J
b b ]z b b[] b



1—1

d)(x)=¢>(y)<:>b<x—7> :1,(1/_&)@3/:“]'—@'

b b
and ®;(z) = ®;(y) < ®;(y + dy) we have F(x,y) on I; x I; by the following

figure ; .
e(3) =1 (1%)
B o
D;(y)
0 A-bd i
: ®i(3) =1
g o
dx 0
(55 455)

where the differential OF (z,y) on the squares A, B, C can be computed by
definition:

AF (z,y) = (Pi(zr) = ;(y) + (Pi(@ht1) = P5(Yi+1)) — @ (yis1) — Pi(wt1)
= ®i(zp) — Pi(wp41) = —=b(Tps1 — 1),

BF(z.y) = (@(zk) = ®(y) +1— 1 — 1 = d(zy) — B(1) = —b(1 — 1),
CF(z,y) = ®;(zx) + Pi(xgr1) — Pi(zg) — Pi(xp1) = 0.

Similarly for others squares in /; x I;. Then for Riemann-Stiltjes integral

5 j—i
dod, F(z,y) = , —b)d 56
//IiXIj g(z,y)d.d, F(z,y) [1 g(x T+ = )( )dz (765)

b

3%, i-even and j-odd.
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®(x)-tent function

\I’z( P (y)
z Y
0 i=1 i =1 7
b Iz b Ij b

\Ij(a:)z\lf(y)@x—lzl :%_y®y2_$+i+é_l
and W;(z) = ®;(y) < ®;(y + dy) we have F(z,y) on I; X I; by the following
figure o (%) . (%’ %)
B0
®;(y)

0
(545

where the differential OF (z,y) on the squares A, B,C can be computed by
definition:

= ‘I’z(xk) - ‘Pi(wkﬂ) = b(l’kﬂ -

AF(z,y) = Vi(zr) + @j(yir1) — (Vi(zr) = @j(yi1)) — (Wil@rs1) = @5(w))
1),
BF(z,y) = ®j(y) + 1 —1—®;(y) =0,
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CF(ZL‘,y) = \If,(l‘k) + \Ili(mk—i-l) - \I/l(l‘k) — \Ifi(l‘k_,_l) = 0.

From it
[ itji—1
g(xay>d$dyF(~T7y) = | ) g\ r,—x + T bdzx. (766)
Ii><[j ’L;
Similarly

4% j-odd and j-even.

g itj—1
//Iixljg(w,y)dxdyF(x,y) = [1 g(w, —z + T)bdx. (767)

b

12.2 Infinite set of equations

U.d. of g-adic van der Corput sequence z,, n =0,1,2,..., can be proved by

using shift transformation (see also Section 8.10.4) % x,,; = T'(z,). In the

basquQweput%:#,izO,l,Q,... and

n=mng+mnq+--+npg"
Tp = NopYo +N17y1 + -+ -+ Yk

If 7 is the first index %4 such that n;.; < ¢ — 1, then

n=(q—-1)+(@q-1g+ -+ (q— D¢ +naq"" +- + ",
n+1=0+0g+-+0q¢ + (ni1 + )¢ + -+ nyg”,
Tn=(q—1)(vo+71+ -+ %)+ Yir1nip1 + -+ Ve,
Tpa1 = 00y0 + 71+ %) + Yirr(Rigr + 1) + -+ Y.

From it
Tpy1 =T — (¢ — D)o +7 + -+ %) +visa

and thus every point (z,, z,+1) mod 1 lies on the straight lines

Y =X—-(¢—D(o+tn++%)+7%1,i=0,1,2,...and Y = X +7. (768)

63called von Neumann-Kakutani transformation
64If for n such index i do not exists, then ng < ¢ — 1, £, = ngYo +n1y1 + -+ - + NrYe,
Tpt1 = (no + 1)y + 11y + - - + ngYw, and then 1 =z, + 0.
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Using above expression of x,, and x, 1 for i =0,1,2,... we have

(@=Do+mn+-+n <X <@—Dw+n+r+...) =%+, (769) |eq218
Vie1 <Y < (¢ — 1) (Yig1 + Yiz2 + Yies +...).  (770) |eq219

If ¢ do not exists %, then

0<X<(@-Dw+tmn+rt...) (771) [eq220
Y <Y <w+t@-—D+tn+trt+...). (772)

[0}
o]
N
[\
=

Again putting ; = qi%, then the graph of T : [0,1] — [0, 1] is

— 1
Y=x+1
1
q
Y _ 141
Y=X 1+q+q2
1
7
—_ v L 1,1
1 Y=Xr1+h+4
P

9 11 1-L1-4 1
651f ¢ = 2 and i do tot exists, then ng = 0 ahd thus 0 < X°< (19 72 + 793+ ...) and

Yo <Y <(0+m fi%%nﬂrew?: +Gfa%)h of von Neumann-Kakutani T’
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Assume that z,,, n = 0,1,2,..., has a d.f. g(z). We compute |T'([0,x))].
From Fig. 1 we see

.
1
q)+1—g<1—

Q
&
|
[

Q
S
+
—_
|
=
|
»Qm|H
|
Q
/—\ Q=
|
[
N
+
—
|
Na}
RS
—
|
le,_.
N————
-
S
m
»le,_.

g:L’—i—l—q%—q% —gl1l—-%)+1—g 1—qi3 itz e q%,
9(w) = 11 1 1
gle+l—5—a)—gll-—p|+l-g{l-x if v e |

(773)
The u.d. of z, can be proved that only g(x) = x satisfies the functional
equations (773).

Proof. Let Iy, I5, |I;| = |I| be intervals in [0, 1] and call the graph g(x)/I;
similar to the graph g(z)/Is if it we can identify with sliding, i.e. if

g(x)/I; = g(x)/I, + constant. (774)

We denote this I; «— I5. The equations (773) imply that the graphs of g(z)
are similar on the pairs

1 ] [ 1
[—, 1| «— 0,1 — —} ; (775)
q | L q
1 1] [ 1 1
—, | = |1==1—-—|; 776
Lﬁ q) q 612} (776)
1 17 1 1
1 17 [ 1 1
— == 1= 11— =; 778
Lf‘ ¢ P qﬂl (778)
1 1] [ 1 1
|:qi+17a_ — _1_571_F:|’ (779)
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For simplification we shall writing an increasing graph of g(x) as linear.

q—1

= = 1:

QR

T 2 3 1 1_1
q9 49 q

0 7 q

Figure 3: Similar graphs in Step 1.

Step 1. We starting with (775)

[2:1] «— [0, 1= 2].
Shifted the graph g(x) from [%, 1] to [O, 1— ﬂ by Fig. 3 we see that the
graph of g(x) is also similar on

{O,ﬂ<—>{1 2} <—>,...,<—>[u,g]. (780)

aq q g
Then g(%) = k:g(%) and qg(%) = 1. Thus

q q
g(k) h for k=0,1 q (781)
= =Y L...,q. €q
q
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Step 2. We starting with (776)
i Rl Lt -1t

Since by (780) we have

[0 1] — [1 — é, 1} then we can shift [1 — %, 1— %] to 0 and we have

q

[1—%,1—%2} s [O,%—q%].

E

0 i 2 3

1
P e P )

q

=(g-1gp

Q=

Figure 4: Similar graphs in Step 2.

By Fig. 4 we see that the graph of g(x) is also similar on

q ¢’ ¢
Then g(%) = kg(%) and qg(q%) = g(q%) = g(%) = %. Thus
g(q—k;) :£7 for k=0,1,...,q.

Q=
Il
Q
u

[0,%] — [i 3] o [(q—l)%,qi

d

(782)

(73)



Step 3. We starting with (777)
5, %] «— [1—%,1— %]; Since
) q q Y

q Pk
[0,1] +— [1—=11] and
q q
[ g] = [1— 51— 3], then
) [O,q%} — [1— q%,l] and then we can shift [1 — q%,l — q%} to 0 and we
ave
1—21- 4] 0.2 - 4].
/q12
=(q—1)3

Figure 5: Similar graphs in Step 3.

By Fig. 5 we see that the graph of g(x) is also similar on

{075} — {?’E} e {(q— 1)?(1?]' (784)
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sed

Then g(;5) = kg(55) and q9(5) = 9(}5) = 9(35) = ;- Thus

k k
g(?):$7 for k=0,1,...,q. (785)

Summary, for every i = 1,2,... and every k =0, 1,...,¢" we have
k k ,
g(—.) =—, fork=0,1,...,¢". (786)
q" q'
This gives g(z) = z for z € [0, 1]. O

12.3 Uniform distribution preserving map

The map u : [0,1] — [0,1] is called uniform distribution preserving (abbre-
viated u.d.p.) if for any u.d. sequence z,, n =1,2,..., in [0, 1] the sequence
u(x,) is also u.d. In this u.d.p. theory we register the following properties:

A Riemann integrable function u : [0, 1] — [0, 1] is a u.d.p. transformation
if and only if one of the following conditions is satisfied:

(i) fol h(z)dz = fol h(u(z))dz for every continuous h : [0,1] — R.
(ii) f, (w(z))*de = 15 for every k= 1,2, ...
(iii) fol errku@)dy = 0 for every k = +1,42, .. ..

(iv) There exists an increasing sequence of positive integers Ny and an Nj—
almost u.d. sequence x,, for which the sequence u(z,) is also Ny—almost

u.d.

(v) There exists an almost u.d. sequence z,, in [0, 1) such that the sequence
u(z,) — x, converges to a finite limit.

(vi) There exists at least one x € [0, 1] of which orbit z,u(z), u(u(x)),...
is almost u.d.

(vii) u is measurable in the Jordan sense and |u~'(I)| = |I| for every subin-
terval I C [0, 1].
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(viii)

fo x)dr = fo zdx = %
fo ))*dz = fo w?dr = %
fo fo lu(z) — u(y)|dedy = fo fo |z — yldady = 3

From the other properties of u.d.p. transformations let us mention:

(ix)

(x)

(xi)

(xii)

(xiii)

Let wuy,us be u.d.p. transformations and « a real number. Then
uy(uz(x)), 1 —uy(z) and uy(x) + o mod 1 are again u.d.p. transfor-
mations.

Let u, be a sequence of u.d.p. transformations uniformly converging
to u. Then u is u.d.p.

Let u : [0,1] — [0, 1] be piecewise differentiable. Then w is u.d.p. if
and only if 37 -1, 7 %x” = 1 for all but a finite number of points
y € 10, 1].

A piecewise linear transformation w : [0,1] — [0,1] is u.d.p. if and
only if |Jj| = |Ij1| + -+ 4 |Jjn,| for every J; = (y;j—1,¥;), where 0 =
Yo < y1 < --- <y, = 1 is the sequence of ordinates of the ends of line
segment components of the graph of f and u™'(J;) = I;; U---U Jjy,.

U.d.p. function f :[0,1] — [0,1] is equal f(z) = x or f(z) =1 — z, if
hold some of the following properties:

f is monotone;

f has a derivative in every point of the interval (0, 1);

f has a Darboux property;

f is continuous and either f(z) < x for every z € [0,1], or f(z) > 1—x
for every = € [0, 1].

The problem to find all continuous u.d.p. is formulated in Ja.-I. Rivkid
(1973) [138]. The results (i)-(vii), (ix)-(xiii) are proved in S. Porubsky, T.
Salat and O. Strauch (1988) [130]. The criterion (viii) and (xiii) are given in
O. Strauch (1999, p. 116, 67) [164]. R.F. Tichy and R. Winkler (1991) [181]
gave a generalization for compact metric spaces. Some related results can
be found in: M. Pastéka (1987) [125], Y. Sun (1993) [176], and (1995) [177],
P. Schatte (1993) [142], S.H. Molnér (1994) [107] and J. Schmeling and R.
Winkler (1995) [145].
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12.3.1 Multidimensional u.d.p. map

® : [0,1]® — [0, 1]* is called uniformly distribution preserving (u.d.p.) map if
for every uniformly distributed (u.d.) sequence x,, n = 1,2,..., the image
®(x,) is again u.d. For one-dimensional case basic properties of u.d.p. maps
can be found in [167] and [172, 2.5.1].

For example, if ®(z), U(x) are u.d.p. transformation and « a real number,
then ¥(®(x)), 1 — ®(z), ®(z) + @ mod 1 are also u.d.p

For multi-dimensional case we have only known:

(i) o(x) =x@o;

(i) ®(x) = (P1(x1),...,Ps(zs)), where ®,(x) are one-dimensional u.d.p.
maps, especially

(iii) ®(x) =b*x mod 1 = (b*z1,...,b%x,) mod 1;
(iv) ®(x) =x+omod 1 = (z1+ 01,...,25 + 05) mod 1;

(v) ®(x) = (Ax)T mod 1, where A is an s X s nonsingular integer matrix,
cf. S. Steinerberger [152, Th.2];

(vi) ®(x) = m(x), where m(x) = (Zrq1),- -, %r(n)) is a permutation.
We have the following main criterion
Theorem 251. A map ®(x) is u.d.p. if and only if for every continuous
f:]0,1]* = R we have

f(@(x))dx = f(x)dx. (787)

[0,1]* [0,1]*

In V. Baldz, J. Fialovd, V. Grozdanov, S. Stoilova and O. Strauch [9] is
used a map V¥(x,o) : [0,1]* — [0,1]* which is u.d.p. which respect to x
and o, simultaneously. We know such maps only in the form ®(x @ o) and
®(x + o mod 1), where ® : [0,1]* — [0, 1]® is an arbitrary u.d.p. map.

Between u.d.p. maps and copulas we have

Theorem 252. Let f; :[0,1] — [0,1], i =1,2,...s are u.d.p. maps, then

9y, ys) = 1A0,90) N fy([0,2)) N N FTH(09s))]- (788)

18 s-dimensional copula.
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12.4 Discrepancies of |z, — z,|

In [157] for a quantitatively version of Theorem 104 is proved

12(D5 (2))* < D[ — ]) < 12D5 (20), (789)

where in the left hand side of (789) we assume that 1, xs, . ..,y is the same
as 1—xy,1—my,...,1—xy. Also is proved Dﬁgﬂxm —x,]) > 5(Dy)°. Here
we prove, for the star discrepancy Dy (|2n, —y|), that ND3o(|2y, —2,]) - 0
for every u.d. z, in [0, 1), i.e., the sequence |x,, — x,|, m,n = 1,2,... has
no good distribution.

|A([07w);N2;|wmfxn\) _

Proof. Let g(x) = 2z — 2* and D}, = sup,cy N 9(x)

where
A([0,2); N?; |2 — 2,]) = #{1 < m,n < N; |z, — 2, € [0,2)}.
Then

Y

#{1 <m,n < N}\Lfm — In| S [O,I)} _ g(x) + O( j\ﬂ)

and
#{1 <m#n<N;|z, —x,] €[0,2)}

0< N = N(g(xz) — 1) + O(NDjyp).

Replace x by & we have

2

0< Ng (%) ~ N+ O(NDiy) = 2z — ‘% — N+ O(NDj»)
which implies N D3, - 0. ]

Notes 52. In [171] is given a method for computing discrepancy of |x; — y;].

Theorem 253. For an arbitrary N = 1,2,... and for any two finite sequences x1,...,TN
and y1,...,yn in [0,1],

Dy (lz; —y51) < 44/ Dy ((25,55)), (790) | eq275
where D} (|x; — y;|) is the star discrepancy of |z1 —y1|,...,|x~n — yn| with respect to d.f.

g(z) = 2x — 22, i.e.

#{j < N; IxjN— wlel0o}y ol

Dy(lz; —y;l) = sup
z€[0,1]

and the classical star discrepancy is

#{7 < Ni(zj,9;) € [0, x [0, 9)}
N

Dy ((xj,y5)) = sup
z,y€[0,1]

—zy
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Proof. Put z; = |z; — y;l, let ¢;(z) be the indicator function of the interval I, g(z) =
22 — 2%, and define the following auxiliary functions: For any ¢ > 0 and x¢ € (0, 1), let

1 for z € [0, zo),
filz) =< 1—(z—w0)L forx € [xo, min(1,z0 +¢)),
0 for x € [min(1,zo +¢€),1];
1 for x € [0, max(0,zg — €)),
fa(z) = 1—(x— (29— E))é for z € [max(0,z9 — €),x0),
0 for x € [z, 1].
If § 3251 Clowo)(27) = fy* 1.dg(x), then
1 N zo 1 N 1
¥ o)~ [ Lde) < |5 A - [ A +
j=1 j=1

min(1,zo+¢)
+ / f1(z)dg(x).

s [T p@te).

1ax(0,x0—¢)

Clearly,

min(1,zo+¢€) o)
/ fi@g(a) <= and | (1— fo(a))dg(a) < =.

0 max(0,z9—¢)

Putting F;(z,y) = fi(|lz —y|), ¢ = 1,2, and since

NZflzy /fl )dg(x NZF 5, 9;) // i, y)dedy,

applying the Koksma-Hlawka inequality (see [92, p. 1-63]), we find

- ZCO xo) /Oxo 1.dg(x) < maX(V(Fl(xﬂy))7V(F2(x7y)))'DTV((‘Tj7yj)) +e,
]:1

forany N =1,2,..., 29 € [0,1] and £ > 0. Now, we compute the Hardy-Krause variation
of Fi(x,y), ¢« = 1,2. Directly from graphs of F;(z,1) we find the one-dimensional Vitali’s

variations
1 for xg +e <1,

(1) —
VW (Fy(x,1)) { 1;&70 for 2o +¢ > 1:
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1 for xg — e >0,
1— =% forxy—e<0;

VI (F(e1) = {

and the same hold for F;(1,y). For two-dimensional Vitali’s variation of F;(z,y), let Py
be a partition of [0, 1]? defined by a cartesian product of the one-dimensional partition

O=zp<a)<---<az,=1 (791)

of [0, 1]. We consider the following refinement: Let ¢t > 0 be a sufficiently small real number
and assume that %* and “”OT“ are integers. Thus ¢ must be rational. To the partitions
(791) we added all points

1
FE—

and we call P the cartesian product of the resulting partition of [0,1]. Thus, almost all
rectangles (except at most s® terms) [z}, x},,] X [¢},%],,] in P can be divided into the
following subsets:

P, contains rectangles lying above the line y = x 4+ xg + ¢;

P5 contains rectangles having diagonals on the line y = x + xg + ¢;

Ps5 contains rectangles lying between lines y = x + zg + € and y = = + xo;
P, contains rectangles having diagonals on the line y = x + xg;

Ps5 contains rectangles lying between lines y = x 4+ x¢ and y = x;

Ps contains rectangles having diagonals on the line y = z;

P; contains rectangles lying between lines y = x and y = x — zg;

Py contains rectangles having diagonals on the line y = = — z¢;

Py contains rectangles lying between lines y = — zg and y = — g — ¢;
Py contains rectangles having diagonals on the line y =z — ¢ — ¢;

Py, contains rectangles lying under the line y =z — xg — €.

We denote by Vl(g)(Fk) the supremum of the sum of

|Fk($2+1ay§+1) - Fk(xé,yéﬂ) - Fk($§+1,y§) + Fk(x;vy;ﬂ
as t — 0 and over the rectangles in P,. Directly by computation it follows:

I) For g 4+ ¢ < 1 we have nonzero V ) Fy) only for [ = 2,4,8,10 and
l y
‘I( ) ‘7(2) 1— xg £ ‘7(2) ‘7(2) 1— zg

(IT) For xo + € > 1 we have nonzero V( )(Fl) only for [ = 4,8 and
V(Q) — V(2) _ 1-=z¢
4 8 :

€
(II) For £y — ¢ > 0 and VZ(Q) (Fy) we put g :=z9 — € in (I).
(IV) For xp — ¢ < 0 we have NONZero ‘/}(2) (Fy) only for I = 4,6,8 and
VO Zy® e )
E
Thus for the Hardy—Krause variation
V(Fi(z,y) = VO (Fi(a,y)) + VO (Fi(z,y)) + VE (Fu(z,y))

we have

2 p2lzmoze 4 olome —ylo®o for g e <1
F = z ; : o1
V(Fi(z,y)) { 21*6060 _|_21*610 = 41;m0 for g +¢ > 1,
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€

= &
2(1— =) 42120 4 2 -4 for zg — e < 0.

€

1—(xp—e)—e 1—(zo—e) _ 4 1—(mo—¢) _
V(F2($,y)):{ 242 +2 =4 for xg —e > 0,

This implies
* 4 *
Di(lz; —wil) < ZDn((25,95)) +€

for any e > 0, since the rationality of “ can be omitted. To find (790) we put

£ =2,/ D} ((x},y5))-

In [171] is also proved

Theorem 254. Let (21,y1),...,(xn,yn) be a sequence in [0,1)? invariant to (x,y) —
(y,z) and (z,y) = (1 —x,1 —y), i.e. for anyi < N there exists j1,jo < N such that
(xj17yj1) = (y“xz) and (xjwyjz) = (1 -1 - yi)' Then

Dy (lz; = y;1) < 3Dn((z5, {y; — 2;})) + Dn (w5, 95))-
13 Integral formulas
Here we repeat the following list of integral formulas used in this book,

previously appeared from [164, pp. 132-135], and [156], [157], [160], [159],
[162], [165].

13.1 Integral over |z — y|
(I) For every d.f. g, g, g1, 92, g3, and g4 we have:

1.
/0 /0 _ |z ; y|d (g1(x) — g2(x))d (g3(y) — g4(y)) =
_ / (01(x) — g2(2)) (g3(x) — galx))da,

2. consequently (cf. [156, p. 130] %

| [ - a0t - o) - 560 = [ (olo) - 30
and thus (see (33))

%The multidimensional integrals of the type [ [ |x — y|*dg(x)dg(y) were studied many
authors, see R. Alexander and K.B. Stolarsky [3] and R. Alexander[2] and others.
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[ stz = [ [ = siasteraic)
) %/ / o = ldofe)dats) = / | / o~ ylda(e)d500).

Similarly

4,
/01 /01 |z —yldg(z)dg(y) = /019($)d$+/01§(:p)dm—2/Olg@)g(x)dx,

d.

6.

7.

or in a special case (cf. [160, p. 178])

/01 /01 |z — y|dg(z)dg(y) = 2 (/01 g(z)dz — /01 f(@dx)

From (792) we have

il [T — | = 2N2</01(FN<:C) — Ff,(a:))dx).

In other words

//1naxxydg )dg(y :/g
0

//1 max(z,y))dg(z)dg(y /g
0

The multidimensional case (517)
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/( L) — ga(x))dx
/ / (1 — max(x, y))d(g:(x) — 92(x))d(gn (y) — g(y))-

In the case of restricted integral range (0 < o < 1) we have

Aiéﬂx_W@QMﬂw:2(ﬂ®[fM@¢W—A1ﬂ@¢O.

For 0 < a < <1 we have

/01 /Ollm—yﬁldg( Jdg(y) =
_25/ z)dz + (8 (1—/Olg(m)dg;>_
_ 2a/0 g(x)g (%) dz — af8 (/Olg(:v)da:> N

10.

In [157, p. 251] is proved that

//\:c—y\’“d — ) (gly) ~ )

if k=0,
- _Qfo —xde if k=1,

(%k —2)(g(y) — y)|lz — y|F2dady, if k> 2,

11.

and that

[ [ e =stawe - aa=- [ ) - o - 0 -
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(IT) If £ :[0,1] — [0,1] and H : [0,1]*> — R are continuous functions then for

g(z) = / Ldg(u),
F1([0,z))

we have the following integral transforms

//nydgf 2)dg;(y //H y))dg(x)dg(y).

If f:10,1]* — [0,1] is continuous and g(x ff 2 1dg(u)dg(v) then 67

/01 /o1 H(z,y)dgy(x)dgs(y) =
- /01 /01 /01 /olH(f(x’y)’f(u’U))dg(x)dg(y)dg(u)dg(v)

and in the special case
| #r@a@) = [ nwg )

13.2 Generalized L? discrepancies

(I11) If

Fy(z,y) :/0 §Q(t)dt—/ Ei(t)dt—/ g(t)dt +1 — max(zx,y),

then (cf. [159, 618] and Example 99)

/01(9(:1:) — g(z))dx = /01 /01 Fi(z,y)dg(x)dg(y)

or more generally

/0 (01() — 5(2))(ga() — G())de = / / Fy(, y)dg (2)dgaly).

67In the probability it is called transmission of integrals.
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(For the proof compute fo fo (z,y)d (91(x) + g2(¥))d (91 (y) + g2(v))-)
[ (0r(0) = (a0 = / / dg(a)dg(y)
(IV) If

Ff,h($7 y) =
= maX(f(ff); h(y)) + max(f(y), h(z)) —max(f(z), f(y)) —max(h(z), h(y)) =

=3 S (1£(@) = h(w)| + | £) — h@)| ~ 1) — F@)] ~ [h@) — ).

then (cf. [159, 628] for application see Theorem 111 and Example 102)

/Ol(gf(x) — gn(2))*dz = /01 /01 Fya(z,y)dg(z)dg(y).

There follows from the above that

/0 / Fyale,y)dg(2)dii(y) = / (95(2) — gn(@)) (G (x) — () da

[ dwar= [ [ (= max(s), ) sty

In [165, 427] is proved that (see also Example 103)
// (gf(y) —gr(@)) — (gn(y) — gh(x))> dedy =
0<a<y<1

// Fy) (x,y)dg(x)dg(y),

F)(2,y) = Fya(a,y) — (f(@) = h(2)) (f(y) — h(y))-

This follows from the fact that the integral on the right-hand side is equal to

/01 (91(0) =~ anto)*ae = ([ (oste) - ()

and fo gf(x)de =1— fo dg(r) gives

([ o ) - [ ] v ~ h(y))dg(e)dg().

(V)

where

2
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1. If gy is a strictly increasing solution of g = g¢, then

| (ot )y o -
- / (9(2) — 01(2)) (9(2) — g5(2) + F(2) (95 (2)) — g(F (x))))dlz,

and it is also true that

/01(()_9f dfﬂ—// Fy, (z,y)dg(x)dg(y).

(VI) Let ¥(y) = a(z)y* + b(x)y + c(z) be a polynomial in the variable v,
where a(z), b(z) and c(z) are integrable functions in [0, 1] and put

1 1 1 1 1 1
F(z,y) :/ a(t)dt+—/ b(t)dt+—/ b(t)dt+/ c(t)dt.
max(z,y) 2 T 2 y 0
Then (cf. [162, (1997) p. 219, Lemma 5] see also Theorem 23 in this book)

/w dx—// (2, y)dg(x)dg(y)

for every d.f. g(x).
(VII) Given a finite sequence xy, s, ..., zy in [0,1), a d.f. g(z), and a con-
tinuous f : [0,1] — R, let Fy(z) = 202Nan) ey

%;f(xn) —/0 f(z)dg(x) = _/0 (Fn(x) — g(z)df(x)

which implies

i;f(xn) =N (/Olf(l’)dg(x) - /;(FN(l’) - g(:c))df(x)> ,

(VIII) If F(x,y) defined on [0, 1]? is continuous and symmetric, then we have

N

: [
F(zm, x,) (x,y)dg(x)dg(y)
N2 1

m,n—=
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= 2/0 (Fn(z) — g(z))d. F(2,1)
+/0 /0(FN(x)—g(x))(FN(y)+g(y))dydxF(w7y)'

(IX) Define
g(x) = / ldzx = z,.
91 ([0,))

[ st = [ ot [ #aa) = [ ¢
// |z — y|dg(x)dg(y // l9(z) — g(y)|dzdy =
_4/0 ()d:v—2/0 g(z)dz.

13.3 Euclidean L? discrepancies

Then

(X) In Section 7.6 we have used multidimensional integration by parts in:

L. fo fo fo fo (z,y,u,v)d,dyg(x,y)d,dyg(u,v) (Theorem 203);
2. fo Jo Jo F(z,y,2)d.dyd.g(x,y, 2) (Theorem 204);

3. fo fo fo fo (x,y,z,u)d,dyd,dyg(x,y, 2,u) (Theorem 205).

(XI) In Section 7.3 we have computed the following L? discrepancies:

1. fol(F](Vl)(:v) — z)%dx - the L*-discrepancy of x1, ..., xy;

2. fol fol(FN(x, y)—xy)?dazdy - the L? discrepancy of (z1,y1),- - -, (T, Yn);

3. fol fol fol(FN(x, y, z2)—xyz)?dedydz - the L? discrepancy of (z1, 41, 21),. - -
,(ZL‘N, YN, ZN)a

4. fol fol(FN(x, y)—F]S,l)(:c)F](\?) (y))?dzdy - the L? discrepancy of statistical

independence of xy,...,zy and y1,...,yn.
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5. fol fol fol(FN(x,y, z) — FJS,I)(x)Fjg)(y)Fﬁ)(z))zdxdydz - the L? discrep-

ancy of statistical independence of 1, ..., N, y1,...,Yn, and 21, ..., 2y.

6. fol fol fol(FN(:c, y,2) — Fy(z,y)FY(2))2dadydz - the L? discrepancy of

statistical independence of (x1,y1) ..., (xn,yn) and z1,..., 2N.

(XII) In Section 10 we have used:

1.

Assume that continuous f : [0,1] — [0,1] has finitely many inverse
functions f;*,..., f-! such that, for every i = 1,2,...,m we have

7t 00,1] = [y, Bi]. If g1 is a strictly increasing and f/(z) pairwise
exists, then (cf. [165, p. 437, Th. 4])

/O(Qf(x)—glf(x))deE:/o (9(2)=g1(2)) f'(2) (95 (f (2) =917 (f(2)))dz.

In the following we listed only integral results without conditions:

(see (716)) fo fo fo fO (z,y)dg(z)dg(y)
— (g )( 2d,F(z,1) + [ (g §(y))dydxF(w,y))-
(see (725)) fo fo fo ) — g1(x))

(—2Fu(a1) + zfﬂ(g(ui(x» + gl<ui<x>>)vz~<x>) dz.

(see (726))

Jy ) S atu o) )ao = 12 o) Sy luta)uto) e
(see (727))

Jo Jo F,y)dg(x)dg(y) = 0 <= Fi(x,1) = [} g(y)d, Fi(x,y).

(see (729)) fo fo (x,y)dg(x)dg(y)

= Iy (9(@) = g1(@) (= Fil@, 1) + Jy 9(y)d, Fi(,y)) da

(see (730)) [y fy F(x,y)dg(x)dg(y)
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= [ 9@) = gu(@)) (~File, 1) + S5 glus(@)oile) ) da
8. (see (731)) fo fo (z,y)dg(z)dg(y)

= Iy [5 (9(@) = (@) (g(y) — 91 (y))dud, F (2, y).
9. (see (733)) [ (ga(2) — g1(2))FL(x,1)dz = 0.

10. (see (734)) fo go(x ))(Zflg(uz(m))vz(x))dx:()
11. (see (735)) fo (x,y)dgi(y) = 0.

12. (see (745)) [i [} F(z,y)dg(x)dg(y)

= [P(g(t) — g () A(t)(g(t) — g1 (1)) dt.
(XIII) Put Ry(z) = (Fn(z) — 2). Then

mexmxnxrxs ////fxuuvdxdydudv

m,n,r,s

:/0 /01/0 /Olf(x w, 1w, v)d Ry (2)d Ry (y)d Ry () d Ry (0)

4 /0 1 /0 1 /0 1 /0 F (@, u, 0)d Ry (2)d Ry (y)d R () do

11
/ fz,u,u,v)dRy(z)d Ry (y)dudv
0
+4

+4/01/0 /0 /0 F(@, 1w, w, v)d Ry () dydudo,

(XIV) Suppose we are given a sequence ¢i, go, - .. of positive integers. Con-
sider the sequence z,, = {g,a} and set

+ 4+

hc\'_k

o— S—
S~

e—

1

flz,u,u,v)dRy(z)dyd Ry (u)dv

| s—

Ry(z,y,a) = A([z,y); N;z,) — N(y — ).
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Then [161]

R3,(0,y,a)dyda = —
[ [ o aria =

Z <Qm7Qn 12 Z 1

m,n=1 Imn m,n=1

dm=d4dn

For positive integers a and b we also have

/01 (min({ay}? {by}) — {ay}{by}> dy = {%2

and by J. Franel (1924)

L fora#b,

, fora=0,

/0 1 ({aa:} - %) ({bx} _ %) _ %(aézb)){
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F
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Fialova, J.
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G
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H
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M
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Misik, L.
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Wintner, A.
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X

15 Subject index

B
Benford’s law p. 64

C

conjecture
Duffin-Schaeffer p. 56
Mahler p. 58
3z +1p. 313

D

diaphony p. 427
diophantine approximation p. 56
generalized p. 53
distribution functions
df p. 9
a.d.f. p. 26
G(z,) p- 10
G(X,) p. 4
gs(z) p. 58
Guw(2,y) p. 102
gu,0,0,a('rvy> p- 102
copula p. 350
shuffle of M p. 414
s-dimensional copula p. 479
max(z +y —1,0) p. 352
gw(x) p. 287
Fy(z) p. 9

Y
Young, W.H.
Young, L.C.

Z

F

functions
piecewise linear p. 419
copositive F(z,y) p. 435
u.d.p. p. 477
multidimensional u.d.p. p. 479

=2r mod 1 p. 161

I
integral formulas p. 483

N
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normal order p. 51

S

sequences
statistically independent p. 41
(completely)
statistically convergent p. 49
sequences, one-dimensional
loglog...logn mod 1 p. 48
loglogn mod 1 p. 48
logn mod 1 p. 12
clogn mod 1 p. 41
anlog"nmod 1,a # 0,0 <7 <1
van der Corput v,(n) p. 375
£) . 259
log p, mod 1 p. 84
log(pn/ log p,) mod 1 p. 84
log, p;, p. 287
pnb +logp, mod 1 p. 152
pnt + B2 p. 152
ratio block sequences p. 74
£(3/2)™ mod 1 pp. 58, 159

Tptk = Qg 1Tpyk—1+t  +01Tpp1+
aoTn, P- 71

statistically convergent p. 49

statistical limit points p. 45

statistically independent p. 42

T = {1+(71>[ [\/logz"]} { [m}} . p. 88
( )mod 1 p. 76
= log p2d) 151

logn
n=log2i p. 51
T, zlongggg p. 51
z, = an’log”nlog’(logn) mod 1
p. 39

log F;, mod 1 p. 39
logn! mod 1 p. 39
[an|fn mod 1 p. 39
xy(n) mod 1 p. 39

sequences, multi-dimensional

A, = (e1x1+eomo+ - -+ ey e =

+1) mod 1 p. 153
| Ty — x,] p. 155
Tptl = Ty — xi p. 113
xi mod 1 p. 153

gz{xn})p 154
n= (25,22, 2) p. 202

Tn? Tn’

Xn:(%,p—i,... p")p 243
An:(qin,;—j,...,%) . 257
An:(qin,qln,...,g—:) p. 257

uniformly maldistributed p. 57
n!a mod 1 p. 20

&, = ncos(ncosna) mod 1 p. 48

1+(_1)[loglogn] D, 97

Tp = B}
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(logy F,,log, pn) mod 1 p. 312

(2, {logn}) p. 457

(2, {log, n}) p. 312

(@, logy pn) mod 1 p. 312

(Yg(n), Yq(n + 1)) p. 376

(74(n), 7g(n +2)) p. 378

(Ya(n); Yg(n + 1), 74(n +2)) p. 382

(U, Uny {Un, — Vs }) P. 355

({na}, {(n + Da}, {(n + 2)a}) p
455

(n, {22,}) p. 458

({2x,}, {3x,}) p. 454

({na},{2na}) p. 453

({na},{(2n — 1)a}) p. 453

({logn}, {log(n +1)}) p. 452

(logn,loglogn) mod 1 p. 101

scalar product p. 458

[-van der Corput p. 461



(cos 2mnwy, cos 2mnws) p. 450 van der Corput inequality p. 23

T Weyl limit relation, p. 10
Wiener-Schoenberg p. 21
theorems: P. Lév 314
Barone p. 16 ' Y b

Benford’s law p. 64 A.E. Wirsing p. 314

Benford’s law for primes p. 287 Two-dimensional Benford’s law p.

General scheme of B.L.. p. 68 310
S. Newcomb p. 64 M. Sklar p. 353
Gauss-Kuzmin p. 314 Euler-Lagrange differential equa-
Helly, first p. 13 tion p. 402
Helly, second p. 13 Hardy-Littlewood p. 418
Lebesgue decomposition theorem Koksma p. 75

p. 14 G. Polya and G. Segf p. 41

Lebesgue’s dominated convergence Fejér’s difference theorem p. 36
theorem p. 14

van der Corput Satz 10, Satz 5 p. Erdo? an(.i T‘_Han p. 36
17 Weyl’s criterion p. 37

van der Corput difference theorem
(generalization) p. 22 U

16 Symbols and abbreviations

No = Zg the set of non—negative integers
N=7Z" the set of positive integers

/ the set of integers

Q the set of rational numbers

R the set of real numbers

C the set of complex numbers

| X| Lebesgue’s measure of the set X
{z} fractional part of x

] integer part of

xmod 1 = {z}

||z|| = min({z},1 — {z}) norm of x

Tn sequence in n = 1,2,... or n-th term
a.d.f. asymptotic distribution function
d.f. distribution function
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d(A) and d(A )
d(A)

R(A)

R(A)!

R(A)

A([Ov :L‘); N; ~77n)
Dy, D%, and D
DY (. H)
d(g1, g2)

¢(n)

m(n)

Q(n)

Pn

pln

(n)

ord,(n) = «

I ([0 l’))l p. 417

uniformly distributed, p. 35
uniformly maldistributed, p. 57
u.m. in the strict sense

uniformly quick
Benford’s Law

d.f. of 22 p. 259

one-step d.f. with the step 1 in «

constant d.f. hg(x)

= [ for z € (0,1)

characteristic function of X

the step d.f. of x1, 2o, ...

y N, P- 9

the set of all d.f.s of the sequence z,, p. 16
the set of all d.f.s g(z) satisfying

I3 [ F(z,y)dg(z)dg(y) = 0, p. 16

see p. 11
see p. 11
project A to z-axes

. . 1 pl
matrix associated to fo fo

F(z,y)dg(z)dg(y), p. 442

lower and upper d.f.s of x,, p. 11
lower and upper d.f.s of H, p. 11

lower and upper asymptotic density of A, p. 11
asymptotic density of A, p. 11

{a/b;a,b, € A}

the set of all limit points of R(A)
the set of all accumulation points of R(A)
counting function, p. 9

extremal, star and L? discrepancies of x,,, p. 36

L? discrepancy of z,, with respect to H, p. 85
metric in G(x,), p. 16

Euler function

number of all primes < n
the total number of prime factors of n

the nth prime
p divided n
Mobius function

maximal a such that p*|n
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h(n) = min(ay, ..., o)
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(a,b)
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Po = Tlag; a1, az, ..., an)

|[%[|oo = max;<i<s |2;]
Xy= Zf:l TilY;
o(n) = B(n) +1y(n)
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