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Abstract

In this book we develop the theory of distribution of sequences
which we shall identify it with the theory of distribution functions of
sequences.
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1 Preface

Let f(x) be a measurable function defined on [0,∞). In the probabilistic
theory f(x) is called random variable and g(x) = |f−1([0, x))| is a uniquely
defined distribution function of f(x). Here |X| is the Lebesgue measure of the
set X. In the uniform distribution theory a random variable is replaced by
a sequence xn, n = 1, 2, . . . , xn ∈ [0, 1). The sequence xn can have infinitely
many distribution functions defined as all possible limits

#{n ≤ Nk; xn ∈ [0, x)}
Nk

→ g(x)

as k →∞. The set of all such g(x) we shall denote by G(xn) and the notion
of the distribution of xn we shall identify with G(xn), i.e. the distribution of
xn is known if we known the set G(xn). The importance of the set G(xn) is
reflected in the fact that most properties of a sequence xn expressed in terms
of limiting processes may be characterized using G(xn). For example, the
fundamental Weyl’s limit relation

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx,

holding for any continuous function f(x) defined on [0, 1] and any uniformly
distributed sequence xn, can be generalized to the relation

lim
k→∞

1

Nk

Nk∑
n=1

f(xn) =

∫ 1

0

f(x)dg(x)

which is true for every g(x) ∈ G(xn) if an appropriate index sequence Nk

is used. For multi–dimensional sequences xn the set G(xn) can be used in
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the correlation analysis of co–ordinate sequences of xn which yields different
results from those obtained by the statistical analysis.

Thus the main objects in the present monograph are;
a) Infinite sequence xn, n = 1, 2, . . . , in [0, 1).
b) The set G(xn) of distribution functions of xn.

The study of the set of distribution functions of a sequence, still unsatis-
factory today, was initiated by J.G. van der Corput [185]. The one-element
set of G(xn) corresponds to the notion of asymptotic distribution function
of a sequence mod1 was introduced by I.J. Schoenberg [147]. In the mono-
graph L. Kuipers and H. Niederreiter [92] to distribution functions is devoted
Chapter 7, pp. 53–68, in M. Drmota and R.F. Tichy Part 1.5, pp. 138–153.
Some authors, see R. Winkler [193], instead of distribution functions g(x) use
measures µ induced by the interval (x, y) measure µ((x, y)) = g(y)− g(x). 1

This book is meant as a supplement to the previous monograph of the
author and Š. Porubský [171] which is an encyclopedia of distribution of
sequences but it does not contain proofs of theorems. The basis of the book
are results published in [155], [158], [156], [159], [161], [162], [166], [173],
[174], [164], [130], [105] and in Doctor Thesis [163].

This book is only attempt to the theory of distribution functions.
The outline of our conception is as follows.
In the Section 2 we remember definitions and notations and summarize

results for singleton G(xn), i.e., for asymptotic distribution function. The list
of the applications of the theory of distribution functions will be discussed
in following sections.

In the Section 4 we summarize search methods for distribution functions
(d.f.s) of sequences. We shall see that the main part is solving of some
functional equations.

The main part of the Section 5 is a statistical independence of sequences
xn and yn, the uniform distribution of xn + yn mod 1, xn + log pn mod 1,
where pn are primes.

The Section 6 details results of the applications in the Section 3, specially
functional equations for d.f.s of ξ(3/2)n mod 1, ratio block sequences, the
sequence φ(n)/n, generalized Benford’s law, multidimensional Benford’s law

1 For a sequence x = (xn)n≥1 in [0, 1) they define the measure µx,n by µx,n =
1
N

∑N
n=1 δxn , where δx denotes the point measure in x. The set of accumulation points of

the sequence µx,n, n = 1, 2, . . . , is denoted by M(x) an is called the set of limit measures
of the sequence x = (xn)n≥1.
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and Gauss-Kuzmin theorem.
The main part of the Section 7 is a study of d.f.s g(x, y), g(x, 1) = x,

g(1, y) = y called copulas.

In the Section 9 we study extremes of
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) over cop-

ulas.
In the Section 10 we start to study the solution

∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) =

0 over d.f.s g(x). It is the main parts of this book.
Note that we shall not cover metric aspects of the theory of distribution

functions.

Notes 1. From a technical point of view in this book we only use Theorems, Examples

and Notes. Numbering of Figures is only local, from case to case. Throughout this book

we shall use the shorthand notation xn, n = 1, 2, . . . , for sequences, instead of the more

common ones (xn), or (xn)n≥1. Consequently, the symbol G(xn) will stand for G((xn)),

while f(xn) may denote either the value of the function f(x) at x = xn, or the sequence

f(xn), n = 1, 2, . . . . The meaning will be clear from the context.

2 One-dimensional case

2.1 Basic notations and properties, distribution func-
tions (d.f.s)

We follow the monograph [92], [73], [38] and [171].
Let xn, n = 1, 2, . . . be a sequence from the unit interval [0, 1). Denote:

• #{n ≤ N ;xn ∈ [0, x)} is the number n ≤ N for which xn ∈ [0, x). It is
occasionally writing as the counting function A([0, x);N ; xn).
•

FN(x) =
#{n ≤ N ; xn ∈ [0, x)}

N
(1)

is the step distribution function (step d.f.) of the finite sequence x1, . . . , xN
in [0, 1), while FN(1) = 1, e.g.

9



F4(x)

0 1x2 x3 x4 x1

Figure: Step d.f. of x1, x2, x3, x4.

If cA(x) is the characteristic function of the set A, we can write

FN(x) =
1

N

N∑
n=1

c[0,x)(xn) =
1

N

N∑
n=1

c(xn,1](x). (2)

If f : [0, 1]→ R is continuous then by Riemann-Stieltjes integration

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dFN(x). (3)

• A g : [0, 1]→ [0, 1] is a distribution function (d.f.) if
(i) g(x) is nondecreasing;
(ii) g(0) = 0 and g(1) = 1.

We shall identify any two d.f.s g1, g2 satisfying g1(x) = g2(x) for every
common continuity point x ∈ [0, 1], or equivalently, if g1(x) = g2(x) a.e. on
[0, 1].
• D.f. g(x) is called a d.f. of the sequence xn, n = 1, 2, . . . if an increasing
sequence of positive integers N1, N2, . . . exists such that limk→∞ FNk

(x) =
g(x) a.e. on [0, 1]. 2

• D.f. g(x) is called an asymptotic d.f. (a.d.f.) of the sequence xn, n =
1, 2, . . . if limN→∞ FN(x) = g(x) a.e. on [0, 1].
• The existence of the limit limk→∞ FNk

(x) = g(x) a.e. on [0, 1] for a given
sequence Nk is equivalent to the existence of the limit

lim
k→∞

1

Nk

Nk∑
n=1

f(xn) =

∫ 1

0

f(x)dg(x) (4)

2Note that the a.e. convergence (almost everywhere conference) is the same as the weak
convergence since every monotone function is almost everywhere continuous.
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for every continuous f : [0, 1]→ R. This is called the Weyl limit relation. 3

• G(xn) denotes the set of all d.f.s of the given sequence xn, n = 1, 2, . . . .
• The lover g(x) and the upper g(x) d.f.s are

lim inf
N→∞

FN(x) = g(x), lim sup
N→∞

FN(x) = g(x). (5)

It is equivalent to

g(x) = inf
g∈G(xn)

g(x), g(x) = sup
g∈G(xn)

g(x).

Note that either the lower or the upper d.f. assigned to a given sequence xn
need not be a d.f. of xn in general, i.e. they do not necessarily belong to
G(xn).

4

• Define two-dimensional set Ω(xn) in the unit square [0, 1]2 as

Ω(xn) = {(x, y) ∈ [0, 1]2;∃g ∈ G(xn)(y = g(x) or y ∈ [g(x− 0), g(x+ 0])}.
(6)

• For any non-zero set H of d.f.s define lower g
H
and upper gH d.f.s of H as

g
H
(x) = inf

g∈H
g(x), gH(x) = sup

g∈H
g(x).

• For given d.f. g(x) define the Graph(g) as a continuous curve in [0, 1]2

formed by all the points (x, g(x)), x ∈ [0, 1], and the all line segments con-
necting the points of discontinuity (x, g(x− 0)) and (x, g(x+ 0)). 5

• cα(x) is one-step d.f. for which
(i) cα(x) = 0 for x ∈ [0, α];
(ii) cα(x) = 1 for x ∈ (α, 1].

• hα(x) is a constant d.f. for which
(i) hα(x) = α for x ∈ (0, 1);
(ii) hα(0) = 0 and hα(1) = 1.

• If A ⊂ N, then we denote by #A the cardinality of A. The numbers

d(A) = lim inf
n→∞

#{k ≤ n; k ∈ A}
n

, d(A) = lim sup
n→∞

#{k ≤ n; k ∈ A}
n

(7)

3The Riemann – Stieltjes integration with limits
∫ 1+0

0−0
is understood in this case, see

Section 2.1.1.
4Using notation in footnote in page 8, then for x = (xn)n≥1 and any interval I ⊂ [0, 1]

we define µx(I) = sup{µ(I);µ ∈M(x)}. It cannot be no defined by g(x).
5Here g(x− 0) = lim infx′→x g(x

′) and g(x+ 0) = lim supx′→x g(x
′).
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are called the lower and upper asymptotic density of A, respectively. If there
exists the limit limn→∞

#{k≤n;k∈A}
n

= d(A), then d(A) = d(A) = d(A) is said
to be the asymptotic density of A. It is easy to see that if A is ordered to
the increasing sequence k1 < k2 < . . . , then

d(A) = lim inf
n→∞

n

kn
, d(A) = lim sup

n→∞

n

kn

and we write d(A) = d(kn) and d(A) = d(kn).

Example 1. The sequence

xn = log n mod 1, n = 1, 2, . . . ,

has the set of d.f.s

G(xn) =

{
gu(x) =

1

eu
ex − 1

e− 1
+
emin(x,u) − 1

eu
;u ∈ [0, 1]

}
, (8)

and {logNk} → u implies FNk
(x)→ gu(x).

The lower and the upper d.f. of log n mod 1 are

g(x) =
ex − 1

e− 1
, g(x) =

1− e−x

1− e−1
,

and g ∈ G(xn) but g /∈ G(xn). This set G(xn) was found by A. Wintner

g(x)

g(x)

0 1
Figure: G(log n mod 1)

[194] and it also follows from Theorem 48.
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Example 2. The following sequences xn, n = 1, 2, . . . ,

(I) xn = log(n log(i) n) mod 1,

(II) xn = log pn mod 1 (Y. Ohkubo [122]),

(III) xn = log(pn log pn) mod 1 (Y. Ohkubo [122]),

(IV) xn = pn
n
mod 1 ([169]),

have the same d.f.s as log n mod 1. Here pn by the nth prime.

In the theory of d.f.s the following well-known Helly theorems are sys-
tematically used:

Theorem 1 (First Helly theorem). Every sequence gn(x) of d.f.s contains
a subsequence gkn(x) such that limn→∞ gkn(x) = g(x) for every x ∈ [0, 1].
Furthermore, the point limit g(x) is d.f. again.

Theorem 2 (Second Helly theorem). Let gn(x), n = 1, 2, . . . be a sequence
of d.f.s for which limn→∞ gn(x) = g(x) a.e. on [0, 1]. Then for every s–
dimensional continuous function f : [0, 1]s → R we have

lim
n→∞

∫ 1

0

. . .

∫ 1

0

f(t1, . . . , ts)dgn(t1) . . . dgn(ts) =

=

∫ 1

0

. . .

∫ 1

0

f(t1, . . . , ts)dg(t1) . . . dg(ts).

Occasionally, the First Helly theorem is also called Helly selection prin-
ciple and the Second Helly theorem is also called the Helly – Bray theorem
(see [96, p. 135, Th. 3.1.3., ]). One of the most important applications of
this theorem is a following result:

Theorem 3. Let f : [0, 1]s → R be a continuous function and let xn be a
sequence in [0, 1). If for an increasing sequence of indices Nk, k = 1, 2, . . . ,
we have limk→∞ FNk

(x) = g(x) a.e., then

lim
k∞

1

N s
k

Nk∑
i1,...,is=1

f(xi1 , . . . , xis) =

∫ 1

0

. . .

∫ 1

0

f(t1, . . . , ts)dg(t1) . . . dg(ts).

Proof. By Riemman-Stieltjes integration we have

1

N s
k

Nk∑
i1,...,is=1

f(xi1 , . . . , xis) =

∫ 1

0

. . .

∫ 1

0

f(t1, . . . , ts)dFNk
(t1) . . . dFNk

(ts)

and the rest follows from the Second Helly theorem.

13



Also we need

Theorem 4 (Lebesgue’s Dominated Convergence Theorem). Let fn(x) be a
sequence of measurable functions on [0, 1]. Suppose that the sequence con-
verges pointwise to a function f(x) and is dominated by some integrable func-
tion g(x) in the sense that

|fn(x)| ≤ g(x)

for all n and all x ∈ [0, 1]. Then f(x) is integrable and

lim
n→∞

∫ 1

0

fn(x)dx =

∫ 1

0

f(x)dx.

Theorem 5 (Lebesgue’s Decomposition Theorem). Any d.f. g(x) can be
uniquely expressed as

g(x) = α1gd(x) + α2gs(x) + α3gac(x),

where α1,α2,α3 are non–negative constants, α1 + α2 + α3 = 1, and

• gd(x) is a discrete (or atomic) d.f., i.e. gd(x) =
∑

tn<x
hn, where tn

is a sequence of points of discontinuity of g(x) with jumps hn at these
points,

• gs(x) is a purely singular d.f. (also called singular continuous d.f.), i.e.
continuous, strictly increasing and having zero derivative a.e.,

• and gac(x) is an absolutely continuous d.f., i.e. gac(x) =
∫ x
0
h(t)dt for

some non–negative Lebesgue integrable function h(t) such that
∫ 1

0
h(t)dt =

1. Function h(t) is called the density of gac(x).

2.1.1 Riemann-Stieltjes integral

Let f(x) be a function defined on [0, 1], 0 = u0 < u1 < · · · < uN = 1 be
a division of [0, 1] and let g(x) be a d.f. If for every choice ξn ∈ [un−1, un],
n = 0, 1, . . . , N the Riemann-Stieltjes sum

N∑
n=1

f(ξn)(g(un)− g(un−1)

14



has a limit as (un−un−1)→ 0, N →∞, then this limit is unique and denoted∫ 1

0
f(x)dg(x). If f(x) is continuous and

g(x) = α1gd(x) + α2gs(x) + α3gac(x),

is the Lebesgue decomposition of g(x) (se Theorem 5) then∫ 1

0

f(x)dgd(x) =
∑
n

f(tn)hn,

∫ 1

0

f(x)dgac(x) =

∫ 1

0

f(x)g′ac(x)dx,∫ 1

0

f(x)dgs(x) = 0, (9)

where tn is a sequence of points of discontinuity of g(x) with jumps hn at
these points and gs(x) is a singular part of g(x) having (gs(x))

′ = 0 a.e.
• In one-dimensional case in the uniform distribution theory the main appli-
cation of Riemann-Stieltjes integration is the fundamental

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dFN(x).

In H. Riesel [136, Appendix 9, p. 358] there are other interesting examples

(i)
∑

p−prime≤N f(p) =
∫ N
1
f(x)dπ(x).

• The familiar formula for integration by parts of an ordinary Rieman integral
is valid without any change also for Riemann-Stieltjes integrals∫ b

a

f(x)dg(x) = [f(x)g(x)]ba −
∫ b

a

g(x)df(x).

• The Mean Value Theorem for Riemann-Stieltjes integrals: If f(x) is a
continuous and g(x) a non-decreasing function, then∫ b

a

f(x)dg(x) = f(ξ)

∫ b

a

dg(x) = f(ξ)(g(b)− g(a))

where ξ is a number between a and b.
See [71]:

• If
∫
fdg exists for every f(x) continuous on a ≤ x ≤ b, then g(x) must be

of bounded variation.

• The necessary and sufficient condition that F (x, y) should possess a Riemann-
Stieltjes integral with respect to a function g(x, y) of bounded variation, is
that the variation of g(x, y) over the set of points at which F (x, y) is discon-
tinuous must be zero.
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2.2 Basic properties of the set G(xn) of all d.f.s of xn

Theorem 6. For every sequence xn ∈ [0, 1) we have

(i) G(xn) is non–empty, and it is either a singleton or has uncountable
many elements.

(ii) G(xn) is closed.

(iii) G(xn) is connected in the weak topology defined by the metric

d(g1, g2) =

√∫ 1

0

(g1(x)− g2(x)2dx. (10)

(iv) For given a non–empty set H of d.f.s there exists a sequence xn in [0, 1)
such that G(xn) = H if and only if H is closed and connected.

Proof. The (i) follows from the first Helly theorem 1 (cf. [92, p. 54, Th.
7.1]).

The (ii) was proved by van der Corput:

Theorem 7 (J.G. van der Corput (1935–36, Satz 10)[185]). If

g1(x), g2(x), g3(x), . . .

are d.f.s of xn mod 1 and limn→∞ gn(x) exists at every common point x of
continuity, then the corresponding limit function is also a d.f. of xn mod 1.

The (iii) follows from the theorem of H.G. Barone

Theorem 8 (H.G. Barone (1939)[16]). If tn, n = 1, 2, . . . is a sequence in a
metric space (X, ρ) and

- any subsequence of tn contains a convergent subsequence;
- limn→∞ ρ(tn+1, tn) = 0;

then the set of all limit points of tn is connected in (X, ρ).

Now we put X= the set of all d.f.s defined on [0, 1], tN = FN(x) and
ρ(tN+1, tN) = d(FN+1(x), FN(x)). The limit d(FN+1(x), FN(x)) → 0 follows
directly from the definition FN(x) by using the identity (see (33))∫ 1

0

(g1(x)− g2(x))2dx =

∫ 1

0

∫ 1

0

|x− y|dg1(x)dg2(y)−

16



− 1

2

∫ 1

0

∫ 1

0

|x− y|dg1(x)dg1(y)−
1

2

∫ 1

0

∫ 1

0

|x− y|dg2(x)dg2(y)

which holds for every d.f.s g1(x) and g2(x) and putting g1(x) = FN+1(x) and
g2(x) = FN(x) we find exactly∫ 1

0

(FN+1(x)− FN(x))2dx =

= − 1

2(N + 1)2N2

N∑
m,n=1

|xm − xn|+
1

(N + 1)2N

N∑
n=1

|xN+1 − xn|, (11)

where the right-hand side of (11) tends to zero as N → ∞. The proof of
(33) is given in Theorem 23.

Now, we return to (iv) of Theorem 6. It was proved by van der Corput:

Theorem 9 (J.G. van der Corput (1935–36, Satz 5)). Let H be a non–empty
set of d.f.s. Then there exists a sequence xn ∈ [0, 1) with G(xn) = H if and
only if there exists a sequence of d.f.s gn(x), n = 1, 2, . . . , in H such that

(i) If limk→∞ gnk
(x) = g(x) at common points x of continuity, then g ∈ H,

and conversely, there is such a subsequence for any g ∈ H.

(ii) limn→∞ gn+1(x) − gn(x) = 0 at any common point x of continuity of
gn(x), n = 1, 2, . . . .

A purely topological characterization of G(xn) with a short history can
be found in R. Winkler (1997). Since the weak topology is metrisable by the
metric d in (10)
• a non–empty closed set H is connected if and only if, for any two g, g̃ ∈ H
and every ε > 0 there exist finitely many g1, . . . , gn ∈ H such that g1 = g,
gn = g̃ and d(gi, gi+1) < ε for i = 1, . . . , n− 1.

Theorem 10. Let xn and yn be two real sequences. Assume that all d.f.s
in G(xn mod 1) are continuous at 0 and 1. Then the zero limit of fractional
parts

lim
n→∞

(xn − yn) mod 1 = 0

implies G(xn mod 1) = G(yn mod 1). The same implication follows from the
continuity of d.f.s in G(yn mod 1) at 0 and 1.
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Proof. Since {xn − yn} = xn − yn − [xn − yn] = (xn − [xn − yn]) − yn and
xn − [xn − yn] ≡ xn mod 1, we can assume that |xn − yn| → 0. For common
increasing sequence of positive integers Nk, k = 1, 2, . . . , let

FNk
(x) =

1

Nk

Nk∑
n=1

c[0,x)({xn})→ g(x), F̃Nk
(x) =

1

Nk

Nk∑
n=1

c[0,x)({yn})→ g̃(x)

for every continuity point x ∈ [0, 1]. Because, for every h = ±1,±2, . . . , the
limit |xn−yn| → 0 implies limk→∞

1
Nk

∑Nk

n=1 e
2πihxn = limk→∞

1
Nk

∑Nk

n=1 e
2πihyn

and since

1

Nk

Nk∑
n=1

e2πihxn =

∫ 1

0

e2πihxdFNk
(x),

1

Nk

Nk∑
n=1

e2πihyn =

∫ 1

0

e2πihxdF̃Nk
(x),

the well-known second Helly theorem implies
∫ 1

0
e2πihxdg(x) =

∫ 1

0
e2πihxdg̃(x)

for every h = ±1,±2, . . . . This gives∫ 1

0

f(x)dg(x) =

∫ 1

0

f(x)dg̃(x), i.e.

∫ 1

0

g(x)df(x) =

∫ 1

0

g̃(x)df(x)

for every continuous f : [0, 1]→ R, f(0) = f(1).
For two common points 0 < x1 < x2 < 1 of continuity of g(x) and g̃(x)

and for sufficiently small ∆ > 0, define
f(x) = 0 for x ∈ [0, x1 −∆],
f ′(x) = 1/∆ for x ∈ (x1 −∆, x1),
f(x) = 1 for x ∈ [x1, x2 −∆],
f ′(x) = −1/∆ for x ∈ (x2 −∆, x2), and
f(x) = 0 for x ∈ [x2, 1]. Then∫ 1

0

g(x)df(x) ≈ 1

∆
g(x1)∆−

1

∆
g(x2)∆,

∫ 1

0

g̃(x)df(x) ≈ 1

∆
g̃(x1)∆−

1

∆
g̃(x2)∆,

and ∆→ 0 gives
g(x1)− g̃(x1) = g(x2)− g̃(x2).

Now, we assume that g(x1) ̸= g̃(x1) and g(x2) ̸= g̃(x2). Fixing x1 and letting
x2 → 1 we have that one of g, g̃ must be discontinuous at 1, and fixing x2,
letting x1 → 0, one of g, g̃ must be discontinuous at 0. This gives Theorem
10.
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Theorem 10 has the following modifications:

Theorem 11. (i) If all d.f.s in G({xn}) and G({yn}) are continuous at 0,
then

{xn − yn} → 0 =⇒ G({xn}) = G({yn}).

The same follows from the continuity at 1.
(ii) The limit {xn − yn} → 0 also implies

{g ∈ G({xn}); g is continuous at 0, 1} = {g̃ ∈ G({yn}); g̃ is continuous at 0, 1}.

(iii) Assume that all d.f.s in G({xn}) are continuous at 0. Then

{xn − yn} → 0 =⇒ {g̃ ∈ G({yn}); g̃ is continuous at 0} ⊂ G({xn}).

(iv) If xn, yn ∈ [0, 1), n = 1, 2, . . . , then

|xn − yn| → 0 =⇒ G(xn) = G(yn)

i.e. the continuity assumption can be omitted.
(v) If xn, yn ∈ [0, 1), n = 1, 2, . . . , then

1

N

N∑
n=1

|xn − yn| → 0 =⇒ G(xn) = G(yn)

i.e. the continuity assumption can be omitted.

Proof. (v). Put F
(1)
N (x) = 1

N

∑N
n=1 c[0,x)(xn) and F

(2)
N (x) = 1

N

∑N
n=1 c[0,x)(yn)

and applying (33) we find

∫ 1

0

(F
(1)
N (x)− F (2)

N (x))2dx =
1

N2

N∑
m,n=1

|xm − yn|−

− 1

2

1

N2

N∑
m,n=1

|xm − xn| −
1

2

1

N2

N∑
m,n=1

|ym − yn|. (12)

From xm−yn = xm−xn+xn−yn and xm−yn = ym−yn+xm−yn it follows

|xm − yn| ≤
1

2
|xm − xn|+

1

2
|ym − yn|+

1

2
|xn − yn|+

1

2
|xm − ym|. (13)
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Substituting (13) to (12) we find∫ 1

0

(F
(1)
N (x)− F (2)

N (x))2dx ≤ 1

N

N∑
n=1

|yn − xn|. (14)

Notes 2. Putt γn = |e2πih(xn−yn)|, h is an integer. Then

γn ≤ 2π|h(xn − yn)|,
γn ≤ 2π(|h|{xn − yn}),
γn ≤ 2π(|h||{xn} − {yn}|),
γn ≤ 2π(|h|||xn − yn||),
γn ≤ 2π(|h||xn − yn −A|), (15)

for γn → 0 it can be used not only assumptions from Theorems 10 but also arbitrary

zero-convergence of right-hands of (15). (Compare with (507).)

Example 3. [124, p. 257, Ex. 5.37]: For any sequence xn ∈ [0, 1), n =
0, 1, 2, . . . , we can associate a real number α such that limn→∞({n!α} −
xn) = 0. Thus by Theorem 11 G({n!α}) = G(xn), if every g(x) ∈ G(xn) is
continuous at 0 and 1.

Proof. [124, p. 297, Solution 5.37]: We require α in the form

α =
∞∑
n=0

an
n!
, where |an| ≤ 1, n = 0, 1, 2, . . .

Then |α−
∑n

k=0
ak
k!
| ≤ 1

n(n!)
and thus∣∣∣∣n!α− n∑

k=0

ak
n!

k!

∣∣∣∣ ≤ 1

n
. (16)

Now we compute sequences an and An, n = 0, 1, 2, . . . by recurrences
(i) a0 = x0, A0 = 0,
(ii) an = xn − {An}, An+1 = (n+ 1)(An + an), n = 1, 2, . . .

Then by induction we can see

n∑
n=0

ak
n!

k!
= an + An, n = 0, 1, 2, . . . (17)
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From (ii) we have an + An = xn + [An] and (16) gives∣∣n!α− [An]− xn
∣∣ ≤ 1

n
, n = 1, 2, . . . (18)

If ε > 1
n
, the inequality (18) implies

xn ∈ (ε, 1− ε) =⇒ n!α− [An] = {n!α}

and thus the limit limn→∞({n!α} − xn) = 0 need not hold over full sequence
n = 0, 1, 2, . . . . But for proof of G({n!α}) = G(xn) we can use Theorem 10
with respect to Notes 2 and (15).

2.3 Continuity points of g(x) ∈ G(xn)
The Wiener-Schoenberg theorem (see [92, p. 55, Th. 7.5]) has a following
generalization.

Theorem 12. For given sequence xn ∈ [0, 1) and any integer h define ωh as

ωh = lim supN→∞

∣∣∣ 1N ∑N
n=1 e

2πihxn

∣∣∣2 . If
lim
H→∞

1

H

H∑
n=1

ωh = 0

then every d.f. g(x) ∈ G(xn) is continuous on [0, 1].

Proof. We adapt [92, pp. 55–56]. For g(x) ∈ G(xn), let limk→∞ FNk
(x) =

g(x) for every point x ∈ [0, 1] of continuity of g(x). By the second Helly
theorem the following limit ωh(g) exists

ωh(g) = lim
k→∞

∣∣∣∣∣ 1Nk

Nk∑
n=1

e2πihxn

∣∣∣∣∣
2

= lim
k→∞

1

N2
k

Nk∑
m,n=1

e2πih(xm−xn)

=

∫ 1

0

∫ 1

0

e2πih(x−y)dg(x)dg(y). (19)

Since

lim
H→∞

1

H

H∑
h=1

e2πih(x−y) =

{
1 if x− y ∈ Z,
0 others
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by applying Lebesgue dominance theorem we have

lim
H→∞

1

H

H∑
h=1

ωh(g) =

∫ 1

0

∫ 1

0

(
lim
H→∞

1

H

H∑
h=1

e2πih(x−y)

)
dg(x)dg(y)

=

∫∫
X

1.dg(x)dg(y), (20)

where X = {(x, y) ∈ [0, 1]2;x − y ∈ Z}. Since X has zero measure the
continuity of g(x) implies zero value of (20) and if x0 ∈ [0, 1] is discontinuity
point of g(x) then (20) is bounded by (g(x0 + 0) − g(x0 − 0))2 from below.
From the other hand (19) gives ωh ≥ ωh(g).

Example 4. For xn = t log n mod 1, t ̸= 0 we have (see [124, p. 281, Solution
5.18])

ωh =
1

4π2h2t2 + 1
.

Theorem 12 implies that every g(x) ∈ G(t log n mod 1) is continuous on [0, 1].

Discontinuity points of d.f. have the following characterization.

Theorem 13. The x0 ∈ [0, 1] is a discontinuity point for some g(x) ∈ G(xn)
if and only if there exists a subsequence xkn of xn such that

(i) limk→∞ xkn = x0,
(ii) d(kn) > 0,

where d(kn) is the upper asymptotic density of kn, n = 1, 2, . . . .

For proof cf. Theorem 37.
A generalization of the van der Corput Difference Theorem (cf. [92, Th.

3.1, p. 26]) is a difficult problem. We present here only the following partial
result.

Theorem 14. If for every k = 1, 2, . . . the set G(xn+k − xn) contains only
continuous d.f., then the same holds also for G(xn).

Proof. Let F
(k)
N (x) be FN(x) defined for xn+k − xn mod 1. Let Nn be a

sequence of indices such that limn→∞ FNn(x) = g(x). From Nn we can select

a subsequence Nin such that limn→∞ F
(1)
Nin

(x) = g1(x). Step by step we can
find the same for k = 2, 3, . . . and then by the diagonal method we can find
a sequence Mn for which the following limits exists:

lim
n→∞

FMn(x) = g(x) and lim
n→∞

F
(k)
Mn

(x) = gk(x) for every k = 1, 2, . . . .
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Wiener-Schoenberg Theorem [92, Th. 7.5, p. 55] yields

gk(x) is continuous ⇐⇒ lim
H→∞

1

H

H∑
n=1

|ω(k)
h |

2 = 0,

where

ω
(k)
h =

∫ 1

0

e2πıhxdgk(x) = lim
i→∞

∫ 1

0

e2πıhxdF
(k)
Mi

(x) = lim
i→∞

1

Mi

Mi∑
n=1

e2πıh(xn+k−xn).

In the next step we can use the van der Corput inequality (cf. [92, Th. 3.1,
p. 26])∣∣∣∣∣ 1N

N∑
n=1

e2πıhxn

∣∣∣∣∣
2

≤ N +M − 1

NM

+ 2
M−1∑
k=1

(N +M − 1)(M − k)(N − k)
N2M2

∣∣∣∣∣ 1

N − k

N−k∑
n=1

e2πıh(xn+k−xn)

∣∣∣∣∣ (21)

for every xn and 0 ≤ M ≤ N . Putting N = Mi and keeping M fixed and
then getting i→∞, we find

|ωh|2 ≤
1

M
+ 2

M−1∑
k=1

M − k
M2

|ω(k)
h |,

where again ωh =
∫ 1

0
e2πıhxdg(x). Summing up this inequalities for h =

1, . . . , H and then getting H → ∞ and using the fact [92, Ex. 7.17, p. 68]
that

lim
H→∞

1

H

H∑
h=1

|ω(k)
h |

2 = 0⇐⇒ lim
H→∞

1

H

H∑
h=1

|ω(k)
h | = 0

we find that

lim sup
H→∞

1

H

H∑
h=1

|ωh|2 ≤
1

M

for every positive M which implies the continuity of g(x).

23



2.4 Lower and upper d.f. of xn

Theorem 15. For every sequence xn ∈ [0, 1) we have g(x), g(x) ∈ G(xn) if
and only if∫ 1

0

(g(x)− g(x))dx = lim sup
N→∞

1

N

N∑
n=1

xn − lim inf
N→∞

1

N

N∑
n=1

xn.

Proof. Helly’s theorems imply

lim sup
N→∞

1

N

N∑
n=1

xn − lim inf
N→∞

1

N

N∑
n=1

xn = max
g1,g2∈G(xn)

∫ 1

0

(g1(x)− g2(x))dx.

Assume that this maximum is appeared in g1 = g∗ and g2 = g∗. Since
g∗(x) ≤ g(x) and g(x) ≤ g∗(x) we have∫ 1

0

(g(x)− g(x))dx ≥
∫ 1

0

(g∗(x)− g∗(x))dx. (22)

If g, g ∈ G(xn), then in (22) we have an equality, and if e.g. g /∈ G(xn), then
g(x) > g∗(x) for some common continuity point x ∈ (0, 1) which implies
strong inequality in (22).

Theorem 16. Assume that for the sequence xn ∈ [0, 1) there exists the first
moment

lim
N→∞

1

N

n∑
n=1

xn = α ∈ [0, 1].

Then either G(xn) is singleton or g /∈ G(xn) or g /∈ G(xn).

Proof. We have
∫ 1

0
xdFN(x) =

1
N

∑N
n=1 xn and by Helly Theorem 2, if the first

moment is constant, then for every g(x) ∈ G(xn), we have
∫ 1

0
xdg(x) = α.

Thus if g(x), g(x) ∈ G(xn), then
∫ 1

0
xdg(x) =

∫ 1

0
xdg(x) = α and from

g(x) ≤ g(x) for all x ∈ [0, 1] it follows g(x) = g(x) for common continuity
points x ∈ [0, 1].

Theorem 17. Assume that for every nonzero closed H ⊂ G(xn) we have
g
H
, gH ∈ H. Then every d.f. g ∈ G(xn) is characterized by the first moment,

i.e. if
∫ 1

0
xdg1(x) =

∫ 1

0
xdg2(x) then g1(x) = g2(x) a.e.

6

6Another limk→∞ FNk
(x) = g(x) a.e. ⇐⇒ limk→∞

1
Nk

∑Nk

n=1 xn =
∫ 1

0
xdg(x), for ev-

ery sequence N1 < N2 < . . . .
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Proof. Let H is the set of all g ∈ G(Xn) such that
∫ 1

0
xdg(x) = const. Then∫ 1

0
xdg

H
(x) =

∫ 1

0
xdgH(x) = const. implies that H is a singleton.

Theorem 18. (i) If the lower g and upper g d.f.s of the sequence xn ∈ [0, 1]
are of the type cα(x) then g, g ∈ G(xn).

(ii) If g(x) has a point x0 ∈ [0, 1] of discontinuity, then there exists g(x) ∈
G(xn) with the same point of discontinuity and g(x0 − 0) = g(x0 − 0) and
g(x0 + 0) = g(x0 + 0). Similarly to g(x).

(iii) The following holds

lim sup
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 1⇐⇒ (g(x) = c1(x) and g(x) = c0(x)).

Proof. (iii) Assume that limk→∞
1

MkNk

∑Mk

m=1

∑Nk

n=1 |xm − xn| = 1 and that

FMk
(x) → g1(x) and FNk

(x) → g2(x) for x ∈ (0, 1). By the second Helly

theorem (Theorem 2) we have
∫ 1

0

∫ 1

0
|x−y|dg1(x)dg2(y) = 1 and the equation

(33) implies
∫ 1

0

∫ 1

0
|x− y|dg1(x)dg1(y) = 0 and

∫ 1

0

∫ 1

0
|x− y|dg2(x)dg2(y) = 0.

This is possible only if {g1(x), g2(x)} = {c0(x), c1(x)}.
The opposite implication in (iii) follows from (i).

2.5 Everywhere dense sequence xn in [0, 1]

Theorem 19. The sequence xn ∈ [0, 1), n = 1, 2, . . . , is everywhere dense
in [0, 1] if

(i) limN→∞
1
N2

∑N
m,n=1 |xm − xn| = 0;

(ii) lim infn→∞
1
N

∑N
n=1 xn = 0;

(iii) lim supn→∞
1
N

∑N
n=1 xn = 1;

Proof. From (i) it follows
G(xn) ⊂ {cα(x), α ∈ [0, 1]} and
(ii) and (iii) implies c0(x), c1(x) ∈ G(xn).
Finally we use the connectivity of G(xn).

The connectivity of G(xn) also implies

25



Theorem 20. For every sequence xn ∈ [0, 1), n = 1, 2, . . . and an arbitrary
Riemann integrable f : [0, 1]→ R the sequence

1

N

N∑
n=1

f(xn), N = 1, 2, . . .

is everywhere dense in the interval[
m = min

g∈G(xn)

∫ 1

0

f(x)dg(x),M = max
g∈G(xn)

∫ 1

0

f(x)dg(x)

]
.

2.6 Singleton G(xn) = {g(x)}
In this case g(x) is also called asymptotic distribution function (a.d.f.) of the
sequence xn ∈ [0, 1).

Theorem 21. (I) The sequence xn mod 1 has a given a.d.f. g(x) if and only
if for every continuous function f : [0, 1]→ R we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0

f(x)dg(x),

and xn mod 1 has an a.d.f. if and only if the limit on the left hand side exists
for every continuous f . Note that it is sufficient to take the polynomials
x, x2, x3, . . . for f(x).
(II) In order to xn mod 1 has an a.d.f., it is both necessary and sufficient
that the limit

βk = lim
N→∞

1

N

N∑
n=1

e2πikxn (23)

exists for every integer k. This a.d.f. then will be continuous if and only if

lim inf
N→∞

1

2N + 1

N∑
k=−N

|βk|2 = 0, (24)

and absolutely continuous with the derivative belonging to L2(0, 1) if and only
if

∞∑
k=−∞

|βk|2 <∞. (25)
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(III) Let g(x) be continuous at x = 0 and x = 1. Then the sequence xn mod 1
has a.d.f. g(x) if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn =

∫ 1

0

e2πihxdg(x) for all integers h ̸= 0.

(IV) For a given a d.f. g(x) the sequence xn mod 1 has a.d.f. g(x) if and only
if

lim
N→∞

1

N

N∑
n=1

e2πi
h
2
{xn} =

∫ 1

0

e2πi
h
2
xdg(x) for all integers h ̸= 0.

(V) In order to the sequence xn ∈ [0, 1) has an a.d.f., it is both necessary
and sufficient that the limit

sk = lim
N→∞

1

N

N∑
n=1

xkn (26)

exists for every integer k.

Proof. (I) This is a modification of the Weyl’s limit relation. The sec-

ond Helly theorem 2
(
saying that 1

N

∑N
n=1 f({xn}) =

∫ 1

0
f(x)dFN(x) →∫ 1

0
f(x)dg(x)

)
implies the necessary condition in (I). The sufficiency follows

from the first Helly theorem 1.
The reduction to f(x) = x, x2, x3, . . . is clear, it follows, for instance,

from the approximation of f(x) by Berstein polynomial of degree n

Bn(x; f) =
n∑
k=0

f
(
k
n

) (
n
k

)
xk(1− x)n−k.

(II) The assertion (24) involving the continuity of the a.d.f. is due to N.
Wiener (1924)[192] and I.J. Schoenberg (1928)[145], and is called Wiener –
Schoenberg theorem (see Section 2.3, Theorem 12) (cf. [KN, p. 55, Th.
7.5]). The case (25) involving the absolute continuity is due to R.E. Edwards
(1967), cf. P.D.T.A. Elliott [1979, Vol. 1, p. 67, Lemma 1.46][43]. Note that
the conditions in (II) are equivalent to the following ones: (1) the coefficients
βk exist for k = 1, 2, . . . , (2) limN→∞

1
N

∑N
k=1 |βk|2 = 0, and (3)

∑∞
k=1 |βk|2 <

∞.
(III) TheWeyl criterion cannot be modified immediately, for instance because
c0(x), c1(x), hβ(x) cannot be distinguished by e2πihx with h = 0,±1,±2, . . . .
(IV) Note that every continuous f : [0, 1] → R can be approximated by

polynomials in e2πi
h
2
x with h = 0,±1,±2, . . . (cf. [p. 34, Th. 1,2][163]),

27



because such polynomials approximate continuous f : [0, 2]→ R, f(0) = f(2)
by arbitrary accurate.
(V) By the Hausdorff moment problem: Let s0 = 1, s2, s3, . . . be a given
sequence in [0, 1]. Then there exists a d.f. g(x) such that

(i) sn =
1∫
0

xndg(x), n = 0, 1, 2, . . . , if and only if

(ii)
m∑
i=0

(−1)i
(
m
i

)
si+k ≥ 0 for m, k = 0, 1, 2, . . . ,

and the solution function g(x) is unique (cf. N.I. Achyeser (1961), J.A.
Shohan and J.D. Tamarkin (1943) and see also Section 4.9).

Since G(xn) is non-empty, for a g(x) ∈ G(xn) there exists N1 < N2 < . . .
such that

sk = lim
i→∞

1

Ni

Ni∑
n=1

xkn =

∫ 1

0

xkdg(x).

Thus sk in (26) satisfies (ii) and thus G(xn) = {g(x)}.

Theorem 22. The sequence xn in [0, 1) has an a.d.f. g(x) if and only if

lim
N→∞

(
1 +

∫ 1

0

g2(x)dx− 2

∫ 1

0

g(x)dx+
2

N

N∑
n=1

∫ xn

0

g(x)dx−

− 1

N

N∑
n=1

xn −
1

2N2

N∑
m,n=1

|xm − xn|
)

= 0, (27)

or equivalently, if and only if

(i) limN→∞
1
N

∑N
n=1 xn =

∫ 1

0
xdg(x),

(ii) limN→∞
1
N

∑N
n=1

∫ xn
0
g(x)dx =

∫ 1

0

(∫ x
0
g(t)dt

)
dg(x),

(iii) limN→∞
1
N2

∑N
m,n=1 |xm − xn| =

∫ 1

0

∫ 1

0
|x− y|dg(x)dg(y).

Proof. This is an L2 discrepancy criterion in [158, p. 176, Th. 1]. For proof
we use:

Theorem 23. For every polynomial ψ(y) = a(x)y2 + b(x)y + c(x) with con-

tinuous coefficients the one-dimensional integral of the form
∫ 1

0
ψ(FN(x))dx
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can be expressed as the double integral∫ 1

0

ψ(FN(x))dx =

∫ 1

0

∫ 1

0

F (x, y)dFN(x)dFN(y) =
1

N2

N∑
m,n=1

F (xm, xn)

(28)
where

F (x, y) =

∫ 1

max(x,y)

a(t)dt+
1

2

∫ 1

x

b(t)dt+
1

2

∫ 1

y

b(t)dt+

∫ 1

0

c(t)dt, (29)

and furthermore ∫ 1

0

ψ(g(x))dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) (30)

for every d.f. g.

Proof. We compute∫ 1

0

ψ(FN(x))dx

=

∫ 1

0

a(x)( 1

N

N∑
n=1

c(xn,1](x)

)2

+ b(x)

(
1

N

N∑
n=1

c(xn,1](x)

)
+ c(x)

 dx

=
1

N2

N∑
m,n=1

∫ 1

max(xm,xn)

a(x)dx+
1

N

N∑
n=1

∫ 1

xn

b(x)dx+

∫ 1

0

c(x)dx

and thus we find F (x, y) of the form (29). 7 Then using Lebesgue theorem
in the left and the Helly theorem in the middle of (28) we find (30).

New, putting ψ(FN(x)) = (FN(x) − g(x))2 we find F (x, y) = Fg(x, y),
where

Fg(x, y) = 1−max(x, y)−
∫ 1

x

g(t)dt−
∫ 1

y

g(t)dt+

∫ 1

0

g2(t)dt. (31)

Bearing in mind max(x, y) = x+y+|x−y|
2

and (28) we find limN→∞
∫ 1

0
(FN(x)−

g(x))2dx = 0 in the form (27).
Finally, from (i), (ii), (iii) follows (27), and in opposite case, if limN→∞ FN(x) =

g(x) a.e. then the second Helly theorem implies (i), (ii), and (iii).

7Similarly, for any polynomial ψ(y) of the nth order there exists F (x1, . . . , xn) such

that
∫ 1

0
ψ(g(x))dx =

∫ 1

0
. . .
∫ 1

0
F (x1, . . . , xn)dg(x1) . . . dg(xn).
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Theorem 24. The sequence xn ∈ [0, 1) possesses an a.d.f. if and only if 8

lim
M,N→∞

(
1

MN

M∑
m=1

N∑
n=1

|xm − xn|

− 1

2M2

M∑
m,n=1

|xm − xn| −
1

2N2

N∑
m,n=1

|xm − xn|
)

= 0. (32)

Proof. We prove generally∫ 1

0

(g1(x)− g2(x))2dx =

∫ 1

0

∫ 1

0

|x− y|dg1(x)dg2(y)−

− 1

2

∫ 1

0

∫ 1

0

|x− y|dg1(x)dg1(y)−
1

2

∫ 1

0

∫ 1

0

|x− y|dg2(x)dg2(y) (33)

for every two d.f.s g1(x) and g2(x).
For given g1(x) and g2(x), let xn ∈ [0, 1), n = 1, 2, . . . , be a sequence

such that for index sequence N1 < N2 < . . . and M1 < M2 < . . . we have
limk→∞ FNk

(x) = g1(x) and limk→∞ FMk
(x) = g2(x). Such sequence xn exists

by Theorem 6. Putting Nk = N and Mk = M , express step d.f.s FN(x) and
FM(x) by (2) and compute∫ 1

0

(FN(x)− FM(x))2dx

=

∫ 1

0

(
1

N

N∑
n=1

c(xn,1](x)−
1

M

M∑
m=1

c(xm,1](x)

)2

dx

=
1

N2

N∑
m,n=1

∫ 1

0

c(xn,1](x)c(xm,1](x)dx+
1

M2

M∑
m,n=1

∫ 1

0

c(xn,1](x)c(xm,1](x)dx

− 2
1

MN

M∑
m=1

M∑
n=1

∫ 1

0

c(xn,1](x)c(xm,1](x)dx. (34)

Since ∫ 1

0

c(xn,1](x)c(xm,1](x)dx = 1−max(xm, xn)

8The multi-dimensional case is in (532).
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from (34) we find∫ 1

0

(FN(x)− FM(x))2dx (35)

=

∫ 1

0

∫ 1

0

(1−max(x, y))dFN(x)dFN(y)

+

∫ 1

0

∫ 1

0

(1−max(x, y))dFM(x)dFM(y)

− 2

∫ 1

0

∫ 1

0

(1−max(x, y))dFM(x)dFN(y)

=

∫ 1

0

∫ 1

0

(1−max(x, y))d(FN(x)− FM(x))d(FN(y)− FM(y)). (36)

Computing the limit of (35) by Lebesgue theorem of dominant convergence
and the limit of (36) by the second Helly theorem (see Theorem 2) and for
M =Mk, N = Nk, k →∞ we find∫ 1

0

(g1(x)−g2(x))2dx =

∫ 1

0

∫ 1

0

(1−max(x, y))d(g1(x)−g2(x))d(g1(y)−g2(y)).

(37)
Since

max(x, y) =
x+ y + |x− y|

2
,∫ 1

0

∫ 1

0

1.d(g1(x)− g2(x))d(g1(y)− g2(y)) = 0,∫ 1

0

∫ 1

0

(x+ y)d(g1(x)− g2(x))d(g1(y)− g2(y)) = 0,

we find (33) in the form∫ 1

0

(g1(x)− g2(x))2dx =

∫ 1

0

∫ 1

0

−|x− y|
2

d(g1(x)− g2(x))d(g1(y)− g2(y)).

(38)

Example 5. Put xn = 1
n
, n = 1, 2, . . . . Then |1/m− 1/n| = |m− n|mn and

1
M2

∑M
m,n=1 |xm − xn| ≤ c log

2M
M
→ 0,

1
N2

∑N
m,n=1 |xm − xn| ≤ c log

2M
M
→ 0.
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This implies
1
M2

∑M
m,n=1 |xm − xn| →

∫ 1

0

∫ 1

0
|x− y|dg1(x)dg1(y) = 0→ g1(x) = cα(x),

1
N2

∑N
m,n=1 |xm − xn| →

∫ 1

0

∫ 1

0
|x− y|dg2(x)dg2(y) = 0→ g2(x) = cβ(x).

Assuming (32), then
1

MN

∑M
m=1

∑N
n=1 |xm − xn| → 0

and then
1
N2

∑N
m,n=1 |xm − xn| →

∫ 1

0

∫ 1

0
|x− y|dg1(x)dg2(y) = 0

which gives α = β. Then xn has an a.d.f., concretely c0(x).

Another criterion for singleton G(xn).

Theorem 25. The sequence xn ∈ [0, 1) possesses an a.d.f. g(x) if and only
if the sequence of functions

ϕN(t) =
1

N

N∑
n=1

eitxn

converges point-wise on R to a function ϕ(t) which is continuous at 0. In
this case ϕ(t) is a characteristic function of g(x).

Proof. See [177, p. 287, Th. 4].

[177, p. 283, Th. 2]: 9

Theorem 26. Let xn, n = 1, . . . , be a sequence in ∈ [0, 1). Suppose that for
any ε > 0 there exists a function fε : N→ N having the following properties:

(i) limε→0 d({n; |xn − yn| ≥ ε}) = 0, where yn = xfε(n)
and d(X) denotes

the upper asymptotic density of X.
(ii) For each a ∈ N the asymptotic density d({n; fϵ(n) = a}) exists.

Then xn has an a.d.f.

Proof. Denote
A(a) = {n ∈ N; fε(n) = a};
A(a)N = #{n ≤ N ; fε(n) = a}.

By assumption (ii) there exists limit

lim
N→∞

AN(a)

N
= d(a, ε). (39)

9In original theorem there is also assumption (i) limε→0 lim supT→∞ d{n; fε(n) > T} =
0; which is by our proof superfluous.
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For
1

N
#{n ≤ N ; yn < x} (40)

we have

1

N
#{n ≤ N ; yn < x} = 1

N
#{n ≤ N ;xfε(n) < x} = 1

N

∑
xa<x

AN(a). (41)

By (39) and since the sum in (41) is finite, then the following limit exists

g(x, ε) := lim
N→∞

1

N
#{n ≤ N ; yn < x} = lim

N→∞

1

N

∑
xa<x

AN(a) =
∑
xa<x

d(a, ε)

(42)
In the following we compare d.f.s. of yn and xn.

10.

1

N
#{n ≤ N ; yn < x}

=
1

N
#{n ≤ N ; |xn − yn| < ε, yn < x} (43)

+
1

N
#{n ≤ N ; |xn − yn| ≥ ε, yn < x}. (44)

Since

|xn − yn| < ε and yn < x =⇒ |xn − yn|+ yn < x+ ε =⇒ xn < x+ ε,

then (43) can be bounded by

1

N
#{n ≤ N ; |xn − yn| < ε, yn < x} ≤ 1

N
#{n ≤ N ;xn < x+ ε}. (45)

Furthermore (45) can be bounded by upper d.f. g(x+ ε) of xn defined as

g(x+ ε) = lim sup
N→∞

1

N
#{n ≤ N ;xn < x+ ε}.

The part (44) is bounded by

1

N
#{n ≤ N ; |xn − yn| ≥ ε, yn < x} ≤ 1

N
#{n ≤ N ; |xn − yn| ≥ ε}. (46)
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If N →∞ in (45) and (46) and using (42) we have

g(x, ε) ≤ g(x+ ε) + d({n ∈ N; |xn − yn| ≥ ε}) (47)

for every ε > 0 and x ∈ [0, 1).
20.

1

N
#{n ≤ N ;xn < x}

=
1

N
#{n ≤ N ; |xn − yn| < ε, xn < x} (48)

+
1

N
#{n ≤ N ; |xn − yn| ≥ ε, xn < x}. (49)

Similarly as in (45) and (47) we have

=
1

N
#{n ≤ N ; |xn − yn| < ε, xn < x} ≤ 1

N
#{n ≤ N ; yn < x+ ε} (50)

=
1

N
#{n ≤ N ; |xn − yn| ≥ ε, xn < x} ≤ 1

N
#{n ≤ N ; |xn − yn| ≥ ε}. (51)

Let N →∞ in (50) and (51) and bearing in mind that

lim inf
N→∞

1

N
#{n ≤ N ; yn < x} = g(x);

lim
N→∞

1

N
#{n ≤ N ; yn < x+ ε} = g(x+ ε, ε)

lim sup
N→∞

1

N
#{n ≤ N ; |xn − yn| ≥ ε} = d({n; |xn − yn| ≥ ε})

then we have

g(x) ≤ g(x+ ε, ε) + d({n; |xn − yn| ≥ ε}) (52)

for every x ∈ [0, 1) and every ε > 0. Putting x = x − ε then (52) is
transformed to

g(x− ε) ≤ g(x, ε) + d({n; |xn − yn| ≥ ε}) (53)

for every x ≥ ε and every ε > 0. Combining (47) and (53) we have

g(x− ε) ≤ g(x+ ε) + d({n; |xn − yn| ≥ ε}) (54)

for every x ≥ ε and every ε > 0. Then the upper and the lower d.f. of the
sequence xn are arbitrary close, thus are identical.
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2.7 Uniform distribution (u.d.) of xn

For completeness, we add a part of the G(xn) = {g(x)}, where g(x) = x.
• The sequence xn is said to be uniformly distributed modulo one (abbreviated
u.d. mod1) if for every subinterval [x, y) ⊂ [0, 1] we have

lim
N→∞

(FN(y)− FN(x)) = y − x.

This convergence is uniformly with respect to N .

Theorem 27 (Weyl limit relation). The sequence xn mod 1 is u.d. if and
only if for every continuous f : [0, 1]→ R we have

lim
N→∞

1

N

N∑
n=1

f({xn}) =
∫ 1

0

f(x)dx.

Theorem 28 (Weyl criterion). The sequence xn mod 1 is u.d. if and only if

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0 for all integers h > 0.

Theorem 29 (van der Corput’s difference theorem). Let xn be a sequence
of real numbers. If for every positive integer h the sequence xn+h−xn mod 1
is u.d., then xn mod 1 is also u.d.

Theorem 30 (L2 discrepancy criterion). The sequence xn in [0, 1) is u.d. if
and only if

lim
N→∞

(
1

3
+

1

N

N∑
n=1

x2n −
1

N

N∑
n=1

xn −
1

2N2

N∑
m,n=1

|xm − xn|

)
= 0,

or equivalently, if and only if

(i) limN→∞
1
N

∑N
n=1 xn = 1

2
, and

(ii) limN→∞
1
N

∑N
n=1 x

2
n = 1

3
, and

(iii) limN→∞
1
N2

∑N
m,n=1 |xm − xn| =

1
3
.
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The notion of discrepancy was introduced to measure the distribution
deviation of sequences from the expected ideal one, cf. [92, Chap. 2], [38,
Chap. 1].
• Let x1, . . . , xN be a given sequence of real numbers from the unit interval
[0, 1). Then the number

DN = DN(x1, . . . , xN) = sup
0≤α<β≤1

∣∣∣∣A([α, β);N ; xn)

N
− (β − α)

∣∣∣∣ (55)

is called the (extremal) discrepancy of this sequence. The number

D∗
N = sup

x∈[0,1]

∣∣∣∣A([0, x);N ;xn)

N
− x
∣∣∣∣

is called star discrepancy, and the number

D
(2)
N =

∫ 1

0

(
A([0, x);N ;xn)

N
− x
)2

dx

is called its L2 discrepancy . The above discrepancies are mutually related by
the following inequalities

D∗
N ≤ DN ≤ 2D∗

N , [92, p.91],

(D∗
N)

3 ≤ 3D
(2)
N ≤ (D∗

N)
2, [117].

These inequalities hold for the arbitrary sequence x1, . . . , xN in [0, 1) hav-
ing N terms. The following theorem demonstrate the role of the discrepancy
notions:

Theorem 31 (H. Weyl (1916)). A sequence xn ∈ [0, 1) is u.d. if and only if

lim
N→∞

DN(xn) = 0.

Theorem 32 (P. Erdős and P. Turn (1948)). If x1, . . . , xN mod 1 is a finite
sequence and m a positive integer, then

DN ≤
6

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣ 1N
N∑
n=1

e2πihxn

∣∣∣∣∣ .
Theorem 33 (Fejér’s difference theorem). Let xn be a sequence such that
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(i) xn →∞, and

(ii) ∆xn ↓ 0, where ∆xn = xn+1 − xn.

Then xn mod 1 is u.d. if and only if

(iii) limn→∞ n∆xn =∞.

Theorem 34 (H. Weyl (1916)). An s–dimensional sequence xn mod 1 is
u.d. if and only if for every integral vector (h1, . . . , hs) ̸= (0, . . . , 0) the one–
dimensional sequence

h1xn,1 + · · ·+ hsxn,s mod 1, n = 1, 2, . . . ,

is u.d.

The following briefly lists some various results:
(I) If xn, n = 1, 2, . . . , is a monotone sequence that is u.d.mod1, then

lim
n→∞

|xn|
log n

=∞.

See H. Niederreiter [120].
(II) If xn is a sequence that is u.d.mod1, then

lim sup
n→∞

n|xn+1 − xn| =∞.

See P.B. Kennedy [84], cf. [92, p. 15, Th. 2.6].
(III) Let P be a set of primes such that

∑
p∈P 1/p diverges. If the sequence

xhn mod 1, n = 1, 2, . . . ,

is u.d. for every h composed only from primes taken from P then

xn mod 1, n = 1, 2, . . . ,

is u.d. See G. Myerson and A.D. Pollington [110].
(IV) Define spectrum of xn, sp(xn) as

sp(xn) = {α ∈ [0, 1];xn − nα mod 1 is not u.d.}.
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M. Mendès France [103] proved: Necessary and sufficient condition that every
subsequence xan+b will be u.d. for every integer a ≥ 1 and b ≥ 0 is that
sp(xn) ∩Q = ∅.

(V) Let xn, n = 1, 2, . . . , be a sequence in [0, 1) such that

#{n ≤ N ; xn ∈ I}
N

→ |I|

for all intervals I ⊂ [0, 1] of the fixed length |I| = a. Then xn may not be
u.d., see following example.

Example 6. Assume that all g(x) ∈ G(xn) satisfy

g(x+ a) = g(x) + a for x ∈ [0, 1− a]. (56)

The following d.f. g(x) satisfies (56) but g(x) ̸= x.

�
�
�

�
�
�

g(x)

0 1a

Fig.: Solution of (56).

Note that A. Volčič [189] proved that the limits

#{n ≤ N ;xn ∈ I}
N

→ l

2π

for family of all arcs C on the unit circle of a constant length l implies u.d.
of xn in the unit circle if l

2π
is irrational.

(VI) If xn is a sequence that is u.d. in [0, 1), then

lim sup
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| ≤
1

2
.
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See F. Pillichshammer and S. Steinerberger [127] and our Theorem 214.
(VII) In [124, Ex. 5.11, p. 249–250] is proved:

xn − yn = log(n+ 1), n = 1, 2, . . .

=⇒ ((xn mod 1 is u.d. )⇔ (yn mod 1 is u.d. )).

See also Theorem 92 in this book.

2.7.1 Examples of u.d. sequences

(1) The sequence
[αn]βn mod 1, n = 1, 2, . . . (57)

is u.d. in [0, 1] if and only if either α2, β /∈ Q or α2 ∈ Q and 1, α, β are linear
independent over Q. This proved I.J. Høaland [76, Prop. 5.3]. He gave
similar examples: [

√
2n]2
√
2 mod 1 is u.d. but the sequence [

√
2n]2
√
2n mod

1 is not.
(2) The sequence

log n! mod 1, n = 1, 2, . . . (58)

is u.d. in [0, 1]. This proved K. Goto and T. Kano [62, Th. 3].
(3) Let Fn, n = 1, 2, . . . be the sequence of Fibonacci numbers. Then the

sequence
logFn, n = 1, 2, . . . (59)

is u.d.mod1 (see [92, Ex. 3.3, p. 31]). A similar result for logb Fn mod 1 is
not known, but it is everywhere dense in [0, 1].

(4) Let α ̸= 0, β, γ, δ be real numbers and denote

xn = αnβ logγ n logδ(log n) mod 1 (60)

for n = 2, 3, . . . . Then the sequence xn is u.d. if and only if it satisfies one
of the following conditions:

(i) β is a positive non-integer;

(ii) β is a positive integer and either α is irrational, or γ ̸= 0, or δ ̸= 0;

(iii) β = 0 and γ > 1;

(iv) β = 0, γ = 1 and δ > 0;
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This proved M.D. Boshernitzan [23].
(5) Denote the nth nontrivial root of Riemann’s dzeta funkcion ζ(s) =∑∞
n=1

1
ns in critical zone 0 ≤ ℜs ≤ 1 as ϱ(n) = β(n) + ıγ(n). Then for every

x ̸= 0 the sequence
xγ(n), n = 1, 2, . . . (61)

is u.d mod1. After partial results of H. Rademacher and E. Hlawka this
general result proved J. Kaczorowski [82].

(6) Let pn, n = 1, 2, . . . be an increasing sequence of all primes and α > 0
an arbitrary non-integer.Then

pαn, n = 1, 2, . . .

is u.d. mod1. For α > 1 this proved I.M. Vinogradov [188].

3 Examples of applications of d.f.s

The purpose of this section is a preliminary illustration of applications of
G(xn). Some known classes of sequences xn originally defined by properties
of xn, we characterize by using the set G(xn) of all d.f.s of xn.
For example:

• (λ, λ′)-distribution;
• Statistically independent sequences;

• Statistically convergent sequences;

• Statistical limit points;

• Uniform maldistributed sequences;

• ξ(3/2)n mod 1, n = 1, 2, . . . ;

• Benford’s law;
• Copulas;
• Ratio sequences.
This section lists basic characteristics of these sequences. Additional features
with proofs will be given in Section 6.

3.1 (λ, λ′)–distribution

• J. Chauvineau (1967/68) [26]: Let λ and λ′ be two real numbers such that
0 < λ ≤ 1 ≤ λ′. The sequence xn mod 1 is said to be (λ, λ′)–distributed if
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for every non–empty proper subinterval I ⊂ [0, 1] we have both

(i) lim infN→∞
#{n≤N ;xn mod 1∈I}

N
≥ λ|I|, and

(ii) lim supN→∞
#{n≤N ;xn mod 1∈I}

N
≤ λ′|I|.

If only (i) is satisfied, the sequence xn mod 1 is said to be (λ,∞)–distribu-
ted or positively distributed (cf. [153, p. 234]). On the other hand, if only
(ii) is true the sequence xn mod 1 is said to be (0, λ′)–distributed. These
distributions can be characterized using d.f.s as follows (cf. [161]):

Theorem 35. A sequence xn mod 1 is (λ, λ′)–distributed if and only if every
g(x) ∈ G(xn mod 1) has the lower derivative ≥ λ and the upper derivative
≤ λ′ at every point x ∈ (0, 1).

Example 7. G. Pólya and G. Szegő (1964, Part 2, Ex. 179)[129] proved
that the derivative (density) g′(x) of any g(x) ∈ G(c log n mod 1), c > 0, has
the form

g′(x) =


log q

q − 1
qx−α+1, if 0 ≤ x < α,

log q

q − 1
qx−α, if α < x ≤ 1,

where q = e1/c and α ∈ (0, 1). If α = 0 or α = 1 then

g′(x) =
log q

q − 1
qx

and c log n mod 1 is (λ, λ′)–distributed with λ = log q
q−1

and λ′ = q log q
q−1

. Also
see Example 21, p. 75.

3.2 Statistically independent sequences

Preliminary definitions to Section 5.1:
• Let (Ω, X, P ) be a probability space. For the random vector (X, Y ) we
define:

distribution function F (x, y) = P (X < x, Y < y);
marginal distribution functions F1(x) = P (X < x), F2(y) = P (Y < y);
density function f(x, y) = ∂2

∂x∂y
F (x, y);

marginal density functions f1(x) = F1(x)
′, f2(y) = F2(y)

′.
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• The pair X and Y of random variables are independent if F (x, y) =
F1(x)F2(y) or f(x, y) = f1(x)f2(y) for every relevant x, y. This definition
for random variables is Theorem 36 for sequences.

Definition 1. G. Rauzy [135, p. 91, 4.1. Def.]: Let xn and yn be two infinite
sequences from the unit interval [0, 1). The pair of sequences (xn, yn) is called
statistically independent if

lim
N→∞

(
1

N

N∑
n=1

f1(xn)f2(yn)−

(
1

N

N∑
n=1

f1(xn)

)(
1

N

N∑
n=1

f2(yn)

))
= 0 (62)

for all continuous real functions f1, f2 defined on [0, 1]. In other words, the
double sequence (xn, yn) is called statistically independent if the coordinate
sequences xn and yn are statistically independent.

Theorem 36 ([135, p. 92, 4.2. par.]). For an arbitrary (xn, yn) ∈ [0, 1)2,
n = 1, 2, . . . , we have (xn, yn) statistically independent if and only if

∀
g∈G(xn,yn)

g(x, y) = g(x, 1)g(1, y) a.e. on [0, 1]2. (63)

Proof. For given two-dimensional sequence (xn, yn) put

FN(x, y) =
#{n ≤ N ; (xn, yn) ∈ [0, x)× [0, y)}

N
.

By Riemann-Stieltjes integration and by Helly theorem, there exists a se-
quence of indices N1 < N2 < . . . and d.f. g(x, y) such that

1

Nk

Nk∑
n=1

f1(xn)f2(yn) =

∫ 1

0

∫ 1

0

f1(x)f2(y)dFNk
(x, y)

→
∫ 1

0

∫ 1

0

f1(x)f2(x)dg(x, y),

1

Nk

Nk∑
n=1

f1(xn) =

∫ 1

0

f1(x)dFNk
(x, 1)→

∫ 1

0

f1(x)dg(x, 1),

1

Nk

Nk∑
n=1

f2(yn) =

∫ 1

0

f2(y)dFNk
(1, y)→

∫ 1

0

f2(y)dg(1, y)

as k →∞.
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10. Assuming statistical independence (62) we have∫ 1

0

∫ 1

0

f1(x)f2(x)dg(x, y) =

(∫ 1

0

f1(x)dg(x, 1)

)(∫ 1

0

f2(y)dg(1, y)

)
. (64)

Applying on the left (64) the (570) we find∫ 1

0

∫ 1

0

f1(x)f2(x)dg(x, y) =f1(1)f2(1)−
∫ 1

0

g(x, 1)df1(x)−
∫ 1

0

g(1, y)df2(y)

+

∫ 1

0

∫ 1

0

g(x, y)df1(x)df2(y)

and integration by parts∫ 1

0
f1(x)dg(x, 1) = f1(1)−

∫ 1

0
g(x, 1)df1(x),∫ 1

0
f1(x)dg(x, 1) = f2(1)−

∫ 1

0
g(1, y)df2(y).

Then from (64) follows∫ 1

0

∫ 1

0

g(x, y)df1(x)df2(y) =

(∫ 1

0

g(x, 1)df1(x)

)(∫ 1

0

g(1, y)df2(y)

)
(65)

for arbitrary differentiable functions f1(x) and f2(y). Now for a continuity
point (x0, y0) of g(x, y) we select f1(x) and f2(y) such that [df1(x)]x=x0 = 1
and [df2(y)]y=y0 = 1 and others df1(x) = 0 and df2(y) = 0. Then (65)
implies g(x0, y0) = g(x0, 1)g(1, y0).

20. On the other hand (63) implies that in every sequence N1 < N2 < . . .
there exists subsequence N ′

1 < N ′
2 < . . . such that such that the limit (62)

holds for N = N ′
k and thus it holds for arbitrary N .

(I) Theorem 36 can also be found in P.J. Grabner, O. Strauch and R.F. Ti-
chy (1999) [64] where it is used (p. 109) to give the following s–dimensional
generalization of statistical independence: Let xn = (xn,1, . . . , xn,s) n =
1, 2, . . . , be an s–dimensional sequence in [0, 1)s formed from s sequences
xn,1, xn,2, . . . , xn,s. Then xn is called statistically independent (or that xn
has statistically independent co–ordinates xn,1, . . . , xn,s) if every d.f. g(x) ∈
G(xn) can be written as a product g(x) = g1(x1) . . . gs(xs) of one–dimensional
d.f.s. Here gi, i = 1, . . . , s, can depend on g. Another

g(x, y, z, . . . ) = g(x, 1, 1, . . . )g(1, y, 1, . . . )g(1, 1, z, . . . ) . . . .
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As an example in [64] (see Example 191 in this book):

xn =
(
(−1)[[log(j) n]1/p1 ][log(j) n]1/p1 , . . . , (−1)[[log(j) n]1/ps ][log(j) n]1/ps

)
mod 1,

where log(j) n denotes jth iterate logarithm log . . . log n and p1, . . . , ps are
pairwise coprime positive integers. Then for j > 1 the G(xn) is the set of all
cα(x) where

cα(x) =

{
1 for x ∈ [α,1]

0 otherwise.
(66)

Thus xn has statistically independent coordinates.
(II) Grabner and Tichy (1994) [31] proved that the extremal discrepancy does

not characterize statistical independence, but the limit limN→∞D
(2)
N = 0 of

the L2 discrepancy provides a characterization.
(III) J. Coquet and P. Liardet (1987) call two multi–dimensional sequences
xn and yn statistically independent if for every (complex valued) continuous
f1, f2

lim
N→∞

(
1

N

N∑
n=1

f1(xn)f2(yn)−

(
1

N

N∑
n=1

f1(xn)

)(
1

N

N∑
n=1

f2(yn)

))
= 0.

If for an integer s ≥ 1 the s–dimensional sequences xn = (xn+1, . . . , xn+s)
and yn = (yn+1, . . . , yn+s) are statistically independent, then the one–dimen-
sional sequences xn and yn are said to be statistically independent at rank
s. If they are statistically independent at rank s for all integers s, they are
called completely statistically independent.

For an example in [30]:

Example 8. For a given integer q ≥ 2, a real number θ and a real polynomial
p(x), let

(i) xn = θqn mod 1,

(ii) yn = p(n) mod 1,

(iii) xn = (xn+1, . . . , xn+s) and yn = (yn+1, . . . , yn+s).

If xn is u.d. (i.e. θ is normal in the base q), then for every s = 1, 2, . . . the
sequence

(xn,yn), n = 1, 2, . . . ,
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has d.f.s g(x,y) ∈ G((xn,yn)) only of the form g(x,y) = g1(x)g2(y) for
some g1(x) ∈ G(xn) and g2(y) ∈ G(yn), i.e. the sequences xn and yn are
completely statistically independent.

(IV) Coquet and Liardet (1987) [30] defined (following Rauzy (1976) [135])
the statistical independence for a family of sequences H using the limit

lim
N→∞

(
1

N

N∑
n=1

f1(xn,1) . . . fk(xn,k)−
(

1

N

N∑
n=1

f1(xn,1)

)
. . .

(
1

N

N∑
n=1

fk(xn,k)

))
,

provided that this limit vanishes for any subfamily xn,1, . . . ,xn,k of H and
for every continuous f1, . . . , fk. The equivalent reformulation in terms of the
decomposition of any g ∈ G(xn,1, . . . ,xn,k) into the product of d.f.s from
G(xn,1), . . . , G(xn,k) they call independence criterion. Cf. also Coquet and
Liardet (1984) [29].
(V) Liardet (1990) [100] also defined the statistical independence of a se-
quence xn with respect to a set Ψ of mappings ψ : N → N such that
limn→∞ ψ(n) = ∞ provided the family of sequences xψ(n), ψ ∈ Ψ, is sta-
tistically independent. Along parallel lines to those of the previous note
he defined the notion of Ψ–independence at rank s and the complete Ψ–
independence.
(VI) Examples of statistical dependence are copulas in Section 8. For further
properties see also Section 5.1.

3.3 Statistical limit points

Following the concept of a statistically convergent sequence, J. A. Fridy [58]
introduced the notion of a statistical limit point of a given sequence xn,
n = 1, 2, . . . of real numbers: A real number x is said to be a statistical
limit point of the sequence xn if there exists a subsequence xkn , n = 1, 2, . . . ,
such that limn→∞ xkn = x and the set of indices kn has a positive upper
asymptotic density (see Definitions and Notations). Fridy studied the set
Λ(xn) of all such points. In the paper [90] is proved the following Theorem
37 that the set Λ(xn), for xn ∈ [0, 1) n = 1, 2, . . . , coincides with the set of all
discontinuity points of d.f.s of xn. This is inspired by I.J. Schoenberg [147]
who noted that the sequence xn is statistically convergent to α if and only if
xn admits a.d.f. c[α,1](x)(= cα(x) see p. 11).
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Theorem 37. For every sequence xn ∈ [0, 1) we have

Λ(xn) = {α ∈ R; ∃(g(x) ∈ G(xn)) g(x) is discontinuous at α}.

Proof. 1◦. Let α be a discontinuity point of g(x) ∈ G(xn) with a jump of
size h. Let αi and βi be two sequences satisfying βi − αi → 0 as i → ∞,
αi < α < βi and αi and βi are continuity points of g(x) for every i. From Nk

(using the definition of g(x)) we can select a subsequence Nki such that

1

Nki

Nki∑
n=Nki−1

+1

c[αi,βi)(xn) > h− ε

for some ε ∈ (0, h). Ordering elements of ∪∞
i=1{n ∈ N, Nki−1

< n ≤ Nki} to
an increasing sequence ni, then we have xni

→ α and d(ni) ≥ h− ε.
2◦. Assume that xni

→ α for i→∞, d(ni) = h > 0, and ε ∈ (0, h). Then
there exists a sequence Nk such that for every k = 1, 2, . . . ,

|{i ∈ N;ni ≤ Nk}|
Nk

≥ h− ε.

By Helly selection principle from Nk we can select a subsequence Nki such
that

lim
i→∞

1

Nki

Nki∑
n=1

c[0,x)(xn) = g(x)

for every point x of continuity of g(x). Clearly, g(x) has at α a jump of size
≥ h− ε > 0 and g(x) ∈ G(xn).

Theorem 38. Let xn be a sequence of real numbers. If for every k = 1, 2, . . .
the difference sequence xn+k − xn, n = 1, 2, . . . has Λ(xn+k − xn) = ∅, then
Λ(xn) = ∅.

Proof. Van der Corput difference theorem in the form Theorem 14 gives that
if G((xn+k − xn) mod 1), k = 1, 2, . . . , contains only continuous d.f.s, then
the same holds for G(xn mod 1). Thus we have the implication

Λ((xn+k − xn) mod 1) = ∅, k = 1, 2, . . . =⇒ Λ(xn mod 1) = ∅

.
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Theorem 39. For any two sequences xn and yn we have

lim
N→∞

1

N

N∑
n=1

|xn − yn| = 0 =⇒ Λ(xn) = Λ(yn).

Proof. For xn, yn ∈ [0, 1] in Theorem 11 we have
limN→∞N−1

∑N
n=1 |xn − yn| = 0 =⇒ G(xn) = G(yn)

and thus Λ(xn) = Λ(yn) is applying Theorem 37.

3.3.1 Examples

Example 9. AssumeG(xn mod 1) = {g(x)} and g(x) = x, thus the sequence
xn is u.d. mod1. Applying Theorem 37 and the continuity of g(x) = x we
find

Λ(xn mod 1) = ∅.

E.g. Λ-set is empty for the following sequences:

nθ mod 1 with irrational θ (cf. [171, 2.8.1]);

n2θ + sin(2π
√
n) mod 1 with irrational θ (cf. [171, 2.13.2]);

logFn mod 1 with Fibonacci numbers Fn+1 = Fn + Fn−1,
F1 = F2 = 1 (cf. [171, 2.12.21]);

n log log . . . log n mod 1 (cf. [171, 2.12.5]);

etc.

Example 10. By Example 1 (cf. [171, 2.12.1])

G(log n mod 1) =

{
gu(x) =

1

eu
ex − 1

e− 1
+
emin(x,u) − 1

eu
;u ∈ [0, 1]

}
,

Since all distribution functions in G(log n mod 1) are continuous, we have

Λ(log n mod 1) = ∅.

Another proof follows from Theorem 12 because for xn = log n mod 1, we
have

ωh =
1

4π2h2 + 1
.
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More generally, for xn = t log n mod 1, t ̸= 0, we have

ωh =
1

4π2h2t2 + 1

which implies limH→∞
1
H

∑H
h=1 ωh = 0 and thus by Theorem 12 we have

Λ(t log n mod 1) = ∅ for any t ̸= 0. For computing ωh we have used a
method described in [124, Solution 5.18, p. 281].

Example 11. It is proved in Example 20 (cf. [160], [171, 2.12.2]) that
starting with log log n mod 1 all the sequences log log . . . log n mod 1 have

G(log log . . . log n mod 1) = {cα(x);α ∈ [0, 1]} ∪ {hα(x);α ∈ [0, 1]}.

Here cα : [0, 1]→ [0, 1] is a one-jump distribution function

cα(x) =

{
0, if x ∈ [0, α),

1, if x ∈ (α, 1]

cα(0) = 0, cα(1) = 1, and cα(α) = 0 if 0 < α < 1; hα : [0, 1] → [0, 1] is
constant distribution function, where hα(0) = 0, hα(1) = 1, and hα(x) = α
if x ∈ (0, 1).

Applying Theorem 37 we have

Λ(log log . . . log n mod 1) = [0, 1].

Example 12. Let α = p
q
π, where p and q are positive integers and g.c.d.

(p, q) = 1. It is proved in [20] that the sequence

xn = n cos(n cosnα) mod 1, n = 1, 2, . . .

has G(xn) = {g(x)}, where

g(x) =

{
x if q is odd ,(
1− 1

q

)
x+ 1

q
c0(x) if q is even ,

and c0(x) is introduced in Example 11 for α = 0. Theorem 37 implies

Λ(xn) =

{
∅ if q is odd ,

{0} if q is even .

(I) Fridy has shown that the set Λ(xn) need not be closed or open in R. In
[90] is proved that the set Λ(xn) is an Fσ-set in R for an arbitrary sequence
xn and vice-versa for any given Fσ-set X there exists a sequence xn such that
X = Λ(xn).
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3.4 Statistically convergent sequences

Let xn, n = 1, 2, . . . , be a sequence of real numbers, it may be unbounded.
• The sequence xn is said to be statistically convergent to the number α
provided such that for each ε > 0,

lim
N→∞

1

N
#{n ≤ N ; |xn − α| ≥ ε} = 0. (67)

The definition of statistical convergence was given by H. Fast [50] and I.J.
Schoenberg [147], independently. Schoenberg gives the concept of statistical
convergence from the viewpoint of d.f.s. For x ∈ (−∞,∞) he define
• FN(x) = 1

N
#{n ≤ N ;xn < x}. The sequence xn is said to have the a.d.f.

g(x) if the limiting relation limN→∞ FN(x) = g(x) holds for every point x of
continuity of g(x) and define one-jump function in x ∈ (−∞,∞)

cα(x) =

{
0, if x ≤ α,

1, if x > α.

Schoenberg [147] proved the following results (I) and (II).
(I) The sequence xn is statistically convergent to the number α if and only
if the sequence xn admits the a.d.f. cα(x).
(II) The sequence xn is statistically convergent to the number α if and only
if limN→∞

1
N

∑N
n=1 e

2πıtxn = e2πıtα for every real t.
For bounded sequence xn the claim (II) can be extended to:

(III) The sequence xn in [a, b] is statistically convergent to α if and only if
for every real-valued continuous function f(x, y, z, . . . ) defined on the closed
multi-dimensional [a, b]s cube we have

lim
M,N,K,···→∞

1

MNK . . .

M∑
m=1

N∑
n=1

K∑
k=1

. . . f(xm, xn, xk, . . . ) = f(α, α, α . . . ).

(IV) The sequence xn in [a, b] possesses a statistical limit if and only if

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 0.

(V) The sequence xn in [a, b] is statistically convergent to α if and only if

lim
N→∞

1

N

N∑
n=1

xn = α, lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0.
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(VI) The sequence xn in [a, b] is statistically convergent to zero, or equiva-
lently, xn has the limiting distribution c0(x) if and only if

lim
N→∞

1

N

N∑
n=1

|xn| = 0.

(VII) the L2 discrepancy related to cα(x) becomes the form∫ 1

0

(FN(x)− cα(x))2 dx =
1

N

N∑
n=1

|xn − α| −
1

2N2

N∑
m,n=1

|xm − xn|.

In addition, for α = 0 we have the equality∫ 1

0

(FN(x)− c0(x))2 dx =

∫ 1

0

(FN(x)− 1)2 dx =

=
1

N

N∑
n=1

(
2xn − x2n −

1

3

)
+

∫ 1

0

(FN(x)− x)2 dx,

with the classical L2 discrepancy
∫ 1

0
(FN(x)− x)2 dx.

(VIII) Let f : [0, 1] → R be a function with continuous derivation on [0, 1],
and let x1, x2, . . . , xN be the finite sequence of points in [0, 1]. Then for any
α ∈ [0, 1] we have ∣∣∣∣∣ 1N

N∑
n=1

f(xn)− f(α)

∣∣∣∣∣ ≤
≤

√√√√ 1

N

N∑
n=1

|xn − α| −
1

2N2

N∑
m,n=1

|xm − xn| ·

√∫ 1

0

f ′2(x)dx.

Furthermore, the sequence xn in [0, 1] has the statistical limit α if and only
if

lim
N→∞

(
1

N

N∑
n=1

|xn − α| −
1

2N2

N∑
m,n=1

|xm − xn|

)
= 0.

50



3.4.1 Examples

(I) For a positive integer n and a prime number p, let ordp(n) = k denotes
that the prime-power pk divides n but pk+1 does not divide n. Then the
sequence

xn = log p
ordp(n)

log n
, n = 2, 3, . . .

is dense in [0, 1] and statistically convergent to the zero-limit.
(II) For every positive integer n = pα1

1 . . . pαk
k let us denote h(n) = min(α1, . . . , αk)

and H(n) = max(α1, . . . , αk). A. Schinzel and T. Šalát proved that the fol-
lowing sequences

log 2
h(n)

log n
, log 2

H(n)

log n
, n = 2, 3, . . .

are everywhere dense in [0, 1] and statistically convergent to 0.
(III) In [68, p. 356] it is defined that xn ≥ 0 has the normal order yn if xn is
approximately yn for almost all values of n. More precisely, for every positive
ε and almost all values of n we have

(1− ε)yn < xn < (1 + ε)yn.

Clearly, as in [68] we mentioned that for yn > 0 the sequence xn has the
normal order yn if and only if xn/yn statistically converges to 1. Here we list
some known examples:

(i) The normal order of ω(n) is log log n. Here ω(n) denotes the number
of different prime factors of n [68, pp. 356–359].

(ii) The normal order of Ω(n) is log log n. Here Ω(n) denotes the total
number of prime factors of n [68, pp. 356–359].

(iii) The normal order of log d(n) is log 2 log log n. Here d(n) denotes the
number of divisors of n [68, pp. 356–359].

(iv) The normal order of ω(ϕ(n)) is (log log n)2/2 [106, p. 36].
(v) The normal order of ω(σk(n)) is d(k)(log log n)2/2, where σk(n) =∑
d|n d

k and d(n) =
∑

d|n 1 [106, p. 96].

(vi) ω(p ± 1) has the normal order log log p, where p is a prime [106, p.
171].
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3.5 Diophantine approximation generalized

See [105]. 10 Let xn be a sequence in [0, 1] and zn > 0 be a monotone
sequence, zn → 0. The method 3.3 of statistical limit points can be used to
study the set x ∈ [0, 1] for which

|x− xn| < zn

holds for infinitely many n. The asymptotic density d(n) of such n can be
computed.

From Theorem 37 it follows:

Theorem 40. Let xn be a sequence in [0, 1) such that the set G(xn) of all
d.f.s of xn contains only continuous d.f.s. Then for every sequence zn > 0,
zn → 0, and every x ∈ [0, 1] we have: If |x − xnk

| < znk
, k = 1, 2, . . . , then

the asymptotic density of indices d(nk) = 0.

For every u.d. sequence xn we have G(xn) = {g(x)}, g(x) = x, and thus
d(nk) = 0. Another example:

Example 13. As we see in Example 1, the sequence

xn = log n mod 1, n = 1, 2, . . . ,

has the set of d.f.s

G(xn) =

{
gu(x) =

emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
;u ∈ [0, 1]

}
,

and {logNk} → u implies FNk
(x)→ gu(x). Thus, by Theorem 40, if

|x− {log nk}| < znk
, k = 1, 2, . . .

then k
nk
→ 0 for every sequence zn > 0, zn → 0.

The so called uniformly maldistributed sequences (u.m.) xn are charac-
terized by that the set G(xn) containing all one-step d.f.s cα(x). They were
introduced by G. Myerson (1993) [109], see the following Section 3.7. For
such sequences we have

10Other types of results can be found in D. Berend and A. Dubickas (2009) [21].
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Theorem 41. Let xn be a u.m. sequence in [0, 1). Then there exists a
decreasing sequence zn > 0, zn → 0, such that for every x ∈ [0, 1]: The
sequence of all indices nk, |x − xnk

| < znk
, k = 1, 2, . . . , has the upper

asymptotic density d(nk) = 1.

G. Myerson [109], gave the following example of a maldistributed se-
quence:

Example 14. The sequence

xn = {log log n}, n = 2, 3, . . .

has the set of d.f.s, by [61] (see Example 20 in Section 4.1)

G(xn) = {cα(x);α ∈ [0, 1]} ∪ {hβ(x); β ∈ [0, 1]}

where FNk
(x) → cα(x) if and only if {log logNk} → α and FNk

(x) → hβ(x)
if and only if {log logNk} → 0 and

ee
[log logNk]

ee
[log logNk]+{log logNk} → 1− β.

In the following, for such sequence xn, we find a concrete example of zn
satisfying Theorem 41: Let

(i) xn = {log log n},
(ii) zn = Zk for n ∈

(
ee

k
, ee

k+1)
, k = 0, 1, 2, . . . ,

(iii) Zk =
1
kc

where c > 0 is an arbitrary large constant, and

(iv) NK =
[
ee

K+x+ZK
]
, for K = 1, 2, . . . .

Then, for every x ∈ [0, 1], the sequence of all indices nk, |x − xnk
| < znk

,
k = 1, 2, . . . , has the upper asymptotic density d(nk) = 1. Precise,

lim
K→∞

{n ≤ NK ; |x− xn| < zn}
NK

= 1 (68)

for every x ∈ [0, 1].

Proof. We have

|x− xn| < zn ⇐⇒ xn ∈ (x− zn, x+ zn). (69)
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Now, define zn as a constant zn = Zk for all integers n ∈
(
ee

k
, ee

k+1)
, k =

0, 1, 2, . . . . Then by (69)

{n ∈
(
ee

k

, ee
k+1)

; |x− xn| < zn} = {n ∈
(
ee

k

, ee
k+1)

;xn ∈ (x− Zk, x+ Zk)}.
(70)

Let NK be an integer from
(
ee

K
, ee

K+1)
and assume that the sequence Zk,

k = 0, 1, 2, . . . is non-increasing. Then by (70)

{n ≤ NK ; |x− xn| < zn} ⊃ {n ≤ NK ;xn ∈ (x− ZK , x+ ZK)}. (71)

Thus

#{n ≤ NK ; |x− xn| < zn}
NK

≥ #{n ≤ NK ;xn ∈ (x− ZK , x+ ZK)}
NK

=
K−1∑
k=0

#{n ∈
(
ee

k
, ee

k+1)
;xn ∈ (x− ZK , x+ ZK)}
NK

(72)

+
#{n ≤ NK ;n ∈

(
ee

K
, ee

K+1)
, xn ∈ (x− ZK , x+ ZK)}

NK

. (73)

As K →∞, then ee
K−1

eeK
→ 0 and thus the sum (72) also tends to zero. Since

n ∈
(
ee

K

, ee
K+1)

and xn ∈ (x− ZK , x+ ZK)⇐⇒ n ∈
(
ee

K+x−ZK , ee
K+x+ZK

)
(74)

and putting NK =
[
ee

K+x+ZK
]
, then the term (73) can be expressed as[

ee
K+x+ZK

]
−
[
ee

K+x−ZK
]
+ 1[

ee
K+x+ZK

] . (75)

Omitting the integer parts in (75) leads to the form

1− 1

ee
K+x+ZK (1−e−2ZK )

. (76)

By Lagrange theorem (1− e−2ZK ) > 2ZK .e
−2ZK and the lower bound of (76)

converge to

1− 1

ee
K+x−ZK (2ZK)

→ 1 (77)

if ZK = 1
Kc , a constant c > 0 is an arbitrary large.
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All the above results follows from the following two general theorems of
limit points of xn, n = 1, 2, . . . .

Theorem 42. Let x0 ∈ [0, 1] be a discontinuity point of d.f. g(x) ∈ G(xn)
with a jump of size h. Then there exists a subsequence xnk

of xn such that
(i) limk→∞ xnk

= x0,
(ii) d(nk) = h,

where d(nk) is the upper asymptotic density of nk, k = 1, 2, . . . . In the
opposite case, (i) and (ii) imply that there exists g(x) ∈ G(xn) such that g(x)
has at x0 a jump of size ≥ h.

Theorem 43. For every sequence xn ∈ [0, 1) there exists a decreasing se-
quence zn → 0 such that

sup{d(nk); xnk
→ x} = d({n ∈ N; |x− xn| < zn}

for every x ∈ [0, 1].

Example 15. Let I ⊂ [0, 1] be an interval with length 0 < |I| < 1. By
Theorem 49, part (iv), there exists sequence xn ∈ [0, 1) such that G(xn) =
{cα(x);α ∈ I}. By Theorem 42 and 43 there exists a positive monotonic
sequence zn, zn → 0 such that if x ∈ I then for all nk, |x − xnk

| < znk
, we

have d(nk) = 1. If x ̸∈ I, then d(nk) = 0.

3.6 The classical Diophantine approximation

For completeness we attaches: The Duffin-Schaeffer conjecture (D.S.C.) is
one of the most important unsolved problems in metric number theory until
now, cf. Encyclopaedia of Mathematics, M. Hazewinkel ed.:

Define that a class of sequences qn n = 1, 2, . . . , of distinct positive inte-
gers and a class of functions f(q) are said to satisfy D.S.C. if the divergence∑∞

n=1 φ(qn)f(qn) implies that for almost all x ∈ [0, 1] there exist infinitely
many n such that the diophantine inequality∣∣∣∣x− p

qn

∣∣∣∣ < f(qn), gcd(p, qn) = 1 (78)

has an integer solution p. The inequality |x − xn| < zn covers (78) in the
form that we consider xn composed by blocks An

An =

(
1

qn
,
a2
qn
, . . . ,

aφ(qn)
qn

)
, g.c.d.(ai, qn) = 1
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and if we put zn = f(qm) for terms xi ∈ An.
There are tree types of results of qn, f(q) satisfying D.S.C.:

(i) any one-to-one sequence qn and special f(q), for example f(q) = c/q2

(P. Erdős 1970);

(ii) any f(q) ≥ 0 and a special qn, for example φ(qn)
qn
≥ c > 0 (R. J. Duffin

and A. C. Schaeffer 1941);
(iii) special qn, f(q), for example f(qn)qn > c1(φ(qn)/qn)

c2 for some c1, c2 >
0 (G. Harman (1998) [41].
Almost complete known results can be found in Unsolved Problems [166, p.
217].

(iv) For L2 discrepancy of An cf. Section 6.2.19.

3.7 Uniformly maldistributed sequences

Here we mention some representative results, but complete are in section 6.6.
Let xn, n = 1, 2, . . . , be a given sequence in [0, 1).

(I) The sequence xn is said to be uniformly maldistributed (u.m.) if for
every nonempty proper subinterval I ⊂ [0, 1] we have both

lim inf
N→∞

1

N
#{n ≤ N ; xn ∈ I} = 0 and lim sup

N→∞

1

N
#{n ≤ N ;xn ∈ I} = 1.

The definition of uniform maldistribution is due to G. Myerson [109] ,
who mentioned that the first condition is superfluous, and he showed
that:

(II) The sequence xn = {log log n} of fractional parts of the iterated loga-
rithm is u.m. The following results are from [160].

(III) By Theorem 183: The sequence xn is u.m. if and only if

{cα(x);α ∈ [0, 1]} ⊂ G(xn).

Thus, in the theory of uniform maldistribution we need not consider
d.f.s other than one-jump d.f. cα(x) which has a jump of size 1 at α.
This suggests the following definition.

(IV) The sequence xn is said to be uniformly maldistributed in the strict
sense (u.m.s.) if G(xn) = {cα(x);α ∈ [0, 1]}.
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(V) By Theorem 184: The sequence xn ∈ [0, 1) is u.m.s. if and only if

lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0 and lim sup
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 1,

or alternatively lim supN→∞
1
N

∑N
n=1 xn − lim infN→∞

1
N

∑N
n=1 xn = 1.

(VI) By Example 103: Let xn, n = 1, 2, . . . be defined as

xn =

{
1 + (−1)

[√
[
√

log2 n]
] {√[√

log2 n
]}}

,

were [x] denotes the integral part and {x} the fractional part of x.
Then G(xn) = {cα(x);α ∈ [0, 1]}.

(VII) R. Winkler [193] extended definition (I) such that xn, n = 1, 2, . . . , is
called maldistribution if G(xn) is the set of all d.f.s. Such sequences
form residual set in the space of all sequences, but in this space almost
all sequences are u.d.

3.8 The sequence ξ(3/2)n mod 1

The question about distribution of (3/2)n mod 1 is a most difficult. Here we
listed a selection of known conjectures. Some proofs and other results are
given in Section 6.1.

(I) (3/2)n mod 1 is uniformly distributed in [0, 1].

(II) (3/2)n mod 1 is dense in [0, 1].

(III) (T. Vijayaraghavan [187]) lim supn→∞{(3/2)n}− lim infn→∞{(3/2)n} >
1/2, where {x} is the fractional part of x.

(IV) (K. Mahler [102]) There exists no ξ ∈ R+ such that 0 ≤ {ξ(3/2)n} <
1/2 for n = 0, 1, 2, . . . . 11

(V) (G. Choquet [27]) There exists no ξ ∈ R+ such that the closure of
{{ξ(3/2)n}; n = 0, 1, 2, . . . } is nowhere dense in [0, 1].

11Such ξ, if exists, are called Mahler’s Z-numbers.
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Few positive results known, for instance:

(VI) L. Flatto, J. C. Lagarias and A. D. Pollington [56] stated that

lim sup
n→∞

{ξ(3/2)n} − lim inf
n→∞

{ξ(3/2)n} ≥ 1
3

for every ξ > 0.

(VII) G. Choquet [27] gave infinitely many ξ ∈ R for which

1
19
≤ {ξ(3/2)n} ≤ 1− 1

19
for n = 0, 1, 2, . . . .

(VIII) R. Tijdeman [179] showed that for every pair of integers k and m with
k ≥ 2 and m ≥ 1 there exists ξ ∈ [m,m+ 1) such that

0 ≤ {ξ((2k + 1)/2)n} ≤ 1
2k−1

for n = 0, 1, 2, . . . .

(IX) There are connection between (3/2)n mod 1 and Waring’s problem (cf.
M. Bennett [19]), and Mahler’s conjecture (IV) and 3x+1 problem (cf.
[56]).

(X) A. Dubickas [39] proved that for any ξ ̸= 0 the sequence of fractional
parts {ξ(3/2)n}, n = 1, 2, . . . , has at least one limit point in the interval

[0.238117 . . . , 0.761882 . . . ] of the length 0.523764 . . . .

(X)* S. Akiyama, C. Frougny and J. Sakarovitch (2006): There is ξ ̸= 0
such that ||ξ(3/2)n|| < 1/3 for n = 1, 2, . . . The bound is equivalent
{ξ(3/2)n} < 1/3 or 2/3 < {ξ(3/2)n}

(XI) H. Helson and J.-P. Kahane [70] established the existence of uncount-
able many ξ such that the sequence ξθn does not have an a.d.f. mod1,
where θ is some fixed real numbers > 1.

In this Section and Section 6.1 we study the set of all d.f.s of sequences
ξ(3/2)n mod 1, ξ ∈ R, see [162]. It is motivated by the fact that some conjec-
tures involving a d.f. g(x) of ξ(3/2)n mod 1 may be formulated strongly as in
(I)–(IV). For example, the following conjecture implies Mahler’s conjecture
(IV):

(XII) If g(x) = constant for all x ∈ I, where I is a subinterval of [0, 1], then
the length |I| < 1/2. Except h1/2(x), c0(x), c1(x).
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(XII)* Precisely, does not exist g(x) ∈ G(ξ(3/2)n mod 1) such that g(x) = 1
for x ∈ (1/2, 1] except c0(x).

(XIII) Pjateckǐı-Šapiro [128], by means of the ergodic theory, proved that a
necessary and sufficient condition that the sequence ξqn mod 1 with
integer q > 1 has a distribution function g(x) is that gf (x) = g(x) for
all x ∈ [0, 1], where f(x) = qx mod 1 (also see Notes 20).

The following mapping g → gf is the main tool for the study ofG(ξ(3/2)n mod
1):

Let f : [0, 1]→ [0, 1] be a function such that, for all x ∈ [0, 1], f−1([0, x))
can be expressed as a sum of finitely many pairwise disjoint subintervals Ii(x)
of [0, 1] with endpoints αi(x) ≤ βi(x). For any distribution function g(x) we
put 12

gf (x) =
∑
i

g(βi(x))− g(αi(x)).

A basic property of gf (x) is expressed by the following statement, but com-
plete results and proofs are in Section 6.1.

(XIV) Let xn mod 1 be a sequence having g(x) as a distribution function asso-
ciated with the sequence of indices N1, N2, . . . . Suppose that any term
xn mod 1 is repeated only finitely many times. Then the sequence
f({xn}) has the distribution functions gf (x) for the same N1, N2, . . . ,
and vice-versa any distribution function of f({xn}) has this form (The-
orem 106).

In this part we consider f(x) and h(x) as

f(x) = 2x mod 1, and h(x) = 3x mod 1.

In this case, for every x ∈ [0, 1], we have

gf (x) = g(f−1
1 (x)) + g(f−1

2 (x))− g(1/2),

gh(x) = g(h−1
1 (x)) + g(h−1

2 (x)) + g(h−1
3 (x))− g(1/3)− g(2/3),

with inverse functions

f−1
1 (x) = x/2, f−1

2 (x) = (x+ 1)/2,

12Generally gf (x) =
∫
f−1([0,x))

1.dg(x).
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and
h−1
1 (x) = x/3, h−1

2 (x) = (x+ 1)/3, h−1
3 (x) = (x+ 2)/3.

For ξ(3/2)n mod 1 we have the following necessity similar to (XIII).

(XV) Any distribution function g(x) of ξ(3/2)n mod 1 satisfies gf (x) = gh(x)
for all x ∈ [0, 1] (Theorem 107).

(XVI) Let g1, g2 be any two distribution functions satisfying gif (x) = gih(x)
for i = 1, 2 and x ∈ [0, 1]. Denote

I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1].

If g1(x) = g2(x) for x ∈ Ii ∪ Ij, 1 ≤ i ̸= j ≤ 3, then g1(x) = g2(x) for
all x ∈ [0, 1] (Theorem 108).

(XVII) Here we give an integral formula for testing gf = gh. Denote

F (x, y) = |{2x}−{3y}|+ |{2y}−{3x}|−|{2x}−{2y}|−|{3x}−{3y}|.

The continuous distribution function g satisfies gf = gh on [0, 1] if and
only if (Theorem 111)∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0.

(XVIII) The d.f.s c0(x), c1(x), and x solve gf (x) = gh(x) for all x ∈ [0, 1].
Putting g1(x) = x, a next solution of gf = gh we found by Theorem
114 in Example 49:

g3(x) =


0 for x ∈ [0, 2/6],

x− 1/3 for x ∈ [2/6, 3/6],

2x− 5/6 for x ∈ [3/6, 5/6],

x for x ∈ [5/6, 1].
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Again applying Theorem 114 to starting g3(x) we find in Example 50

g4(x) =



0 for x ∈ [0, 1/6],

2x− 1/3 for x ∈ [1/6, 3/12],

4x− 5/6 for x ∈ [3/12, 5/18],

2x− 5/18 for x ∈ [5/18, 2/6],

7/18 for x ∈ [2/6, 8/18],

x− 1/18 for x ∈ [8/18, 3/6],

8/18 for x ∈ [3/6, 7/9],

2x− 20/18 for x ∈ [7/9, 5/6],

4x− 50/18 for x ∈ [5/6, 11/12],

2x− 17/18 for x ∈ [11/12, 17/18],

x for x ∈ [17/18, 1].

Thus our solution gf = gh are

�������������������������
0 1

x

�����

�������������

�����

0 1

g3(x)

����

��

���
~~

���

������

��
��

0 1

g4(x)

0 1 0 1 0 1

c0(x) c1(x) h1/2(x)

In Example 55 is constructed next solution gf = gh
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0 11
6

2
6

3
6

4
6

5
6

�
�
�

�
�
�
�
�
�
�
�
�
�
��
�
�
�

g5(x)

x+ 1
3

2x− 1
6

x

G. Choquet’s result (VII) gives the existence of infinitely many g6(x)
which solve gf = gh with a graph similar to

g6(x)

0 1
1/19 18/19

S. Akiyama, C. Frougny and J. Sakarovitch (2006) result (X)* gives a
solution g7(x) of gf = gh of the form

g7(x)

0 1

g7(x)

1/3 2/3
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(XIX) Since xf = xh, Theorem 108 gives the following example of d.f. g(x),
which is not d.f. of the sequence ξ(3/2)n mod 1, for every ξ ∈ R

g(x) =

{
x for x ∈ [0, 2/3],

x2 − (2/3)x+ 2/3 for x ∈ [2/3, 1].

See Example 56.

(XX) Mahler’s conjecture (IV) follows from:

Does not exist d.f. g(x) such that

gf (x) = gh(x) for x ∈ [0, 1] and

g(x) = 1 for x ∈ [1/2, 1].

(XXI) Since [2ξ(3/2)n] = 2[ξ(3/2)n] if and only if {ξ(3/2)n} < 1/2 (otherwise
[2ξ(3/2)n] = 2[ξ(3/2)n]+1) Mahler’s problem (IV), p. 57, can be refor-
mulated as follows: Prove that, for any ξ > 0, the sequence [2ξ(3/2)n],
n = 1, 2, . . . , contains infinitely many odd numbers (see A. Dubickas
[40].)

(XXII) Any d.f. of the linear combination of solutions gf = gh also solve
gf = gh.

By Theorem 112 d.f. g(x) and 1−g(1−x) solve gf = gh simultaneously.

If g1(x) solve gf = gh, then g2(x) = g1f (x) also solve gf = gh.

3.9 Benford’s law

The first digit problem: An infinite sequence xn ≥ 1 of real numbers sat-
isfies Benford’s law, if the frequency (the asymptotic density) of occur-
rences of a given first digit a, when xn is expressed in the decimal form
is given by log10

(
1 + 1

a

)
for every a = 1, 2, . . . , 9 (0 as a possible first digit

is not admitted). Since xn has the first digit a if and only if log10 xn mod
1 ∈ [log10 a, log10(a + 1)) , Benford’s law for xn follows from the u.d. of
log10 xn mod 1. It was S. Newcomb (1881) who firstly noted ”That the ten
digits do not occur with equal frequency must be evident to anyone making
use of logarithm tables”. F. Benford (1938) compared the empirical fre-
quency of occurrences of a with log10((a + 1)/a) in twenty different tables
having lengths running from 91 entries (atomic weights) to 5000 entries in
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a mathematical handbook which led him to the conclusion that ”the loga-
rithmic law applies particularly to those outlaw numbers that are without
known relationships ...” For the asymptotic density of the second-place digit

b he found
∑9

a=1 log10

(
1 + 1

10a+b

)
.

Notes 3. If xn satisfies B.L., then the asymptotic density of n for which xn has in the
rth place the digit a is

b−1∑
k1=1

b−1∑
k2=0

· · ·
b−1∑

kr−1=0

logb(k1.k2k3 . . . kr−1(a+ 1))− logb(k1.k2k3 . . . kr−1a)

= logb
∏ k1k2k3 . . . kr−1(a+ 1)

k1k2k3 . . . kr−1a
.

F. Benford rediscovered Newcomb’s observation from (1881).
In the following we apply to the first digit problem theory of d.f.s. A.I.

Pavlov [124] was the first who applied this theory however Theorem 170 offers
new results.

3.9.1 Basic results

Precise: let b ≥ 2 be an integer considered as a base for the development
of positive real number x > 0 and Mb(x) be a mantissa of x defined by
x = Mb(x) × bn(x) such that 1 ≤ Mb(x) < b holds, where n(x) is a uniquely
determined integer. Let K = k1k2 . . . kr be a positive integer expressed in
the base b , that is

K = k1 × br−1 + k2 × br−2 + · · ·+ kr−1 × b+ kr,

where k1 ̸= 0 and at the same time K = k1k2 . . . kr is considered as an
r−consecutive block of integers in the base b . It is clear that the following
basic equivalences hold:

K ≤Mb(x)× br−1 < K + 1⇐⇒ (79)

K

br−1
≤Mb(x) <

K + 1

br−1
⇐⇒

logb

(
K

br−1

)
≤ logb(Mb(x)) < logb

(
K + 1

br−1

)
⇐⇒

logb

(
K

br−1

)
≤ logb x mod 1 < logb

(
K + 1

br−1

)
. (80)
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Note that for x of the type x = 0.00 . . . 0k1k2 . . . kr . . . , the first zero digits
we shall omit and Mb(x) = k1.k2 . . . kr . . .

Definition 2. A sequence xn, n = 1, 2, . . . , of positive real numbers satisfies
Benford law (abbreviated to B.L.) of order r if for every r-digits number
K = k1k2 . . . kr we have

lim
N→∞

#{n ≤ N ; leading block of r digits (beginning with ̸= 0) of xn = K

N

= logb

(
K + 1

br−1

)
− logb

(
K

br−1

)
. (81)

Theorem 44. Let G(logb(xn) mod 1) be the set of all d.f.s of the sequence
logb(xn) mod 1, n = 1, 2, . . . . Then xn satisfies B.L. of order r if and only if
for every g(x) ∈ G(logb(xn) mod 1) we have

g

(
logb

(
K

br−1

))
= logb

(
K

br−1

)
, (82)

for every r-digits positive integer K = k1k2 . . . kr.

Proof. Let xn > 0, n = 1, 2, . . . , g(x) ∈ G(logb(xn) mod 1) and g(x) =
limi→∞ FNi

(x), where

FNi
(x) =

#{n ≤ Ni; logb(xn) mod 1 ∈ [0, x)}
Ni

. (83)

Using equivalent inequalities (79) and (80), then for fixed Ni we have

#{n ≤ Ni; first r digits of Mb(xn) are equal to K}
Ni

=
#{n ≤ Ni; logb

(
K
br−1

)
≤ logb xn mod 1 < logb

(
K+1
br−1

)
}

Ni

= FNi

(
K

br−1

)
− FNi

(
K + 1

br−1

)
and (81) can be rewritten as

lim
i→∞

(
FNi

(
K

br−1

)
− FNi

(
K + 1

br−1

))
= logb(K + 1)− logbK. (84)
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Thus

g

(
logb

(
K + 1

br−1

))
− g

(
logb

(
K

br−1

))
= logb

(
K + 1

br−1

)
− logb

(
K

br−1

)
.

(85)
Summing up (85) over all r-digits integer numbers K ′, K ′ < K, we find
(82).

Definition 2 and Theorem 44 can be found implicitly in [126].

Example 16. For every r = 1, 2, . . . there exists a sequence xn, n = 1, 2, . . .
such that xn satisfies B.L. of order r, but does not satisfy B.L. of order r+1
in the base b ≥ 2.

Proof. Let

Ar = {logb(k1.k2k3 . . . kr); ki ∈ {0, 1, . . . , b− 1}, i = 1, 2, . . . , r, k1 ̸= 0},

where, in this case, k1.k2k3 . . . kr =
K
br−1 and K is a positive integer expressed

in the base b , i.e. K = k1× br−1+k2× br−2+ · · ·+kr−1× b+kr. Define a d.f.
g(x) such that g(x) = x for every x ∈ Ar, but g(x) ̸= x for some x ∈ Ar+1.
Now, by the well known theorem stating that for every d.f. g(x) there exists
a sequence yn ∈ [0, 1), n = 1, 2, . . . , such that g(x) is the a.d.f of the sequence
yn , cf. [92, p. 138]. Then let us define a sequence xn as xn = byn , that is
logb xn = yn , for n = 1, 2, . . . . Applying Theorem 44 we see that xn satisfies
B.L. of order r and does not satisfy B.L. of order r + 1.

Directly from the proof of Example 16 we obtain the following: If the
sequence xn, n = 1, 2, . . . satisfies B.L. of order r, then it satisfies of order
r′ ≤ r, simultaneously.

Definition 3 (P. Diaconis (1977)[34]). If a sequence xn, n = 1, 2, . . . , satisfies
B.L. of order r, for every r = 1, 2, . . . , then it is called that xn satisfies strong
B.L. in base b. In the following we shall write strong B.L. again as B.L., i.e.
the word strong is omitted.

From Theorem 44 it leads directly to: 13

Theorem 45. A sequence xn, xn > 0, n = 1, 2, . . . , satisfies B.L. if and
only if the sequence logb xn mod 1 is u.d. in [0, 1).

13Well known Theorem 45 can also be found in [37] and [126]. In the following u.d. of
logb xn mod 1 we characterize by G(xn), see [13].
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Proof. Let g(x) ∈ G(logb(xn) mod 1). Theorem 44 implies that g(x) = x for
all x = logb

(
K
br−1

)
. Since the set of such x are dense for K = k1k2 . . . kr,

k1 ̸= 0, 0 ≤ ki < b, r = 1, 2, . . . , then we have g(x) = x for all x ∈ [0, 1].

Example 17. Fibonacci numbers Fn, n! ([93]), n
n, nn

2
, satisfy B.L.

Many authors think that if the sequence xn does not satisfy B.L., then
the relative density of indices n for which the b-expansion of xn start with
leading digits K = k1k2 . . . kr

1

N
#

{
n ≤ N ; logb

(
K

br−1

)
≤ {logb xn} < logb

(
K + 1

br−1

)}
.

do not follow any distribution in the sense of natural density, see S. Eliahou,
B. Massé and D. Schneider (2013) [42]. These authors as an alternate re-
sult shown that the sequence log10 n

r mod 1, n = 1, 2, . . . , and the sequence
log10 p

r
n mod 1 n = 1, 2, . . . , pn are all prime numbers, have the discrepancy

O(r−1). Thus, for r →∞, these sequences tends to u.d. and thus nr and prn
tends to B.L. We propose the following solution:

3.9.2 General scheme of solution of the First Digit Problem

Theorem 46. Let g(x) ∈ G(logb xn mod 1) and limi→∞ FNi
(x) = g(x). Then

lim
Ni→∞

#{n ≤ Ni; first r digits (starting a non-zero digit) of xn = K}
Ni

= g

(
logb

(
K + 1

br−1

))
− g
(
logb

(
K

br−1

))
. (86)

Proof. Using step d.f.
FN(x) =

1
N
#{n ≤ N ; logb xn mod 1 ∈ [0, x)} we have

FN

(
logb

(
K+1
br−1

))
− FN

(
logb

(
K
br−1

))
= 1

N
#{n ≤ N ; first r digits (starting a non-zero digit) of xn = K}.

This is the general scheme of solution of the First Digit Problem for the
sequence xn, n = 1, 2, . . . , for which logb xn mod 1 is not u.d. sequence. This
approach is also presented in [13] and [123].
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Example 18. As it is well known that the increasing sequence of all positive
integers 1, 2, 3, . . . does not satisfy B.L. (simple B.L. also) in every base b ≥ 2.
It follows from the fact that logb n mod 1 is not u.d. For a density of n for
which r initial digits are K = k1k2 . . . kr, A.I. Pavlov [126] proved that

lim inf
N→∞

#{n ≤ N ;n has the first r digits = K}
N

=
1

K(b− 1)
, (87)

lim sup
N→∞

#{n ≤ N ;n has the first r digits = K}
N

=
b

(K + 1)(b− 1)
. (88)

We give the following extension: By G. Pólya and G. Szegö [129] the d.f. of
logb n mod 1 is of the form (cf. Theorem 48 and (100))

gu(x) =
1

bu
bx − 1

b− 1
+
bmin(x,u) − 1

bu
, (89)

where the parameter u runs [0, 1]. By [61], for increasing sequence Ni, i =
1, 2, . . . , we have (see def. (83))

logbNi mod 1→ u =⇒ FNi
(x)→ gu(x) (90)

and thus

#{n ≤ Ni;n has the first r digits = K}
Ni

→ gu(x2)− gu(x1) (91)

as i→∞, where x1 = logb(k1.k2k3 . . . kr) and x2 = logb(k1.k2k3 . . . (kr + 1)).
Now, the Pavlov results (87) and (88) follow from

lim inf
N→∞

#{n ≤ N ;n has the first r digits = K}
N

= min
u∈[0,1]

(gu(x2)− gu(x1)),

lim sup
N→∞

#{n ≤ N ;n has the first r digits = K}
N

= max
u∈[0,1]

(gu(x2)− gu(x1)),

where the minimum is appeared in u = x1 and maximum in u = x2. Fur-
thermore, if Ni = [bi+u], then logbNi mod 1→ u as i→∞.

Note that Pavlov formulated his result for more general sequence anα,
n = 1, 2, . . . , where a and α are fixed positive real numbers. Putting f(x) =
c1 + c2 log x, where c1 = log a

log b
and c2 = α

log b
, we have logb xn = f(n) and
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applying Theorem 1 in [61] then we find that every d.f. gu(x) ∈ G(logb xn)
has the form

gu(x) =
1

b
u
α

b
x
α − 1

b
1
α − 1

+
b

min(x,u)
α − 1

b
u
α

, (92)

where the parameter u runs [0, 1] and for an increasing sequence Ni, i =
1, 2, . . . , we have

log a

log b
+ α

logNi

log b
mod 1→ u =⇒ FNi

(x)→ gu(x). (93)

Now, computing derivative d
du
(gu(x2) − gu(x1)) in (91) we can see that its

signum is equal − for u ∈ [0, x1), a constant (+ or −) in (x1, x2) and − in
(x2, 1). Thus the minu∈[0,1](gu(x2)− gu(x1)) can be appeared in u = x1, x2, 1
and maxu∈[0,1](gu(x2)−gu(x1)) in u = 0, x2. Directly by computation we find
Pavlov’s result

min
u∈[0,1]

(gu(x2)− gu(x1)) = gx1(x2)− gx1(x1) =
1

b
1
α − 1

(K + 1)
1
α −K 1

α

K
1
α

(94)

max
u∈[0,1]

(gu(x2)− gu(x1)) = gx2(x2)− gx1(x2) =
b

1
α

b
1
α − 1

(K + 1)
1
α −K 1

α

(K + 1)
1
α

. (95)

P. Diaconis [37] and A.I. Pavlov [126] have been the first, who applied
u.d. theory to B.L. For instance:

(i) P. Diaconis by using the criterion of P.B Kennedy, see [171, p. 2–13,
2.2.9], proved: If a sequence xn > 0, n = 1, 2, . . . , satisfies B.L. in the
base b, then

lim sup
n→∞

n

∣∣∣∣log xn+1

xn

∣∣∣∣ =∞. (96)

(ii) A.I. Pavlov by means of van der Corput difference theorem [92, p. 26,
Th.3.1] proved: Assume xn > 0, n = 1, 2, . . . . If for every k = 1, 2, . . .
the ratio sequence xn+k

xn
, n = 1, 2, . . . , satisfies B.L. in the base b, then

the original sequence xn, n = 1, 2, . . . also satisfies B.L. in the base b.

(iii) In [13] we have: The positive sequences xn and 1
xn
, n = 1, 2, . . . satisfy

B.L. in the base b simultaneously.

Proof. Both two sequences un and −un are u.d. mod1 simultaneously,
since their Weyl’s sums are complex conjugate each other.
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(iv) The positive sequences xn and nxn, n = 1, 2, . . . satisfy B.L. in the base
b simultaneously.

Proof. Both two sequences un and un + log n are u.d. mod1 simulta-
neously, see [171, p. 2–27, 2.3.6.] and Theorem 91.

(v) Assume that a sequence 0 < x1 ≤ x2 ≤ . . . satisfies B.L. in the integer
base b > 1. Then

lim
n→∞

log xn
log n

=∞. (97)

Proof. It follows from the theorem of H. Niederreiter [171, p. 2–
12, 2.2.8] that every monotone u.d. sequence un mod 1 must satisfy

limn→∞
|un|
logn

= ∞. Here, it suffices to put un = log xn, instead of
un = logb xn.

(vi) For a sequence xn > 0, n = 1, 2, . . . , assume that

(i) limn→∞ xn =∞ monotonically,

(ii) limn→∞ log xn+1

xn
= 0 monotonically.

Then the sequence xn satisfies B.L. in every base b if and only if

lim
n→∞

n log
xn+1

xn
=∞. (98)

Proof. It follows from Fejér’s difference theorem in the form in [171, p.
2–13, 2.2.11].

(vii) [171, p. 2–14, 2.2.12] implies: Let xn > 0 be a sequence, which satisfies
limn→∞ logb

xn+1

xn
= θ with θ is irrational. Then xn satisfies B.L. in the

base b.

Example 19. J.L. Brown, Jr. and R.L. Duncan (1970) [24]: Let xn be a
sequence generated by the recurrence relation

xn+k = ak−1xn+k−1 + · · ·+ a1xn+1 + a0xn, n = 1, 2, . . . ,
where a0, a1, . . . , ak−1 are non-negative rationals with a0 ̸= 0, k is a fixed

integer, and x1, x2, . . . , xk are starting points. Assume that the characteristic
polynomial

xk − ak−1x
k−1 − · · · − a1x− a0
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has k distinct roots β1, β2, . . . , βk satisfying
0 < |β1| < · · · < |βk|
and such that none of the roots has magnitude equal to 1.
Then log xn mod 1 is u.d.

Proof. The general solution of the recurrence xn is

xn =
k∑
j=1

αjβ
n
j .

Let l is the largest value of j for which αj ̸= 0. Then xn =
∑l

j=1 αjβ
n
j and

∣∣∣∣1− xn
αlβnl

∣∣∣∣ = ∣∣∣∣ l∑
j=1

αjβ
n
j

αlβnl

∣∣∣∣→ 0.

Thus limn→∞
xn

|αlβ
n
l |

= 1 and thus

lim
n→∞

(log xn − log |αlβnl | = 0.

Since βl ̸= 1 is algebraic, then log |βl| is irrational and then log |αlβnl | and
then also log xn are u.d. mod1. If logb βl is irrational, then also

logb xn mod 1

is u.d., i.e. xn satisfies B.L. in the base b. This implies that Fibonacci and
Lucas numbers obey B.L. what rediscovered L.C. Washington (1981)[190].

In Section 6.4 the B.L. continue.

Selected informations from 6.4:
By Theorem 170: Let xn, n = 1, 2, . . . , be a sequence in (0, 1) and G(xn) be
the set of all d.f.s of xn. Assume that every d.f. g(x) ∈ G(xn) is continuous
at x = 0. Then the sequence xn satisfies B.L. in the base b if and only if for
every g(x) ∈ G(xn) we have (458)

x =
∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1].
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For example d.f. (467)

g(x) =

{
x if x ∈

[
0, 1

b

]
,

1 + logb x+ (1− x) 1
b−1

if x ∈
[
1
b
, 1
]

is a solution of (458).
By Theorem 175: For a sequence xn ∈ (0, 1), n = 1, 2, . . . , assume that
every d.f. g(x) ∈ G(xn) is continuous at x = 0. Then there exist only
finitely many different integer bases b for which the sequence xn satisfies
B.L. simultaneously.
In the contrary by [171, p. 2–117, 2.12.14], the sequence

αn logτ n mod 1, α ̸= 0, 0 < τ ≤ 1,

is u.d. From this follows that xn = nn satisfies B.L. for an arbitrary integer
base b, because logb n

n = n log n 1
log b

.

3.10 D.f.s of a two dimensional sequence (xn, yn), both
xn and yn are u.d. (copulas)

See Section 8.5:
Let F (x, y) be a continuous function. The limit points of (565)

1

N

N∑
n=1

F (xn, yn),

where xn and yn are u.d. in [0, 1) can be studied by using d.f.s g(x, y) of
(xn, yn). These d.f.s satisfies g(x, 1) = x, g(1, y) = y and called copulas. As
we shall see in the Section 8.5 each copula meets (575)

max(x+ y − 1, 0) ≤ g(x, y) ≤ min(x, y)

then, assuming dxdyF (x, y) > 0, for an arbitrary u.d. xn and yn, we have in
Theorem 214, inequalities (571) and (572)∫ 1

0

F (x, 1− x)dx ≤ lim inf
N→∞

1

N

N∑
n=1

F (xn, yn)

lim sup
N→∞

1

N

N∑
n=1

F (xn, yn) ≤
∫ 1

0

F (x, x)dx.

Here the left boundary is attained in the sequence (xn, 1− xn) and the right
in (xn, xn) where xn is u.d.
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3.11 Ratio block sequences

More is described in Section 6.2. Here we present an application of Theorem
143:

Let x1 < x2 < . . . be an increasing sequence of positive integers and
consider a sequence of blocks Xn, n = 1, 2, . . . , with blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
and denote by F (Xn, x) the step d.f.

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1) and F (Xn, 1) = 1. A d.f. g is a d.f. of the sequence of single
blocksXn, if there exists an increasing sequence of positive integers n1, n2, . . .
such that limk→∞ F (Xnk

, x) = g(x) a.e. on [0, 1]. Denote by G(Xn) the set
of all d.f. of the sequence of single blocks Xn. Using boundaries of d.f.s of
G(Xn) in [11] we have proved in Theorem 143: For every increasing sequence
x1 < x2 < . . . of positive integers with lower and upper asymptotic densities
0 < d ≤ d we have (310)

1

2

d

d
≤ lim inf

n→∞

1

n

n∑
i=1

xi
xn
,

and (311)

lim sup
n→∞

1

n

n∑
i=1

xi
xn
≤ 1

2
+

1

2

(
1−min(

√
d, d)

1− d

)(
1− d

min(
√
d, d

)

)
.

Here the equations in (310) and (311) can be attained.

4 Calculation of G(xn)

4.1 G(f(n) mod 1) directly from definition of d.f.s

Example 20. Starting with xn = {log log n} all the sequences {log log . . . log n}
have

G(xn) = {cα(x);α ∈ [0, 1]} ∪ {hα(x);α ∈ [0, 1]}.
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Proof. For the first iterated logarithm we chose an index-sequence Nk as
Nk = [exp exp(k + α)]. Then we have lim

k→∞
FNk

(x) = cα(x). For Nk =

[exp exp(k+ εk)], where εk → 0 such that (exp exp(k+ εk))/(exp exp k)→ β,
we have lim

k→∞
FNk

(x) = hα(x), where α = (β − 1)/β.

On the other hand, let lim
n→∞

FNn(x) = g(x). Then Nn = exp exp(kn+ εn),

where kn = [log logNn], εn = {log logNn}, and the sequence (εn)
∞
n=1 cannot

have different limit points.
The same d.f. are of course obtained if we replace log log t by log . . . log t

and exp exp t by exp . . . exp t in the above limits.

The following theorem proved Koksma [87], [88, Kap. 8] (cf. [92, p. 58,
Th. 7.7]):

Theorem 47. Let the real-valued continuous function f(x) be strictly in-
creasing and let f−1(x) be its inverse function. Assume that, for k →∞,

(i) f−1(k + 1)− f−1(k)→∞,

(ii) limk→∞
f−1(k+x)−f−1(k)
f−1(k+1)−f−1(k)

= g(x) exists for x ∈ [0, 1],

(iii) lim infk→∞
f−1(k)

f−1(k+x)
= χ(x).

Then the sequence
f(n) mod 1, n = 1, 2, . . .

has the lower d.f. g(x) and the upper d.f.

g(x) = 1− χ(x)(1− g(x)), for x ∈ [0, 1].

Using this we find the lower and the upper d.f. of log(n log n) mod 1 as

g(x) =
ex − 1

e− 1
, g(x) =

e− e1−x

e− 1

and they are the same as for log n mod 1, cf. [92, pp. 58-59]. This gives an
impulse to the following generalization, cf. [169] and [61]:

In the following Theorems 48, 49 and 50 we assume that

(I) f(x) be a real-valued function defined for x ≥ 1 such that f(x) is
strictly increasing with its inverse function f−1(x).

Assume that the following limits exist:

74



(II) limk→∞
f−1(k+x)−f−1(k)
f−1(k+1)−f−1(k)

= g̃(x) for each x ∈ [0, 1], of point of continuity

of g̃(x);

(III) limk→∞
f−1(k+u)
f−1(k)

= ψ(u) for each u ∈ [0, 1], point of continuity of ψ(u),

or ψ(u) =∞ for u > 0;

(IV) limk→∞ f−1(k + 1)− f−1(k) =∞.

To calculate G(f(n) mod 1) we use the following three theorems.

Theorem 48. If 1 < ψ(1) <∞ and f ′(x)→ 0 as x→∞, then

G(f(n) mod 1) =

{
gu(x) =

1

ψ(u)
g̃(x) +

min(ψ(x), ψ(u))− 1

ψ(u)
;u ∈ [0, 1]

}
,

(99)

where g̃(x) = ψ(x)−1
ψ(1)−1

and FNi
(x) → gu(x) as i → ∞ if and only if

f(Ni) mod 1→ u. The lower d.f. g(x) and the upper d.f. g(x) of f(n) mod 1
are

g(x) = g̃(x), g(x) = 1− 1

ψ(x)
(1− g̃(x)).

Furthermore g(x) = g0(x) = g1(x) belongs to G(f(n) mod 1) but g(x) =
gx(x) does not.

In the first, Theorem 48 gives the following generalization of Ex. 1.

Example 21. For every base b > 1 the sequence logb n mod 1, n = 1, 2, . . . ,
has the set of d.f.s

G(xn) =

{
gu(x) =

1

bu
bx − 1

b− 1
+
bmin(x,u) − 1

bu
;u ∈ [0, 1]

}
, (100)

where {logbNk} → u implies FNk
(x) → gu(x). The lower and upper d.f. of

logb n mod 1 are

g(x) =
bx − 1

b− 1
, g(x) =

1− b−x

1− b−1
, (101)

and g ∈ G(xn) but g /∈ G(xn). In this case f(x) = logb x, f
−1(x) = bx,

g̃(x) = bx−1
b−1

and ψ(u) = bu. Note that G. Pólya and G. Szegö (1964) [129]
firstly gave all densities (i.e. derivatives) of g(x) ∈ G(logb n mod 1) but

{logNk} → u =⇒ FNk
(x)→ gu(x) (102)

in their result absent.
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Theorem 49. If ψ(1) = 1, then the sequence f(n) mod 1, n = 1, 2, . . . has
a.d.f. g̃(x), i.e.

G(f(n) mod 1) = {g̃(x)}. (103)

Theorem 50. Let ψ(u) =∞, for every u > 0 and for u = 0 the limit ψ(u)
is not defined in the way that for every t ∈ [0,∞) there exists a sequence

u(k)→ 0 such that (i) limk→∞
f−1(k+u(k))

f−1(k)
= t. Then we have

G(f(n) mod 1) = {cu(x);u ∈ [0, 1]} ∪ {hβ(x); β ∈ [0, 1]}, (104)

where FNi
→ cu(x) if and only if f(Ni) mod 1 → u > 0 and FNi

→ hβ(x) if

and only if f(Ni) mod 1→ 0 and f−1([f(Ni)])
Ni

→ 1− β.

Proofs of Theorems 48, 49 and 50
For a positive integer N define

• K = K(N) = [f(N)],

• u(N) = {f(N)},

• SN([x, y)) =
∑N

n=1,f(n)∈[x,y) 1.

Clearly f−1(K + u(N)) = N and for every x ∈ [0, 1] define d.f. FN(x) as
14

FN(x) =

∑K−1
k=0 SN([k, k + x)) + SN([K,K + x) ∩ [K,K + u(N)))

N

+
O(SN([0, x))

N
.

From the monotonicity of f(x) (assumption (I)) it follows that SN([x, y)) =∑N
n=1,n∈[f−1(x),f−1(y)) 1, and N = SN([0, K + u(N)) and we have

• SN([x, y)) = f−1(y)− f−1(x) + θ(f−1(x), f−1(y)), where |θ| ≤ 1,

• N = f−1(K + u(N)) + θ(f−1(0), f−1(K + u(N)))

and thus

FN(x) =

∑K−1
k=0 (f

−1(k + x)− f−1(k))

N

14Without loss of generality we assume that f(1) ∈ [0, 1).
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+
min(f−1(K + x), f−1(K + u(N)))− f−1(K)

N

+
O(
∑K

k=0 θ(f
−1(k), f−1(k + x))

N
+
O(θ(f−1(K), f−1(K + u(N))))

N
.

Assumption (IV) implies that 1/(f−1(k+1)−f−1(k))→ 0; this in turn yields
that K/f−1(K)→ 0 by the Cauchy-Stolz lemma, which gives

O(
∑K

k=0 θ(f
−1(k), f−1(k + x)))

N
=
O(K)

N
→ 0.

Thus
FN(x) = F

(1)
N (x) + F

(2)
N (x) + o(1),

where

F
(1)
N (x) =

∑K−1
k=0 (f

−1(k + x)− f−1(k))

f−1(K + u(N))
,

F
(2)
N (x) =

min(f−1(K + x), f−1(K + u(N)))− f−1(K)

f−1(K + u(N))
.

We shall express the first term F
(1)
N (x) as

F
(1)
N (x) =

∑K−1
k=0 (f

−1(k + x)− f−1(k))∑K−1
k=0 (f

−1(k + 1)− f−1(k))
· f

−1(K)− f−1(0)

f−1(K + u(N))

and by the Cauchy-Stolz lemma 15 and assumption (II),

lim
K→∞

∑K−1
k=0 (f

−1(k + x)− f−1(k))∑K−1
k=0 (f

−1(k + 1)− f−1(k))
= g̃(x).

Now, let FNi
(x) → g(x). Then there exists a subsequence N ′

i of Ni such
that u(N ′

i) = u′i → u′ for some u′ ∈ [0, 1]. Thus, in the following we can
assume that

FNi
(x)→ g(x), and

15Cauchy-Stolz lemma: Let xn and yn, n = 1, 2, . . . , be the real–valued sequences.
If yn is strictly monotone, |yn| → ∞, and if the limit (finite or infinite) limn→∞

xn+1−xn

yn+1−yn

exists, then the limit of the sequence xn

yn
also exists and limn→∞

xn

yn
= limn→∞

xn+1−xn

yn+1−yn
.
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Ki = [f(Ni)], and u(Ni) = ui → u, simultaneously.

We shall prove Theorems 48, 49, and 50 one by one.

Proof of Theorem 48. In this case g̃(x) = ψ(x)−1
ψ(1)−1

, and the relation ui → u

implies 16

f−1(Ki)−f−1(0)
f−1(Ki+ui)

→ 1
ψ(u)

;

F
(1)
Ni

(x)→ ψ(x)−1
ψ(1)−1

· 1
ψ(u)

;

F
(2)
Ni

(x)→ min(ψ(x),ψ(u))−1
ψ(u)

.

Thus the d.f. g(x) has the form g(x) = gu(x). On the other hand, for
every u ∈ [0, 1] there exists an increasing sequence of indices Ni such that
u(Ni) = ui → u. It follows from the assumption f ′(x)→ 0 because for some
εi → 0 we can find Ni ∈ f−1((Ki + u− εi, Ki + u+ εi)).

Now, we find the lower and upper d.f. by computing gu(x) for fixed
x ∈ [0, 1] and u ∈ [0, 1]

gu(x) =

{
1− 1

ψ(u)

(
1− ψ(x)−1

ψ(1)−1

)
if u ≤ x,

ψ(1)
ψ(u)

ψ(x)−1
ψ(1)−1

if u ≥ x,

thus infu≤x gu(x) = g0(x), infu≥x gu(x) = g1(x) and since g0(x) = g1(x)

we have g(x) = g0(x) = g1(x) = ψ(x)−1
ψ(1)−1

. Similarly, supu≤x gu(x) = gx(x),

supu≥x gu(x) = gx(x), and thus g(x) = gx(x) /∈ G(f(n) mod 1).

Proof of Theorem 49. In this case we cannot use the relation g̃(x) = ψ(x)−1
ψ(1)−1

and moreover ψ(u) = 1 for all u ∈ [0, 1]. Then

F
(1)
Ni

(x)→ g̃(x)1
1
;

F
(2)
Ni

(x)→ min(1,1)−1
1

,

and thus g(x) = g̃(x) for x ∈ [0, 1).

16Note that if u is a point of continuity of ψ(u), the monotonicity of f−1(x) implies

the relation f−1(Ki+ui)
f−1(Ki)

→ ψ(u), because f−1(Ki+u−ε)
f−1(Ki)

≤ f−1(Ki+ui)
f−1(Ki)

≤ f−1(Ki+u+ε)
f−1(Ki)

for

ui ∈ (u− ε, u+ ε).
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Proof of Theorem 50. In this case

g̃(x) = lim
k→∞

f−1(k + x)− f−1(k)

f−1(k + 1)− f−1(k)
= 0

for every x ∈ [0, 1), thus F
(1)
Ni

(x) → 0. To compute the limit of F
(2)
Ni

(x) we
distinguish the two following cases, where ui → u.
10. If u > 0, then

lim
i→∞

F
(2)
Ni

(x) =
min(f−1(Ki + x), f−1(Ki + ui))− f−1(Ki)

f−1(Ki + ui)
= cu(x).

20. If u = 0, then

F
(2)
Ni

(x) = 1− f−1(Ki)

f−1(Ki + ui)
.

From Ki we select K ′
i (i.e. from Ni we select a subsequence N ′

i) such that

lim
i→∞

f−1(K ′
i)

f−1(K ′
i + u′i)

= t ∈ [0, 1], (105)

where again K ′
i = [f(N ′

i)] and u
′
i = {f(N ′

i)}. Then we have F
(2)

N ′
i
(x)→ hβ(x),

where β = 1 − t and hβ(x) = β for x ∈ (0, 1). On the other hand (by
assumptions (i)) for any given t ∈ [0, 1] there exists a sequence of positive

integers Ki and real numbers ui → 0 such that limi→∞
f−1(Ki)

f−1(Ki+ui)
= t. Then

there exist integers K ′
i (K

′
i = Ki for almost all i) and real numbers u′i ∈ (0, 1)

such that N ′
i = f−1(K ′

i + u′i) is an integer and

|f−1(Ki + ui)− f−1(K ′
i + u′i)| < 1.

Thus we have (105) again.

Notes 4. In the case ψ(1) = 1 in Theorem 49, the limit (II) it my be some d.f. g̃(x). To
check this, put H(x) = f−1(x) and H(k + x) = k + g̃(x) for x ∈ [0, 1] and k = 1, 2, . . .
Then

(III) H(k+1)
H(k) = k+1

k → 1, and

(II) H(k+x)−H(k)
H(k+1)−H(k) = g̃(x). Similarly, for H(k + x) = (k + g̃(x))2.

Notes 5. The situation is different if we replace the limit

(II) limk→∞
f−1(k+x)−f−1(k)
f−1(k+1)−f−1(k) = g̃(x) for x ∈ [0, 1] by the
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(II’) limt→∞
f−1(t+x)−f−1(t)
f−1(t+1)−f−1(t) = g̃(x) for x ∈ [0, 1], where t is a real variable.

This limit was introduced by J. Cigler [32], generalizing J.F. Koksma’s [88, p. 88] result
on lower and upper d.f.s of f(n) mod 1. J.H.B. Kemperman [85, Th. 11] proved that in
(II’) exactly one of the following relations must hold:

(a) g̃(x) = x for x ∈ [0, 1];

(b) g̃(x) = ecx−1
ec−1 for x ∈ [0, 1];

(c) g̃(x) = 0 for x ∈ (0, 1).

Furthermore he remarked that

(a) In the case g̃(x) = x, the sequence f(n) mod 1 is u.d.

(b) In the case g̃(x) = ecx−1
ec−1 the set G(f(n) mod 1) is described by the following The-

orem 51, where t = 1/c.

(c) The case g̃(x) = 0 is equivalent to limt→∞
f−1(t+x)
f−1(t) =∞ and the set G(f(n) mod 1)

contains only one-step d.f.s cu(x), where FNi(x)→ cu(x) if and only if f(Ni) mod
1→ u.

Notes 6. For the sequence f(n) mod 1 with increasing f(x) Kemperman [85] proved 17

the following two theorems which are different in nature from our Theorems 48, 49 and
50.

Theorem 51 (Kemperman [85, Th.9]). Assume that

(j) limn→∞ f(n+ 1)− f(n) = 0;

(jj) limn→∞ n(f(n+ 1)− f(n)) = t.

Then G(f(n) mod 1) contains only d.f.s of the type

gu(x) =

{
e(1+x−u)/t−e(1−u)/t

e1/t−1
if 0 ≤ x ≤ u,

1− e(1−u)/t−e(x−u)/t

e1/t−1
if u < x ≤ 1.

(106)

Here the density g′u(x) of gu(x) has the form

g′u(x) =
e{x−u}/t

t(e1/t − 1)
.

Furthermore FNi(x)→ gu(x) if and only if f(Ni) mod 1→ u.

Theorem 52 (Kemperman [85, p. 148, Coroll. 1]). Assume that

(j) limn→∞ f(n+ 1)− f(n) = 0;

(jj) limn→∞ n(f(n+ 1)− f(n)) = +∞.

17In Theorem 51 and 52 we put weights w(n) = 1.
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(jjj) f(n+ 1)− f(n) is monotone in n.

Then the sequence f(n) mod 1, n = 1, 2, . . . is u.d.

Example 22. We apply Theorem 48 to the function f(x) = log(x log(i) x),
where log(i) x is the ith iterated logarithm log . . . log x.

We prove that, for k →∞,

log(i) f−1(k + u(k))

log(i) f−1(k)
→ 1

for every sequence u(k) ∈ [0, 1]. Proof: we start with

0 < log f−1(k + 1)− log f−1(k) < log f−1(k + 1)− log f−1(k)+

+ log(i+1) f−1(k + 1)− log(i+1) f−1(k) = 1

what implies log f−1(k+1)
log f−1(k)

→ 1, and this implies log(2) f−1(k+1)−log(2) f−1(k)→
0, what implies log(2) f−1(k+1)

log(2) f−1(k)
→ 1, e.t.c.

Now, every u(k) can be expressed as

u(k) = f(f−1(k + u(k)))− f(f−1(k)) =

= log

(
f−1(k + u(k))

f−1(k)
· log

(i) f−1(k + u(k))

log(i) f−1(k)

)
.

Assuming that u(k) → u as k → ∞, we have (iii) in the form ψ(u) = eu.
To prove (ii) we see that f(f−1(k + 1))− f(f−1(k)) = 1 and by mean-value
theorem (f−1(k+1)−f−1(k))f ′(x) = 1 for some x ∈ (k, k+1), where f ′(x)→
0 as k →∞. As summary, G(log(n log(i) n) mod 1) = G(log n mod 1).

In 2011 Y. Ohkubo [122] proved that in Theorem 48 f(n) mod 1 can be
replaced by f(pn) mod 1, where pn is the increasing sequence of all primes.
He proved:

Theorem 53. Let the real-valued function f(x) be strictly increasing for
x ≥ 1 and let f−1(x) be its inverse function. Assume that

(i) limk→∞ f−1(k + 1)− f−1(k) =∞,

(ii) limk→∞
f−1(k+uk)
f−1(k)

= ψ(u) for every sequence uk ∈ [0, 1] for which

limk→∞ uk = u, where this limit defines the function ψ : [0, 1]→ [1, ψ(1)],
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(iii) ψ(1) > 1. Then

G(f(pn) mod 1) =

{
gu(x) =

1

ψ(u)

ψ(x)− 1

ψ(1)− 1
+

min(ψ(x), ψ(u))− 1

ψ(u)
;u ∈ [0, 1]

}
.

The lower d.f. g(x) and the upper d.g. g(x) of f(pn) mod 1 are

g(x) =
ψ(x)− 1

ψ(1)− 1
, g(x) = 1− 1

ψ(x)
(1− g(x).)

Here g(x) = g0(x) = g1(x) ∈ G(f(pn) mod 1) and g(x) = gx(x) /∈ G(f(pn) mod
1).

Proof. Let K be an integer and express an N ∈ [f−1(K), f−1(K + 1)) as
N = f−1(K + u), u ∈ [0, 1). Since

k < f(pn) ≤ k + x←→ f−1(k) < pn ≤ f−1(k + x)

then we have

#{n ≤ π(n); {f(pn)} < x}
π(N)

=

∑K−1
k=0 π(f

−1(k + x))− π(f−1(k))

π(f−1(K + u))
(107)

+
π(f−1(K +min(x, u)))− π(f−1(K))

π(f−1(K + u))
. (108)

Furthermore,

π(f−1(K + u)) =
K−1∑
k=0

π(f−1(k + 1))− π(f−1(k)) + π(f−1(0))

+ π(f−1(K +min(x, u)))− π(f−1(K)). (109)

To compute (107) via Stoltz lemma∑K−1
k=0 π(f

−1(k + x))− π(f−1(k))∑K−1
k=0 π(f

−1(k + 1))− π(f−1(k))
·
∑K−1

k=0 π(f
−1(k + 1))− π(f−1(k))

π(f−1(K + u))
(110)

we need find a limit of

π(f−1(k + x))− π(f−1(k))

π(f−1(k + 1))− π(f−1(k))
=

π(f−1(k+x))
π(f−1(k))

− 1

π(f−1(k+1))
π(f−1(k))

− 1
. (111)
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Using prime number theorem in the form

π(x)
x

log x

→ 1

if x→∞ and expressing

π(f−1(k + x))

π(f−1(k))
=

π(f−1(k+x))
f−1(k+x)

log f−1(k+x)

f−1(k+x)
log f−1(k+x)

π(f−1(k))
f−1(k)

log f−1(k)

f−1(k)
log f−1(k)

and using (ii) limk→∞
f−1(k+x)
f−1(k)

= ψ(x) as k → ∞ we see that for proof of
theorem we need proved

log f−1(k + 1)

log f−1(k)
→ 1. (112)

Ohkubo proved (112) using the following succession

log f−1(k + 1)

log f−1(k)
=

1

log f−1(k)

(
log f−1(k + 1)− log f−1(k)

)
+ 1

=
1

log f−1(k)
log

(
f−1(k + 1)

f−1(k)

)
+ 1→ 1

since by assumption f−1(k+1)
f−1(k)

→ ψ(1) > 1. Thus (107) has the form 1
ψ(u)

ψ(x)−1
ψ(1)−1

.

Similarly for (108).

Example 23. Theorem 53 implies that the following sequences log pn mod 1,
log(pn log pn) mod 1 have the same d.f.s as log n mod 1. This solve Open
problem 1.3 in [166].

4.2 Proof of G(xn) = H using the connectivity of G(xn)

The connectivity of G(xn) implies the following simple theorem: Define
• For the d.f. g the Graph(g) is continuous curve formed with all the points
(x, g(x)) for x ∈ [0, 1], and the all line segments connecting points of discon-
tinuity (x, lim infx′→x g(x

′)) and (x, lim supx′→x g(x
′)).

• Denote g
H
(x) = infg∈H g(x) and gH(x) = supg∈H g(x).
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Theorem 54 ([161]). Let H be a non–empty, closed, and connected set of
d.f.s. Assume that for every g ∈ H there exists a point (x, y) ∈ Graph(g)
such that (x, y) /∈ Graph(g̃) for any g̃ ∈ H with g̃ ̸= g. If

(i) G(xn) ⊂ H, and
(ii) g = g

H
and g = gH for the lower d.f. g and the upper d.f. g of the

sequence xn ∈ [0, 1),
then G(xn) = H.

4.3 Proof of G(xn) ⊂ H using L2 discrepancy

For proving G(xn) ⊂ H it can be used limN→∞D
(2)
N (xn, H) = 0, where

• the L2 discrepancy D
(2)
N (xn, H) of xn with respect to H is defined as

D
(2)
N (xn, H) = min

g∈H

∫ 1

0

(FN(x)− g(x))2dx. (113)

We prove the following theorem:

Theorem 55. For every sequence xn ∈ [0, 1) we have

G(xn) ⊂ H ⇐⇒ lim
N→∞

D
(2)
N (xn, H) = 0.

Proof. =⇒. Suppose limk→∞ FNk
(x) = g̃(x) a.e. and g̃ ∈ H. Then we have

limk→∞
∫ 1

0
(FNk

(x) − g̃(x))2dx = 0 by the Lebesgue theorem of dominated

convergence and because D
(2)
Nk
≤
∫ 1

0
(FNk

(x)−g̃(x))2dx, we get limk→∞D
(2)
Nk

=
0, for every increasing Nk.
⇐=. Suppose that limN→∞D

(2)
N = 0. Let gN ∈ H be a point of the

minimum of
∫ 1

0
(FN(x)− g(x))2dx with g ∈ H. The Helly selection principle

guarantees a suitable sequence Nk, k = 1, 2, . . . , such that limk→∞ FNk
(x) =

g̃1(x) and limk→∞ gNk
(x) = g̃2(x) a.e. on [0, 1]. Then g̃2 ∈ H and then using

the Lebesgue theorem of dominated convergence we get

lim
k→∞

∫ 1

0

(FNk
(x)− gNk

(x))2dx =

∫ 1

0

(g̃1(x)− g̃2(x))2dx = 0.

Thus g̃1 ∈ H, and the same is true for every partial limit of FN . To complete
the proof we have to shown that the existence of such gN . To do this note that
there exists a sequence gn ∈ H, n = 1, 2, . . . , such that infg∈H

∫ 1

0
(FN(x) −

g(x))2dx = limn→∞
∫ 1

0
(FN(x) − gn(x))

2dx, and again, by Helly theorem,
limk→∞ gnk

(x) = gN(x) for suitable nk, and thus gN ∈ H.
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Notes 7. It should be noted that that the L2 discrepancy can be expressed as

D
(2)
N (xn,H) =

∫ 1

0

(FN (x)− gN (x))2dx =

∫ 1

0

∫ 1

0

FN (x, y)dgN (x)dgN (y),

and applying (31) we have FN (x, y) = Fg̃(x, y) putting g̃(x) = gN (x) and

Fg̃(x, y) =
∫ 1

0
g̃2(t)dt−

∫ 1

x
g̃(t)dt−

∫ 1

y
g̃(t)dt+ 1−max(x, y), and∫ 1

0
(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0
Fg̃(x, y)dg(x)dg(y).

• Let F : [0, 1]2 → [0, 1] by symmetric function and G(F ) be a set of all d.f.
g(x) satisfying ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0.

Define g
F
is the lower and gF is the upper d.f of G(F ) and

Ω(F ) = ∪g∈G(F )Graph(g).

4.4 Proof of G(xn) ⊂ H solving
∫ 1

0

∫ 1

0 F (x, y)dg(x)dg(y) = 0

Theorem 55 we reformulate to

Theorem 56. Let F (x, y) be a continuous function defined on [0, 1]2. Then
for every sequence xn ∈ [0, 1) we have

G(xn) ⊂ G(F )⇐⇒ lim
N→∞

1

N2

N∑
m,n=1

F (xm, xn) = 0. (114)

Proof. Using the definition of the Riemann-Stieltjes integral, we have∫ 1

0

∫ 1

0

F (x, y)dFN(x)dFN(y) =
1

N2

N∑
m,n=1

F (xm, xn).

Suppose that limk→∞ FNk
(x) = g(x) for all continuity points x of g(x). Then,

applying the Helly-Bray lemma, we find

lim
k→∞

∫ 1

0

∫ 1

0

F (x, y)dFNk
(x)dFNk

(y) =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y),

and the implication ⇐= follows immediately.
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In order to show the implication =⇒, assume

lim
k→∞

1

Nk
2

Nk∑
m,n=1

F (xm, xn) = β > 0.

By the Helly selection principle (Theorem 1), there exists a subsequence N ′
k

of Nk such that limk→∞ FN ′
k
(x) = g(x) ∈ G(xn). Again, by Helly-Bray

lemma (Theorem 2) we find
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = β. We conclude

g(x) /∈ G(F ).

Define
• G(F = A) is the set of all d.f.s g(x) for which

∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = A,

• G(A ≤ F ≤ B) is the set of all d.f.s g(x) for which

A ≤
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) ≤ B.

Then again:

Theorem 57.

G(xn) ⊂ G(F = A)⇐⇒ lim
N→∞

1

N2

N∑
m,n=1

F (xm, xn) = A,

G(xn) ⊂ G(A ≤ F ≤ B)⇐⇒ A ≤ lim inf
N→∞

1

N2

N∑
m,n=1

F (xm, xn)

and lim sup
N→∞

1

N2

N∑
m,n=1

F (xm, xn) ≤ B.

An application of Theorem 126:

Theorem 58. For any sequence xn in [0, 1] we have

G(xn) ⊂ {cα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0. (115)

Moreover, if G(xn) ⊂ {cα(x);α ∈ [0, 1]}, then G(xn) = {cα(x);α ∈ I}, where
I is a closed subinterval of [0, 1] which can be found as

I =

[
lim inf
N→∞

1

N

N∑
n=1

xn, lim sup
N→∞

1

N

N∑
n=1

xn

]
, (116)
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and the length |I| of I can also be found as

|I| = lim sup
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn|. (117)

Proof. First observe that G(|x − y|) = {cα(x);α ∈ [0, 1]}, and (115) follows
from Theorem 126.

Suppose, in order to show the connectivity of I, that limk→∞ FMk
(x) =

cα(x), limk→∞ FNk
(x) = cβ(x), and α < β. If α < γ < β, then we can

construct a sequence Kk such that limk→∞ FKk
(γ) = 1/2. By the Helly

selection principle there exists a subsequence K ′
k such that limk→∞ FK′

k
(x) =

cγ(x).
In order to find the length of subinterval of such α, one observes that∫ 1

0

∫ 1

0

|x− y|dcα(x)dcβ(y) = |α− β|

implies (117) in the usual way.

Example 24. Let the sequence xn, n = 1, 2, . . . be defined as

xn =

{
1 + (−1)

[√
[
√

log
2
n]
] {√[√

log2 n
]}}

.

Then G(xn) = {cα(x);α ∈ [0, 1]}.

Proof. Let xn be the sequence constructed as follows. Assume that we have a
dense sequence yn in [0, 1] with (i) limk→∞(yk+1− yk) = 0, and an increasing
sequence of positive integers Mk with (ii) limk→∞(

∑k−1
i=1 Mi)/Mk = 0. Now

form the sequence xn by setting xn = yk if
∑k−1

i=1 Mi ≤ n <
∑k

i=1Mi. We
shall use Theorem 58 which gives that xn has cα(x), α ∈ [0, 1], as its d.f.s.
For a detailed proof, first take N =

∑k−1
i=1 Mi + θkMk, where 0 ≤ θk < 1. It

is not difficult to calculate

1

N2

N∑
m,n=1

|xm − xn| = O

(
Mk−1θkMk|yk − yk−1|

(Mk−1 + θkMk)2

)
.

Hence, the limit in Theorem 58 follows immediately. In order to compute
the lim sup, one observes, for Nik =

∑ik
i=1Mi and Njk =

∑jk
i=1Mi, that

lim sup
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| =
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= lim sup
k→∞

1

MikMjk

Nik∑
m=Nik−1

Njk∑
m=Njk−1

|xm − xn|

= lim sup
k→∞

|yik − yjk | = 1 (118)

holds if yik → 0 and yjk → 1 as k → ∞. Applying the above construction
with

yk =

{
1 + (−1)[

√
k]
{√

k
}}

and
Mk = 2(k+1)2 − 2k

2

for k = 1, 2, . . . we thus have the desired property of xn, n = 1, 2, . . . .

In Section 4.10 ([159]) is studied 3-dimensional body Ω formed by points
(X1, X2, X3) where

X1 = 1−
∫ 1

0
xdg(x)(=

∫ 1

0
g(x)dx),

X2 =
1
2
− 1

2

∫ 1

0
x2dg(x)(=

∫ 1

0
xg(x)dx), and

X3 = X1 − 1
2

∫ 1

0

∫ 1

0
|x− y|dg(x)dg(y)(=

∫ 1

0
g2(x)dx)

and g(x) run all d.f.s. The points (X1, X2, X3) for g(x) = cα(x) or g(x) =
hα(x), α ∈ [0, 1], lies on the contour of the body Ω and for such (X1, X2, X3)
the d.f. g(x) is given uniquely. This implies:

Theorem 59.∫ 1

0

x2dg(x) =

(∫ 1

0

xdg(x)

)2

⇐⇒ ∃α∈[0,1]g(x) = cα(x),

∫ 1

0

x2dg(x) =

∫ 1

0

xdg(x)⇐⇒ ∃α∈[0,1]g(x) = hα(x),

(
1−

∫ 1

0

xdg(x)

)(∫ 1

0

xdg(x)

)
=
1

2

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)

⇐⇒ ∃α∈[0,1]g(x) = hα(x)

and also we have

G(xn) ⊂ {cα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

( 1

N

N∑
n=1

xn

)2

− 1

N

N∑
n=1

x2n

 = 0,
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G(xn) ⊂ {hα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

1

N

N∑
n=1

(xn − x2n) = 0,

G(xn) ⊂ {hα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

(
1

N

N∑
n=1

xn −

(
1

N

N∑
n=1

xn

)2

− 1

N2

N∑
m,n=1

|xm − xn|

)
= 0,

respectively.

It is well known that the sequence xn ∈ [0, 1] statistically converges to
α ∈ [0, 1] if and only if G(xn) = {cα(x)}. Theorem 58 implies:

Theorem 60. The sequence xn in [0, 1] possesses a statistical limit if and
only if

lim
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 0.

This is condition of Cauchy type different as in [57]. Also see Section 3.4

Theorem 61. Let F (x, y) be continuous and G(F ) be the set of all solutions

of
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0. Assume that g

F
, gF ∈ G(F ) and that for

every g ∈ G(F ) there exists a point (x, y) ∈ Graph(g) such that (x, y) /∈
Graph(g̃) for any g̃ ∈ H with g̃ ̸= g. Then for every sequence xn ∈ [0, 1) we
have G(xn) = G(F ) if and only if

(i) limN→∞
1
N2

∑N
m,n=1 F (xm, xn) = 0,

(ii) lim supN→∞
1
N

∑N
n=1 xn−lim infN→∞

1
N

∑N
n=1 xn =

∫ 1

0
(gF (x)−gF (x))dx.

Proof. From (i) Theorem 126 implies G(xn) ⊂ G(F ). The (ii) similar to
Theorem 15 gives gF (x), gF (x) ∈ G(xn). Thus Ω(xn) = Ω(F ) and if (x, y) ∈
Ω(F ) then the unique g ∈ Ω(F ) for which (x, y) ∈ Graph(g) gives g ∈ G(xn).
See also Theorem 54.

4.5 Linear combination G(xn) = {tg1(x) + (1− t)g2(x); t ∈
[0, 1]}

Definition 4. Let g1 ̸= g2 be two d.f.s. Denote

Fg2(x, y) :=

∫ x

0

g2(t)dt+

∫ y

0

g2(t)dt−max(x, y) +

∫ 1

0

(1− g2(t))2dt,
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Fg1,g2(x) :=

∫ x
0
(g2(t)− g1(t))dt−

∫ 1

0
(1− g2(t))(g2(t)− g1(t))dt∫ 1

0
(g2(t)− g1(t))2dt

,

Fg1,g2(x, y) :=Fg2(x, y)− Fg1,g2(x)Fg1,g2(y).
∫ 1

0

(g2(t)− g1(t))2dt.

Theorem 62. For given sequence xn ∈ [0, 1) we have

G(xn) = {tg1(x) + (1− t)g2(x); t ∈ [0, 1]}

if and only if
(i) limN→∞

1
N2

∑N
m,n=1 Fg1,g2(xm, xn) = 0,

(ii) lim infN→∞
1
N

∑N
n=1 Fg1,g2(xn) = 0,

(iii) lim supN→∞
1
N

∑N
n=1 Fg1,g2(xn) = 1.

Proof. For any two d.f.s g1, g2 the set H = {tg1(x) + (1− t)g2(x); t ∈ [0, 1]}
is nonempty, closed, connected and satisfies the assumption of Theorem 54.
In order to compute the L2 discrepancy (113) we shall consider the following
quadratic polynomial

PN(t) :=

∫ 1

0

(
FN(x)− (tg1(x) + (1− t)g2(x))

)2
dx = AN t

2 + 2BN t+ CN ,

where

AN = A =

∫ 1

0

(g2(x)− g1(x))2dx,

BN =

∫ 1

0

(FN(x)− g2(x))(g2(x)− g1(x))dx,

CN =

∫ 1

0

(FN(x)− g2(x))2dx.

The minimum mint∈R PN(t) = (ACN − B2
N)/A is attained in t = tN =

−BN/A. Therefore

D
(2)
N (xn, H) =


PN(tN) for 0 ≤ tN ≤ 1,

PN(0) for tN < 0,

PN(1) for tN > 1,
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and thus

lim
N→∞

D
(2)
N (xn, H) = 0⇐⇒(i) lim

N→∞
PN(tN) = 0,

(ii’) lim inf
N→∞

tN ≥ 0,

(iii’) lim sup
N→∞

tN ≤ 1

what is equivalent to G(xn) ⊂ H by Theorem 55.
Now assume (i),
(ii) lim infN→∞ tN = 0 and
(iii) lim supN→∞ tN = 1.
Passes to a suitable sequence Nk guarantees that limk→∞ tNk

= 0 and
limk→∞ FNk

(x) = g̃(x) a.e. on [0, 1].
The Lebesgue theorem yields

0 = lim
k→∞

PNk
(tNk

) = lim
k→∞

∫ 1

0

(
FNk

(x)− (tNk
g1(x) + (1− tNk

)g2(x))
)2
dx

=

∫ 1

0

(g̃(x)− g2(x))2dx

and thus g2 ∈ G(xn). Similarly, g1 ∈ G(xn). Since gH(x) = max(g1(x), g2(x))
and g

H
(x) = min(g1(x), g2(x)) we have 18 g = g

H
and g = gH . Thus, by

Theorem 54, we have G(xn) = H. On the other hand, (i), (ii) and (iii)
immediately follows from G(xn) = H. Finally we express

PN(tN) =

∫ 1

0

∫ 1

0

Fg1,g2(x, y)dFN(x)dFN(y), tN =

∫ 1

0

Fg1,g2(x)dFN(x)

by using Theorem 23 from which for every polynomial ψ(y) = a(x)y2 +
b(x)y + c(x) we have∫ 1

0

ψ(FN(x))dx =

∫ 1

0

∫ 1

0

F (x, y)dFN(x)dFN(y) =
1

N2

N∑
m,n=1

F (xm, xn),

where

F (x, y) =

∫ 1

max(x,y)

a(t)dt+
1

2

∫ 1

x

b(t)dt+
1

2

∫ 1

y

b(t)dt+

∫ 1

0

c(t)dt.

18Here g and g lower and upper d.f. of xn n = 1, 2, . . . respectively.
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Example 25. For control of Theorem 62 we give:

(I)

∫ 1

0

Fg1,g2(x)d(tg1(x) + (1− t)g2(x)) = t because∫ 1

0

(∫ x

0

(g2(u)− g1(u)du)
)
dg1(x) =

∫ 1

0

(1− g1(x))(g2(x)− g1(x))dx.

Furthermore

(II)

∫ 1

0

∫ 1

0

Fg1,g2(x, y)d(tg1(x) + (1− t)g2(x))d(tg1(y) + (1− t)g2(y))

=

∫ 1

0

∫ 1

0

Fg2(x, y)d(tg1(x) + (1− t)g2(x))d(tg1(y) + (1− t)g2(y))

− t2
∫ 1

0

(g2(x)− g1(x))2dx = 0.

4.6 Other characterization of {tg1(x) + (1 − t)g2(x); t ∈
[0, 1]}

Some other theorem similar to Theorem 62:

Definition 5. Denote

F1(x) =

∫ 1

x

(g2(t)− g1(t))dt−
∫ 1

0

g2(t)(g2(t)− g1(t))dt,

F1(x, y) =F1(x)F1(y)− Fg2(x, y).
∫ 1

0

(g2(t)− g1(t))2dt,

F2(x, y) =
−F1(x)− F1(y)

2
,

F3(x, y) =

∫ 1

0

(g2(t)− g1(t))2dt− F2(x, y).

Theorem 63. Let g1(x), g2(x) be a given d.f.s such that, g1(x) ≤ g2(x) on
the interval [0, 1]. For a sequence xn, n = 1, 2, . . . in [0, 1) we have

G(xn) ={tg1(x) + (1− t)g2(x); t ∈ [0, 1]} ⇐⇒ (119)

(i) lim
N→∞

1

N2

N∑
m,n=1

F1(xm, xn) = 0,
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(ii) lim inf
N→∞

1

N2

N∑
m,n=1

F2(xm, xn) ≥ 0,

(iii) lim inf
N→∞

1

N2

N∑
m,n=1

F3(xm, xn) ≥ 0,

(iv) lim sup
N→∞

1

N

N∑
n=1

xn − lim inf
N→∞

1

N

N∑
n=1

xn =

∫ 1

0

(g2(x)− g1(x))dx.

Proof. Express∫ 1

0

(
g(x)− (tg1(x) + (1− t)g2(x))

)2
dx = P (t) = At2 + 2Bt+ C,

where

A =

∫ 1

0

(g2(x)− g1(x))2dx,

B =

∫ 1

0

(g(x)− g2(x))(g2(x)− g1(x))dx,

C =

∫ 1

0

(g(x)− g2(x))2dx.

Since P (t) ≥ 0, the polynomial P (t) has a real root if and only if B2−AC = 0
and it is equal t0 = −B/A. Simultaneously t0 ∈ [0, 1] if and only if, −B ≥ 0
and −B ≤ A. Together

∃(t ∈ [0, 1])g(x) = tg1(x) + (1− t)g2(x) a.e. ⇐⇒(i) B2 − AC = 0,

(ii) −B ≥ 0,

(iii) A+B ≥ 0.

Then by using Theorem 23 we have

B2 − AC =

∫ 1

0

∫ 1

0

F1(x, y)dg(x)dg(y),−B =

∫ 1

0

∫ 1

0

F2(x, y)dg(x)dg(y),

A+B =

∫ 1

0

∫ 1

0

F3(x, y)dg(x)dg(y).

and putting g(x) = FN(x) we find (119) without (iv). The condition (iv) we
add for all possible g(x) = tg1(x) + (1− t)g2(x), t ∈ [0, 1].
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Example 26. Putt g2(x) = c0(x) and g1(x) = c1(x). Then tc1(x) + (1 −
t)c2(x) = h1−t(x) is a constant d.f. Theorem 63 implies

G(xn) ={hα(x);α ∈ [0, 1]} ⇐⇒

(i) lim
N→∞

1

N2

N∑
m,n=1

(
xmxn −

xm + xn − |xm − xn|
2

)
= 0,

(ii) lim inf
N→∞

1

N2

N∑
m,n=1

(
xm + xn

2

)
≥ 0,

(iii) lim inf
N→∞

1

N2

N∑
m,n=1

(
1− xm + xn

2

)
≥ 0,

(iv) lim sup
N→∞

1

N

N∑
n=1

xn − lim inf
N→∞

1

N

N∑
n=1

xn = 1.

See Example 29. Note that if xn = 0 or xn = 1 then the assumption (i)

vanished since xy − x+y−|x−y|
2

= 0 indentically.

Example 27. Denote g1(x) = x, g2(x) = c1(x), g3(x) = h1/2(x), H1 =
{tx + (1 − t)c1(x); t ∈ [0, 1]}, and H2 = {tx + (1 − t)h1/2(x); t ∈ [0, 1]}. We
can visualize the sets H1, H2, and H1 ∪H2 as follows
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Applying the general method described in Theorem 54 we get

G(xn) =H1 ∪H2 ⇐⇒

(i) lim
N→∞

1

N4

N∑
m,n,k,l=1

Fg1,g2(xm, xn)Fg1,g3(xk, xl) = 0,
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(ii) lim inf
N→∞

1

N2

N∑
m,n=1

Fg2(xm, xn) = 0,

(iii) lim inf
N→∞

1

N2

N∑
m,n=1

Fg3(xm, xn) = 0.

Proof. The maximal interval of reals t for which tx+ (1− t)c1(x) is a d.f. is
equal to [0, 1]. Similarly, for tx+ (1− t)h1/2(x). Therefore, by Theorem 126
(cf. Note 1), the inclusion G(xn) ⊂ H1 ∪H2 is characterized by the limit (i).
If g2, g3 ∈ G(xn) then G(xn) = H1 ∪H2, since, according to the page 17, it
can be seen that the graph g2 can be continuously transformed into the graph
g3 over H1 ∪ H2 only if the graph g2 can be continuously transformed into
the graph g1 over H1 and the graph g1 into the graph g3 over H2. To prove
g2, g3 ∈ G(xn) we use Fgi(x, y), i = 2, 3, since

∫ 1

0

∫ 1

0
Fgi(x, y)dFN(x)dFN(y) =∫ 1

0
(FN(x)−gi(x))2dx. It should be noted that it is possible to replace (ii) by

(ii’) lim inf
N→∞

1

N

N∑
n=1

Fg1,g2(xn) = 0

because ∫ 1

0

Fg1,g2(x)d(tx+ (1− t)c1(x)) = t,∫ 1

0

Fg1,g2(x)d(tx+ (1− t)h1/2(x)) =
1

4
t+

3

4
.

These integrals and G(xn) ⊂ H1 ∪ H2 together with (ii’) yield that c1(x) ∈
G(xn).

To finish the example we give explicit formulae of our functions:

Fg1,g2(x, y) = 1−max(x, y)− 3

4
(1− x2)(1− y2),

Fg1,g3(x, y) =
x+ y

2
−max(x, y) +

1

4
− 3(x− x2)(y − y2),

Fg2(x, y) = 1−max(x, y),

Fg3(x, y) =
x+ y

2
−max(x, y) +

1

4
,

Fg1,g2(x) =
3

2
(1− x2).
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Notes 8. Some extension of Theorem 62 can be found in Example 105.

Example 28. Let us again writeH = {tg1(x)+(1−t)g2(x); t ∈ [0, 1]}. Let yn
and zn be two sequences in [0, 1] having limit laws g1 and g2, respectively. Let
xn be a sequence mixed from yn and zn. Given N , let N1 and N2 denote the
number of terms of yn and zn, respectively, in the initial segment x1, . . . , xN .
Then

D
(2)
N (xn, H) ≤

(
N1

N

√
D

(2)
N1
(yn, g1) +

N2

N

√
D

(2)
N2
(zn, g2)

)2

.

It follows from this that G(xn) ⊂ H and

G(xn) = H ⇐⇒ lim sup
N→∞

N1

N
= lim sup

N→∞

N2

N
= 1.

Proof. Let F
(1)
N (x) and F

(2)
N (x), respectively, denote the FN(x) (defined pre-

viously for xn) applied to yn and zn. It follows from the definition of the L(2)

discrepancy that

D
(2)
N (xn, H) ≤

∫ 1

0

(
FN(x)−

N1

N
g1(x)−

N2

N
g2(x)

)2

dx.

Substituting FN(x) = N1

N
F

(1)
N1

(x) + N2

N
F

(2)
N2

(x) and then using the Cauchy-
Schwarz inequality we get the desired upper bound. Now,

limN→∞D
(2)
N (xn, H) = 0

which by Theorem 55 implies G(xn) ⊂ H and to prove that G(xn) = H we
can use Theorem 54.

Example 29. The 0 ∨ 1 sequence

xn =
1 + (−1)[log logn]

2

has G(xn) = {hα(x);α ∈ [0, 1]}, where hα(x) = α for x ∈ (0, 1) (see Example
26) and the sequence

yn =
1

n

n∑
i=2

1 + (−1)[log log i]

2

is dense in [0, 1] with a dispersion

dN(yn) ≤
1

N
1
e2

− 1
e3

.
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Proof. Since for integer part

[log log n] = k ⇐⇒ ee
k

< n < ee
k+1

the sequence xn is a block sequence constructed with blocks (0, . . . , 0) and
(1, . . . , 1). Then, by Example 28, G(xn) = {tc0(x) + (1 − t)c1(x)} and the
density of yn follows from Theorem 20. Putting N1 = [ee

K−1
] and N2 = [ee

K
]

for even [log logN ] = K (similarly for the odd case) and applying Theorem
5 we can find the desired estimation of dN(yn).

4.7 Computing G(h(xn, yn)) by
∫
{h(x,y)}<t 1.dg(x, y), where

g(x, y) ∈ G((xn, yn))
We starting with h(x, y) = x+ y mod 1.

Theorem 64. Let xn and yn be two sequences in [0, 1) and G((xn, yn)) denote
the set of all d.f.s of the two-dimensional sequence (xn, yn). If

zn = xn + yn mod 1,

then the set G(zn) of all d.f.s of zn has the form

G(zn) =

{
g(t) =

∫
0≤x+y<t

1.dg(x, y) +

∫
1≤x+y<1+t

1.dg(x, y);

g(x, y) ∈ G((xn, yn))
}

assuming that all the used Riemann-Stieltjes integrals exist.

Proof. For bounded f(x, y) and d.f. g(x, y) the Riemann-Stietjes integral∫
[0,1]2

f(x, y)dg(x, y)

exists if and only if the set of all discontinuity points of f(x, y) has a zero
intersection with discontinuity of g(x, y). Denoting by

X(t) = {(x, y) ∈ [0, 1]2; 0 ≤ x+ y < t} ∪ {(x, y) ∈ [0, 1]2; 1 ≤ x+ y < 1 + t},
X(1)(t) = {(x, y); y = t− x, x ∈ [0, 1]},
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X(2)(t) = {(x, y); y = t+ 1− x, x ∈ [0, 1]},
X(3) = {(x, y); y = 1− x, x ∈ [0, 1]},

in the case f(x, y) = cX(t)(x, y) the discontinuity points form the line seg-
ments X(1)(t), X(2)(t) and X(3).

Let (xn, yn), n = 1, 2, . . . , be a sequence in [0, 1)2 and zn = xn+yn mod 1.
Denote

FN(t) =
1

N

N∑
n=1

c[0,t)(zn), FN(x, y) =
1

N

N∑
n=1

c[0,x)×[0,y)((xn, yn)).

Since

0 ≤ {x+ y} < t⇐⇒ (0 ≤ x+ y < t) or (1 ≤ x+ y < 1 + t),

we have FN(t) =
1
N

∑N
n=1 cX(t)((xn, yn)) and by means of Riemann-Stieltjes

integration

FN(t) =

∫
[0,1]2

cX(t)(x, y)dFN(x, y),

assuming that none of the points (xn, yn), 1 ≤ n ≤ N , is a point of discon-
tinuity of cX(t)(x, y). It is true that (xn, yn) ̸∈ X(1)(t) ∪ X(2)(t) for almost
all t ∈ [0, 1]. By assumption the adjoining diagonal X(3) of [0, 1]2 has zero
measure with respect to every g(x, y) ∈ G((xn, yn)), and thus the set of in-
dices n for which (xn, yn) ∈ X(3) has zero asymptotic density and so it can
be omitted.

Now, we assume that FNk
(x) → g(x) ∈ G(zn). Then by the first Helly

theorem there exists subsequence N ′
k of Nk such that FN ′

k
(x, y) → g(x, y) ∈

G((xn, yn)) and by the second Helly theorem we have

g(t) =

∫
[0,1)2

cX(t)(x, y)dg(x, y). (120)

Vice-versa, we assume that FNk
(x, y) → g(x, y) ∈ G((xn, yn)). Then

by the first Helly theorem we can select subsequence N ′
k of Nk such that

FN ′
k
→ g(x). For such g(x), the (120) is true, again.

In the following we suppose that the sequence xn and yn in [0, 1) has the
asymptotic d.f. g1(x) or g2(x), respectively. Let Ψ : [0, 1]2 → [0, 1] be a
continuous function and let zn be the sequence consisting of all the values
Ψ(xm, yn), m,n = 1, 2, . . . and which are linear ordered such that the first
N2 term are Ψ(xm, yn), m,n = 1, 2, . . . , N .
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Theorem 65. The d.f. g(x) of zn satisfies

(i)

∫ 1

0

∫ 1

0

Ψ(x, y)dg1(x)dg2(y) =

∫ 1

0

xdg(x),

(ii)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|Ψ(x, y)−Ψ(u, v)|dg1(x)dg2(y)dg1(u)dg2(v)

=

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y),

(iii)

∫ 1

0

∫ 1

0

(∫ Ψ(x,y)

0

g(t)dt

)
dg1(x)dg2(y) =

∫ 1

0

(∫ x

0

g(t)dt

)
dg(x)

which is unique solvable in g(x).

Proof. It follows directly from L2-discrepancy by Theorem 22.

Example 30. [171, p. 2–215, 2.22.2], also see Open problem no. 1.13 in
[166]: Assuming u.d. of xn, n = 1, 2, . . . find a.d.f of the sequences

• ||xm − xn| − |xk − xl||, m,n, k, l = 1, 2, . . . ,

• |||xm−xn|−|xk−xl||−||xi−xj|−|xr−xs|||, m,n, k, l, i, j, r, s = 1, 2, . . . ,
etc.

We can use the following method: Let us denote by gj(x) an a.d.f of the
sequence of jth differences (thus by Theorem 104 g1(x) = 2x− x2). For kth
moment we have∫ 1

0

xkdgj+1(x) =

∫ 1

0

∫ 1

0

|x− y|kdgj(x)dgj(y).

For j = 1 we have∫ 1

0

∫ 1

0

|x− y|kdg1(x)dg1(y) =
8

(k + 1)(k + 2)(k + 4)
.

which implies

g2(x) =
8

3
x− 2x2 +

1

3
x4.
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Notes 9. As a Theorem 18 for computing g2(x) we can used

(i)

∫ 1

0

∫ 1

0

(1− |x− y|)d(2x− x2)d(2y − y2) =
∫ 1

0

g2(x)dx,

(ii)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(
1− |x− y| − ||x− y| − |u− v||

2

)
d(2x− x2)d(2y − y2)d(2u− u2)d(2v − v2) =

∫ 1

0

g22(x)dx

(iii)

∫ 1

0

∫ 1

0

(∫ |x−y|

0

g2(t)dt

)
d(2x− x2)d(2y − y2) =

∫ 1

0

g2(x)dx−
∫ 1

0

g22(x)dx.

Also∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

||x− y| − |u− v||
2

d(2x− x2)d(2y − y2)

d(2u− u2)d(2v − v2) =
∫ 1

0

g2(x)dx−
∫ 1

0

g22(x)dx.

Notes 10. S. Steinerberger (2010) conjectured that the density function
dgj(x)
dx of the

a.d.f. gj(x) of jth iterated differences is of the form
dgj(x)
dx = 22

j+j−1

2j ! (x − 1)jp(x), where
p(x) is a polynomial with integer coefficients. For j = 3 he found

dg3(x)
dx = 8

315 (x− 1)3(−132− 116x− 36x2 + 3x3 + x4).

4.7.1 Computation of G((log n, log log n) mod 1)

Example 31. The set of all d.f.s of the two-dimensional sequence

(log n, log log n) mod 1

has the form [169]

G((log n, log log n) mod 1) = {gu,v(x, y);u ∈ [0, 1], v ∈ [0, 1]}
∪ {gu,0,j,α(x, y);u ∈ [0, 1], α ∈ A, j = 1, 2, . . . }
∪ {gu,0,0,α(x, y);u ∈ [α, 1], α ∈ A},

(121)

where A is the set of all limit points of the sequence en mod 1, n = 1, 2, . . .
19 and, for (x, y) ∈ [0, 1)2,

gu,v(x, y) = gu(x) · cv(y),
19The exact form of A is an open problem.
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gu,0,j,α(x, y) = gu,0,j,α(x) · c0(y),
gu,0,0,α(x, y) = gu,0,0,α(x) · c0(y), where

gu(x) =
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1
,

cv(y) =

{
0 if 0 ≤ y ≤ v,

1 if v < y ≤ 1,

and cv(0) = 0, cv(1) = 1,

gu,0,j,α(x) =
emax(α,x) − eα

ej+u
+
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1

(
1− 1

ej−1

)
,

gu,0,0,α(x) =
emax(min(x,u),α) − eα

eu
,

(122)

and, for x ∈ [0, 1] and y ∈ [0, 1], marginal d.f.s are

gu,v(x, 1) = gu(x) = gu,v(x, 1− 0),

gu,v(1, y) = cv(y) = gu,v(1− 0, y),

gu,0,j,α(x, 1) = gu(x) > gu,0,j,α(x, 1− 0), j = 0, 1, 2, . . . ,

gu,0,j,α(1, y) = hβ(y) = gu,0,j,α(1− 0, y), where β = 1− 1

ej+u−α
, and

hβ(y) = β if y ∈ (0, 1), hβ(0) = 0, hβ(1) = 1,

(123)

where, the parameters u, v, j and α play the following role: Let FN(x, y)
denote the step d.f. of the sequence (log n, log log n) mod 1 (for definition see
Section 7.2) and let FNk

(x, y) → g(x, y) be a weak convergence as k → ∞.
Then

• FNk
(x, y)→ gu,v(x, y) for {logNk} → u and {log logNk} → v > 0,

• FNk
(x, y) → gu,0,j,α(x, y) for {logNk} → u, {log logNk} → 0, {eJ} →

α, K − [eJ ] = j > 0, where K = [logNk], J = [log logNk], and

• FNk
(x, y) → gu,0,0,α(x, y) for {logNk} → u, {log logNk} → 0, {eJ} →

α, K − [eJ ] = 0.

101



Since

dgu,v(x, y) = dgu(x)dcv(y)

dgu,0,j,α(x, y) = dgu,0,j,α(x)dc0(y)

and bearing in mind (122) we have

dgu,v(x, y) ̸= 0 only for (x, y) = (x, v),

dgu,0,j,α(x, y) ̸= 0 only for (x, 0) and (1, y).

Furthermore we see thatX(1)(t)∪X(2)(t)∪X(3) has zero measure with respect
to every g(x, y) ∈ G((log n, log log n) mod 1). We shall findG(log(n log n) mod
1) by applying Theorem 64 to G((log n, log log n)) mod 1). All integrals in
Theorem 64 can be computed and every d.f. g(t) ∈ G(log(n log n) mod 1)
has the form

g(t) =

{∫ t−v
0

1.dgu(x) +
∫ 1

1−v 1.dgu(x) if t ≥ v,∫ 1+t−v
1−v 1.dgu(x) if t < v,

for v > 0 and for v = 0 it has the form

g(t) =

∫ t

0

1.dgu,0,j,α(x) +

∫ t

0

1.d(gu(x)− gu,0,j,α(x)), j = 0, 1, 2, . . . .

Thus we have G(log(n log n) mod 1) = {gu,v(x);u ∈ [0, 1], v ∈ [0, 1]}, where

gu,v(x) =

{
gu(1 + x− v)− gu(1− v) if 0 ≤ x ≤ v,

gu(x− v) + 1− gu(1− v) if v < x ≤ 1.
(124)

Directly by means of computation we see that gu,v(x) = gw(x), for w = u+ v mod 1.

Proof of (121). For 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and a positive integer N denote
by FN(x, y) the step d.f.

FN(x, y) =
#{3 ≤ n ≤ N ; ({log n}, {log log n}) ∈ [0, x)× [0, y)}

N

and desired d.f.s are all possible weak limits limk→∞ FNk
(x, y) = g(x, y), for

suitable sequences N1 < N2 < . . . . Put

• K(N) = [logN ],
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• J(N) = [log logN ],

• N = {1, 2, . . . , N}.

Note that, for given positive integers J and K, we have J(N) = J for every
N in (ee

J
, ee

J+1
) and K(N) = K for every N ∈ (eK , eK+1). Further, let

k = 1, 2, . . . and j = 0, 1, 2, . . . . Since

0 ≤ {log n} < x⇐⇒ ∃k(0 ≤ log n− k < x)⇐⇒ ∃k(ek ≤ n < ek+x)

0 ≤ {log log n} < y ⇐⇒ ∃j(0 ≤ log log n− j < y)⇐⇒ ∃j(ee
j ≤ n < ee

j+y

),

we have

FN(x, y) =

∑J
j=0#{[ee

j
, ee

j+y
) ∩ (∪Kk=1[e

k, ek+x)) ∩N}
N

.

Denote by |X| the Lebesgue measure of X ⊂ R. Using the facts that

• #{[ek, ek+x) ∩N} = ek+x − ek +O(1);

• 1 ≤ k ≤ K = [logN ];

• ee
J−1+y

eeJ
→ 0 as J →∞ and for fixed 0 ≤ y < 1;

• N > ee
J
;

we have FN(x, y) = F̃N(x, y) + o(1), where

F̃N(x, y) =
|[eeJ , eeJ+y

) ∩ (∪Kk=[eJ ][e
k, ek+x)) ∩ [ee

J
, N ]|

N

for every 0 ≤ x ≤ 1 and every 0 ≤ y < 1. Put

• u(N) = {logN},

• v(N) = {log logN}.

For any sequenceNk for which FNk
(x, y)→ g(x, y), there exists a subsequence

N ′
k such that u(N ′

k)→ u, v(N ′
k)→ v and in this case we shall write

lim
k→∞

FN ′
k
(x, y) = gu,v(x, y).
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On the other hand, the sequence ({log n}, {log log n}), n = 2, 3, . . . , is every-
where dense in [0, 1]2. Proof: Let (u, v) ∈ [0, 1]2 and let Jk, k = 1, 2, . . . , be

an increasing sequence of positive integers. Put Nk =
[
ee

Jk+v
]
. Expressing

Nk = ee
Jk+vk , then we have vk → v as k → ∞. Put Kk = [logNk] and

N ′
k =

[
eKk+u

]
. Express N ′

k = eKk+u
′
k = ee

Jk+v′k , then u′k → u and v′k → v.
The final limit follows from the mean-value theorem

N ′
k −Nk = ee

Jk+v′k − eeJk+vk = (v′k − vk)ee
Jk+t

eJk+t

for t ∈ (vk, v
′
k) and since Nk, N

′
k ∈ (eKk , eKk+1) we have (v′k − vk)→ 0.

Thus for every (u, v) ∈ [0, 1]2 there exists a sequence of indices Nk such
that u(Nk)→ u and v(Nk)→ v and moreover, by Helly theorem, there exists
a subsequence N ′

k of Nk such that FN ′
k
(x, y) weakly converges to gu,v(x, y).

We shall see that for v ̸= 0 the d.f. gu,v(x, y) is defined uniquely.
Thus, in what follows we assume u(N) → u, v(N) → v, FN(x, y) →

gu,v(x, y) weakly (i.e. F̃N(x, y) → gu,v(x, y) weakly) for a suitable N = Nk,
k →∞. We distinguish two main cases: v > 0 and v = 0.

1. v > 0.
1.a. 0 ≤ y < v. In this case

F̃N(x, y) <
ee

J+y

eeJ+v(N)
→ 0

for a suitable N →∞ and thus

gu,v(x, y) = 0

for every x ∈ (0, 1).
1.b. 0 < v < y < 1. In this case the contributions of the following

intervals to the limit F̃N(x, y)→ gu,v(x, y) are:

• The first interval [e[e
J ], e[e

J ]+1) gives

e[e
J ]+1 − e[eJ ]

eeJ+v(N)
→ 0;

• the interval [eK , eK+1) gives

emin(K+x,K+u(N)) − eK

eK+u(N)
→ emin(x,u) − 1

eu
;
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• Since K − [eJ ] = ([eJ+v(N)] − [eJ ]) → ∞, the intervals [ek, ek+x), k =
[eJ ] + 1, . . . , K − 1 contribute with

1

eK+u(N)

K−1∑
k=[eJ ]+1

(ek+x − ek)→ 1

eu
ex − 1

e− 1
.

1.c. v = y. Taking in consideration the cases 1.a. and 1.b. we see that
gu,v(x, y) has for y = v the step d.f. gu(x).

As summary, in the case v > 0 we have gu,v(x, y) = gu(x) · cv(y), where
d.f.

gu(x) =
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1

for every x ∈ [0, 1) and gu(1) = 1. Here cv(y) = c(v,1](y), i.e., cv(y) = 0 for
0 < y ≤ v, cv(y) = 1 for v < y ≤ 1, and always cv(0) = 0, cv(1) = 1.

2. v = 0.
We shall see that in this case we need two new parameters j(N) and α(N)

defined

• j(N) = K − [eJ ],

• α(N) = {eJ},

and we again assume that for the sequence of indices N = Nk, (k → ∞)
we have F̃N(x, y) → g(x, y), j(N) → j, α(N) → α and in this case we shall
write

F̃N(x, y)→ gu,0,j,α(x, y).

We distinguish three cases: j =∞, 0 < j <∞ and j = 0.
2.a. j =∞. This case is the same as 1.b, and thus

gu,0,∞,α(x, y) = gu(x) · c0(y).

2.b. 0 < j < ∞. In this case the contributions of intervals to F̃N(x, y)
are:

• The first interval [e[e
J ], e[e

J ]+1) gives

max(ee
J
, e[e

J ]+x)− eeJ

eK+u(N)
→ emax(α,x) − eα

ej+u
;
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• the interval [eK , eK+1) gives again

emin(K+x,K+u(N)) − eK

eK+u(N)
→ emin(x,u) − 1

eu
;

• Since K − [eJ ] = j = constant , the intervals [ek, ek+x), k = [eJ ] +
1, . . . , K − 1 contribute with

1

eK+u(N)

K−1∑
k=[eJ ]+1

(ek+x − ek)→ 1

eu
ex − 1

e− 1

(
1− 1

ej−1

)
.

Thus in the case 0 < j < ∞ we have gu,0,j,α(x, y) = gu,0,j,α(x) · c0(y),
where

gu,0,j,α(x) =
emax(α,x) − eα

ej+u
+
emin(x,u) − 1

eu
+

1

eu
ex − 1

e− 1

(
1− 1

ej−1

)
and gu,0,j,α(1) = 1.

2.c. j = 0. In this case we consider only the interval [e[e
J ], e[e

J ]+1) and
its contribution to F̃N(x, y) is

max
(
min(eK+x, eK+u(N)), ee

J
)
− eeJ

eK+u(N)
→ emax(min(x,u),α) − eα

eu

and thus we have gu,0,0,α(x, y) = gu,0,0,α(x) · c0(y), where

gu,0,0,α(x) =
emax(min(x,u),α) − eα

eu

and gu,0,0,α(1) = 1.
We now show that the following triples (u, j, α) can occur: Suppose that

for integer sequence J1 < J2 < . . . we have {eJk} → α. Then for every fixed
j, (j = 0, 1, 2, . . . ) and u ∈ [0, 1] (if j = 0, then u need to satisfy α ≤ u)
there exist two integer sequences Kk and Nk such that

• Kk − [eJk ] = j,

• Nk ∈ (eKk , eKk+1),

• {logNk} → u,

106



• Nk ∈ (ee
Jk , ee

Jk+1
),

• {log logNk} → 0.

It suffices to put

• Kk = [eJk ] + j, and

• Nk = [eKk+uk ], where

• uk → u, 0 < uk < 1,

• uk > {eJk} if j = 0,

• uk > log
(
1 + 1

eKk

)
if u = 0.

Denoting by A the set of all limit points of {eJ}, J = 1, 2, . . . , we have 19.
Finally, by definition, we have g(0, y) = g(x, 0) = 0 and for computing

g(x, y) ∈ G(({log n}, {log log n})) in the case y = 1 we can not use F̃N(x, y)
instead of FN(x, y). In this case

FN(x, 1) =
(∪Kk=1[e

k, ek+x)) ∩N

N

for every 0 ≤ x ≤ 1 and if u(N) → u, then FN(x, 1) → gu(x). Thus
G({log n}) = {gu(x);u ∈ [0, 1]}, which also can be found in [92, p. 59] (see
(8) in Example 1 in this book).

All computations of g(x, y) ∈ G(({log n}, {log log n})) are also valid for
x = 1 and we see that gu,v(1, y) = cv(y) and

gu,0,j,α(1, y) = hβ(y), where β = 1− eα

ej+u
, j = 0, 1, 2, . . .

and this β covers [0, 1] if u runs [α, 1] for j = 0 and [0, 1] for j = 1, 2, . . . .
Thus

g(1, y) ∈ G({log log n}) = {cv(y); v ∈ [0, 1]} ∪ {hβ(y); β ∈ [0, 1]},

where hβ(y) = β for 0 < y < 1 and hβ(0) = 0, hβ(1) = 1.

4.8 Computation of G(xn) using mapping xn → f(xn)

This leads to solving related functional equations.
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4.8.1 Mapping xn → f(xn) and mapping g → gf

We repeat definition gf (x) in Section 3.8:
Let f : [0, 1]→ [0, 1] be a function such that, for all x ∈ [0, 1], f−1([0, x))

can be expressed as a sum of finitely many pairwise disjoint subintervals Ii(x)
of [0, 1] with endpoints αi(x) ≤ βi(x). For any distribution function g(x) we
put

gf (x) =
∑
i

g(βi(x))− g(αi(x)) for x ∈ [0, 1]. (125)

The mapping g → gf can be used for studying G(xn) by the following state-
ment:

Theorem 66. Let xn mod 1 be a sequence having g(x) as a d.f. associated
with the sequence of indices N1, N2, . . . . Suppose that any term xn mod 1 is
repeated only finitely many times. Then the sequence f({xn}) has the d.f.
gf (x) for the same N1, N2, . . . , and vice-versa any distribution function of
f({xn}) has this form.

Proof. The form gf (x) is a consequence of

A([0, x);Nk; f({xn})) =
∑
i

A(Ii(x);Nk; xn) and

A(Ii(x);Nk; xn) = A([0, βi(x));Nk;xn)− A([0, αi(x));Nk; xn) + o(Nk).

On the other hand, suppose that g̃(x) is a distribution function of f({xn})
associated withN1, N2, . . . . The Helly selection principle guarantee a suitable
subsequence Nn1 , Nn2 , . . . for which some g(x) is a distribution function of
xn mod 1. Thus g̃(x) = gf (x).

The d.f. gf (x) is characterized by the following equation: For every
continuous F : [0, 1]→ R and every d.f. g(x) we have∫ 1

0

F (f(x))dg(x) =

∫ 1

0

F (x)dgf (x). (126)

If g(x) = x, then gf (x) = g(x) is the d.f. of the random variable X =
f(x).

For non-continuous function f , some α(x), β(x) may be constant ̸= 0, 1
and for exact definition gf (x) we need used point-wise definition of d.f. (see
[92, p. 53, Def. 7.1]):
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Definition 6. A d.f. g(x) is called the d.f. of a sequence xn mod 1, n =
1, 2, . . . , if there exists an increasing sequence of positive integers N1, N2, . . .
such that

lim
k→∞

A([0, x);Nk;xn)

Nk

= g(x) for every x ∈ [0, 1].

Also g1 = g2 if and only if g1(x) = g2(x) for all x ∈ [0, 1].

Example 32. Put f(x) = 2x mod 1, then f−1([0, x)) = [0, x/2) ∪ [1/2, (1 +
x)/2) and gf (x) = g(x/2) + g((1 + x)/2) − g(1/2). Let xn and yn by two
sequences in [0, 1) such that xn ↗ 1/2, y2n ↗ 1/2, y2n+1 ↘ 1/2. Both
sequences xn and yn have a.d.f. c1/2(x), where for the first sequence xn we
have c1/2(1/2) = 1 and for the second one yn we have c1/2(1/2) = 1/2, thus
there are two different d.f.s. Furthermore the sequence f(xn) has a.d.f c1(x)
and f(yn) has h1/2(x) (i.e. it has constant value = 1/2 on (0, 1)).

Note that if any term xn mod 1 is repeated only finitely many times, then
the semi-closed interval [0, x) can be instead by the closed interval [0, x].
Thus if all of the intervals Ii(x) are semi-closed of the form [αi(x), βi(x)),
then o(Nk) = 0 and the assumption of finiteness of repetition is superfluous.

Let f : [0, 1] → [0, 1] be give Jordan measurable function. We generalize
(125) to

gf (x) =

∫
f−1([0,x))

1.dg(t) (127)

a.e. on x ∈ [0, 1].
In order to find d.f. g(x) of xn by using gf (x) of the transforming sequence

f(xn), we can solve e.g.
- the functional equation g(x) = gf (x) for x ∈ [0, 1], if xn and f(xn),

n = 1, 2, . . . have the same a.d.f.
- the functional equation gf (x) = gh(x) for x ∈ [0, 1] if f(xn) and h(xn)

coincide.
- or we find one-to-one mapping g → gf , possibly another map g → gh

such that g → (gf , gh) is one-to-one.

4.8.2 One-to-one map g → gf

In [156] we have proved gf (x) = xf ⇐⇒ g(x) = x for f(x, y) = |x− y|. In a
proof we have used∫ 1

0

(gf (x)− xf )(1− 2x)dx = 2

∫ 1

0

(g(x)− x)2dx− 2

(∫ 1

0

(g(x)− x)dx
)2

.
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Here we actually found F (x) such that∫ 1

0

F (x)d(gf (x)− g̃f (x)) =∫ 1

0

∫ 1

0

F (f(x, y))dg(x)dg(y)−
∫ 1

0

∫ 1

0

F (f(x, y))dg̃(x)dg̃(y)

where ∫ 1

0

∫ 1

0

F (f(x, y))dg(x)dg(y) = 0

has a unique solution g(x) = g̃(x). In the case f(x, y) = |x−y| and g̃(x) = x
we find

F (x) = −x
2
+
x2

2
+

1

12

because F (|x− y|) represent diaphony in Example 100, see∫ 1

0

∫ 1

0

F (|x− y|)dg(x)dg(y) =
∫ 1

0

(g(x)− x)2dx−
(∫ 1

0

(g(x)− x)dx
)2

=

∫∫
0≤x≤y≤1

(
g(y)− g(x)− (y − x)

)2
dxdy = 0,

with the unique solution g(x) = x.
The problem of one-to-one g → gf can be solve by the following steps:

(i) we find F (x, y) such that the moment problem∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0

has unique solution g(x) = g̃(x), and

(ii) F (x, y) can be expressed as

F (x, y) = H(f(x, y)),

where f : [0, 1]2 → [0, 1] a H are arbitrary continuous functions.

Then gf (x) = g̃f (x)⇐⇒ g(x) = g̃(x).
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4.8.3 Simple examples of f : [0, 1]→ [0, 1] and gf (x)

Example 33. Since −x = 1 − x mod 1, the mapping f(x) = −x mod 1
coincide with f(x) = 1− x mod 1.

0 1

@
@
@

@
@
@

@
@
@
@

@@

f(x)

1−x

x

This Fig. implies gf (x) = 1− g(1− x) (as an application see Theorem 112).

Example 34. For a shift f(x) = x+ α mod 1, 0 < α < 1, we have

0 1 0 1

�
�
�
�
�

�
�
��

�
�
�

�
�
�
�

�
�
�
��

�
�
�

f(x)

1−α

α

x

x−α

f(x)

1−α+ x

α
x

Thus

gf (x) =

{
g(1− α + x)− g(1− α) if 0 ≤ x ≤ α

g(x− α) + 1− g(1− α) if α < x ≤ 1.
(128)

Example 35. Applying (128) to the sequence log n+α mod 1, then the d.f.
gu(x) of log n mod 1 described in Example 1 is transform to gu,f (x) and then
using (124) we see that gu,f (x) = gw(x), where w = u + α mod 1. Since
u ∈ [0, 1] is arbitrary, then we have

G((log n+ α) mod 1) = G(log n mod 1). (129)
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Now, let
xn+1 = xn − x2n, n = 1, 2, . . . (130)

with the starting point x1 ∈ (0, 1). E. Ionescu and P. Stǎnicǎ (2004) [77] was
proved that for every x1 ∈ (0, 1) there exists the limit

v = lim
n→∞

(
1

xn
− n− log n

)
. (131)

Then they expand

xn =
1

n
− log n

n2
− v

n2
+

(log n)2

n3
+ (2v − 1)

log n

n3
+ o

(
log n

n3

)
, (132)

1

xn
=n+ log n+ v +

log n

n
+
v − (1/2)

n
− 1

2

(log n)2

n2

+ (3/2− v) log n
n2

+

(
3

2
v − 1

2
v2 − 5

6

)
1

n2
+

1

3

(log n)3

n3

+ (−2 + v)
(log n)2

n3

(
19

6
− 4v + v2

)
log n

n3
+ o

(
log n

n3

)
(133)

Since the sequence (log n + v) mod 1, n = 1, 2, . . . , have the same d.f.s as
log n mod 1, then the sequences

n2xn mod 1,

1

xn
mod 1,

n = 1, 2, . . . have the same d.f.s as log n mod 1.

Example 36. Using notation of gf we can write∫
g−1([0,x))

1.dx = xg

for d.f. g(x).

Example 37. For fixed d.f. g(x) we can find function f such that g(x) =
gf (x). For example f(x) is called u.d. preserving if x = xf .

Example 38. For two-dimensional f(x, y) and d.f. g(x) we can define

gf (x) =

∫ ∫
0≤f(u,v)<x

1.dg(u)dg(v).

For f(x, y) = xy and g(x) = x we have xf = x(1− log x).
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4.8.4 Solution of gf = g1

Assume that f is continuous with finitely many inverse functions f−1
1 , . . . , f−1

m ,
all defined on the whole interval [0, 1] and the intervals f−1

1 ([0, 1]), . . . , f−1
m ([0, 1])

are ordered from the left to right, i.e. f−1
1 (x) ≤ · · · ≤ f−1

m (x) for every
x ∈ [0, 1]. Then the d.f. gf satisfies

gf (x) =
m∑
i=1

sign(f−1
i )′g(f−1

i (x)) +
1 + sign(f−1

1 )′(−1)m

2
(134)

on x ∈ [0, 1].
A functional equation gf = g̃f , where g̃ is known and g is unknown, we

can solve by following: Put [0, α] = f−1
1 ([0, 1]) and denote

xi(t) = f−1
i ◦ f(t), i = 1, . . . ,m, t ∈ [0, α].

Into

0 = gf (x)− g̃f (x) =
m∑
i=1

sign(f−1
i )′(g(f−1

i (x))− g̃(f−1
i (x)))

insert x = f(t), t ∈ [0, α]. We obtain a linear equation with m unknowns
g(xi). Its coefficients depend only on the number m of inverse functions of f
and on that f starting with an increasing or decreasing part of a graph. Then
selected part of the graph g, say g(xj(t)), we compute by remaining parts
g(xi(t)) given such that the resulting g is d.f. The g̃f (x) can be replaced by
arbitrary d.f. g1(x). As an application we give:

Theorem 67. Let s(x) = sin2(2πx) and g1 be given absolute continuous d.f.
The unknown absolute continuous d.f. g solve the functional equation gs = g1
on [0, 1] if and only if has the form

g(x) =


g1(s(x))−

∫ x
0
ψ(u)du if x ∈ [0, 1/4],∫ 1/2−x

0
ϕ(u)du−

∫ 1/2−x
0

ψ(u)du+ 1−
∫ 1/4

0
ϕ(u)du if x ∈ [1/4, 1/2],

1−
∫ x−1/2

0
λ(u)du+

∫ x−1/2

0
ϕ(u)du−

∫ 1/4

0
ϕ(u)du if x ∈ [1/2, 3/4],

1−
∫ 1−x
0

λ(u)du if x ∈ [3/4, 1],

where ψ, ϕ, λ are integrable functions defined on [0, 1] and satisfying

0 ≤ λ(x) ≤ ϕ(x) ≤ ψ(x) ≤ (g1(s(x)))
′ for x ∈

[
0, 1

4

]
.
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Proof. In our case

gs(x) = g(s−1
1 (x)) + g(s−1

3 (x))− g(s−1
2 (x)) + 1− g(s−1

4 (x)),

where

s−1
1 (x) =

1

2π
arcsin

√
x, and

s−1
2 (x) =

1

2
− s−1

1 (x), s−1
3 (x) =

1

2
+ s−1

1 (x), s−1
4 (x) = 1− s−1

1 (x).

Substituting x→ s(x) in g1 = gs we find

∀(x ∈ [0, 1]) g1(x) = gs(x)⇐⇒
∀(x ∈ [0, 1/4]) g1(s(x)) = g(x) + g(1

2
+ x)− g(1

2
− x) + 1− g(1− x).

Thus we can compute values g(x) on [0, 1/4] as g(x) = g1(s(x)) − g(1
2
+

x) + g(1
2
− x) − 1 + g(1 − x). For monotonicity of g we need 0 ≤ g′(x), i.e.

g′(1
2
+ x) + g′(1

2
− x) + g′(1 − x) ≤ (g1(s(x)))

′. Putting ψ(x) = g′(1
2
+ x) +

g′(1
2
− x) + g′(1 − x) we find g(x) = g1(s(x)) −

∫ x
0
ψ(u)du and g(1

2
− x) =

g(1
2
+ x)− g(1− x) + 1−

∫ x
0
ψ(u)du. For monotonicity of g(1

2
− x) we need

g′(1
2
+x)+g′(1−x) ≤ ψ(x) for x ∈ [0, 1/4]. Putting ϕ(x) = g′(1

2
+x)+g′(1−x)

we find g(1
2
− x) =

∫ x
0
ϕ(u)du−

∫ x
0
ψ(u)du+ 1−

∫ 1/4

0
ϕ(u)du, etc.

Example 39. For g1 = g0 := (2/π) arcsin
√
x we have g1(s(x)) = 4x and

thus 0 ≤ λ(x) ≤ ϕ(x) ≤ ψ(x) ≤ 4 for x ∈ [0, 1/4].
If λ(x) = 1, ϕ(x) = 2 and ψ(x) = 3, then g(x) = x.
If λ(x) = ϕ(x) = ψ(x) = 0, then g(x) = g̃1(x), where

g̃1(x) =

{
4x for x ∈ [0, 1/4],

1 for x ∈ [1/4, 1].

If λ(x) = ϕ(x) = 0 and ψ(x) = 2, then g(x) = g̃2(x), where

g̃2(x) =

{
2x for x ∈ [0, 1/2],

1 for x ∈ [1/2, 1].

Since for f(x) = 4x(1−x) and h(x) = x(4x− 3)2 we have g0f = g0, g0h = g0,
then x, g̃1, g̃2 satisfy gf◦s = gh◦s together with they convex combinations.

The general functional equation gf = gh is solved in Section 6.1.9.
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4.9 Hausdorff moment problem (an information)

For completeness, the classical moment problems are:

sn =

∫ ∞

0

xndg(x), n = 0, 1, 2, . . . T. J. Stieltjes 1892;

sn =

∫ ∞

−∞
xndg(x), n = 0, 1, 2, . . . H. Hamburger 1920;

sn =

∫ 1

0

xndg(x), n = 0, 1, 2, . . . F. Hausdorff 1923.

The problem is to recover g(x), given by its moments. Put

sn =

∫ 1

0

xndg(x), n = 1, 2, . . . , (135)

Theorem 68 (F. Hausdorff). The moment problem (135) has a salution d.f.
g(x) if and only if

m∑
i=0

(−1)i
(
m

i

)
si+n ≥ 0

for all m,n = 0, 1, 2, . . . .

The set of all points (s1, s2, . . . , sN) in [0, 1]N for which exist d.f. g(x)
satisfying (135) for n = 1, 2, . . . , N is called the N -th moment space ΩN . It
can be shown (see [5]):

(i) the point (s1, s2, . . . , sN) belongs to the moment space ΩN if and
only if

∑m
i=0(−1)i

(
m
i

)
si+n ≥ 0 for all m,n = 0, 1, 2, . . . , N , where s0 = 1,

sN+1 = sN+2 = · · · = 0.
(ii) ΩN is a simply connected, convex, and closed subset of [0, 1]N .
(iii) If the point (s1, s2, . . . , sN) belongs to the interior of the moment

space ΩN the truncated moment problem (135), n = 1, 2, . . . , N , has in-
finitely many solutions g(x).

(iv) If (s1, s2, . . . , sN) belongs to the boundary of the ΩN , the (135) has
a unique solution g(x).

(v) If the sequence xn ∈ [0, 1), n = 1, 2, . . . , satisfies lim 1
N

∑N
n=1 xn = s1,

lim 1
N

∑N
n=1 x

2
n = s2,..., lim

1
N

∑N
n=1 x

N
n = sN , where (s1, s2, . . . , sN) belongs

to the boundary of the ΩN , then xn has an a.d.f. g(x).
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Exact characterization of the moment space ΩN can be given in terms of the
following matrices, see [83], [5]: Denote the Hankel determinants (different
sense for even and odd n)

H2n = det((si+j)
n
i,j=0),

H2n = det((si+j+1 − si+j+2)
n−1
i,j=0),

H2n+1 = det((si+j+1)
n
i,j=0),

H2n+1 = det((si+j − si+j+1)
n
i,j=0),

Theorem 69. (i) The N-dimensional point sN = (s1, s2, . . . , sN) belongs
to the moment space ΩN if and only if Hn ≥ 0 and Hn ≥ 0 for all n =
1, 2, . . . , N.

(ii) The point sN belongs to the interior of ΩN if and only if Hn > 0 and
Hn > 0 for all n = 1, 2, . . . , N.

(iii) The pint sN belongs to the boundary of ΩN if and only if there exists
a k, 1 < k < N , such that H l > 0 and H l > 0 for l = 1, 2, . . . , k − 1 and
Hk = 0 or Hk = 0. In this case Hn = Hn = 0 for all n = k, k + 1, . . . , N
and the solution d.f. g(x) in (135) is uniquely defined in terms od sN .

4.10 The moment problem X = F(g) for d.f. g(x)

See [159]:
In this section we shall solve the moment problem(

X1, X2, X3

)
=

(∫ 1

0

g(x)dx,

∫ 1

0

xg(x)dx,

∫ 1

0

g2(x)dx

)
(136)

and by coordinates

X1 =

∫ 1

0

g(x)dx, X2 =

∫ 1

0

xg(x)dx and X3 =

∫ 1

0

g2(x)dx

for d.f. g(x). It is motivated by L2 discrepancy criterion for g-distributed
sequences, see Theorem 22, p. 28: A sequence xn in [0, 1) has a.d.f. g(x) if
and only if

lim
N→∞

(
1 +

∫ 1

0

g2(x)dx−2
∫ 1

0

g(x)dx+
2

N

N∑
n=1

∫ xn

0

g(x)dx

− 1

N

N∑
n=1

xn −
1

2N2

N∑
m,n=1

|xm − xn|
)

= 0,
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or equivalently, if and only if

(i) limN→∞
1
N

∑N
n=1 xn =

∫ 1

0
xdg(x),

(ii) limN→∞
1
N

∑N
n=1

∫ xn
0
g(x)dx =

∫ 1

0

(∫ x
0
g(t)dt

)
dg(x),

(iii) limN→∞
1
N2

∑N
m,n=1 |xm − xn| =

∫ 1

0

∫ 1

0
|x− y|dg(x)dg(y).

(cf. [158, p. 176, Th. 1]. Since the left-hand side of the third equation (iii)
contains g(x) we shall instead it by the second moment and we solve

(s1, s2, s3) =

(∫ 1

0

xdg(x),

∫ 1

0

x2dg(x),

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)
)
.

By using
(s1, s2, s3) = (1−X1, 1− 2X2, 2(X1 −X3))

it can be transform to

(X1, X2, X3) =

(∫ 1

0

g(x)dx,

∫ 1

0

xg(x)dx,

∫ 1

0

g2(x)dx

)
.

4.10.1 The body Ω of all F(g) and the boundary ∂Ω

Define, for every d.f. g(x) the operator

F(g) =

(∫ 1

0

g(x)dx,

∫ 1

0

xg(x)dx,

∫ 1

0

g2(x)dx

)
.

For F, we introduce its body

Ω =
{
F(g); g is d.f.

}
,

and ∂Ω denote the boundary of Ω.
Note that throughout this chapter we shall always denote both the row

vector (X1, X2, X3) and the column vector
(
X1
X2
X3

)
by the same letter X and

the equation X = F(g) is referred to as a moment problem.
Let g(u1, v1, u2, v2) denote the d.f. h(x) defined by

h(x) =


0 for 0 ≤ x ≤ v1 ,
u2−u1
v2−v1 x+ u1 − v1 u2−u1v2−v1 for v1 < x ≤ v2 ,

1 for v2 < x ≤ 1 .

(in any case h(1) = 1). Its graph is
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�
�
�

g

0 1v1 v2

u1

u2

Then

F(g(u1, v1, u2, v2)) =

 1− v2 + 1
2 (v2 − v1)(u1 + u2)

1
2 −

1
6v

2
2(3− u1 − 2u2)− 1

6v
2
1(2u1 + u2)− 1

6v1v2(u2 − u1)
1− v2 + 1

3 (v2 − v1)(u1u2 + u21 + u22)

 .

For varying parameters u1, v1, u2, and v2, the point F(g(u1, v1, u2, v2)) (=
F(g)) describes surfaces Π1–Π6 or the curve Π7 specified by the following list
of formulas:

Π1 =
{
F(g); 0 ≤ v1 ≤ v2 ≤ 1, u1 = 0, u2 = 1

}
,

Π2 =
{
F(g); v1 = 0, v2 = 1, 0 ≤ u1 ≤ u2 ≤ 1

}
,

Π3 =
{
F(g); v1 = 0, 0 ≤ v2 ≤ 1, u2 = 1, 0 ≤ u1 ≤ 1

}
,

Π4 =
{
F(g); 0 ≤ v1 ≤ 1, v2 = 1, u1 = 0, 0 ≤ u2 ≤ 1

}
,

Π5 =
{
F(g); v1 = 0, 0 ≤ v2 ≤ 1 0 ≤ u1 = u2 ≤ 1, v2(1− u2) >

1

2

}
,

Π6 =
{
F(g); 0 ≤ v1 ≤ 1, v2 = 1, 0 ≤ u1 = u2 ≤ 1, u1(1− v1) >

1

2

}
,

Π7 =

{
F(g); v1 = 0,

1

2
< v2 < 1, u1 = u2 = 1− 1

2v2

}
=

{
F(g); 0 < v1 <

1

2
, v2 = 1, u1 = u2 =

1

2(1− v1)

}
.

Eliminating the parameters u1, v1, u2, v2 from the X = F(g(u1, v1, u2, v2))
we arrive at the following canonical expressions:

Π1 =

{
(X1, X2, X3); X2 =

1

2
− 1

2
(1−X1)

2 − 3

2
(X1 −X3)

2,

max
(4
3
X1 −

1

3
,
2

3
X1

)
≤ X3 ≤ X1, 0 ≤ X1 ≤ 1

}
,
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Π2 =

{
(X1, X2, X3); X2 =

1

2
X1 +

1

2

√
1

3
(X3 −X2

1 ),

X2
1 ≤ X3 ≤ min

(4
3
X2

1 ,
4

3
X2

1 −
2

3
X1 +

1

3

)
, 0 ≤ X1 ≤ 1

}
,

Π3 =

{
(X1, X2, X3); X2 =

1

2
− 4

9

(1−X1)
3

(1 +X3 − 2X1)
,

4

3
X2

1 −
2

3
X1 +

1

3
≤ X3 ≤

4

3
X1 −

1

3
,
1

2
≤ X1 ≤ 1

}
,

Π4 =

{
(X1, X2, X3); X2 = X1 −

4

9

X3
1

X3

,
4

3
X2

1 ≤ X3 ≤
2

3
X1, 0 ≤ X1 ≤

1

2

}
,

Π5 =

{
(X1, X2, X3); X2 =

1

2
− 1

2

(1−X1)
3

(1 +X3 − 2X1)
,

X2
1 ≤ X3 ≤ X1, 0 ≤ X1 <

1

2

}
,

Π6 =

{
(X1, X2, X3); X2 = X1 −

1

2

X3
1

X3

, X2
1 ≤ X3 ≤ X1,

1

2
< X1 ≤ 1

}
,

Π7 =

{(1
2
,
1

2
− 1

16X3

, X3

)
;

1

4
< X3 <

1

2

}
. (137)

Specify the following d.f. g(u1, v1, u2, v2) = g(i):

g(1) = g(0, (1−X1)− 3(X1 −X3), 1, (1−X1) + 3(X1 −X3)),

g(2) = g

(
X1 −

√
3(X3 −X2

1 ), 0, X1 +
√
3(X3 −X2

1 ), 1

)
,

g(3) = g

(
1− 3

2

1 +X3 − 2X1

1−X1

, 0, 1,
4

3

(1−X1)
2

(1 +X3 − 2X1)

)
,

g(4) = g

(
0, 1− 4X2

1

3X3

,
3X3

2X1

, 1

)
,

g(5) = g

(
X1 −X3

1−X1

, 0,
X1 −X3

1−X1

,
(1−X1)

2

1 +X3 − 2X1

)
,

g(6) = g

(
X3

X1

, 1− X2
1

X3

,
X3

X1

, 1

)
,

g(7) = g

(
1− 2X3, 0, 1− 2X3,

1

4X3

)
,
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g(7
∗) = g

(
2X3, 1−

1

4X3

, 2X3, 1

)
. (138)

Their graphs are

g(1) g(2) g(3) g(4)

�
�
�
�
�
�

������ �
�
�

��

g(5) g(6)

Figure 2
The areas of rectangles bounded by the graphs of g5 and g6 are ≥ 1/2. We
write g(5) = g(7) and g(6) = g(7

∗) in the case = 1/2.

4.10.2 Solution of X = F(g) for X ∈ Ω and X ∈ ∂Ω

We now state main theorems.

Theorem 70. For the moment problem X = F(g), to have only a finite
number of solutions in d.f.s g it is necessary and sufficient that X ∈ ∂Ω,
where ∂Ω denotes the boundary of Ω. We can express the boundary ∂Ω as

∂Ω =
∪

1≤i≤7

Πi.

In addition, for X ∈ Πi, i = 1, 2, . . . , 6, the moment problem X = F(g) is
uniquely solvable as g = g(i), and for X ∈ Π7 has precisely two solutions of
types g(7) and g(7

∗).

Theorem 70 directly implies

Theorem 71. Let xn, n = 1, 2, . . . be a sequence in [0, 1] with the limits

X1 = 1− lim
N→∞

1

N

N∑
n=1

xn,
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X2 =
1

2
− 1

2
lim
N→∞

1

N

N∑
n=1

x2n,

X3 = 1− lim
N→∞

1

N

N∑
n=1

xn −
1

2
lim
N→∞

1

N2

N∑
m,n=1

|xm − xn|.

If X = (X1, X2, X3) ∈
∪

1≤i≤7

Πi, then the sequence xn has an a.d.f. These

a.d.f. are given by formulae (138). Exactly, if X ∈ Πi, i = 1, . . . , 6, then xn
has the a.d.f. g(i), and if X ∈ Π7, then xn has the a.d.f. either g(7) or g(7

∗),
depending on whether

lim
N→∞

1

N

N∑
n=1

∫ xn

0

g(7)(t)dt = X1 −X3

or

lim
n→∞

1

N

N∑
0

∫ xn

0

g(7
∗)(t)dt = X1 −X3,

respectively. Furthermore, X ∈
∪

1≤i≤7 Πi is testable by (137).

In the following we also prove that the upper and lower surfaces of ∂Ω in
the direction X2 are

(0, 0, 0)

(1, 1/2, 1)

(1/2, 1/3, 1/3)

Π4
Π1

Π2
Π3

Γ1

Γ2

Figure: Upper boundary surface of Ω

(0, 0, 0)

(1, 1/2, 1)(1/2, 3/8, 1/2)

(1/2, 1/4, 1/4)
Π5

Π7
Π6

Γ1

Γ2

Figure: Lover boundary surface of Ω

For Γ1 and Γ2 see Theorem 75.
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4.10.3 Proof of the solutions of X = F(g)

We shall work with neighbourhoods of points in the body Ω. For the sake of
more clarity, we give an outline of the proof. We shall prove the theorem in
six steps.

1. We collected a couple of elementary facts about the body Ω. We find
two affine transformations leaving the body Ω fixed. We find projec-
tions of the body Ω to the planes X1 ×X3 and X1 ×X2, and we find
two curve-edges of Ω.

2. The principal technical result establishes the closedness of Ω under
a linear law of composition as follows : For any finite set of ele-
ments X(0), . . . ,X(N) in Ω, every sum

∑N
i=0(ai +BiX

(i)) with vectors
ai = a(ui, vi, ui+1, vi+1) and matrices Bi = B(ui, vi, ui+1, vi+1), where
ui, vi, ui+1, vi+1 are parameters (a and B will be defined later) also be-
longs to Ω, and each point X ∈ Ω, for every N , can be decomposed as
X =

∑N
i=0 ai +BiX

(i) into corresponding terms X(0), . . . ,X(N) ∈ Ω.

3. As a consequence, the following is proved : If X ∈ int Ω, then the
moment problem X = F(g) has infinitely many solutions.

4. Then we make a general observation about neighbourhoods in Ω. We
shall discuss the transformation O =

∑N
i=0 ai + BiOi mapping a se-

quence O0, . . . ,ON of neighbourhoods Oi of X
(i) into the neighbour-

hood O of X.

5. But every point X of the boundary ∂Ω of Ω would not possess a spher-
ical neighbourhood in Ω, and hence in this way we have a link between
the decomposition X =

∑N
i=0(ai +BiX

(i)), and the X ∈ ∂Ω.

6. In accordance with this decomposition and by the theory of Dini deriva-
tives the boundary ∂Ω can be expressed as the F-image of d.f.s in Fig.
2.

4.10.4 The basic property of Ω

• The body Ω ⊂ [0, 1]3 starts in (0, 0, 0) and ends in (1, 1/2, 1).
• The boundary ∂Ω = ∪1≤i≤7Πi.
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Theorem 72. Ω and ∂Ω are invariant with respect to the transformation
group

{Identity,Φ,Λ,Φ ◦ Λ} ,

where

Φ(X1, X2, X3) =
(
1−X1, X2 −X1 +

1

2
, 1 +X3 − 2X1

)
,

Λ(X1, X2, X3) =
(
1−X1,

1−X3

2
, 1− 2X2

)
.

Proof. For any d.f. g let d.f. g̃ be defined as 20

g̃(x) = |{y ∈ [0, 1]; g(y) < x}|.

Given F(g) = X, we can compute F(g̃) = Λ(X) by using∫ 1

0

xdg̃(x) =

∫ 1

0

g(x)dx,

∫ 1

0

x2dg̃(x) =

∫ 1

0

g2(x)dx,

∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg̃(y) =
∫ 1

0

∫ 1

0

|g(x)− g(y)|dxdy =

= 4

∫ 1

0

xg(x)dx− 2

∫ 1

0

g(x)dx.

Since the map Λ is affine and the matrix of Λ is unimodular, it is obvious
that Λ(Ω) = Ω and Λ(∂Ω) = ∂Ω. Using g̃(x) = 1− g(1− x), we can obtain
analogous results for Φ. 21

Theorem 73. Any straight line parallel to the X2 or X3 axis meets Ω at a
segment. Thus Ω is convex in these directions.

Proof. Assuming X1 = Y1 and X2 = Y2 for X = F(g) and Y = F(f), where
f, g are d.f.s, we arrive at

tX + (1− t)Y =

(
X1, X2,

∫ 1

0

(tg2(x) + (1− t)f 2(x))dx

)
.

20In Example 36 is note g̃(x) as g̃(x) =
∫
g−1([0,x))

1.dx = xg.
21Λ can be considered as a transformation g → g̃. Similarly for Φ(g(x)) = 1− g(1− x).
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Since ∫ 1

0

(tg(x) + (1− t)f(x))2 dx ≤
∫ 1

0

(
tg2(x) + (1− t)f 2(x)

)
dx ≤

≤ max

(∫ 1

0

g2(x)dx,

∫ 1

0

f 2(x)dx

)
,

from continuity one obtains the existence of t0 ∈ [0, 1] so that∫ 1

0

(t0g(x) + (1− t0)f(x))2 dx =

∫ 1

0

(
tg2(x) + (1− t)f 2(x)

)
dx.

Hence the F-image for nondecreasing h(x) = t0g(x) + (1− t0)f(x) takes the
form F(h) = tX+ (1− t)Y.

The rest follows from the properties of the transformation Λ.

Theorem 74. The orthogonal projections of the body Ω onto the X1 × X3

and X1 ×X2 planes are equal to{
(X1, X3);X

2
1 ≤ X3 ≤ X1, 0 ≤ X1 ≤ 1

}
(139)

and {
(X1, X2);

1

2
X1 ≤ X2 ≤ X1 −

1

2
X2

1 , 0 ≤ X1 ≤ 1
}
, (140)

respectively.

Proof. Here we consider ωN as an N - dimensional vector ωN = (x1, . . . , xN),
where x1, . . . , xN ∈ [0, 1] are ordered according to their magnitude, that is
0 ≤ x1 ≤ x2 ≤ · · · ≤ xN ≤ 1. Defining FN(x) as step-d.f. of the sequence
ωN . Then

F(FN) =

=

(
1− 1

N

N∑
n=1

xn,
1

2
− 1

2N

N∑
n=1

x2n, 1−
1

N2

N∑
n=1

(2n− 1)xn

)
.

Since there is no risk of confusion, we shall write F(ωN) instead of F(FN).
For fixed N , consider the set ∆N of all ωN and the set ΩN of all F-images
of ωN . Representing Ω and ∆N as

Ω = closure ∪1≤N<∞ ΩN ,
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∆N = convex hull

{
ω
(i)
N = (0, . . . , 0, 1, . . . , 1); i = 0, 1, . . . , N

}
where ω

(i)
N has i-times 0 and N − i times 1. Then we find that

projection Ω =

= closure ∪1≤N<∞ projection F
(
convex hull

{
ω
(i)
N ; i = 0, 1, . . . , N

})
.

Since X = F(ωN) consists of linear X1 and X3 over ωN , and

(X1, X3) =

(
i

N
,

(
i

N

)2
)

for ωN = ω
(i)
N , then the orthogonal projection of Ω onto the plane X1×X3 is

closure ∪1≤N≤∞ convex hull

{(
i

N
,

(
i

N

)2
)
; i = 0, 1, . . . , N

}
.

Finally, applying transformation Λ to the above projection, we find the or-
thogonal projection of Ω onto X1 ×X2.

Theorem 75. The following curves

Γ1 =
{
(X1, X2, X3);X2 =

1

2
X1(2−X1), X3 = X1, 0 ≤ X1 ≤ 1

}
, (141)

Γ2 =
{
(X1, X2, X3);X2 =

1

2
X1, X3 = X2

1 , 0 ≤ X1 ≤ 1
}
, (142)

intersect in the points (0, 0, 0) and (1, 1
2
, 1), and they belong to Ω. Moreover,

their orthogonal projections coincide with the boundary of the projections
(139) and (140) of Ω and we call Γ1 and Γ2 curve-edges of Ω.

For d.f.s g(x) we have

Example 40.

g(x) = x⇐⇒
∫ 1

0

g(x)(2x− g(x))dx =
1

3
.

125



Example 41.

g(x) =
x

2
⇐⇒

∫ 1

0

g(x)(2x− g(x))dx =
1

12
.

Proof. Projection of Ω to X3×X2 we have no given explicitly, but we project
Πi to X3×X2, i = 1, 2, . . . , 6 and compute the maximal α such that straight
line X2 − X3 = α is touch this projection. We find α = 1

12
for projection

of Π2, where X2 = 1
6
and X3 = 1

12
which have a solution g(x) = x

2
. Such

solution is unique, since the point
(
1
4
, 1
6
, 1
12

)
lying in Π2 - in the boundary of

Ω.

Example 42. In Section 6.3 we have mentioned that the sequence φ(n)/n,
n = 1, 2, 3 . . . , has a singular a.d.f. denoted by g0(x). Put

X(0) = (X
(0)
1 , X

(0)
2 , X

(0)
3 ) =

(∫ 1

0

g0(x)dx,

∫ 1

0

xg0(x)dx,

∫ 1

0

g20(x)dx

)
.

Then by (VI) X(0) ∈ intΩ. Since

X
(0)
1 = 1− 6

π2
, X

(0)
2 =

1

2
− 1

2

∏
p

(
1− 2

p2
+

1

p3

)
= 0.285 . . . ,

we have
0.250 · · · = minX3 ≤ X

(0)
3 ≤ maxX3 = 0.307 . . . .

Proof. SinceΩ intersect the line (X
(0)
1 , X

(0)
2 , X3) we can find the point (X

(0)
1 , X

(0)
2 )

in the projections Π4 and Π5 on the plane X1×X2. Then we express Π4 and
Π5 by X3 and we find

minX3 =
4(X

(0)
1 )3

9(X
(0)
1 −X

(0)
2 )

and maxX3 = 2X
(0)
1 − 1 +

(1−X(0)
1 )3

1− 2X
(0)
2

.

4.10.5 The law of composition

Let ((vi, ui))
N+1
i=0 be a finite sequence of points in [0, 1]2. Suppose that

(i) (v0, u0) = (0, 0), (vN+1, uN+1) = (1, 1),
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(ii) vi ≤ vi+1 and ui ≤ ui+1 for all i = 0, 1, . . . , N .

Defining ai and Bi as

ai = a(ui, vi, ui+1, vi+1) =

 (vi+1−vi)ui
(vi+1−vi)uivi + 1

2
(vi+1−vi)2ui

(vi+1−vi)u2i

 ,

Bi = B(ui, vi, ui+1, vi+1)

=

 (ui+1−ui)(vi+1−vi) 0 0
vi(ui+1−ui)(vi+1−vi) (ui+1−ui)(vi+1−vi)2 0
2ui(ui+1−ui)(vi+1−vi) 0 (ui+1−ui)2(vi+1−vi)

 ,

we form the sum

X =
N∑
i=0

ai +BiX
(i) . (143)

Theorem 76. Let X be determined by (143), then we have X ∈ Ω, and vice
versa, for any X ∈ Ω (i.e. X = F(g), g is d.f.) a sequence (X(i))Ni=0 ⊂ Ω,
which satisfies (143), can be found. 22

Proof. We shall first demonstrate the second statement. We have X = F(g),
where g is nondecreasing and g/(vi, vi+1) : (vi, vi+1) → [ui, ui+1] denotes a
restriction of g. Then by elementary reasoning one shows that the graph of
g/(vi, vi+1) has the linear expansion on [0, 1]2 given by

gi(x) =

{
g(x(vi+1−vi)+vi)

ui+1−ui − ui
ui+1−ui , if ui < ui+1,

0, if ui = ui+1,
(144)

for all x ∈ (0, 1), see the following Fig.

(ui, vi)

(ui+1, vi+1)

g(x)

(0, 0)

(1, 1)gi(x)

22We need to add the assumption (iii) g(vi − 0) ≤ ui ≤ g(vi + 0) for all i = 1, . . . , N .

127



Putting X(i) = F(gi) and assuming vi < vi+1, ui < ui+1, we find that

X
(i)
1 =

∫ 1

0

gi(x)dx

=
1

(ui+1 − ui)(vi+1 − vi)

∫ vi+1

vi

g(x)dx− ui
ui+1 − ui

,

X
(i)
2 =

∫ 1

0

xgi(x)dx

=
1

(ui+1 − ui)(vi+1 − vi)2

(∫ vi+1

vi

xg(x)dx− vi
∫ vi+1

vi

g(x)dx

)
− 1

2

ui
ui+1 − ui

,

X
(i)
3 =

∫ 1

0

g2i (x)dx

=
1

(ui+1 − ui)2(vi+1 − vi)

(∫ vi+1

vi

g2(x)dx− 2ui

∫ vi+1

vi

g(x)dx

)
+

(
ui

ui+1 − ui

)2

. (145)

As a result of these equalities, we have(∫ vi+1

vi

g(x)dx,

∫ vi+1

vi

xg(x)dx,

∫ vi+1

vi

g2(x)dx

)
= ai +BiX

(i),

which holds also for vi = vi+1 and ui = ui+1. The equality (143) is shown.
In order to prove the first statement of theorem, one observes that, for

a given
(
X(i)

)N
i=0
⊂ Ω and

(
(vi, ui)

)N+1

i=0
⊂ [0, 1]2, where X(i) = F(gi), and

gi is nondecreasing, one can guarantee the existence of a nondecreasing g :
[0, 1]→ [0, 1] having gi as in (144). Indeed, putting

g/(vi, vi+1) =

{
gi

(
x−vi

vi+1−vi

)
(ui+1 − ui) + ui, if vi < vi+1,

ui, if vi = vi+1,
(146)

we have (144) for all i = 0, 1, . . . , N , and hence the second statement of the
theorem can be applied to g.

Theorem 77. If X ∈ intΩ, then the moment problem X = F(g) has in-
finitely many solutions in d.f.s g.
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Proof. We start from (143). Assuming X ∈ intΩ, with the help of Theorems
74 and 75, we can find an index i such that Bi ̸= 0. The expression for X(i)

takes the form

X(i) = B−1
i

(
X− ai −

N∑
j=0,j ̸=i

aj +BjX
(j)

)
(147)

where
B−1
i = B−1(ui, vi, ui+1, vi+1) =

=

 1
(ui+1−ui)(vi+1−vi)

0 0

−vi
(ui+1−ui)(vi+1−vi)

2
1

(ui+1−ui)(vi+1−vi)
2 0

−2ui
(ui+1−ui)

2(vi+1−vi)
0 1

(ui+1−ui)
2(vi+1−vi)

 .

Here we consider the right hand side of (147) as a vector-valued function of

the variables
(
X(j)

)N
j=0,j ̸=i ⊂ Ω and ((vj, uj))

N+1
j=0 ⊂ [0, 1]2. Calculating the

limits of B−1
i ,aj,Bj as (vi, ui)→ (0, 0) and (vi+1, ui+1)→ (1, 1), we obtain 23

B−1
i → 1, aj → 0 for all j,Bj → 0 for all j ̸= i.

Consequently,

B−1
i

(
X− ai −

N∑
j=0,j ̸=i

aj +BjΩ

)
⊂ intΩ (148)

for any (vi, ui) and (vi+1, ui+1) sufficiently near to (0, 0) and (1, 1), respec-

tively. Thus, we have shown that for
(
X(j)

)N
j=0,j ̸=i ⊂ Ω it is possible to

compute X(i) ∈ Ω so that (143) is valid. Now, we can represent each
X(j), j = 0, 1, . . . , N in the form X(j) = F(gj), and finally, applying con-
struction (146), we infer that X = F(g), where for different X(j) we get
different g.

4.10.6 Linear neighbourhoods; Definition and construction

The purpose of the following is to study neighbourhoods O of X in the body
Ω. Here we shall use the notation

O = X+ V = {X+Y;Y ∈ V },
23Here we use the symbols 1 and 0 to denote the unit and zero matrices or vectors.
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where V denotes a suitable set of three-dimensional vectors. With the help
of operation (143) (as ui, vi, ui+1, vi+1 vary continuously), we can find new
surfaces and bodies lying in Ω, containing X, and forming neighbourhoods
of X in Ω. Using local coordinates, we can give the following classification:

Let a, b, c be non-coplanar vectors. Let

[a] , [±a] , [a,b] , [±a,±b] , [±a,±b, c]

denote the following sets of three-dimensional vectors:

[a] =
{
au+ ωu ; u ∈ [0, ε]

}
,

[±a] =
{
au+ ωu ; u ∈ [−ε, ε]

}
,

. . .

[±a,±b, c] =
{
au+ bv + cw + ω

√
u2 + v2 + w2; u, v ∈ [−ε, ε] , w ∈ [0, ε]

}
,

where u, v, w are variables, ω is a continuously differentiable vector-valued
function such that ω → 0 as u → 0, v → 0, w → 0, and ε is a sufficiently
small positive number. The sets

X+ [a] , X+ [±a] , X+ [a,b] , X+ [±a,±b] , X+ [±a,±b, c] ⊂ Ω

are called linear neighbourhoods of X in Ω. For the sake of brevity, we
call these neighbourhoods half-line, line, angular, planar and half-spherical
neighbourhoods of X in Ω, respectively.

Theorem 78. All the following sets

(0, 0, 0) + [(1, 1, 1)],

(1, 1/2, 1) + [(−1, 0,−2)],
(1/2, 1/3, 1/3) + [±(3, 1, 2),±(3, 2, 4)],

(1− v, (1/2)(1− v2), 1− v) + [±(1, v, 1)], 0 < v < 1,

(u, (1/2)u, u2) + [±(1, 1/2, 2u)], 0 < u < 1

are linear neighbourhoods in Ω. Here

(0, 0, 0), (1, 1/2, 1), (1/2, 1/3, 1/3), (1− v, (1/2)(1− v2), 1− v), (u, (1/2)u, u2)

are F-images of the functions from Fig. 5, respectively.
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Proof. We shall not give the details of the proof of Theorem 78, we show
only (1/2, 1/3, 1/3)+[±(3, 1, 2),±(3, 2, 4)] ⊂ Ω. PutX = F(g(u1, v1, u2, v2)).
Fig. 1 indicates that

X =a(0, 0, u1, v1) +B(0, 0, u1, v1)(0, 0, 0)

+a(u1, v1, u2, v2) +B(u1, v1, u2, v2)(1/2, 1/3, 1/3)

+a(u2, v2, 1, 1) +B(u2, v2, 1, 1)(1, 1/2, 1)

=X(u1, v1, u2, v2)

=

 1− v2 + 1
2
(v2 − v1)(u1 + u2)

1
2
− 1

6
v22(3− u1 − 2u2)− 1

6
v21(2u1 + u2)− 1

6
v1v2(u2 − u1)

1− v2 + 1
3
(v2 − v1)(u1u2 + u21 + u22)

 . (149)

Since X = (1/2, 1/3, 1/3) for u1 = v1 = 0, u2 = v2 = 1 and

∂X

∂v1
= (−1/2,−1/6,−1/3), ∂X

∂v2
= (−1/2,−1/3,−2/3),

∂X

∂u1
= (1/2, 1/6, 1/3),

∂X

∂u2
= (1/2, 1/3, 2/3),

we have

X =(1/2, 1/3, 1/3) + (−1/2,−1/6,−1/3)(v1 − 0) + (−1/2,−1/3,−2/3)(v2 − 1)

+(1/2, 1/6, 1/3)(u1 − 0) + (1/2, 1/3, 2/3)(u2 − 1)

+ω
√
u21+ v21 + (u2 − 1)2 + (v2 − 1)2,

where ω → 0 as v1, u1 → 0 and u2, v2 → 1. This completes the proof.

Notes 11. Almost clear

Theorem 79. If X =
∑N

i=0 ai +BiX
(i), and X(i) + Vi ⊂ Ω for all i = 0, 1, . . . , N , then

X+
∑N

i=0 BiVi ⊂ Ω .
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Theorem 80. If X + V ⊂ Ω, and Ṽ denotes the convex hull of V in the X2 and X3

directions, then X+ Ṽ ⊂ Ω.

Theorem 81. A sufficient condition that X ∈ intΩ is that the following three conditions
be satisfied:

(i) There is a half-spherical neighbourhood of X in Ω such that X + [±a,±b, c] ⊂ Ω
has a normal vector n with second co-ordinate different from zero.

(ii) There is a point X̃ ∈ Ω with a planar neighbourhood X̃ + [±ã,±b̃] ⊂ Ω such that
X̃1 = X1, X̃3 = X3, X̃2 ̸= X2, and the vector product ã × b̃ has a nonzero second
co-ordinate.

(iii) The second co-ordinates of n and X2 − X̃2 have mutually opposite signs.

Theorem 82. Assume that

(i) X can be decomposed as X =
N∑
i=0

ai +BiX
(i), where X(i) ∈ Ω for i = 0, 1, . . . , N ,

(ii) there is an index i such that X(i) ∈ intΩ.

Then X ∈ intΩ.

Theorem 83. Suppose there are two planar neighbourhoods of X in Ω such that

(i) X+ [±a1,±b1], X+ [±a2,±b2] ⊂ Ω, and

(ii) the vector product (a1 × b1)× (a2 × b2) has a nonzero first co-ordinate.

Then X ∈ intΩ.

Here we give a definition which we shall need below.
For X+[±a,±b, c], consider a vector n satisfying n× (a×b) = 0 and n ·c < 0 (scalar

product). n is termed a normal vector of the given half-spherical neighbourhood of X.

Theorem 84. Assume that

(i) X can be decomposed as X =
∑N

i=0 ai + BiX
(i), where X(i) ∈ Ω for

i = 0, 1, . . . , N ,

(ii) there are three indexes i ̸= j ̸= k ̸= i such that X(i), X(j), X(k) have
line neighbourhoods X(i) + [±a], X(j) + [±b], X(k) + [±c] ⊂ Ω,

(iii) the vectors Bia, Bjb, Bkc are non-complanar.

Then X ∈ intΩ.

Theorem 84 admit generalizations which involve also a limiting process.

Theorem 85. Let us suppose that

132



(i) a given point X ∈ Ω can be decomposed as X =
∑N

i=0 ai+BiX
(i), where

X(i) ∈ Ω for i = 0, 1, . . . , N , 24

(ii) there are three indexes 0 ≤ i, j, k ≤ N , with |i− j|, |i− k|, |j − k| > 1,
such that the limits

X(i) → X
(i)
0 , X(j) → X

(j)
0 , X(k) → X

(k)
0

exist as

(ui, vi, ui+1, vi+1)→ (u
(0)
i , v

(0)
i , u

(0)
i+1, v

(0)
i+1),

(uj, vj, uj+1, vj+1)→ (u
(0)
j , v

(0)
j , u

(0)
j+1, v

(0)
j+1),

(uk, vk, uk+1, vk+1)→ (u
(0)
k , v

(0)
k , u

(0)
k+1, v

(0)
k+1),

respectively.

Further, assume that

(iii) the points X
(i)
0 , X

(j)
0 , X

(k)
0 have line neighbourhoods

X
(i)
0 + [±a] , X(j)

0 + [±b] , X(k)
0 + [±c] ⊂ Ω ,

(iv) the limits

Bia

(ui+1 − ui)(vi+1 − vi)
→ ã,

Bjb

(uj+1 − uj)(vj+1 − vj)
→ b̃,

Bkc

(uk+1 − uk)(vk+1 − vk)
→ c̃,

exist, where
(ui, vi, ui+1, vi+1), (uj, vj, uj+1, vj+1), (uk, vk, uk+1, vk+1)
converge as in (ii).

Moreover, suppose that

(v) the vectors ã, b̃, c̃ are non-complanar.

Then X ∈ intΩ.

Proof. See [159, Lemma 14].

24Here X(i) = X(i)(ui, vi, ui+1, vi+1) = F(gi), gi is defined by (144), and the variables
(ui, vi, ui+1, vi+1), i = 0, 1, . . . , N , must satisfy the assumptions (i), (ii), and (iii) of The-
orem 76.
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4.10.7 Criteria for F(g) ∈ ∂Ω

Let g : [0, 1]→ [0, 1] be a given d.f. Define the following four sets depending
on the mapping g:

A = the set of points v(1) in which g has a one-side derivative with
0 < g′(v(1)) < +∞;

B = the set of points v(2) in which g has a jump discontinuity and
0 < v(2) < 1;

C = the set of constancy intervals (v(3), v(4)) of g in which g has a value with
0 < g < 1;

D = the set of continuity points v(5) of g in which g has Dini derivatives
such that D+g = D−g = +∞, and D+g = D−g = 0.

Theorem 86. If F(g) ∈ ∂Ω, then there exists a straight line passing through
the following set of points

{(
v(1), g(v(1))

)
; v(1) ∈ A

}
∪
{(

v(2),
g(v(2) + 0) + g(v(2))

2

)
; v(2) ∈ B

}
∪
{(

v(3) + v(4)

2
, g

(
v(3) + v(4)

2

))
; (v(3), v(4)) ∈ C

}
∪
{(
v(5), g(v(5))

)
; v(5) ∈ D

}
.

Proof. Consider an arbitrary finite set of elements from A . . .D. We shall
derive, first of all, that F(g) = X can be decomposed asX =

∑N
i=0 ai+BiX

(i)

(setting as usual X(i) = F(gi), where gi is the linear expansion of g
∣∣(vi, vi+1)

given by (9)), where X(i) → X
(i)
0 and

X
(i)
0 ∈

{
(0, 0, 0), (1, 1/2, 1), (1/2, 1/3, 1/3), (1− v, (1/2)(1− v2), 1− v),

(u, (1/2)u, u2);u, v ∈ (0, 1)
}

(150)

for such i which correspond to the choice of elements from A . . .D. Further,
with the help of neighbourhoods of these limiting vectors (Theorem 78), the
corresponding neighbourhood of X can be immediately (Theorem 85) found.
We shall complete the proof using the assumption X ∈ ∂Ω.

To do this, let us discuss the following four cases.
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a) Let g be a distribution function that has a non-zero finite left derivative
at v(1) ∈ (0, 1]. Suppose that the independent variable point (vi, ui) tends
to fixed (vi+1, ui+1) = (v(1), g(v(1))). Using these assumptions, the following
limit can be established

X(i) →
(
1
2
, 1
3
, 1
3

)
.

Here we shall only show the case X
(i)
3 → 1

3
; the cases X

(i)
1 → 1

2
and X

(i)
2 → 1

3

are completely similar.
Indeed, we can write

g(x) = g(vi+1) + g′(vi+1)(x− vi+1) + ω(x, vi+1)(x− vi+1)

for all x ∈ [v, vi+1], where ω(x, vi+1)→ 0 as x→ vi+1. Substituting that into
the formula (145), after some arrangements, we find

X
(i)
3 =

1(
g(vi+1)−g(vi)
vi+1−vi

)2

(vi+1 − vi)3

{
(g(vi+1)− g(vi))2(vi+1 − vi)

+ g′(vi+1)
2(1/3)(vi+1 − vi)3 + ω1(vi, vi+1)(1/3)(vi+1 − vi)3

+ 2g′(vi+1)ω2(vi, vi+1)(1/3)(vi+1 − vi)3

− 2(g(vi+1)− g(vi))g′(vi+1)(1/2)(vi+1 − vi)2

+ 2(g(vi+1)− g(vi))ω3(vi, vi+1)(1/2)(vi+1 − vi)2
}
,

where

ω1(vi, vi+1)(1/3)(vi+1 − vi)3 =
∫ vi+1

vi

ω(x, vi+1)
2(x− vi+1)

2dx,

ω2(vi, vi+1)(1/3)(vi+1 − vi)3 =
∫ vi+1

vi

ω(x, vi+1)(x− vi+1)
2dx,

ω3(vi, vi+1)(1/3)(vi+1 − vi)2 =
∫ vi+1

vi

ω(x, vi+1)(x− vi+1)dx

and, since ω1, ω2, ω3 → 0 as vi → vi+1, we finally obtain

X
(i)
3 →

1

g′(vi+1)2

{
g′(vi+1)

2 + (1/3)g′(vi+1)
2 − g′(vi+1)

2
}
=

1

3
.

b) Let us consider the case that g has a jump in v(2) ∈ (0, 1). We choose
variable points (vj, uj), (vj+1, uj+1) such that vj < v(2) < vj+1, uj = g(vj),
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uj+1 = g(vj+1), vj, vj+1 → v(2), and

v(2) − vj
vj+1 − vj

= v,

where v ∈ (0, 1) is an arbitrary constant. Then, if (uj, vj, uj+1, vj+1) runs
through these variables, we have

X(j) → (1− v, (1/2)(1− v2), 1− v).

c) Begin with the case when
(
v(3), v(4)

)
is any interval of a constant

value of g, where 0 < g < 1. In the same way as we choose the variables
(uj, vj, uj+1, vj+1), now select (uk, vk, uk+1, vk+1) such that vk ≤ v(3) < v(4) ≤
vk+1, uk, uk+1 → g, and

g − uk
uk+1 − uk

= u.

Then
X(k) → (u, (1/2)u, u2).

For a later application of Theorem 85 in this proof, we note that for
neighbouring v(2) and

(
v(3), v(4)

)
the corresponding variables coincide. In

this case we take (vj+1, uj+1) = (vk, uk) → (v(2), g), preferably. Then the
difference X−X0 in the proof of Theorem 85 can be expressed as

X−X0 = Bi

(
X(i) −X

(i)
0

)
+Bj

(
X(j) −X

(j)
0

)
+Bk

(
X(k) −X

(k)
0

)
+

(∫ vk

v(2)
(g − uk)dx,

∫ vk

v(2)
x(g − uk)dx,

∫ vk

v(2)
(g − uk)2dx

)
,

and the final vector on the right-hand side is O(t2). Thus again the limit in
(X−X0)/t→ 0 as t→ 0.

d) Let us suppose that the distribution function g has the Dini derivatives
D+g = D−g = +∞ and D+g = D−g = 0 at a continuity point v(5) ∈ (0, 1).
Having in mind the geometrical interpretation of the Dini derivatives, by
selecting two suitable sequences of variable vectors (us, vs, us+1, vs+1) one
can guarantee the existence of the limits

X(s) → (0, 0, 0) and X(s) → (1, 1/2, 1).

These cases are obtained in the limit when all of the sides of the rectangles
shown in [159, Fig. 6] suitably tend to zero.
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For our further aims, to apply Theorem 85, we need to establish the limits
in (iv). To do this, we have already found in Theorem 78 the neighbourhoods
of all limiting vectors from a)–d). When

(ui, vi, ui+1, vi+1), . . . , (us, vs, us+1, vs+1)

run through the variables in a)–d) we verify that

Bi(3, 1, 2)

(ui+1 − ui)(vi+1 − vi)
→
(
3, 3v(1), 6g(v(1))

)
,

Bj(1, v, 1)

(uj+1 − uj)(vj+1 − vj)
→
(
1, v(2), g(v(2) + 0) + g(v(2))

)
,

Bk(1, (1/2), 2u)

(uk+1 − uk)(vk+1 − vk)
→
(
1,
v(3) + v(4)

2
, 2g

(
v(3) + v(4)

2

))
,

Bs(1, 1, 1)

(us+1 − us)(vs+1 − vs)
→
(
1, v(5), 2g(v(5))

)
,

Bs(−1, 0,−2)
(us+1 − us)(vs+1 − vs)

→
(
−1,−v(5),−2g(v(5))

)
.

Finally, the corresponding vector product of limit vectors has the co-ordinate
X3 different from zero for all interesting cases. Thus the additional parallelity
assumption in (v) of Theorem 85 is valid.

As a consequence of this theorem, using F(g) ∈ ∂Ω, we easily obtain that
all the limiting vectors are co-planar and we have therefore shown Theorem
86. In conclusion, it should only be noted that in cases a)–d) we can choose
an arbitrary finite number of elements from A . . .D, respectively, and at these
there must exist independently specified variables (un, vn, un+1, vn+1).

25

For the sake of more clarity, see a geometrical illustration of this result
in [159, Fig. 7.]:

25This assumption may be unrealizable if v(2) and (v(3), v(4)) are neighbouring, and
therefore we use (20’) or the note in c).
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Theorem 86 implies the following restriction upon the nature of those
distribution functions which can be F-mapped on the surface ∂Ω.

Theorem 87. In order that the d.f. g(x) should satisfy F(g) ∈ ∂Ω, it is
necessary that either

(i) g is continuous in (0, 1) and the part of its graph included in the open
square (0, 1)2 takes the form of a line-segment in (0, 1)2 (see a list of
these graphs in Fig. 2). Express it as y = ax + b. If a ̸= 0, then
F(g) possesses a half-spherical neighbourhood having the normal vector
(b, a,−1/2); or

(ii) g is a step-function such that all midpoints of its jumps and intervals
of constancy from the open square (0, 1)2 lie on a common straight line.
Write it as y = ax+ b and suppose that at least one step 26 of the graph

26A step of g consists of a vertical segment associated to a jump of g and the neighbouring
interval of constancy of g.
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of g lies in the open square (0, 1)2. Then a half-spherical neighbourhood
of F(g) can be found, with the normal vector (−b,−a, 1/2).

Proof. Let F(g) ∈ ∂Ω. We adopt the notations of Theorem 86 and assume

first that g has a jump in v
(2)
0 ∈ (0, 1). Claim: It is not possible to choose a

sequence of points of type v(1) so that v(1) → v
(2)
0 . Suppose, on the contrary,

that (
v(1), g(v(1))

)
→
(
v
(2)
0 , g(v

(2)
0 )
)
, or(

v(1), g(v(1))
)
→
(
v
(2)
0 , g(v

(2)
0 + 0)

)
.

Since, by Theorem 86 all of these
(
v(1), g(v(1))

)
and

(
v
(2)
0 ,

g(v
(2)
0 +0)+g(v

(2)
0 )

2

)
must be lying on a fixed straight-line, the only possibility is that

(
v(1), g(v(1))

)
→

(
v
(2)
0 ,

g(v
(2)
0 + 0) + g(v

(2)
0 )

2

)
.

This is impossible, and the claim is proved.
A similar analysis can be done for sequences of v(2), (v(3), v(4)) and v(5)

tending to v
(2)
0 . Thus, for a given v

(2)
0 , there exists a suitable ε so that g has,

on (v
(2)
0 −ε, v

(2)
0 )∪(v(2)0 , v

(2)
0 +ε), the following properties: g is continuous; g has

derivative zero at all points of differentiability; g cannot have a point of type
v(5) and an interval (v(3), v(4)). Since (see K.M. Garg [59]) for any continuous
strictly increasing function f which has a zero-derivative almost everywhere
27 there exists a residual set of points with D+f = D−f = +∞, D+f =

D−f = 0, then g is a constant function on (v
(2)
0 − ε, v

(2)
0 ) and (v

(2)
0 , v

(2)
0 + ε).

Along the same lines, it can be shown that if g has an interval (v(3), v(4))
of constant value of g, 0 < g < 1, the boundary points v(3) and v(4) are the
jump-points of g.

Notes 12. Here we give a complete proof from [159, pp. 201–204]:

Proof. Collecting all these results, we obtain that whenever the function g has at most
one point of type v(2) or an interval of type (v(3), v(4)), then g is a step-function.

To complete the possible cases, let us assume that g is continuous in (0, 1), but has no
element of type

(
v(3), v(4)

)
. Then the unit interval can be split into three sub-intervals, say

27such function is said to be singular.
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[0, c], (c, d), [d, 1], so that g takes the value 0 in [0, c], 1 in [d, 1], and is strictly increasing
in (c, d). If in addition to this, the set of points v(1) is dense in (c, d), then the set of
points

(
v(1), g(v(1))

)
is also dense in the graph of g

∣∣
(c,d), and according to Theorem 86 the

graph is a line-segment. If g cannot have v(1)-point in a sub-interval (e, f) ⊂ (c, d), then
the restriction g

∣∣
(e,f) of g is singular. Making use of Garg’s (above mentioned) theorem,

we may argue that the set of points v(5) is dense in (e, f). But then, since g is continuous,
the set of points

(
v(5), g(v(5))

)
is also dense in the graph of g

∣∣
(e,f). Using here Theorem

86, one derives that this graph forms a line-segment. This is impossible because of the
existence of v(5).

Let us proceed to find an expression for the half-spherical neighbourhoods of points

F(g) of g specified by (i) and (ii). We start with a decomposition F(g) =
N∑
i=0

ai + BiX
(i)

constructed as in the proof of Theorem 76.
In case (i) we may assume that (vi, ui) and (vi+1, ui+1) are chosen from the straight-

line y = ax+ b with suitable i. Then X(i) = ( 12 ,
1
3 ,

1
3 ), and we begin with the construction

of that half-spherical neighbourhood(
1

2
,
1

3
,
1

3

)
+
[
±(3, 1, 2),±(3, 2, 4), (0,−1, 0)

]
. (151)

There is a point ( 12 ,
5
16 ,

1
3 ) lying under ( 12 ,

1
3 ,

1
3 ). Since it may be put in the form(

1

2
,
5

16
,
1

3

)
= X

(
1

3
, 0,

1

3
,
3

4

)
by virtue of the expression (149) for X(u1, v1, u2, v2) and since

∂X

∂v2
=

(
− 2

3
,−1

2
,−8

9

)
∂X

∂u2
=

(
3

8
,
3

16
,
1

14

)
,

we find that ( 12 ,
5
16 ,

1
3 ) has a planar neighbourhood in Ω. Summing up the result and using

convexity, provided by Theorem 73, under the lines parallel to the X2-axis, we shall then
complete our proof of (151).

Now the decomposition of F(g) and Theorem 79 imply

F(g) +
[
±Bi(3, 1, 2), ±Bi(3, 2, 4), Bi(0,−1, 0)

]
⊂ Ω . (152)

One easily sees that if (c, d, e) is a normal vector to (151) (compare the definition over
Theorem 82, then (c, d, e)B−1

i is a normal vector to (152). Since (151) has (0, 1,−1
2 ) as

its normal vector, and(
0, 1,−1

2

)
B−1

i =
1

(ui+1 − ui)2(vi+1 − vi)

(
ui − vi

ui+1 − ui
vi+1 − vi

,
ui+1 − ui
vi+1 − vi

, −1

2

)
(153)

=
1

(ui+1 − ui)2(vi+1 − vi)
(b, a,−1

2
) , (154)

then the half-spherical neighbourhood (152) of the image F(g) has a normal vector (b, a,−1
2 )

as asserted.
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Using the same procedure from the above construction, we can now find a half-spherical
neighbourhood of F(g), where g is specified by (ii). Assume that there are neighbouring
v(2) and (v(3), v(4)). We distinguish two cases, depending on whether v(2) = v(3) or v(2) =
v(4). Observe that the transformation Λ transfers immediately the case v(2) = v(4) to v(2) =
v(3), so that it remains to consider the case v(2) = v(3). In this case F(g) can be decomposed

into the sum F(g) =
N∑
i=0

ai+BiX
(i), where some X(i) may be put in the form X(i) = F(g̃)

for a one-step function g̃. We shall use the representation for g̃ given in (1), where
g̃ = g(u1, v1, u2, v2), 0 < u1 = u2 < 1, 0 < v1 < 1, v2 = 1, and we again use the expression
(149) that gives X(i) = X(u1, v1, u2, v2). Now let y = ax+ b be the line joining the points(
v(2), g(v(2)+0)+g(v(2))

2

)
,

(
v(3)+v(4)

2 , g

(
v(3)+v(4)

2

))
, and y = ãx + b̃ joining

(
v1,

u1

2

)
and(

v1+1
2 , u1

)
. Graphically, see following Fig.

(ui, vi)

(ui+1, vi+1)

y = ax+ b

v(2) = v(3) v(4) 0 1 = v2

y = ãx+ b̃

v1

u1 = u2

Now we can show that the partial derivatives of X with respect to the parameters v1,
v2, u1, and u2 are

∂X

∂v1
= −u1(1, v1, u1) ,

∂X

∂v2
= (−1 + u1)(1, 1, 1 + u1)

∂X

∂u1
= (1− v1)

(
1

2
,
1

6
(1 + 2v1), u1

)
∂X

∂u2
= (1− v1)(

1

2
, (2 + v1), u1).

Moreover, the increments dv1, dv2, du1, and du2 must satisfy dv2 ≤ 0 and du1 ≤ du2,
and, in addition, the differential of X becomes

dX =
∂X

∂v1
dv1 +

∂X

∂v2
dv2 +

(
∂X

∂u1
+
∂X

∂u2

)(
du2 + du1

2

)
+

(
∂X

∂u2
− ∂X

∂u1

)(
du2 − du1

2

)
.

So we arrive at

F(g̃) +

[
±(1, v1, u1), ±

(
1,

1 + v1
2

, 2u1

)
,
(
0,

1− v1
6

, 0
)
, (1, 1, 1 + u1)

]
⊂ Ω . (155)

Now we make use of the inner products(
− b̃,−ã, 1

2

)
(1, v1, u1) = 0

(
− b̃,−ã, 1

2

)(
1,

1 + v1
2

, 2u1

)
= 0
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(
− b̃,−ã, 1

2

)(
0,

1− v1
6

, 0
)
< 0 ,

(
− b̃,−ã, 1

2

)
(1, 1, 1 + u1) =

1

2
− u1 ,

and conclude that (155) will be either a half-spherical neighbourhood of F(g̃) with normal
vector (−b̃,−ã, 12 ) if

1
2 ≤ u1, or a spherical neighbourhood for u1 <

1
2 .

But again the decomposition of F(g), Theorem 79, and

(−b̃,−ã, 12 )B
−1
i

=
(
−b̃(ui+1 − ui) + ãvi

ui+1 − ui
vi+1 − vi

− ui,−ã
ui+1 − ui
vi+1 − vi

,
1

2

) 1

(ui+1 − ui)2(vi+1 − vi)

=

(
− b,−a, 1

2

)
1

(ui+1 − ui)2(vi+1 − vi)

yield that

F(g) +

[
±Bi(1, v1, u1),±Bi

(
1,

1 + v1
2

, 2u1

)
,Bi

(
0,

1− v1
6

, 0
)]
⊂ Ω (156)

is a half-spherical neighbourhood of F(g) with the normal vector (−b,−a, 12 ), and the
proof is complete.

Having done all this, we may now conclude the proof of Theorem 70.

Theorem 88. We have
∂Ω =

∪
1≤i≤4

Πi.

Proof. Suppose that g satisfies condition (i) and g̃ condition (ii) from The-
orem 87. For the points X = F(g) and X̃ = F(g̃) we have, according to
this theorem, two half-spherical neighbourhoods in Ω, with normal vectors
(b, a,−1/2) and (−b̃,−ã, 1/2), respectively. Now we state the result:

If X, X̃ ∈ ∂Ω and X1 = X̃1, X3 = X̃3, then X2 > X̃2.
Indeed, let us assume, to the contrary, that X2 ≤ X̃2. Then the points

X and X̃ (or, in the case X2 = X̃2, its small shift) satisfy all the three
conditions in Lemma 11, and thus they have spherical neighbourhoods in Ω;
this is a contradiction. We thus obtain a separation of F-images of g which
are described in (i) and (ii) of Theorem 87 either to the upper and lower
surfaces of ∂Ω, respectively, or to the interior of Ω.

Now we use that the functions g which satisfy (i) of Lemma 16 can have
only the graphs of types g(1) . . . g(4) from Fig. 2. Then, using notations (2), let
Π1 . . .Π4 be their F-images in Ω. By virtue of the expression g(u1, v1, u2, v2)
in (1) for g(1) . . . g(4), we obtain a parametric representation of Π1 . . .Π4.
Eliminating parameters from these equations, we obtain the canonical equa-
tion of Π1 . . .Π4 as in (4). One sees immediately that any intersection Πi∩Πj
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of two different surfaces from Π1 . . .Π4 coincide with the intersection of their
boundaries. If a point X runs through this common curve, one can also com-
pute the identity g(i) = g(j) at the equation X = F(g(i)) = F(g(j)), (1 ≤ i,
j ≤ 4). In an alternative proof, one uses the normal vectors (bi, ai,−1/2) and
(bj, aj,−1/2) to half-spherical neighbourhoods of F(g(i)) and F(g(j)), respec-
tively, constructed as in the proof of (i) of Theorem 87. Then the direction
vector considered in Theorem 83 can be found as the vector product

(bi, ai,−1/2)× (bj, aj,−1/2).

Applying F(gi) = F(gj) ∈ ∂Ω and Theorem 83, we find that the first co-
ordinate of the product must be zero. The only possibility is that ai = aj,
and consequently bi = bj and g

(i) = g(j).

In fact, the mapping F specifies a one-to-one correspondence between the
functions of Fig. 2 and the points X of the upper boundary surface of Ω.

Theorem 89. We have
∂Ω =

∪
5≤i≤7

Πi .

Proof. Let us consider one-step functions listed in Fig. 3. Their expression
g(u1, v1, u2, v2) in (137) is determined by two collections of conditions v1 = 0,
0 < u1 = u2 < 1, 0 < v2 < 1 or 0 < v1 < 1, 0 < u1 = u2 < 1, v2 = 1. Using
the F-mapping, we can extend the surfaces Π5, Π6 (without boundary) to
the following enlarged sets

Π8 =
{
F(g); v1 = 0, 0 < u1 = u2 < 1, 0 < v2 < 1

}
,

Π9 =
{
F(g); 0 < v1 < 1, 0 < u1 = u2 < 1, v2 = 1

}
,

respectively. Taking into account expression (149), we can rewrite paramet-
rically

Π8 =

{(
1−v2+v2u2

1
2
− 1

2
v22(1−u2)

1−v2+v2u22

)
; 0 < u2 < 1 , 0 < v2 < 1

}
,

Π9 =

{(
(1−v1)u1

1
2
− 1

2
(1−u1)− 1

2
v21u1

(1−v1)u21

)
; 0 < u1 < 1 , 0 < v1 < 1

}
.

Since the parameters u2 and v2 in Π8 can be eliminated as

u2 =
X1 −X3

1−X1

, v2 =
(1−X1)

2

1 +X3 − 2X1

, (157)
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the expression for Π8 takes the form

Π8 =

{
(X1, X2, X3);X2 =

1

2
− 1

2

(1−X1)
3

1 +X3 − 2X1

,

X2
1 < X3 < X1, 0 < X1 < 1

}
.

Similarly, in the case Π9,

u1 =
X3

X1

, 1− v1 =
X2

1

X3

, (158)

and we can write

Π9 =

{
(X1, X2, X3);X2 = X1 −

1

2

X3
1

X3

;

X2
1 < X3 < X1, 0 < X1 < 1

}
.

Together with Theorem 74, we obtain that the projections of Π8 and Π9 on
the X1 ×X3-plane are the same as the projection of the domain Ω.

Moreover, it is easy to verify that Π8 and Π9 intersect in a curve

Π7 =

{(1
2
,
1

2
− 1

16X3

, X3

)
;

1

4
< X3 <

1

2

}
,

where 1
2
= X1, and we simply deduce that every X ∈ Π8 with X1 <

1
2
must

lie under Π9 and every X ∈ Π9 with X1 >
1
2
must lie under Π8, in both cases

with respect to the X1 ×X3-plane.
Recall that every point from Π8∪Π9 is the F-image of a one-step function

and we may apply (ii) of Theorem 87, so that then each one has a half-
spherical neighbourhood with a normal vector (−b,−a, 1

2
), where the second

co-ordinate is negative. But then we make again use of Theorem 81 and
conclude that all the points from Π8 lying above Π9 and all the points from
Π9 lying above Π8 must lie in the interior of Ω. We simply write this relation
as Π0

8 ∪ Π0
9 ⊂ intΩ, where

Π0
8 =

{
F(g) ; v1 = 0 , 0 < u1 = u2 < 1 , 0 < v2 < 1 , v2(1− u2) <

1

2

}
,

Π0
9 =

{
F(g) ; 0 < v1 < 1 , 0 < u1 = u2 < 1 , v2 = 1 , (1− v1)u1 <

1

2

}
.
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4.10.8 Open problems for dimension s = 4

Solve the moment problem

(X1, X2, X3, X4) =

(∫ 1

0

g(x)dx,

∫ 1

0

xg(x)dx,

∫ 1

0

x2g(x)dx,

∫ 1

0

g2(x)dx

)
.

E.g. for g(x) = 2x− x2 it has the unique solution.

5 Operations with d.f.s

Given a sequence xn in [0, 1), let the sequence yn be defined by one of the
following ways:

yn = f(xn), f : [0, 1]→ [0, 1],
yn = x1 + · · ·+ xn mod 1,
yn = x1+···+xn

n
,

yn = nxn mod 1,
yn = αxn mod 1,
yn = xnun,
yn = xn

un
mod 1,

yn = max(xn, xn+1) =
xn+xn+1+|xn−xn+1|

2
,

yn = (xn+1, . . . , xn+s),
yn = (x2n−1, x2n),
yn is the sequence F (xm, xn) mod 1 for m,n = 1, 2, . . . , ordered in such

way that the values F (xm, xn) mod 1 with m,n = 1, 2, . . . , N , form the first
N2 terms of yn, n = 1, 2, . . . , where F : [0, 1]2 → R.

In every of the above cases the connection between G(xn) and G(yn) is
an open problem. In what follows some results will be presented:

5.1 Statistical independence

The following part continues Section 3.2.

Theorem 90. Let xn and yn be two sequences in (0, 1)2. If
(i) xn and yn are statistically independent;
(ii) xn is u.d.;
(iii) g(x) ∈ G(yn) are continuous;

then the sequence xn + yn mod 1, n = 1, 2, . . . is u.d.
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Proof. By (i) and (ii) every g(x, y) ∈ G(xn, yn) has the form g(x, y) = xg(y).
Divide unit square [0, 1]2 into three parts

X1(t) = {(x, y) ∈ [0, 1];x+ y < t},
X2(t) = {(x, y) ∈ [0, 1]; 1 < x+ y < t+ 1, x ≤ t},
X3(t) = {(x, y) ∈ [0, 1]; 1 < x+ y < t+ 1, x > t}, see

0 1t

t
@

@
@
@@

@
@
@
@
@

@
@
@
@

@
@@

@
@
@
@
@

@
@@

X1(t)

X2(t)

X3(t)

By integration∫
X1(t)

1.dg(x, y) =

∫ t

0

dx

∫ t−x

0

1.dg(y) =

∫ t

0

g(t− x)dx∫
X2(t)

1.dg(x, y) =

∫ t

0

dx

∫ 1

1−x
1.dg(y) =

∫ t

0

(1− g(1− x))dx∫
X3(t)

1.dg(x, y) =

∫ 1

t

dx

∫ t+1−x

1−x
1.dg(y) =

∫ 1

t

(g(t+ 1− x)− g(1− x))dx.

Thus ∫
x+y mod 1∈[0,t)

1dg(x, y) =

∫ t

0

1.dx−
∫ 1

0

g(1− x)dx

+

∫ t

0

g(t− x)dx+
∫ 1

t

g(t+ 1− x)dx.

Now, integration by substitution gives
(j) −

∫ 1

0
g(1− x)dx = −

∫ 1

0
g(x)dx,

146



(jj)
∫ t
0
g(t− x)dx =

∫ t
0
g(x)dx,

(jjj)
∫ 1

t
g(t+ 1− x)dx =

∫ 1

t
g(x)dx,

then finally we have∫
x+y mod 1∈[0,t) 1dg(x, y) = t.

Example 43. Let xn and yn be two sequences in [0, 1). Assume that
(i) xn and yn are u.d.
(ii) xn and yn are statistically independent.

Then by Theorem 90 the sequence xn + yn mod 1 is again u.d. It can be
proved directly by Weyl’s criterion if we prove

1

N

N∑
n=1

({xn + yn})k →
1

k + 1
, k = 1, 2, . . .

From (ii) follows that the sequence (xn, yn) has a.d.f. g(x, y) = xy and by
Helly theorem

1

N

N∑
n=1

({xn + yn})k →
∫ 1

0

∫ 1

0

({x+ y})kdxdy, k = 1, 2, . . .

Now∫ 1

0

∫ 1

0

({x+y})kdxdy =

∫∫
0≤x+y≤1

(x+y)kdxdy+

∫∫
1≤x+y≤2

(x+y−1)kdxdy

which is 1
k+1

and the proof is finished.

Theorem 91. Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence. Then xn and
log n mod 1 are statistically independent, i.e. every g(x, y) ∈ G(xn, {log n})
has the form g(x, y) = x.g(1, y).

Proof. Let N ∈ [eK , eK+1) i.e., N = eK+θN , and divide n ≤ N to the subsets
n ∈ [ek, ek+1), k ≤ K. For such n we have {log n} ∈ [0, y)⇐⇒ n ∈ [ek, ek+y).
For n ∈ [ek, ek+y) we ask the number of xn ∈ [0, x) which is x(ek+y − ek) +
O(ekDek + ek+yDek+y). Omitting integer parts here we use discrepancy DM

of the initial string x1, x2, . . . , xM and the formula A([0, x);M ;xn) = xM +
O(MDM). 28 Thus

A([0, x)× [0, y);N ; (xn, {log n}))
N

28O-constant can be put = 1 and in the interval [eK , eK+min(y,θN )], for simplification,
an error term we put O(ekDeK + eK+yDeK+y ).
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=

∑K−1
k=0 x(e

k+y − ek) + x(eK+min(y,θN ) − eK) +O(
∑K

k=0 e
kDek + ek+yDek+y)

N
.

As N →∞ and θN → u, we have∑K−1
k=0 x(e

k+y − ek)
N

=

∑K−1
k=0 x(e

k+y − ek)∑K−1
k=0 (e

k+y − ek)

∑K−1
k=0 (e

k+y − ek)
N

→ x
ey − 1

e− 1

1

eu
,

x(eK+min(y,θN ) − eK)
N

→ x
emin(y,u) − 1

eu
,

O(
∑K

k=0 e
kDek + ek+yDek+y)

N
= O

(∑K
k=0 e

kDek + ek+yDek+y∑K
k=0(e

k+y − ek)

)
→ 0.

In the final parenthesis we have used
ekD

ek
+ek+yD

ek+y

ek+y−ek → 0 as k → ∞. Col-
lected all above results we have

A([0, x)× [0, y);N ; (xn, {log n}))
N

→ x

(
ey − 1

e− 1

1

eu
+
emin(y,u) − 1

eu

)
= xgu(y),

where gu(y) is the same as in (8).

A consequence of Theorem 90 and 91.

Theorem 92. Given a sequence xn, then the sequences

xn mod 1 and (xn + log n) mod 1

are simultaneously u.d.

Notes 13. Theorem 92 was proved by G. Rauzy (1973), see [129, p. 2–27, 2.3.6.]. Other

proof can be found in [124, p. 249–250, Exerc. 5.11] and furthermore it is noted that logn

cannot be instead by (log n)δ, δ > 1 since (log n)δ mod 1, n = 1, 2, . . . is u.d.

In 2011 Y. Ohkubo [122] proved that in Theorem 92 the sequence log n
can be replaced by log(n log n).

Theorem 93. An arbitrary u.d. sequence xn mod 1 and log(n log n) mod 1
are statistically independent.
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Proof. G. Rauzy [135] proved that two sequences xn mod 1 and yn mod 1 are
statistically independent if and only if

lim
N→∞

(
1

N

N∑
n=1

e2πi(hxn+kyn) −
(

1

N

N∑
n=1

e2πihxn
)(

1

N

N∑
n=1

e2πikyn
))

= 0

for every integers h and k. 29 Now, by Abel partial summation we obtain

N∑
n=1

e2πi(hxn+k log(n logn))

N−1∑
n=1

(
e2πik log(n logn) − e2πik log((n+1) log(n+1))

) n∑
j=1

e2πihxn

+ e2πik log(N logN)

N∑
j=1

e2πihxn (159)

and ∣∣e2πik log(n logn) − e2πik log((n+1) log(n+1))
∣∣ ≤ 2π|k|(log n) + 1

n log n
. (160)

Thus ∣∣∣∣ 1N
N∑
n=1

e2πi(hxn+k log(n logn))

∣∣∣∣ ≤
1

N

N−1∑
n=1

2π|k|(log n) + 1

n log n
n

∣∣∣∣ 1n
n∑
j=1

e2πihxj
∣∣∣∣+ ∣∣∣∣ 1N

N∑
j=1

e2πihxj
∣∣∣∣ (161)

which tends to 0.

Using Theorem 93 Ohkubo [122] proved that in Theorem 91 the log n can
be instead by log pn, pn is the increasing sequence of all primes.

Theorem 94. Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence. Then xn and
log pn mod 1 are statistically independent.

29P.J. Grabner and R.F. Tichy [65] characterize the statistical independence by L2

discrepancy
∫ 1

0

∫ 1

0

(
FN (x, y)− FN (x, 1)FN (1, y)

)2
dxdy as

1
16π4

∑∞
k,l=−∞
k,l ̸=0

1
k2l2

∣∣ 1
N

∑N
n=1 e

2πi(kxn+lyn) − 1
N2

∑N
m,n=1 e

2πi(kxn+lym)
∣∣2.
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Proof. Firstly he proved that

log pn = log(n log n) + o

(
log log n

log n

)
+O

(
1

log pn

)
. (162)

Then Ohkubo extend Theorem 10 to the Theorem 197 of two dimensional
case. Then the limit

lim
n→∞

(log pn − log(n log n)) = 0,

given by (162), implies

G((xn, {log pn})) = G(xn, {log(n log n)}) = G((xn, {log n})). (163)

Proof of (162). He starting with the prime number theorem of the form

π(x) =
x

log x − 1
+O

(
x

(log x)3

)
. (164)

This implies
pn
n

= log pn − 1 +O

(
1

log pn

)
.

Now we use (see [169])

pn
n

= log n+ (log log n − 1) + o

(
log log n

log n

)
which implies (162).

Similarly, using

lim
n→∞

(
pn
n
− log(n log n)

)
= −1.

Ohkubo (2011) [122] proved that

Theorem 95. Let pn, n = 1, 2, . . . , be the increasing sequence of all primes.
An arbitrary u.d. sequence xn mod 1 and pn

n
mod 1 are statistically indepen-

dent. Thus, for every sequence xn,

xn mod 1 and

(
xn +

pn
n

)
mod 1

are simultaneously u.d.
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Example 44. Y. Ohkubo notes that Theorem 94 and 95 implies u.d. mod1
of the sequences pnθ + log pn and pnθ +

pn
n
, n = 1, 2, . . .

Example 45. (a) The sequences xn and yn =constant are statisically inde-
pendent.

(b) The sequences (xn, yn), (1− xn, yn), (xn, 1− yn), (yn, xn) are statisti-
cally independent, simultaneously.

(c) Assume that the sequence xn ∈ [0, 1) has a.d.f. cα(x). Then an
arbitrary sequence yn ∈ [0, 1) is statistically independent with xn.

(d) If the sequences xn, x
′
n, yn, y

′
n from [0,1) satisfy

lim
N→∞

1

N

N∑
n=1

|xn − x′n|+ |yn − y′n| = 0

then (xn, yn) and (x′n, y
′
n) are statistically independent simultaneously.

5.2 Simple operations with sequences

Theorem 96. Let xn, n = 1, 2, . . . , be a sequence in (0, 1]. If every g(x) ∈
G(xn) is strictly increasing, then the 2N -terms blocks sequence with the block∑

n∈X

xn mod 1, X ⊂ {1, 2, . . . , N}

is u.d., if N →∞.

Proof. For integer h > 0 we starting with the Weyl sum∣∣∣∣ 12N ∑
X⊂{1,2,...,N}

e2πih
∑

n∈X xn

∣∣∣∣ = ∣∣∣∣ 12N
N∏
n=1

(
1 + e2πixn

)∣∣∣∣ = N∏
n=1

| cosπhxn|,

because
∣∣1+e2πixn∣∣ = 2| cos πhxn|. Now, if πhxn ∈

[
π
2
−δ, π

2
+δ
]
for 0 < δ < π

2
,

then | cos πhxn| ≤ 1− ε, and if we put Ih =
1
h

[
1
2
− δ

π
, 1
2
+ δ

π

]
, then

N∏
n=1

| cosπhxn| ≤ (1− ε)A(Ih;N ;xn).

If for every x ∈ (0, 1) there exists g(x) ∈ G(xn) such that g(x) in x increase,
then xn, n = 1, 2, . . . is everywhere dense in [0, 1]. Then A(Ih;N ; xn) → ∞
as N →∞, and the Weyl’s sum tends to 0.
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Theorem 96 can be applied to log n mod 1, since (see Example 1) all
g(x) ∈ G(log n mod 1) strictly increases.

The following problem in AMM was proposed by A.M. Odlyzko [121] and
then solved by D.G. Cantor [25].

Theorem 97. Let the sequence xn in [0, 1) have at least one irrational limit
point and An, n = 1, 2, . . . , be the block of 2n numbers

An = (ε1x1 + ε2x2 + · · ·+ εnxn; εi = ±1) mod 1.

Then the sequence of individual blocks An, n = 1, 2, . . . , is u.d.

Proof. A relevant Weyl sum has the form

1

2n

∑
εi=±1,i=1,2,...,n

e2πih(ε1x1+···+εnxn) =
n∏
i=1

cos(2πhxi).

Let xki → θ as i → ∞ and let θ be irrational. Then hxki → hθ and
| cos 2πhθ| < 1 for integer h ̸= 0. This implies zero limit of the above Weyl
sum.

Theorem 98. Let the sequence xn from (0, 1) has a continuous a.d.f. g(x).
Then the sequence

yn =
1

xn
mod 1

has the a.d.f.

g̃(x) =
∞∑
n=1

g

(
1

n

)
− g

(
1

n+ x

)
.

Notes 14. C.f. I.J. Schoenberg (1928) [145], E.K. Haviland (1941) [69], L. Kuipers
(1957) [91], a proof can be found in [92, p. 56, Th. 7.6]. E. Hlawka (1961) [72], (1964) [73]
considered the multi–dimensional case. G.Pólya (cf. I.J. Schoenberg (1928) [145]) proved
that for g(x) = x we have

∞∑
n=1

(
1

n
− 1

n+ x

)
=

∫ 1

0

1− tx

1− t
dt.

For history consult [92, p. 66, Notes].

Theorem 66 has the following reformulation:
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Theorem 99. Let f : [0, 1] → [0, 1] be a function such that, for all x ∈
[0, 1] the set f−1([0, x)) can be expressed as a union of finitely many pairwise
disjoint subintervals Ii(x) ⊆ [0, 1]. Let xn mod 1 be such that each its term
appears only finitely many times in it. Then

G(f(xn mod 1)) = {gf ; g ∈ G(xn mod 1)}.

Theorem 100. If xn mod 1 and f(xn mod 1) have the same a.d.f. g(x),
then

g(x) = gf (x) for x ∈ [0, 1].

Theorem 101 (S.H. Molnár [107]). Let f be a real function and let g1 and
g2 be two d.f.s. For any g1 and g2 there exists a sequence xn, n = 1, 2, . . . ,
such that the a.d.f. of xn mod 1 is g1 and the a.d.f. of f(xn) mod 1 is g2
if and only if the graph of f mod 1 is everywhere dense in the unit square
[0, 1]2.

Theorem 102 (I.J. Schoenberg [145]). See [92, p. 68, Ex. 7.19]: If the
sequence xn mod 1 has a continuous a.d.f. g(x) then the sequence

g ({xn})

is u.d.

Proof. Assume xn ∈ [0, 1). In the simple case if #{n≤N ;xn<x}
N

→ g(x) and

g(x) increases, using g(xn) < x ⇔ xn < g−1(x) we find #{n≤N ;g(xn)<x}
N

→
g(g−1(x)) = x.

In the general case, for non-increasing g(x), we can using Weyl’s criterion
that the sequence g(xn) is u.d. if and only if

1

N

N∑
n=1

(g(xn))
k → 1

k + 1

and by Helly theorem

1

N

N∑
n=1

(g(xn))
k →

∫ 1

0

(g(x))kdg(x).

Now, integration by parts
∫ 1

0
g(x)dg(x) = [g(x)g(x)]10 −

∫ 1

0
g(x)dg(x) which

implies
∫ 1

0
g(x)dg(x) = 1

2
. Also∫ 1

0
(g(x))2dg(x) = [(g(x))2g(x)]10 − 2

∫ 1

0
g(x)g(x)dg(x)

which implies
∫ 1

0
(g(x))2dg(x) = 1/3, etc.
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Theorem 103. If u.d. of xn is proved by Fejér’s theorem [171, 2.2.10, 2.6.1]
(see also Theorem 33 in this book) then for every α > 0 the sequence αxn mod
1 is u.d. again.

Theorem 104 ([156]). The sequence

xn ∈ [0, 1), n = 1, 2, . . . ,

is u.d. if and only if the double sequence

|xm − xn|, m, n = 1, 2, . . . ,

has the a.d.f. g(x) = 2x− x2.

Here the double sequence |xm − xn|, for m,n = 1, 2, . . . , is ordered to an
ordinary sequence yn in such a way that the first N2 terms of yn are |xm−xn|
for m,n = 1, 2, . . . , N .

Proof. For every continuous f : [0, 1]→ R we have∫ 1

0

∫ 1

0

f(|x− y|)dxdy =

∫ 1

0

f(x)dg(x) =

∫ 1

0

f(x)(2− 2x)dx.

The argument is that∫ 1

0

∫ 1

0

|x− y|kdxdy =
2

(k + 1)(k + 2)
=

∫ 1

0

xk(2− 2x)dx

for all k = 0, 1, 2, . . . . Then we use Part (I) of Theorem 21 because for u.d.
sequence xn, n = 1, 2, . . . we have

lim
N→∞

1

N2

N∑
m,n=1

f(|xm − xn|) =
∫ 1

0

∫ 1

0

f(|x− y|)dxdy.

For symmetric and continuous F (x, y) on [0, 1]2 by (723) we have proved
for d.f.s FN(x) and g(x) that

1

N2

N∑
m,n=1

F (xm, xn)−
∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =
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∫ 1

0

∫ 1

0

F (x, y)dFN (x)dFN (y)−
∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =

= −2
∫ 1

0

(FN (x)− g(x))dxF (x, 1) +
∫ 1

0

∫ 1

0

(FN (x)− g(x))(FN (y) + g(y))dydxF (x, y).

From it∣∣∣∣∣ 1

N2

N∑
m,n=1

F (xm, xn)−
∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

∣∣∣∣∣ ≤
√∫ 1

0

(FN (x)− g(x))2dx

×

2

√∫ 1

0

(F ′
x(x, 1))

2dx+

√∫ 1

0

∫ 1

0

(FN (y) + g(y))2(F ′′
xy(x, y))

2dxdy

 .

Specially for F (x, y) = |x− y| we find∣∣∣∣∣ 1

N2

N∑
m,n=1

|xm − xn| −
∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)

∣∣∣∣∣ ≤
2

√∫ 1

0

(FN(x)− g(x))2dx

1 +

√∫ 1

0

(1 + g(x))2dx

 .

5.3 Convolution (an information)

Let g1 : [0, 1] → [0, 1] and g2 : [0, 1] → [0, 1] be two d.f.s and extend they to
d.f.s defined in g1 : (−∞,∞)→ [0, 1] and g2 : (−∞,∞)→ [0, 1]. By statistic
d.f. g(x) is a convolution g(x) = g1(x) ∗ g2(x) if

g(x) =

∫ ∞

−∞
g1(x− y)dg2(y). (165)

Since dg2(y) = 0 if y ̸∈ [0, 1], then we have

g(x) =

∫ 1

0

g1(x− y)dg2(y).

Convolution g(x) is different other than 0 and 1 only for 0 < x < 2. Thus

g(x) =

{∫ x
0
g1(x− y)dg2(y) if 0 ≤ x ≤ 1,∫ 1

x−1
g1(x− y)dg2(y) + g2(x− 1) if 1 ≤ x ≤ 2

(166)
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since in the second part, for 1 ≤ x ≤ 2 we have
∫ 1

0
g1(x − y)dg2(y) =∫ x−1

0
1.dg2(y) +

∫ 1

x−1
g1(x− y)dg2(y).

Now, let x
(1)
n and x

(2)
n be two sequences in [0, 1) and F

(1)
N (x) and F

(2)
N (x)

by two relevant step d.f. defined in (1), respectively. Using (166) we have:
If 0 ≤ x ≤ 1, then

F
(1)
N (x) ∗ F (2)

N (x) =

∫ x

0

F
(1)
N (x− y)dF (2)

N (y) =
N∑
n=1,

0≤x(2)n <x

F
(1)
N (x− x(2)n )

1

N

=
N∑
n=1,

0≤x(2)n <x

#{m ≤ N ; x
(1)
m < x− x(2)n }
N2

=
#{(m,n);m,n ≤ N, x

(1)
m + x

(2)
n < x}

N2
.

If 1 ≤ x ≤ 2, then

F
(1)
N (x) ∗ F (2)

N (x) = F
(2)
N (x− 1) +

∫ 1

x−1

F
(1)
N (x− y)dF (2)

N (y)

=
#{n ≤ N ;x

(2)
n < x− 1}
N

+
N∑
n=1,

x−1≤x(2)n <1

F
(1)
N (x− x(2)n )

1

N

=
#{(m,n);m,n ≤ N ; x

(2)
n < x− 1}

N2
+

N∑
n=1,

x−1≤x(2)n <1

#{m ≤ N ; x
(1)
m + x

(2)
n < x}

N2

=
#{(m,n);m,n ≤ N, x

(1)
m + x

(2)
n < x}

N2
.

Then we have

F
(1)
N (x) ∗ F (2)

N (x) =
#{(m,n);m,n ≤ N, x

(1)
m + x

(2)
n < x}

N2
(= FN2(x)) (167)

for every 0 ≤ x ≤ 2.
Thus the d.f. g(x) of x

(1)
m + x

(2)
n ∈ [0, 2) ordered by increasing m + n is

g(x) = g1(x) ∗ g2(x).
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5.4 Characteristic function (an information)

Let g(x) be a d.f. The characteristic function ĝ(x) of g(x) is defined as

ĝ(t) =

∫ ∞

−∞
eitxdg(x) (168)

for t ∈ (−∞,∞). We have

̂g1(x) ∗ g2(x) = ĝ1(x).ĝ2(x). (169)

Example 46. For an arbitrary sequence xn in [0, 1) with step d.f. FN(x) we
have

F̂N(t) =

∫ 1

0

eitxdFN(x) =
1

N

N∑
n=1

eitxn .

According to (167) we have

F̂N2(t) =

∫ 2

0

eitxdFN2(x) =
1

N2

N∑
m,n=1

eit(x
(1)
m +x

(2)
n )

= F̂
(1)
N (t).F̂

(2)
N (t) =

1

N

N∑
n=1

eitx
(1)
n .

1

N

N∑
n=1

eitx
(2)
n .

Theorem 105 (Continuity theorem, Lévy 1925). Let gn(x) be a sequence of
d.f.s and ϕn(t) the corresponding sequence of their characteristic functions.
Then gn(x)→ g(x) weakly if and only if ϕn(t)→ ϕ(t) pointwise on R, ϕ(t) is
continuous at 0. In addition, in this case, ϕ(t) is the characteristic function
of g(x) and the convergence ϕn(t)→ ϕ(t) is uniformly on any compact subset.

C.f. Tenenbaum [177, p. 285, Th. 3].
(I) Let X be Gauss normal, then the characteristic function φ of X is

φ(t) = e−t
2/2.

(II) If the random variable X has characteristic function φ(t) then X + a
has ψ(t) = eiatφ(t).

(III) If random variables X and Y are independent with characteristic
functions φ1 and φ2, respectively, the X + Y has φ(t) = φ1(t)φ2(t).
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5.5 Random variables (Some results)

(I) If X and Y are independent random variables and f, g : R → R are
arbitrary functions, then f(X), g(Y ) are independent also.
(II) Let X and Y be independent random variables with densities fX(x),
fY (y). Then the random variable W = X +Y has density fW (z) of the form
of convolution

fW (z) =

∫ ∞

−∞
fX(x)fY (z − x)dx. (170)

6 Special sequences (extension of Section 3)

6.1 D.f.s of ξ(3/2)n mod 1 (continuation 3.8)

In this part we study the set of all d.f.s of sequences ξ(3/2)n mod 1, ξ ∈ R.
Most results are from [162]. (For open problems see Section 3.8.)

Definition 7. Let f : [0, 1] → [0, 1] be a function such that, for all x ∈
[0, 1], f−1([0, x)) can be expressed as a sum of finitely many pairwise disjoint
subintervals Ii(x) of [0, 1] with endpoints αi(x) ≤ βi(x). For any distribution
function g(x) we put

gf (x) =
∑
i

g(βi(x))− g(αi(x)). (171)

The mapping g → gf is the main tool of this part. A basic property is
expressed by the following statement (previously written in Theorem 66):

Theorem 106. Let xn mod 1 be a sequence having g(x) as a d.f. associated
with the sequence of indices N1, N2, . . . . Suppose that any term xn mod 1 is
repeated only finitely many times. Then the sequence f({xn}) has the d.f.
function gf (x) for the same N1, N2, . . . , and vice-versa any d.f. of f({xn})
has this form.

Proof. The form gf (x) is a consequence of

A([0, x);Nk; f({xn})) =
∑
i

A(Ii(x);Nk; xn) and

A(Ii(x);Nk; xn) = A([0, βi(x));Nk;xn)− A([0, αi(x));Nk; xn) + o(Nk).
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On the other hand, suppose that g̃(x) is a d.f. of f({xn}) associated with
N1, N2, . . . . The Helly selection principle guarantee a suitable subsequence
Nn1 , Nn2 , . . . for which some g(x) is a distribution function of xn mod 1. Thus
g̃(x) = gf (x).

6.1.1 Functional equation gf = gh

Let xn = ξ(3/2)n mod 1, n = 1, 2, . . . , and denote f(x) = 2x mod 1 and
h(x) = 3x mod 1. In this case, for every x ∈ [0, 1], we have

gf (x) = g(f−1
1 (x)) + g(f−1

2 (x))− g(1/2),

gh(x) = g(h−1
1 (x)) + g(h−1

2 (x)) + g(h−1
3 (x))− g(1/3)− g(2/3),

with inverse functions

f−1
1 (x) = x/2, f−1

2 (x) = (x+ 1)/2,

h−1
1 (x) = x/3, h−1

2 (x) = (x+ 1)/3, h−1
3 (x) = (x+ 2)/3.

Theorem 107. Any d.f. g(x) of ξ(3/2)n mod 1 satisfies gf (x) = gh(x) for
all x ∈ [0, 1].

Proof. Using {q{x}} = {qx} for any integer q, then we have {2{ξ(3/2)n}} =
{3{ξ(3/2)n−1}}. Therefore f({ξ(3/2)n}) and h({ξ(3/2)n−1}) formed the
same sequence and the rest follows from Theorem 106. See Fig.
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6.1.2 Intervals of uniqueness for f(x) = 2x mod 1 and h(x) = 3x mod
1

The above theorem yields to the following sets of uniqueness for d.f.s of
ξ(3/2)n mod 1. Here
• X ⊂ [0, 1] is said to be set of uniqueness for gf = gh if for any two
g1, g2 solutions of gf = gh the equality g1(x) = g2(x) for x ∈ X implies
g1(x) = g2(x) for every x ∈ [0, 1].

Theorem 108. Denote f(x) = 2x mod 1 and h(x) = 3x mod 1 an let g1, g2
be any two d.f.s satisfying gif (x) = gih(x) for i = 1, 2 and x ∈ [0, 1]. Denote

I1 = [0, 1/3], I2 = [1/3, 2/3], I3 = [2/3, 1].

If g1(x) = g2(x) for x ∈ Ii ∪ Ij, 1 ≤ i ̸= j ≤ 3, then g1(x) = g2(x) for all
x ∈ [0, 1].

Proof. Assume that a distribution function g satisfies gf = gh on [0, 1] and
let Ji, J

′
j, J

′′
k be the intervals from [0, 1] described in the following Fig.

�������������������������������������������������������
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OOx

J1

J2

J3

J4

1/3

2/3

1

J ′
2

J ′
4
J ′
6

J ′′
3

J ′′
1

1/2

J ′
1

J ′
3

J ′
5

J ′′
2

y
//

h−1
1 (x) f−1

1 (x) h−1
2 (x) f−1

2 (x)

h−1
3 (x)

+ +

+ +

2/5 3/50 1/3 2/3 1

There are three cases of Ii ∪ Ij.
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1◦. Consider first the case I2 ∪ I3. Using the values of g on I2 ∪ I3, and
the equation gf = gh on J1, we can compute g(h−1

1 (x)) for x ∈ J1. Mapped
x ∈ J1 to x′ ∈ J2 by using h−1

1 (x) = f−1
1 (x′), we find g(f−1

1 (x)) for x ∈ J2.
Then, by the equation gf = gh on J2 we can compute g(h−1

1 (x)) for x ∈ J2,
from it we have g(f−1

1 (x)) for x ∈ J3, etc. Thus we have g(x) for x ∈ I1.
2◦. Similarly for the case I1 ∪ I2.
3◦. In the case I1 ∪ I3, firstly we compute g(1/2) by using gf (1/2) =

gh(1/2) and then, an infinite process of computation of g(x) for x ∈ I2, we
shall divide into two parts:

In the first part, using g(y), for y ∈ I1 ∪ I3, and gf = gh on [0, 1], we
compute g(h−1

2 (x)) for x ∈ J ′
1. Mapped x ∈ J ′

1 → x′ ∈ J ′
2 by h−1

2 (x) =
f−1
1 (x′) and employed gf = gh we have find g(h−1

2 (x) for x ∈ J ′
2. In the same

way this leads to g(f−1
2 ) on J ′

3, g(h
−1
2 ) on J ′

3, g(f
−1
1 ) on J ′

4, g(h
−1
2 ) on J ′

4, and
so on.

Similarly, in the second part, from g on I1 ∪ I3 and gf = gh on [0, 1] we
find g(h−1) on J ′′

1 , g(f
−1
2 ) on J ′′

2 , g(h
−1
2 ) on J ′′

2 , g(f
−1
1 ) on J ′′

3 , g(h
−1
2 ) on J ′′

3 ,
etc.

In both parts these infinite processes not covered the values g(2/5) and
g(3/5). The rest follows from the equations gf (1/5) = gh(1/5) and gf (4/5) =
gh(4/5).

Directly from the above Fig. we have

Theorem 109. The set X = [2/9, 1/3]∪ [1/2, 1] and the set X∗ = [0, 1/2]∪
[2/3, 7/9] are also sets of uniqueness.

Proof. Using the values of g(x) on x ∈ X, and the equation gf = gh on J1,
we can compute g(f−1

1 (x)) for x ∈ J1. This gives g(x) on [1/3, 1] which is the
set of uniqueness. Symmetrizing X we find the set X∗ of uniqueness.

6.1.3 Intervals of uniqueness for f(x) = 4x(1− x) mod 1 and h(x) =
x(4x− 3)2 mod 1

Now, let

f(x) = 4x(1− x), h(x) = x(4x− 3)2 for x ∈ [0, 1].

In this case
gf (x) = g(f−1

1 (x)) + 1− g(f−1
2 (x)),
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gh(x) = g(h−1
1 (x)) + g(h−1

3 (x))− g(h−1
2 (x)),

where

f−1
1 (x) =

1−
√
1− x
2

, f−1
2 (x) = 1− f−1

1 (x),

and for h−1
j we known only

h−1
i,j (x) =

1

2

(3

2
− h−1

k (x)

)
±

√(
3

2
− h−1

k (x)

)2

− x

4h−1
k (x)

 , (172)

for every x ∈ [0, 1] and 1 ≤ i ̸= j ̸= k ≤ 3. In this case the equation gf = gh
has solutions

c0(x), c 5−
√
5

8

(x), c 5+
√

5
8

(x), g0(x) :=
2

π
arcsin

√
x.

Theorem 110. Let f(x) = 4x(1− x), h(x) = x(4x− 3)2 and

I1 = [0, 1/4], I2 = [1/4, 3/4], I3 = [3/4, 1].

If g1, g2 solve gf = gh on whole interval [0, 1] and g1(x) = g2(x) for x ∈ Ii∪Ij,
1 ≤ i ̸= j ≤ 3, then g1(x) = g2(x) for every x ∈ [0, 1].

Proof. It follows directly from the following Fig.
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2

J ′
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J ′
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J ′
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3
4 1

−→
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|↑
x

h−1
1

h−1
2

h−1
3

f−1
1 f−1

2

6.1.4 Equation
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0 characterizes gf = gh

Next we return to Theorem 107. We derive an integral formula for testing
gf = gh. Denote

30

F (x, y) = |{2x}−{3y}|+|{2y}−{3x}|−|{2x}−{2y}|−|{3x}−{3y}|. (173)

Theorem 111. The continuous d.f. g(x) satisfies gf = gh on [0, 1] if and
only if ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0. (174)

Proof. Let xn, n = 1, 2, . . . be an auxiliary sequence in [0, 1] such that all
(xm, xn) are points of continuity of F (x, y), and let cX(x) be the characteristic
function of the set X. Applying c[0,x)(xn) = c(xn,1](x), we can compute∫ 1

0

(
1

N

N∑
n=1

cf−1([0,x))(xn)−
1

N

N∑
n=1

ch−1([0,x))(xn)

)2

dx =
1

N2

N∑
m,n=1

Ff,h(xm, xn),

where

Ff,h(x, y) =max(f(x), h(y)) + max(f(y), h(x))−max(f(x), f(y))

30Here again f(x) = 2x mod 1 and h(x) = 3x mod 1.
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−max(h(x), h(y)) =

=
1

2

(
|f(x)− h(y)|+ |f(y)− h(x)| − |f(x)− f(y)| − |h(x)− h(y)|

)
.

(175)

Applying the Helly lemma we have (cf. Example 102)∫ 1

0

(gf (x)− gh(x))2dx =

∫ 1

0

∫ 1

0

Ff,h(x, y)dg(x)dg(y) (176)

for any continuous d.f. g. Here 2Ff,h(x, y) = F (x, y) in (173).

Second proof. Helly theorem gives

1

N2

N∑
m,n=1

F (xm, xn)→
∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

1

N2

N∑
m,n=1

F (f(xm), h(xn))→

{ ∫ 1

0

∫ 1

0
F (f(x), h(y))dg(x)dg(y)∫ 1

0

∫ 1

0
F (x, y)dgf (x)dgh(y).

(177)

Then∫ 1

0

∫ 1

0

|{2y} − {3x}|dg(x)dg(y) =
∫ 1

0

∫ 1

0

|x− y|dgf (x)dgh(y),∫ 1

0

∫ 1

0

|{2x} − {3y}|dg(x)dg(y) =
∫ 1

0

∫ 1

0

|x− y|dgh(x)dgf (y),

−
∫ 1

0

∫ 1

0

|{2x} − {2y}|dg(x)dg(y) = −
∫ 1

0

∫ 1

0

|x− y|dgf (x)dgf (y),

−
∫ 1

0

∫ 1

0

|{3x} − {3y}|dg(x)dg(y) = −
∫ 1

0

∫ 1

0

|x− y|dgh(x)dgh(y)

and by integrals in Section 13∫ 1

0

∫ 1

0

|x− y|dgf (x)dgh(y) =
∫ 1

0

gf (x)dx+

∫ 1

0

gh(x)dx− 2

∫ 1

0

gf (x)gh(x)dx∫ 1

0

∫ 1

0

|x− y|dgh(x)dgf (y) =
∫ 1

0

gh(x)dx+

∫ 1

0

gf (x)dx− 2

∫ 1

0

gh(x)gf (x)dx

−
∫ 1

0

∫ 1

0

|x− y|dgf (x)dgf (y) = −2
(∫ 1

0

gf (x)dx−
∫ 1

0

g2f (x)dx

)
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−
∫ 1

0

∫ 1

0

|x− y|dgh(x)dgh(y) = −2
(∫ 1

0

gh(x)dx−
∫ 1

0

g2h(x)dx

)
which gives (176).

Example 47. We verify Theorem 174 for g3(x) which solve gf = gh by
Example 49.
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g3(x)

x− 1
3

2x− 5
6

x

Firstly we compute∫ j+1
6

j
6

(∫ i+1
6

i
6

F (x, y)dx

)
dy, i, j = 0, 1, . . . , 5 (178)

for F (x, y) defined in (173). For example we compute∫ 1
6

0

∫ 1
6

0
F (x, y)dxdy, where in this case

F (x, y) = |2x− 3y|+ |3x− 2y| − |2x− 2y| − |3x− 3y|.
By the following Fig. we have F (x, y) = A,B,C,D
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3x− 2y = 0 y − x = 0

3y − 2x = 0

A
B

C

D

where
A = 3y − 2x+ 2y − 3x− 5(y − x) = 0,
B = 3y − 2x+ 3x− 2y − 5(y − x) = 6x− 4y,
C = 3y − 2x+ 3x− 2y − 5(x− y) = −4x+ 6y,
D = 2x− 3y + 3x− 2y − 5(x− y) = 0.

From it ∫ 1
6

0

∫ 1
6

0

F (x, y)dxdy =
1

972
.

By program ”DERIVE” all integrals in (178) are (indexed from the bottom)
0 − 1

432
7

1944
− 5

1944
1

3888
1

972

− 1
432

− 5
1944

37
3888

− 5
432

13
1944

1
3888

7
1944

37
3888

− 23
972

2
81

− 5
432

− 5
1944

− 5
1944

− 5
432

2
81

− 23
972

37
3888

7
1944

1
3888

13
1944

− 5
432

37
3888

− 5
1944

− 1
432

− 1
972

1
3888

− 5
1944

7
1944

− 1
432

0

 (179)

Then we see that sums over lines of matrix (179) are 0, i.e.∫ 1

0

∫ 1

0

F (x, y)dxdy = 0
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which is equivalent that xf = xg. Furthermore for every j = 0, 1, 2, 3, 4, 5 we
have (cf. (744)) ∫ j+1

6

j
6

(∫ 1

0

F (x, y)dx

)
dy = 0. (180)

New, we shall compute

ai,j =
d

dx
g3(x)

d

dy
g3(y) for x ∈

(
i

6
,
i+ 1

6

)
, y ∈

(
j

6
,
j + 1

6

)
,

where i, j = 0, 1, 2, 3, 4, 5. This ai,j form the matrix (indexed from the bot-
tom) 

0 0 1 2 2 1
0 0 2 4 4 2
0 0 2 4 4 2
0 0 1 2 2 1
0 0 0 0 0 0
0 0 0 0 0 0

 (181)

Combining (179) and (181) we find∫ 1

0

∫ 1

0

F (x, y)dg3(x)dg3(y) =
5∑

i,j=0

ai,j

∫ j+1
6

j
6

(∫ i+1
6

i
6

F (x, y)dx

)
dy

=1.
2

81
+ 2.
−23
972

+ 2.
37

3888
+ 1.

7

1944

+2.
−23
972

+ 4.
2

81
+ 4.
−5
432

+ 2.
−5
1944

+2.
37

3888
+ 4.
−5
432

+ 4.
13

1944
+ 2.

1

3888

+1.
7

1944
+ 2.

−5
1944

+ 2.
1

3888
+ 1.

1

972
=0.

Again as in (180) ∫ j+1
6

j
6

(∫ 1

0

F (x, y)dg3(x)

)
dg3(y) = 0 (182)

for j = 0, 1, 2, 3, 4, 5.
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Notes 15. [164, Prop. 15]: If d.f. g(x) solve
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0, then we have

0 =
∫ 1

0
F (x, y)dg(y) for every x ∈ [0, 1]. Here we assume F (x, y) is a copositive and g(x)

is strictly increasing. See also Theorem 247 in this book.

6.1.5 g(x) and 1− g(1− x) satisfies gf = gh simultaneously

We present two proof, second one by using the integral (174).

Theorem 112. The d.f. g(x) and 1−g(1−x) satisfies gf = gh simultaneously
for all x ∈ [0, 1].

By the following Fig. we see that g5(x) = 1 − g3(1 − x). Their solution
of gf = gh are given in Examples 49 and 55.
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x− 1
3

2x− 5
6

x

0 11
6

2
6

3
6

4
6

5
6

�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�

g5(x)
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First proof. Using transformation x = 1− y then we have

1. 1− x
2
= y+1

2
,

2. 1− x+1
2

= y
2
,

3. 1− x
3
= y+2

3
,

4. 1− x+1
3

= y+1
3
,

5. 1− x+2
3

= y
3
.
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Put g1(x) = 1− g(1− x). Then

gf (y)− gh(y) = g1f (x)− g1h(x) (183)

for every x = 1− y ∈ [0, 1].

Second proof. We shall prove that for all (x, y) ∈ [0, 1]2 except (x, y) in lines

x = 0, x =
1

3
, x =

1

2
, x =

2

3
, x = 1 and

y = 0, y =
1

3
, y =

1

2
, y =

2

3
, y = 1 (184)

we have
F (x, y) = F (1− x, 1− y). (185)

We start with

|{2x} − {3y}| = |2x− [2x]− (3y − [3y])| = |(2x− 3y + [3y]− [2x])|

=

{
2x− 3y + [3y]− [2x] > 0

−(2x− 3y + [3y]− [2x]) > 0.
(186)

Thus from integer parts [3y] − [2x] in Fig. 1 we have the fractional part
|{2x} − {3y}| in Fig. 2 without straight lines (184).
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Similarly to (186) we have

|{2(1− x)} − {3(1− y)}| = |{−2x} − {−3y}|
= | − 2x− [−2x]− (−3y − [−3y])|
= |(3y − 2x+ [−3y]− [−2x])|

=

{
3y − 2x+ [−3y]− [−2x] > 0

−(3y − 2x+ [−3y]− [−2x]) > 0
(187)

and similarly to Fig.1 and Fig. 2 we have

0 1

[−3y]− [−2x]

(−1)− (−1)
= 0

(−2)− (−1)

= −1

(−3)− (−1)
= −2

(−1)− (−2)
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(−2)− (−2)

= 0

(−3)− (−2)
= −1

Figure 3 Figure 4
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Thus from Fig. 2 and Fig. 4 we see that

|{2x} − {3y}| = |{2(1− x)} − {3(1− y)}| (188)

for every (x, y) ∈ [0, 1]2 without straight lines (184). Similarly it holds also
for the parts |{2y} − {3x}|, |{2x} − {2y}| and |{3x} − {3y}| of F (x, y) and
thus

F (x, y) = F (1− x, 1− y) (189)

for all (x, y) ∈ [0, 1]2 except straight lines (184). If d.f. g(x) is continuous at
x = 0, 1

3
, 1
2
, 2
3
, 1, then∫ ∫

over (184)

F (x, y)dg(x)dg(y) = 0
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and thus∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =

∫ 1

0

∫ 1

0

F (1− x, 1− y)dg(x)dg(y). (190)

Using transformation x→ 1− x, y → 1− y we have∫ 1

0

∫ 1

0

F (1− x, 1− y)dg(x)dg(y)

=

∫ 1

0

∫ 1

0

F (x, y)d(g(1− x))d(g(1− y)) (191)

and thus ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0⇐⇒∫ 1

0

∫ 1

0

F (x, y)d(1− g(1− x))d(1− g(1− y)) = 0. (192)

Finally we use Theorem 111.

In the following Fig. 5 and 6 we give different values of |{2x} − {3y}| and
|{2(1− x)} − {3(1− y)}| on the straight lines (184).
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6.1.6 Explicit formula for F (x, y) = |{2x} − {3y}|
+ |{2y} − {3x}| − |{2x} − {2y}| − |{3x} − {3y}|

We give explicit formulas of |{2x} − {3y}|, |{2y} − {3x}|, −|{2x} − {2y}|,
−|{3x} − {3y}| respectively, in the following Figures 7–14:
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Figure 9
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Figure 11
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6.1.7 Integration
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) by parts

Since F (x, y) in (173) is discontinuous we cannot apply (541) in the form∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = F (1, 1)−
∫ 1

0

g(y)dyF (1, y)
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−
∫ 1

0

g(x)dxF (x, 1) +

∫ 1

0

∫ 1

0

g(x)g(y)dxdyF (x, y). (193)

Here for F (x, y) in (173) we have
F (1, 1) = 0,
F (1, y) = {3y}+ {2y} − {2y} − {3y} = 0,
F (x, 1) = 0.

In the following we apply W.H. Young’s [196] repeated integration by parts
(see (206), (207) and (208)) on every continuous part of F (x, y) defined on
subs-squares of [0, 1]2 by Fig. 8,10,12 and 14.
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By Fig. 15 for arbitrary d.f. g(x) we have∫ 1

0

∫ 1

0

|{2x} − {3y}|dg(x)dg(y)

= −g(1/2)g(1)− g(1)g(1/3)− g(1)g(2/3)− 2g(1/2)g(1/3)− 2g(1/2)g(2/3) (194)

+

∫ 1/2

0

g(x)g((2/3)x+ 2/3)(−4)dx+

∫ 1

0

g(x)g((2/3)x+ 1/3)(−4)dx

+

∫ 1

0

g(x)g((2/3)x)(−4)dx+

∫ 1

1/2

g(x)g((2/3)x− 1/3)(−4)dx (195)

+

∫ 1

0

g(1/2)g(y)6dy +

∫ 1

0

g(1)g(y)3dy +

∫ 1

0

g(x)g(1)2dx
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+

∫ 1

0

g(x)g(1/3)4dx+

∫ 1

0

g(x)g(2/3)4dx. (196)

Here (194) are jumps, (195) are integrals over diagonals and (196) integrals
over orthogonal lines.

Figure 16
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By Fig. 16 for arbitrary d.f. g(x) we have∫ 1

0

∫ 1

0

|{2y} − {3x}|dg(x)dg(y)

= −g(1/3)g(1)− g(2/3)g(1)− 2g(1/3)g(1/2)− 2g(2/3)g(1/2)− g(1)g(1/2) (197)

+

∫ 1/3

0

g(x)g((3/2)x+ 1/2)(−6)dx+

∫ 2/3

0

g(x)g((3/2)x)(−6)dx

+

∫ 1

1/3

g(x)g((3/2)x− 1/2)(−6)dx+

∫ 1

2/3

g(x)g((3/2)x− 1)(−6)dx (198)

+

∫ 1

0

g(1/3)g(y)4dy +

∫ 1

0

g(2/3)g(y)4dy +

∫ 1

0

g(1)g(y)2dy

+

∫ 1

0

g(x)g(1)3dx+

∫ 1

0

g(x)g(1/2)6dx. (199)

Here (197) are jumps, (198) are integrals over diagonals and (199) integrals
over orthogonal lines.
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Notes 16. Since∫ 1

0

∫ 1

0

|{2y} − {3x}|dg(x)dg(y) =
∫ 1

0

∫ 1

0

|x− y|dgf (x)dgh(y),∫ 1

0

∫ 1

0

|{2x} − {3y}|dg(x)dg(y) =
∫ 1

0

∫ 1

0

|x− y|dgh(x)dgf (y),

then we have (194), (195) and (196) equal to (197), (198) and (199), respectively. For
(195)=(198) we give∫ 1/2

0

g(x)g((2/3)x+ 2/3)(−4)dx =

∫ 1

2/3

g(x)g((3/2)x− 1)(−6)dx,∫ 1

0

g(x)g((2/3)x+ 1/3)(−4)dx =

∫ 1

1/3

g(x)g((3/2)x− 1/2)(−6)dx,∫ 1

0

g(x)g((2/3)x)(−4)dx =

∫ 2/3

0

g(x)g((3/2)x)(−6)dx,∫ 1

1/2

g(x)g((2/3)x− 1/3)(−4)dx =

∫ 1/3

0

g(x)g((3/2)x+ 1/2)(−6)dx.
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By Fig. 17, for an arbitrary d.f. g(x) we have∫ 1

0

∫ 1

0

|{2x} − {2y}|dg(x)dg(y)

= −g(1/2)g(1)− g(1)g(1/2)− g(1/2)g(1/2)− g(1/2)g(1/2) (200)
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+

∫ 1/2

0

g(x)g(x+ 1/2)(−4)dx+

∫ 1

0

g(x)g(x)(−4)dx+

∫ 1

1/2

g(x)g(x− 1/2)(−4)dx

(201)

+

∫ 1

0

g(1/2)g(y)4dy +

∫ 1

0

g(1)g(y)2dy +

∫ 1

0

g(x)g(1/2)4dx+

∫ 1

0

g(x)g(1)2dx. (202)

Here (200) are jumps, (201) are integrals over diagonals and (202) integrals
over orthogonal lines.

Figure 18
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By Fig. 18 for an arbitrary d.f. g(x) we have∫ 1

0

∫ 1

0

|{3x} − {3y}|dg(x)dg(y)

= −g(1/3)g(1)− g(2/3)g(1)− g(1)g(1/3)− g(1)g(2/3)− 2.g(1/3)g(2/3)

− 2g(2/3)g(2/3)− 2.g(1/3)g(1/3)− 2g(2/3)g(1/3) (203)

+

∫ 1/3

0

g(x)g(x+ 2/3)(−6)dx+

∫ 2/3

0

g(x)g(x+ 1/3)(−6)dx+

∫ 1

0

g(x)g(x)(−6)dx

+

∫ 1

1/3

g(x)g(x− 1/3)(−6)dx+

∫ 1

2/3

g(x)g(x− 2/3)(−6)dx (204)

+

∫ 1

0

g(1/3)g(y)6dy +

∫ 1

0

g(2/3)g(y)6dy +

∫ 1

0

g(1)g(y)3dy
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+

∫ 1

0

g(x)g(1)3dx+

∫ 1

0

g(x)g(2/3)6dx+

∫ 1

0

g(x)g(1/3)6dx. (205)

Here (203) are jumps, (204) are integrals over diagonals and (205) integrals
over orthogonal lines.

Proof. Let F (x, y) be continuous on the interval [x1, x2]×[y1, y2] ⊂ [0, 1]2 and
g(x) be a d.f. Two-times integration by parts given by W.G. Young [196]∫ x2

x1

∫ y2

y1

F (x, y)dg(x)dg(y)

=g(x2)g(y2)F (x2, y2)− g(x1)g(y2)F (x1, y2)− g(x2)g(y1)F (x2, y1)
+ g(x1)g(y1)F (x1, y1) (206)

−
∫ x2

x1

g(x)g(y2)dF (x, y2) +

∫ x2

x1

g(x)g(y1)dF (x, y1)

−
∫ y2

y1

g(x2)g(y)dF (x2, y) +

∫ y2

y1

g(x1)g(y)dF (x1, y) (207)

+

∫ x2

x1

∫ y2

y1

g(x)g(y)dxdyF (x, y). (208)

For example, we shall apply this to subs-quare (II) in the following Fig. 19.

Figure 19

0 11
2

1
2

|{2x} − {2y}|

−(2x− 2y + 1)

(2x− 2y + 1)

−(2x− 2y)

(2x− 2y)

−(2x− 2y)

(2x− 2y)

−(2x− 2y − 1)

(2x− 2y − 1)

(I)

(II) (III)

(IV )

A

BC

D

y = x + 1/2

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

178



In this case

F (x, y) =

{
−(2x− 2y + 1) if − (2x− 2y + 1) ≥ 0,

(2x− 2y + 1) if (2x− 2y + 1) ≥ 0
(209)

(x1, y1) = (0, 1/2), (x2, y2) = (1/2, 1),
F (x1, y1) = 0, F (x2, y2) = 0 since (x1, y1) an (x2, y2) lies on diagonals.
Put
A = (x, y), B = (x+dx, y+dy), C = (x, y+dy), D = (x+dx, y), where

y = x+ 1/2. By definition of differential dxdyF (x, y) we have

dxdyF (x, y) = F (x, y) + F (x+ dx, y + dy)− F (x, y + dy)− F (x+ dx, y)

= (2x− 2y − 1)(= 0) + (2(x+ dx)− 2(y + dy)− 1)(= 0)

− (−(2x− 2(y + dy)− 1))− (2(x+ dx)− 2y − 1)

= 2dy − 2dx = −4dx. (210)

Now applying (206), (207), (208) to F (x, y) in (209) we find∫ 1/2

0

∫ 1

1/2

F (x, y)dg(x)dg(y)

= g(1/2)g(1)F (1/2, 1)(= 0)− g(0)g(1)F (0, 1)(= 0)

− g(1/2)g(1/2)F (1/2, 1/2)(= 1) + g(0)g(1/2)F (0, 1/2)(= 0) (211)

−
∫ 1/2

0

g(x)g(1)dF (x, 1)

(
=

∫ 1/2

0

g(x)g(1)2dx

)
+

∫ 1/2

0

g(x)g(1/2)dF (x, 1/2)

(
=

∫ 1/2

0

g(x)g(1/2)2dx

)
−
∫ 1

1/2

g(1/2)g(y)dF (1/2, y)

(
=

∫ 1

1/2

g(1/2)g(y)2dy

)
+

∫ 1

1/2

g(0)g(y)dF (0, y)(= 0) (212)

+

∫ 1/2

0

∫ 1

1/2

g(x)g(y)dxdyF (x, y)

(
=

∫ 1/2

0

g(x)g(x+ 1/2)(−4)dx
)
. (213)

Here (206), (207), (208) are equivalent (211), (212), (213). Similarly, using
all sub-rectangles of Fig. 15, 16, 17 and 18 for F (x, y) in (173) we find

the integral
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) as a sums of (194), (195), (196), (197),

(198), (199), (200), (201), (202), (203), (204), (205), see Theorem 113.
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Theorem 113. For every continuous d.f. g(x) we have

2

∫ 1

0

(gf (x)− gh(x))2dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

= −4g(1/2)g(1/3)− 4g(1/2)g(2/3) + 2g(1/2)g(1/2) + 4g(1/3)g(2/3)

+ 2g(2/3)g(2/3) + 2g(1/3)g(1/3) (214)

− 8

(∫ 1/2

0

g(x)g
(
(2/3)x+ 2/3

)
dx+

∫ 1

0

g(x)g
(
(2/3)x+ 1/3

)
dx

+

∫ 1

0

g(x)g
(
(2/3)x

)
dx+

∫ 1

1/2

g(x)g
(
(2/3)x− 1/3

)
dx

)
+

∫ 1/2

0

g(x)g(x+ 1/2)dx+ 10

∫ 1

0

g(x)g(x)dx

+ 12

∫ 1/3

0

g(x)g(x+ 2/3)dx+ 12

∫ 2/3

0

g(x)g(x+ 1/3)dx (215)

+

∫ 1

0

g(x)dx

(
4g(1/2)− 4g(1/3)− 4g(2/3)

)
. (216)

Proof. Using (194), (781), -(200), and -(203) in (214); using (195), (198), -
(201), and -(204) in (215); and using (196), (199), -(202), and -(205) in (216)
we find Theorem 113.

Theorem 113 can be using for testing gf = gh. But if g(x) is defined by
finite intervals then we can compute gf and gh directly by definition, see:

Example 48. Transform the graph of g3(x) to the interval [0, 1/2] then we
find

g(x) =



0 if x ∈ [0, 2/12],

2x− (4/12) if x ∈ [2/12, 3/12],

4x− (10/12) if x ∈ [3/12, 5/12],

2x if x ∈ [5/12, 1/2],

1 if x ∈ [1/2, 1].

(217)

and directly by definition gf (x) = g(x/2) + g((x+ 1)/2)− g(1/2) we have

gf (x) =


0 if x ∈ [0, 4/12],

x− (4/12) if x ∈ [4/12, 6/12],

2x− (10/12) if x ∈ [6/12, 10/12],

x if x ∈ [10/12, 1],

(218)
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and directly by gh(x) = g(x/3)+g((x+1)/3)+g((x+2)/3)−g(1/3)−g(2/3)
we have

gh(x) =


(4/3)x if x ∈ [0, 3/12],

(2/3)x+ 2/12 if x ∈ [3/12, 9/12],

(4/3)x− 4/12 if x ∈ [9/12, 1],

(219)

which gives gf ̸= gh.

6.1.8 Copositivity of F (x, y)

By Section 13 (IV)

2

∫ 1

0

(gf (x)− gh(x))2dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) ≥ 0. (220)

Thus F (x, y) is copositive if we not taking into account the continuity of
F (x, y). Assuming that Theorem 242 (I) holds also in this case and thus

F (x, x).F (y, y) ≥ (F (x, y))2 (221)

for (x, y) ∈ [0, 1]2 or F (x, y) ≥ 0.
Now, using F (x, x) = 2|{2x} − {3x}| and

|{2x} − {3x}| = |2x− 3x+ [3x]− [2x]| =

{
(−x+ [3x]− [2x]) ≥ 0,

−(−x+ [3x]− [2x])

then we have

|{2x} − {3x}| =


x if x ∈ [0, 1/3),

1− x if x ∈ [1/3, 1/2),

x if x ∈ [1/2, 2/3),

1− x if x ∈ [2/3, 1).

and then we find upper bounds for F 2(x, y) by
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6.1.9 Solution of gf = gh

We continue Section 4.8.4, see also Example 113.
Let f ; [0, 1]→ [0, 1] and h : [0, 1]→ [0, 1] satisfy:
(i) f and h commute,
(ii) f hasm inverse functions f−1

1 , . . . , f−1
m , defined on whole interval [0, 1],

(iii) h has k inverse functions h−1
1 , . . . , h−1

k , defined on the whole interval
[0, 1],

(iv) These inverse functions are ordered such that

f−1
1 (x) ≤ · · · ≤ f−1

m (x), h−1
1 (x) ≤ · · · ≤ h−1

k (x) for all x ∈ [0, 1].

The functional equations gf = g̃f and gh = g̃h can be adding by following
method: Put

[0, α] = f−1
1 ◦ h−1

1 ([0, 1]),

xij(t) = f−1
i ◦ h−1

j ◦ h ◦ f(t), i = 1, . . . ,m, j = 1, . . . , k, t ∈ [0, α].

Now, to the equation

0 = gf (x)− g̃f (x) =
m∑
i=1

sign(f−1
i )′(g(f−1

i (x))− g̃(f−1
i (x))),

input x = h−1
j ◦ h ◦ f(t), for j = 1, . . . , k, where t ∈ [0, α]. We find k linear

equations on mk unknowns g(xij(t)), i = 1, . . . ,m,j = 1, . . . , k. Similarly,
into

0 = gh(x)− g̃h(x) =
k∑
j=1

sign(h−1
j )′(g(h−1

j (x))− g̃(h−1
j (x))),
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input x = f−1
i ◦ f ◦ h(t), for i = 1, . . . ,m. We find m linear equations with

mk unknowns g(xls(t)), l = 1, . . . ,m,s = 1, . . . , k, where t ∈ [0, α]. All
coefficients of such system of equations are dependent on the number m and
k of inverse functions of f and h (respect.), on that f−1

1 and h−1
1 increase or

decrease and are independent on concrete form of f and h.
Using this system of linear equations some g(xij(t)) cam be computed by

others g(xls(t)), where we can select such that the resulting g will be d.f. in
[0, 1].

The above method we apply on the following two pairs of f, h:
f(x) = 2x mod 1 and h(x) = 3x mod 1;
f(x) = 4x(1− x) and h(x) = x(4x− 3)2

where x ∈ [0, 1]. A motivation for searching f(x) = 2x mod 1 and h(x) =
3x mod 1 is Theorem 107. A motivation for searching f(x) = 4x(1− x) and
h(x) = x(4x − 3)2 is the fact that for s(x) = sin2 2πx we have f(s(x)) =
s(2x) and h(s(x)) = s(3x). Thus by Theorem 107 arbitrary d.f g(x) ∈
G(ξ(3/2)n mod 1) satisfies gf◦s = gh◦s. It is holds also for 31 g(x) = x as we
see from the following: x2t mod 1 = x and x3t mod 1 = x implies xf◦s = xs and
xh◦s = xs. Furthermore xs =

2
π
arcsin

√
x(:= g0(x)). Thus g0 solve gf = gh

as we mentioned after (172).

Theorem 114. Let g1, g2 be two absolutely continuous d.f.s satisfying g1h(x) =
g2f (x) for x ∈ [0, 1], where f(x) = 2x mod 1 and h(x) = 3x mod 1. Then
the absolutely continuous d.f. g(x) satisfies gf (x) = g1(x) and gh(x) = g2(x)
for x ∈ [0, 1] if and only if g(x) has the form

g(x) =



Ψ(x), for x ∈ [0, 1/6],

Ψ(1/6) + Φ(x− 1/6), for x ∈ [1/6, 2/6],

Ψ(1/6) + Φ(1/6) + g1(1/3)−Ψ(x− 2/6)

+Φ(x− 2/6)− g1(2x− 1/3) + g2(3x− 1), for x ∈ [2/6, 3/6],

2Φ(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

−Ψ(x− 3/6) + g1(2x− 1), for x ∈ [3/6, 4/6],

−Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

−Φ(x− 4/6) + g1(2x− 1), for x ∈ [4/6, 5/6],

−Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)

−Φ(x− 5/6)− g1(2x− 5/3) + g2(3x− 2), for x ∈ [5/6, 1],

where

Ψ(x) =

∫ x

0

ψ(t)dt, Φ(x) =

∫ x

0

ϕ(t)dt, for x ∈ [0, 1/6],

31In opposite case we will have simple proved that the sequence (3/2)n mod 1 is not u.d.
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and ψ(t), ϕ(t) are Lebesgue integrable functions on [0, 1/6] satisfying
0 ≤ ψ(t) ≤ 2g′1(2t),
0 ≤ ϕ(t) ≤ 2g′1(2t+ 1/3),
2g′1(2t)− 3g′2(3t+ 1/2) ≤ ψ(t)− ϕ(t) ≤ −2g′1(2t+ 1/3) + 3g′2(3t),

for almost all t ∈ [0, 1/6].

Proof. We shall use a method which is applicable for any two commutable
f, h having finitely many inverse functions.

The starting point is the set of new variables xi(t)

x1(t) :=f
−1
1 ◦ h−1

1 ◦ h ◦ f(t) = h−1
1 ◦ f−1

1 ◦ f ◦ h(t),
x2(t) :=f

−1
1 ◦ h−1

2 ◦ h ◦ f(t) = h−1
1 ◦ f−1

2 ◦ f ◦ h(t),
x3(t) :=f

−1
1 ◦ h−1

3 ◦ h ◦ f(t) = h−1
2 ◦ f−1

1 ◦ f ◦ h(t),
x4(t) :=f

−1
2 ◦ h−1

1 ◦ h ◦ f(t) = h−1
2 ◦ f−1

2 ◦ f ◦ h(t),
x5(t) :=f

−1
2 ◦ h−1

2 ◦ h ◦ f(t) = h−1
3 ◦ f−1

1 ◦ f ◦ h(t),
x6(t) :=f

−1
2 ◦ h−1

3 ◦ h ◦ f(t) = h−1
3 ◦ f−1

2 ◦ f ◦ h(t).

Here the different expressions of xi(t) follows from the fact that f(h(x)) =
h(f(x)), x ∈ [0, 1]. For t ∈ [0, 1/6] we have

xi(t) = t+ (i− 1)/6, i = 1, . . . , 6.

Substituting x = h−1
j ◦ h ◦ f(t), j = 1, 2, 3, into gf (x) = g1(x) and

x = f−1
i ◦ f ◦ h(t), i = 1, 2, into gh(x) = g2(x) we have five linear equations

over g(xk(t)), k = 1, . . . , 6. Abbreviating the composition f−1
i ◦h−1

j ◦h ◦ f(t)
as f−1

1 h−1
2 hf(t), and xi(t) as xi, we can write

g(x1) + g(x4)− g(1/2) = g1(h
−1
1 hf(t)),

g(x2) + g(x5)− g(1/2) = g1(h
−1
2 hf(t)),

g(x3) + g(x6)− g(1/2) = g1(h
−1
3 hf(t)),

g(x1) + g(x3) + g(x5)− g(1/3)− g(2/3) = g2(f
−1
1 fh(t)),

g(x2) + g(x4) + g(x6)− g(1/3)− g(2/3) = g2(f
−1
2 fh(t)).

Summing up the first three equations and, respectively, the next two equa-
tions, we have find the necessity condition

g1(1/3)+g1(2/3)+3g(1/2)+g1h(hf(t)) = g2f (fh(t))+g2(1/2)+2(g(1/3)+g(2/3)),
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for t ∈ [0, 1/6], which is equivalent to

g1(1/3)+g1(2/3)−g2(1/2) = 2(g(1/3)+g(2/3))−3g(1/2) and g1h(x) = g2f (x)

for x ∈ [0, 1]. Eliminating the fourth equation which is depending on the
others we can compute g(x3), . . . , g(x6) by using g(x1), g(x2), g(1/3), g(1/2),
and g(2/3) as follows

g(x3) = g(1/3) + g(2/3)− g(1/2)− g(x1) + g(x2)

− g1(h−1
2 hf(t)) + g2(f

−1
1 fh(t)),

g(x4) = g(1/2)− g(x1) + g1(h
−1
1 hf(t)),

g(x5) = g(1/2)− g(x2) + g1(h
−1
2 hf(t)),

g(x6) = g(1/3) + g(2/3)− g(1/2) + g(x1)− g(x2)
− g1(h−1

1 hf(t)) + g2(f
−1
2 fh(t)), (222)

for all t ∈ [0, 1/6]. Putting t = 0 and t = 1/6, respectively, we have find

g(1/2) = 2g(1/3)− 2g(1/6) + g1(1/3)− g1(2/3) + g2(1/2),

g(2/3) = 2g(1/3)− 3g(1/6) + 2g1(1/3)− g1(2/3) + g2(1/2).

These values satisfy the necessity g1(1/3) + g1(2/3) − g2(1/2) = 2(g(1/3) +
g(2/3)) − 3g(1/2). Moreover, g(1/3) = g(x2(1/6)), g(1/6) = g(x2(0)), and
thus g(x3), . . . , g(x6) can be expressed by only using g(x1), g(x2). Next, we
simplify (222) by using

h−1
1 hf(t) = ff−1

2 h−1
1 hf(t) = f(x4) for g(x4),

h−1
2 hf(t) = ff−1

2 h−1
2 hf(t) = f(x5) for g(x5),

f−1
1 fh(t) = hh−1

2 f−1
1 fh(t) = h(x3) and h

−1
2 hf(t) = ff−1

1 h−1
2 hf(t) = f(x2)

for g(x3),

f−1
2 fh(t) = hh−1

3 f−1
2 fh(t) = h(x6) and h

−1
1 hf(t) = ff−1

1 h−1
1 hf(t) = f(x1)

for g(x6).

Now, any g(xi) can be expressed as g(x), x ∈ [(i− 1)/6, i/6]. Using g(x),
x ∈ [0, 2/6] and given g1(x) and g2(x), then (222) has the form

g(x3) = g(x) = g(1/3)− g(1/6) + g1(1/3)− g(x− 2/6) + g(x− 1/6)

− g1(2x− 1/3) + g2(3x− 1) for x ∈ [2/6, 3/6],
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g(x4) = g(x) = 2g(1/3)− 2g(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

− g(x− 3/6) + g1(2x− 1) for x ∈ [3/6, 4/6],

g(x5) = g(x) = 2g(1/3)− 2g(1/6) + g1(1/3)− g1(2/3) + g2(1/2)

− g(x− 3/6) + g1(2x− 1) for x ∈ [4/6, 5/6],

g(x6) = g(x) = g(1/3)− g(1/6) + g1(1/3) + g(x− 5/6)− g(x− 4/6)

− g1(2x− 5/3) + g2(3x− 2) for x ∈ [5/6, 1]. (223)

Now, assuming the absolute continuity of g(x1) = g(x) for x ∈ [0, 1/6]
and g(x2) = g(x) for x ∈ [1/6, 2/6 we can write

g(x1) = g(x) =

∫ x

0

ψ(u)du, and g(x2) = g(x) =

∫ 1/6

0

ψ(u)du+

∫ x

0

ϕ(u)du

(224)

for x ∈ [0, 1/6].
Summing up (223) and (224) we have find the expression g(x) in the

theorem. The graph of g(x) defined by (223) is continuous. For the condition
of monotonicity of g(x) we investigated g′(xi(t)) ≥ 0 for t ∈ [0, 1/6] and
i = 1, . . . , 6 which leads to the inequalities, for ψ and ϕ, described in our
theorem, immediately.

If g1 ̸= g2 then Theorem 114 not give a new solution gf = gh. If g1 = g2,
g1f = g1h then we find a new solution gf = gh. Thus Theorem 114 can be
using to construct a chain of solutions gf = gh in the following form:

Theorem 115. Let g1 be given absolutely continuous d.f. satisfying g1h(x) =
g1f (x) for x ∈ [0, 1], where f(x) = 2x mod 1 and h(x) = 3x mod 1. Then the
absolutely continuous d.f. g(x) satisfies gf (x) = gh(x) = g1(x) for x ∈ [0, 1]
if and only if g(x) has the form

g(x) =



Ψ(x), for x ∈ [0, 1/6],

Ψ(1/6) + Φ(x− 1/6), for x ∈ [1/6, 2/6],

Ψ(1/6) + Φ(1/6) + g1(1/3)−Ψ(x− 2/6)

+Φ(x− 2/6)− g1(2x− 1/3) + g1(3x− 1), for x ∈ [2/6, 3/6],

2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)

−Ψ(x− 3/6) + g1(2x− 1), for x ∈ [3/6, 4/6],

−Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)

−Φ(x− 4/6) + g1(2x− 1), for x ∈ [4/6, 5/6],

−Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)

−Φ(x− 5/6)− g1(2x− 5/3) + g1(3x− 2), for x ∈ [5/6, 1],

186



where

Ψ(x) =

∫ x

0

ψ(t)dt, Φ(x) =

∫ x

0

ϕ(t)dt, for x ∈ [0, 1/6],

and ψ(t), ϕ(t) are Lebesgue integrable functions on [0, 1/6] satisfying
0 ≤ ψ(t) ≤ 2g′1(2t),
0 ≤ ϕ(t) ≤ 2g′1(2t+ 1/3),
2g′1(2t)− 3g′1(3t+ 1/2) ≤ ψ(t)− ϕ(t) ≤ −2g′1(2t+ 1/3) + 3g′1(3t),

for almost all t ∈ [0, 1/6].

6.1.10 Examples of solutions gf = gh

Example 49. The functions c0(x), c1(x), and x solve gf (x) = gh(x) for all
x ∈ [0, 1]. Putting g1(x) = x, the next solution of gf = gh can be found by
Theorem 115. In this case we have

0 ≤ ψ(t) ≤ 2,
0 ≤ ϕ(t) ≤ 2,
−1 ≤ ψ(t)− ϕ(t) ≤ 1,

for every t ∈ [0, 1/6]. Putting ψ(t) = ϕ(t) = 0, the resulting d.f. is

g3(x) =


0 for x ∈ [0, 2/6],

x− 1/3 for x ∈ [2/6, 3/6],

2x− 5/6 for x ∈ [3/6, 5/6],

x for x ∈ [5/6, 1].

Example 50. Taking g1(x) = g3(x), this g3(x) can be used as a starting
point for a further application of Theorem 115. We need

0 ≤ ψ(t) ≤ 0 for t ∈ [0, 1/6],
0 ≤ ϕ(t) ≤ 2 for t ∈ [0, 1/12],
0 ≤ ϕ(t) ≤ 4 for t ∈ [1/12, 1/6],
−6 ≤ −ϕ(t) ≤ −2 for t ∈ [0, 1/12],
−6 ≤ −ϕ(t) ≤ −4 for t ∈ [1/12, 1/9],
−3 ≤ −ϕ(t) ≤ −1 for t ∈ [1/9, 1/6].

Putting Ψ(x) =
∫ x
0
0dt = 0 and

Φ(x) =

∫ x

0

ϕ(t)dt =


2x for x ∈ [0, 1/12],

4x− 1/6 for x ∈ [1/12, 1/9],

2x+ 1/18 for x ∈ [1/9, 1/6].

187



and applying Theorem 115 we find

g4(x) =



0 for x ∈ [0, 1/6],

2x− 1/3 for x ∈ [1/6, 3/12],

4x− 5/6 for x ∈ [3/12, 5/18],

2x− 5/18 for x ∈ [5/18, 2/6],

7/18 for x ∈ [2/6, 8/18],

x− 1/18 for x ∈ [8/18, 3/6],

8/18 for x ∈ [3/6, 7/9],

2x− 20/18 for x ∈ [7/9, 5/6],

4x− 50/18 for x ∈ [5/6, 11/12],

2x− 17/18 for x ∈ [11/12, 17/18],

x for x ∈ [17/18, 1].

Then we have
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�����

�������������

�����

0 1

g3(x)

����
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���
~~
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������

��
��

0 1

g4(x)

The interval I with maximal length of constat value of g4(x) is I =
[1/2, 7/9] (see open problem XII in Section 3.8).

Other chain of solutions of gf = gh by Theorem 115 can be construct by
following theorem:

Theorem 116. Assume that g1(x) satisfies gf = gh. Then g2(x),

g2(x) = g1f (x) = g1(x/2) + g1((x+ 1)/2)− g(1/2), or

g2(x) = g1h(x) = g1(x/3) + g1((x+ 1)/3) + g1((x+ 2)/3)− g1(1/3)− g1(2/3)

also satisfies gf = gh.

Proof. Assume g1f (x) = g1h(x) = g2(x). Then g2f = g1hf and g2h = g1fh.
But the functions f and h commute fh = hf .
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Example 51. If we start in Theorem 116 with g1(x) = g4(x) then we find
resulting g2(x) = g3(x). If we start with g1(x) = g4(x) then we find g2(x) =
g3(x). Putting g3(x) in our scheme as g1(x), then the resulting g2(x) = x.

6.1.11 Problem gf = gh and g(x) = 1 for x ∈ [1/2, 1]

Example 52. Assume
d.f. g(x) = 1 for x ∈ [1/2, 1] and assume
gf = gh. Denote
g1(x) = 1− g(1− x);
gα(x) = (1− α)g(x) + αg1(x) for α ∈ [0, 1]. Then
gα(x) = α + (1− α)g(x)− αg(1− x) and

gα(x) satisfies gf = gh again. Now put α = 1/2. Then
g1/2(1/2) = 1/2 and
g1/2(1/2− x) = (1/2)g(1/2− x). Then
g1/2(1/2 + x)) = 1− g1/2(1/2− x) for x ∈ [0, 1/2].

This leads to the functional equation

g̃(x) + g̃(1− x) = 1 (225)

but for all x ∈ [0, 1], where g̃(x) satisfies gf = gh. For example such d.f. g̃(x)
exists, e.g. g̃(x) = x and g̃(x) = h1/2(x)

Example 53. Assume that
d.f. g(x) = 1 for x ∈ [1/2, 1]. Then gf = gh has the form

g(x/2) = g(x/3) + g((x+ 1)/3)− g(1/3) (226)

for x ∈ [0, 1].
Now assume that (x + 1)/3 ≥ 1/2, i.e. x ≥ 1/2. Then g((x + 1)/3) = 1

and the equation (226) has the form

g(x/2) = g(x/3) + 1− g(1/3). (227)

for x ∈ [1/2, 1]. Putting x/3 = z (then x/2 = (3/2)z) we simplify (227) to

g((3/2)z) = g(z) + 1− g(1/3). (228)

for z ∈ [1/6, 1/3], or putting (3/2)z := z

g(z) = g((2/3)z) + 1− g(1/3) (229)
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for z ∈ [1/4, 1/2].
In the other hand for x ∈ [0, 1/2], putting x/2 = z (then x/3 = (2/3)z

and (x+ 1)/3 = (2/3)z + 1/3) the equation (226) gives

g((2/3)z) = g(z)− g((2/3)z + 1/3) + g(1/3) (230)

for z ∈ [0, 1/4]. Repeating (230) we find

g((2/3)kz) = g(z)−
k∑
j=1

(
g
(
(2/3)jz + 1/3

)
− g(1/3)

)
(231)

for z ∈ [0, 1/4]. Using k →∞ we have

g(z) =
∞∑
k=1

(
g
(
(2/3)kz + (1/3)

)
− g(1/3)

)
(232)

for z ∈ [0, 1/4]. Thus

g(z) =


∑∞

k=1

(
g
(
(2/3)kz + (1/3)

)
− g(1/3)

)
, if z ∈ [0, 1/4],

g((2/3)z) + 1− g(1/3), if z ∈ [1/4, 1/2].
(233)

Using (230) we have a finite form of (233)

g(z) =

{
(I)g(2/3)z + g

(
(2/3)z + 1/3

)
− g(1/3), if z ∈ [0, 1/4],

(II)g((2/3)z) + 1− g(1/3), if z ∈ [1/4, 1/2].
(234)

Since for z ≥ 1/4 we have g((2/3)z + (1/3)) = 1, then (234) has the form

g(z) = g(2/3)z + g
(
(2/3)z + 1/3

)
− g(1/3), if z ∈ [0, 1/2]. (235)

Similarly, (233) has the form

∞∑
k=1

(
g
(
(2/3)kz + (1/3)

)
− g(1/3)

)
, if z ∈ [0, 1/2]. (236)

Since 2/9 < 1/4 then by (I) we have

g(2/9) = g((2/3)(2/9)) + g
(
(2/3)(2/9) + (1/3)

)
− g(1/3)
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= g(4/27) + g(13/27)− g(1/3). (237)

Since 13/27 > 1/4 then by (II)

g(13/27) = g((2/3)(13/27)) + 1− g(1/3) = g(26/81) + 1− g(1/3). (238)

Then
g(2/9) = g(4/27) + g(26/81) + 1− 2g(1/3). (239)

Notes 17. If we extend [1/2, 1] to g(x) = 1 for x ∈ [1/3, 1], then (226) gives
g(x/2) = g(x/3)

which implies
g(x) = c0(x)

the same result as in Theorem 108.

Example 54. Assuming that d.f. g(x) satisfies gf = gh, g(x) = 1 for x ∈
[1/2, 1] and g(x) is constructed by Theorem 115 using starting d.f. g1(x) also
satisfactory gf = gh. Then we have

1 = 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)−Ψ(x− 3/6)

+ g1(2x− 1), for x ∈ [3/6, 4/6],

1 = −Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)− Φ(x− 4/6)

+ g1(2x− 1), for x ∈ [4/6, 5/6],

1 = −Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)− Φ(x− 5/6)− g1(2x− 5/3)

+ g1(3x− 2), for x ∈ [5/6, 1]. (240)

From (240) follows

Ψ(y)− g1(2y) = 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)− 1, y ∈ [0, 1/6],

Φ(y)− g1(2y + 1/3) = −Ψ(1/6) + Φ(1/6) + g1(1/3)− g1(2/3)
+ g1(1/2)− 1, y ∈ [0, 1/6],

Φ(y)−Ψ(y) + g1(2y)− g1(3y + 1/2) = −Ψ(1/6) + Φ(1/6)

+ g1(1/3)− 1, y ∈ [0, 1/6]. (241)

Then

Φ(y)−Ψ(y) + g1(2y) = g1(2y + 1/3)−Ψ(1/6), y ∈ [0, 1/6],
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Φ(y)−Ψ(y) + g1(2y) = g1(3y + 1/2)−Ψ(1/6) + Φ(1/6)

+ g1(1/3)− 1, y ∈ [0, 1/6]. (242)

From it
g1(3y + 1/2) = g1(2y + 1/3) + 1− Φ(1/6)− g1(1/3) (243)

for y ∈ [0, 1/6]. From y = 0 we find 1 − Φ(1/6) = g1(1/2) and the equation
(243) has the form

g1(3y + 1/2) = g1(2y + 1/3) + g1(1/2)− g1(1/3) (244)

for y ∈ [0, 1/6].
Using 3y + 1/2 = z, then
y = (1/3)(z − 1/2)),
2y + 1/3 = (2/3)z
z ∈ [1/2, 1]

and we can transform (244) to the final form

g1((2/3)z) = g1(z)− g1(1/2) + g1(1/3) (245)

for every z ∈ [1/2, 1). 32

Notes 18. But such d.f. g1(x) satisfying (245) exist, e.g.

g1(x) =



x for x ∈ [0, 4/9],

3x− (8/9) for x ∈ [4/9, 1/2],

(2/3)x+ (5/18) for x ∈ [1/2, 2/3],

2x− (11/18) for x ∈ [2/3, 3/4],

(8/18)x+ (10/18) for x ∈ [3/4, 1].

(246)

Denote ∆ = 5/18. Then
g1(1/2 = g1(1/3) + ∆ = 11/18,
g1(2/3) = g1(4/9) + ∆ = 13/18,
g1(3/4) = g1(1/2) + ∆ = 16/18, and
g1(1) = g1(2/3) + ∆ = 1.

Insert (246) to (240) we find

(i) Ψ(y) = g1(y) for y ∈ [0, 1/6],

(ii) Ψ(1/6) = g1(1/3) = 6/18,

(iii) Φ(y) = g1(2y + 1/3)−Ψ(1/6),

32Similar functional equation is in (230).
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and then we find

g(x) =



2x for x ∈ [0, 2/9],

6x− (8/9) for x ∈ [2/9, 1/4],

(4/3)x+ (5/18) for x ∈ [1/4, 1/3],

x+ (7/18) for x ∈ [1/3, 13/27],

7x− (45/18) for x ∈ [13/27, 1/2],

1 for x ∈ [1/2, 1].

(247)

But the d.f. g1(x) (246) does not satisfies the equation gf = gh because g1f (1/3) ̸=
g1h(1/3). Then also d.f. g(x) from (247) does not satisfies gf = gh.

Example 55. The Mahler conjecture follows from that does not exist d.f.
g(x) such that gf (x) = gh(x) for x ∈ [0, 1] and g(x) = 1 for x ∈ [1/2, 1]. Yet
is not proven, therefore we are looking for the biggest possible interval [β, 1]
such that g(x) = 1 for x ∈ [β, 1] without c0(x). Here we found d.f. g5(x)
such that g5(x) = 1 for x ∈ [4/6, 1]. Starting with Theorem 114, we put

1 = −Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3) + g1(1/2)− Φ(x− 4/6)

+ g1(2x− 1), for x ∈ [4/6, 5/6],

1 = −Ψ(1/6) + Φ(1/6) + g1(1/3) + Ψ(x− 5/6)− Φ(x− 5/6)− g1(2x− 5/3)

+ g1(3x− 2), for x ∈ [5/6, 1],

From it

Φ(x− 4/6) = g1(2x− 1)−Ψ(1/6) + 2Φ(1/6) + g1(1/3)− g1(2/3)
+ g1(1/2)− 1, for x ∈ [4/6, 5/6], (248)

Φ(x− 5/6)−Ψ(x− 5/6) = −g1(2x− 5/3) + g1(3x− 2)−Ψ(1/6) + Φ(1/6)

+ g1(1/3)− 1, for x ∈ [5/6, 1]. (249)

Putting g1(x) = x and y = x− 4/6 from (248) we find

Φ(y) = 2y + 2Φ(1/6)−Ψ(1/6)− 1/2 for y ∈ [0, 1/6]. (250)

Putting y = x− 5/6, (250) and (248) we find

Φ(y) = y + 2Φ(1/6)− 1/3 for y ∈ [0, 1/6]. (251)

Using continuity of g5(x) in x = 0 we put Φ(1/6) = 1/3 and Theorem 114
gives
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Note that g5(x) satisfies gf = gh also by Theorem 112 since g5(x) = 1−g3(1−
x) and by Example 47 d.f. g3(x) satisfies them. Also note that Theorem 108
of uniqueness implies that if gf = gh and g(x) = 1 for x ∈ [1/3, 1] then
g(x) = c0(x).

Example 56. Since xf = xh, Theorem 108 gives the following example of
d.f. g(x), which is not d.f. of the sequence ξ(3/2)n mod 1, for every ξ ∈ R

g(x) =

{
x for x ∈ [0, 2/3],

x2 − (2/3)x+ 2/3 for x ∈ [2/3, 1].

Theorem 117. Let f(x) = 4x(1 − x) a h(x) = x(4x − 3)2 and let g1, g2 be
two absolutely continuous d.f.s solvable the functional equation g1h = g2f on
[0, 1]. Then an absolutely continuous d.f. g satisfying gf = g1 and gh = g2 if
and only if g has the form

g(x) =



∫ x1(x)
0

ψ(u)du (:= Ψ(x)) for x ∈
[
0, 2−

√
3

4

]
,∫ (2−

√
3)/4

x1(x)
ϕ(u)du+

∫ (2−
√
3)/4

0
ψ(u)du (:= Φ(x)) for x ∈

[
2−

√
3

4
, 1
4

]
,

Ψ(x) + Φ(x) + 1− g1(f(x1(x)))− g2(h(x)) for x ∈
[
1
4
, 1
2

]
,

Ψ(x) + Φ(x) + 1− g1(f(x2(x)))− g2(h(x)) for x ∈
[
1
2
, 3
4

]
,

Φ(x) + 1− g1(f(x)) pre x ∈
[
3
4
, 2+

√
3

4

]
,

Ψ(x) + 1− g1(f(x)) for x ∈
[
2+

√
3

4
, 1
]
,
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where ψ, ϕ are integrable on
[
0, 2−

√
3

4

]
and a.e.

0 ≤ ψ(t) ≤ (g1(f(t)))
′,

0 ≤ ϕ(t) ≤ −(g1(f(x2(t))))′,
(g1(f(t)) + g2(1− h(t)))′ ≤ ψ(t)− ϕ(t) ≤ (g1(f(x2(t))) + g2(h(t)))

′.
The x1(x) and x2(x) are given in (254) and (255).

Proof. In this case the new variables has the form

x1(t) =f
−1
1 ◦ h−1

1 ◦ h ◦ f(t) = h−1
1 ◦ f−1

1 ◦ f ◦ h(t),
x2(t) =f

−1
1 ◦ h−1

2 ◦ h ◦ f(t) = h−1
1 ◦ f−1

2 ◦ f ◦ h(t),
x3(t) =f

−1
1 ◦ h−1

3 ◦ h ◦ f(t) = h−1
2 ◦ f−1

2 ◦ f ◦ h(t),
x4(t) =f

−1
2 ◦ h−1

3 ◦ h ◦ f(t) = h−1
2 ◦ f−1

1 ◦ f ◦ h(t),
x5(t) =f

−1
2 ◦ h−1

2 ◦ h ◦ f(t) = h−1
3 ◦ f−1

1 ◦ f ◦ h(t),
x6(t) =f

−1
2 ◦ h−1

1 ◦ h ◦ f(t) = h−1
3 ◦ f−1

2 ◦ f ◦ h(t),

Here we double indexing xij(t) changed on simple xi(t) such that the intervals
{xi(t); t ∈ [0, α]} are ordered by growth. The values x1(t), . . . , x6(t), for

t ∈
[
0, 2−

√
3

4

]
= f−1

1 ◦ h−1
1 ([0, 1]), divide the unit interval [0, 1] on the six

intervals[
0, 2−

√
3

4

]
,
[
2−

√
3

4
, 1
4

]
,
[
1
4
, 1
2

]
,
[
1
2
, 3
4

]
,
[
3
4
, 2+

√
3

4

]
,
[
2+

√
3

4
, 1
]
.

Now, assume that the system of functional equations gf = g1 ∧ gh = g2 has a
solution g̃. Input x = h−1

j ◦ h ◦ f(t), j = 1, 2, 3, into gf (x) = g̃f (x) and input

x = f−1
i ◦ f ◦ h(t), i = 1, 2, into gh(x) = g̃h(x) we find five linear equation

between g(xk(t)), k = 1, . . . , 6. Leave out depending equations we find

gf = g̃f ∧ gh = g̃h ⇐⇒


0
0
0
0

 =


1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 1 −1 −1



g(x1)− g̃(x1)
g(x2)− g̃(x2)
g(x3)− g̃(x3)
g(x4)− g̃(x4)
g(x5)− g̃(x5)
g(x6)− g̃(x6)

 for t ∈
[
0, 2−

√
3

4

]
.
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It is equivalent to 33

g(x6) =g(x1) + g̃(x6)− g̃(x1)
g(x5) =g(x2) + g̃(x5)− g̃(x2)
g(x4) =g(x1) + g(x2)− (g̃(x1) + g̃(x2)) + g̃(x4)

g(x3) =g(x1) + g(x2)− (g̃(x1) + g̃(x2)) + g̃(x3). (252)

Thus we can compute g(x3), . . . , g(x6) by using g(x1) a g(x2). Here g(x1) a
g(x2) we must choice such that resulting g(x) is non-decreasing on [0, 1]. For
absolutely continuous g(x) and g̃(x) the monotonicity of g(x) is equivalent

to g′(xi(t)) ≥ 0 pre i = 1, . . . , 6 a.e. on t ∈
[
0, 2−

√
3

4

]
. Its has the form

g′(x1)x
′
1 ≥ 0, g′(x2)x

′
2 ≤0,

g′(x1)x
′
1 + g̃′(x6)x

′
6 − g̃′(x1)x′1 ≤0,

g′(x2)x
′
2 + g̃′(x5)x

′
5 − g̃′(x2)x′2 ≥0,

g′(x1)x
′
1 + g′(x2)x

′
2 − g̃′(x1)x′1 − g̃′(x2)x′2 + g̃′(x3)x

′
3 ≥0,

g′(x1)x
′
1 + g′(x2)x

′
2 − g̃′(x1)x′1 − g̃′(x2)x′2 + g̃′(x4)x

′
4 ≤0. (253)

In (278) and (279) we shall add all terms g̃(xi) occur in g̃f and g̃h, e.g.

g(x4) = g(x1) + g(x2) + 1− g̃f (h−1
2 ◦ h ◦ f(t))− g̃h(f−1

1 ◦ f ◦ h(t))
= g(x1) + g(x2) + 1− g̃f (f(x2))− g̃h(h(x4)).

In the next step modified (278) and (279) (in above way) we shall prepare

by using x1(t) = t for t ∈
[
0, 2−

√
3

4

]
and the identity

xi(xj(t)) = xi(t) pre t ∈ [0, 1] a 1 ≤ i, j ≤ 6,

which follows immediately from

f−1
i ◦ h−1

j ◦ h ◦ f ◦ f−1
k ◦ h

−1
l ◦ h ◦ f(t) = f−1

i ◦ h−1
j ◦ h ◦ f(t).

33The same system of linear equations we find for the following functions

f(x) =

{
2x, if x ∈ [0, 1/2]

2− 2x, if x ∈ [1/2, 1]
h(x) =


3x, if x ∈ [0, 1/3],

2− 3x, if x ∈ [1/3, 2/3]

3x− 2, if x ∈ [2/3, 1]

with the variables x1(t) = t, x2(t) = 2/6−t, x3(t) = 2/6+t, x4(t) = 4/6−t, x5(t) = 4/6+t,
x6(t) = 1− t, where t ∈ [0, 1/6].
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E.g.

g(x4) = g(x1(x4)) + g(x2(x4)) + 1− g̃f (f(x2(x4)))− g̃h(h(x4))

is the same as

g(x) = g(x1(x)) + g(x2(x)) + 1− g̃f (f(x2(x)))− g̃h(h(x)) pre x ∈ [1
2
, 3
4
].

Finally, we put

ψ(t) = g′(x1(t))x
′
1(t), ϕ(t) = −g′(x2(t))x′2(t) pre t ∈

[
0, 2−

√
3

4

]
,

and we find

g(x1(t)) =

∫ t

0

ψ(u)du,

g(x2(t)) =

∫ (2−
√
3)/4

t

ϕ(u)du+

∫ (2−
√
3)/4

0

ψ(u)du.

and we solve modified (279) with respec to ψ a ϕ. This gives theorem.
Note that the continuity of g of boundary points of using intervals follows
directly.

For possible application of Theorem 117 we add explicit formulas for
xi(x), i = 1, 2, 3 and the others are given by

x4(x) = 1− x3(x), x5(x) = 1− x2(x), x6(x) = 1− x1(x) pre x ∈ [0, 1].

Starting with (172) for h−1
i , h−1

j , h−1
k , and putting k = 1 for x ∈ [0, 1/4],

k = 2 for x ∈ [1/4, 3/4], and k = 3 for x ∈ [3/4, 1], we find

h−1
i,j (h(x)) =

3− 2x

4
±
√
3x(1− x)

2
.

Denoting

a1(x) :=f
−1
1

(
3− 2f(x)

4
−
√

3f(x)(1− f(x))
2

)

=
1

2
− 1

4

√
4|2x− 1|

√
3x(1− x)− 8x2 + 8x+ 1
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a2(x) :=f
−1
1

(
3− 2f(x)

4
+

√
3f(x)(1− f(x))

2

)

=
1

2
− 1

4

√
−4|2x− 1|

√
3x(1− x)− 8x2 + 8x+ 1

we find

x1(x) =


x for x ∈

[
0, 2−

√
3

4

]
,

a1(x) for x ∈
[
2−

√
3

4
, 2+

√
3

4

]
,

1− x for x ∈
[
2+

√
3

4
, 1
]
,

(254)

x2(x) =



a1(x) for x ∈
[
0, 2−

√
3

4

]
,

x for x ∈
[
2−

√
3

4
, 1
4

]
,

a2(x) for x ∈
[
1
4
, 3
4

]
,

1− x for x ∈
[
3
4
, 2+

√
3

4

]
,

a1(x) for x ∈
[
2+

√
3

4
, 1
]
,

(255)

x3(x) =


a2(x) for x ∈

[
0, 1

4

]
,

x for x ∈
[
1
4
, 1
2

]
,

1− x for x ∈
[
1
2
, 3
4

]
,

a2(x) for x ∈
[
3
4
, 1
]
.

(256)

Notes 19. For gf = gh see also Examples 115, 113, 112 in Section 10.6. For gf = g1 see

also Theorem 67 and Example 39.

Notes 20. Let a be nonzero integer. Pjateckǐı-Šapiro in [128] proved:

1. The d.f. g(x) is an a.d.f. of the sequence ξan mod 1, n = 1, 2, . . . if and only if
gf (x) = g(x), x ∈ [0, 1] for f(x) = xa mod 1.

2. If the a.d.f. g(x) of ξan mod 1, n = 1, 2, . . . is absolute continuous, then g(x) = x,
x ∈ [0, 1].

3. If every d.f. g(x) of ξan mod 1, n = 1, 2, . . . satisfies g(y)−g(x) ≤ c(y−x) for some
c > 0 and for all 0 ≤ x ≤ y ≤ 1, then the sequence ξan mod 1 is u.d.
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6.1.12 Equations for g(x) ∈ G((3/2)n mod 1) other than gf = gh
(open questions)

In the previous part for the sequence
{(

3
2

)n}
we study the sequence

{{
3
2

}
+{(

3
2

)2}
+ · · ·+

{(
3
2

)n}}
. By the following{{

3

2

}
+

{(
3

2

)2}
+ · · ·+

{(
3

2

)n}}
=

{
3

2
+

(
3

2

)2

+ · · ·+
(
3

2

)n}
=

{
3

2

(
3
2

)n − 1
3
2 − 1

}
=

{
3

(
3

2

)n
}

=

{
2

(
3

2

)n+1
}

=

{
3

{(
3

2

)n}}
=

{
2

{(
3

2

)n+1}}
(257)

we have that d.f.s of
{{

3
2

}
+
{(

3
2

)2}
+· · ·+

{(
3
2

)n}}
are the same as

{
3
{(

3
2

)n}}
or d.f.s of

{
2
{(

3
2

)n+1}}
. Other expression of such d.f.s are{{

3

2

}
+

{(
3

2

)2}
+ · · ·+

{(
3

2

)n}}
=

{
3

(
3

2

)n
}

=

{
9

2

(
3

2

)n−1
}

=

{
9

2

{(
3

2

)n−1}
+

9

2

[(
3

2

)n−1]}
, (258)

where{
9

2

(
3

2

)n−1
}

=

{{
9
2

{(
3
2

)n−1}}
if
[(

3
2

)n−1]
is even,{

9
2

{(
3
2

)n−1}
+ 1

2

}
if
[(

3
2

)n−1]
is odd.

(259)

Put

f(x) = 2x mod 1,

h(x) = 3x mod 1,

v(x) = (9/2)x mod 1,

u(x) = (9/2)x+ (1/2) mod 1. (260)

For some sequence N = Nk, k →∞, we have

#{n ≤ N ; {(3/2)n} ∈ [0, x)}
N

→ g(x),

#{n ≤ N ; {(3/2)n} ∈ [0, x), [(3/2)n] is odd}
N

→ g(1)(x)
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#{n ≤ N ; {(3/2)n} ∈ [0, x), [(3/2)n] is even}
N

→ g(2)(x) (261)

34 As in (171): Let f : [0, 1] → [0, 1] be a function such that, for all x ∈
[0, 1], f−1([0, x)) can be expressed as a sum of finitely many pairwise disjoint
subintervals Ii(x) of [0, 1] with endpoints αi(x) ≤ βi(x). For any distribution
function g(x) we put gf (x) =

∑
i g(βi(x)) − g(αi(x)). By Theorem 106 the

sequence f({xn}) has the distribution functions gf (x) if xn has the d.f. g(x).

Theorem 118. Every d.f. g(x) of the sequence (3/2)n mod 1 can be ex-
pressed as g(x) = g(1)(x) + g(2)(x) for every x ∈ [0, 1] such that

g(1)u (x)+g(2)v (x) = gf (x) = gh(x) = g
(1)
f (x)+g

(2)
f (x) = g

(1)
h (x)+g

(2)
h (x). (262)

Note that a solution of (262) is an open problem.

Proof. Dividing the sequence (3/2)n mod 1 into two parts which respect to
[(3/2)n] is odd or [(3/2)n] is even and then transform they applying v(x) and
u(x), respectively, then we find the sequence (258) which is the same as
(257).

2
9

4
9

6
9

8
9

1
2

x

0 1

v(x) = (9/2)x mod 1

For x ≤ 1/2 we have

g(2)v (x) = g(2)
(
(2/9)x

)
+ g(2)

(
(2/9)x+ (2/9)

)
− g(2)

(
(2/9)

)
34By Section 3.8 if g(1)(x) > 0 then Mahler’s conjecture valid for (3/2)n mod 1.
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+g(2)
(
(4/9) + (2/9)x

)
− g(2)

(
(4/9)

)
+g(2)

(
(6/9) + (2/9)x

)
− g(2)

(
(6/9)

)
+g(2)

(
(8/9) + (2/9)x

)
− g(2)

(
(8/9)

)
. (263)

The procedure (258) can be extend as{{
3

2

}
+

{(
3

2

)2}
+ · · ·+

{(
3

2

)n}}
=

{
3

(
3

2

)n}

=

{
3

(
3

2

)k(
3

2

)n−k}
=

{
2

(
3

2

)k+1(
3

2

)n−k}
. (264)

Then the sequence
{{

3
2

}
+
{(

3
2

)2}
+ · · · +

{(
3
2

)n}}
has the same d.f.s as{(

3
2

)n}
transformed by{

3

(
3

2

)k(
3

2

)n−k}
=

{
3

(
3

2

)k{(
3

2

)n−k}
+ 3

(
3

2

)k[(
3

2

)n−k]}
i.e. by

3

(
3

2

)k
x+

i(n)

2k
mod 1, where

i(n)

2k
=

{
3

(
3

2

)k[(
3

2

)n−k]}
. (265)

Let N1 < N2 < . . . be a sequence of indices such that

#{n ≤ Nj; {(3/2)n} ∈ [0, x)}
Nj

→ g(x),

#{n ≤ Nj; {(3/2)n} ∈ [0, x), i(n) = i}
N

→ gi(x). (266)

and denote

ui(x) = 3

(
3

2

)k
x+

i

2k
mod 1,

u−1
i ([0, x)) = ∪sj=1[αj(x), βj(x)),

gi,ui(x) =
S∑
j=1

(gi(βj(x))− gi(αj(x))).

Theorem 118 can be extend to
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Theorem 119. Every d.f. g(x) of the sequence (3/2)n mod 1 can be ex-
pressed as

g(x) =
2k−1∑
i=0

gi(x), (267)

2k−1∑
i=0

gi,ui(x) = gf (x) = gh(x). (268)

6.2 Ratio block sequences (continuation of 3.11)

Let xn, n = 1, 2, . . . be an increasing sequence of positive integers. The dou-
ble sequence xm/xn, m,n = 1, 2, . . . is called the ratio sequence of xn; it was
introduced by T. Šalát [140]. He studied its everywhere density. For further
study of the ratio sequences, O. Strauch and J.T. Tóth [173] introduced a
sequence Xn of blocks

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
, n = 1, 2, . . .

and they studied the set G(Xn) of its d.f.s. The motivation is that the
existence of strictly increasing g(x) ∈ G(Xn) implies everywhere density of
xm/xn, the basic problem by Šalát [140]. Further motivation is that the
block sequences are a tool for study of d.f.s of sequences. Also for computing
boundaries of limit points e.g. of the sequence 1

n

∑n
i=1

xi
xn
, n = 1, 2, . . . we

apply the Riemann-Stieltjes integration of g(x) ∈ G(Xn).

6.2.1 Basic notations of Xn = (x1/xn, . . . , xn/xn)

Denote by F (Xn, x) the step distribution function

F (Xn, x) =
#{i ≤ n; xi

xn
< x}

n
,

for x ∈ [0, 1) and F (Xn, 1) = 1. Directly from definition

F (Xm, x) =
n

m
F

(
Xn, x

xm
xn

)
(269)

for every x ∈ [0, 1).
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For any increasing integer sequence xn, n = 1, 2, . . . , we define a counting
function A(t) as

A(t) = #{n ∈ N;xn < t}.

Then for every x ∈ (0, 1] we have

nF (Xn, x)

xxn
=
A(xxn)

xxn
. (270)

A d.f. g is a d.f. of the sequence of single blocks Xn, if there exists an
increasing sequence of positive integers n1, n2, . . . such that

lim
k→∞

F (Xnk
, x) = g(x)

a.e. on [0, 1].
Denote by G(Xn) the set of all d.f. of the sequence of single blocks Xn.

G(Xn) has the following properties (some of them will be proven later):

6.2.2 Overview of basic results of d.f.s g(x) ∈ G(Xn)

(i) If g(x) ∈ G(Xn) increases and is continuous at x = β and g(β) > 0,
then there exists 1 ≤ α < ∞ such that αg(xβ) ∈ G(Xn). If every d.f.
of G(Xn) is continuous at 1, then α = 1/g(β), [173, Prop. 3.1, Th.
3.2].

(ii) Assume that all d.f.s in G(Xn) are continuous at 0 and c1(x) /∈ G(Xn).
Then for every g̃(x) ∈ G(Xn) and every 1 ≤ α < ∞ there exists
g(x) ∈ G(Xn) and 0 < β ≤ 1 such that g̃(x) = αg(xβ) a.e., [173, Prop.
3.1, Th. 3.3].

(iii) Assume that all d.f.s in G(Xn) are continuous at 1. Then all d.f.s in
G(Xn) are continuous on (0, 1], i.e. only possible discontinuity is in 0,
[173, Th. 4.1].

(iv) If d(xn) > 0, then for every g(x) ∈ G(Xn) we have [173, Th. 6.2(iii)]

d(xn)

d(xn)
x ≤ g(x) ≤ d(xn)

d(xn)
x for every x ∈ [0, 1]
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(d/d)x

(d/d)x

Thus d(xn) = d(xn) > 0 implies u.d. of the block sequence Xn, n =
1, 2, . . . .

(v) If d(xn) > 0, then every g(x) ∈ G(Xn) is continuous on [0, 1], [173, Th.
6.2 (iv)].

(vi) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≥ x for
every x ∈ [0, 1], [173, Th. 6.2(ii)]. Generally [11, Th. 6)] every G(Xn)
contains g(x) ≥ x.

(vii) If d(xn) > 0, then there exists g(x) ∈ G(Xn) such that g(x) ≤ x for
every x ∈ [0, 1], [173, Th. 6.2].

(viii) Assume that G(Xn) is singleton, i.e. G(Xn) = {g(x)}. Then either
g(x) = c0(x) for x ∈ [0, 1]; or g(x) = xλ for some 0 < λ ≤ 1 and
x ∈ [0, 1]. Moreover, if d(xn) > 0, then g(x) = x, [173, Th. 8.2].

(ix) maxg∈G(Xn)

∫ 1

0
g(x)dx ≥ 1

2
, c.f. (vi), [173, Th. 7.1.].

(x) Assume that every d.f. g(x) ∈ G(Xn) has a constant value on the fixed
interval (u, v) ⊂ [0, 1] (maybe different). If d(xn) > 0 then all d.f.s in
G(Xn) has infinitely many intervals with constant values, [174].

(xi) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) = {hα(x);α ∈ [0, 1]}, where hα(x) = α, x ∈ (0, 1) is
the constant d.f., [66, Ex. 1].

(xii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that c1(x) ∈ G(Xn) but c0(x) /∈ G(Xn), where c0(x) and c1(x)
are one–jump d.f.s with the jump of height 1 at x = 0 and x = 1,
respectively.

(xiii) There exists an increasing sequence xn, n = 1, 2, . . . , of positive integers
such that G(Xn) is non-connected, [66, Ex. 2].
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(xiv) G(Xn) = {xλ} if and only if limn→∞(xk.n/xn) = k1/λ for every k =
1, 2, . . . . Here as in (viii) we have 0 < λ ≤ 1, [54].

(xv) L. Mǐśık: If d(xn) > 0, then all d.f.s g(x) ∈ G(Xn) are continuous,
nonsingular and bounded by h1(x) ≤ g(x) ≤ h2(x), where

35

h1(x) =

x
d

d
if x ∈

[
0, 1−d

1−d

]
,

d
1
x
−(1−d) otherwise,

h2(x) = min

(
x
d

d
, 1

)
.

Furthermore, there exists xn, n = 1, 2, . . . , such that h2(x) ∈ G(Xn)
and for every xn we have h1(x) ̸∈ G(Xn), [11, Th. 7] and moreover

(xvi) for a given fixed g(x) ∈ G(Xn) we have h1,g(x) ≤ g(x) ≤ h2,g(x), where

h1,g(x) =

{
x d
dg

if x < y0 =
1−dg
1−d ,

x 1
dg

+ 1− 1
dg

if y0 ≤ x ≤ 1,

h2,g(x) = min

(
x
d

dg
, 1

)
,

see [11, Th.6].

(xvii) These boundaries are established by observing that for every g(x) ∈
G(Xn)

0 ≤ g(y)− g(x)
y − x

≤ 1

dg

for x < y, x, y ∈ [0, 1].

In the following we give proofs of some (i)–(xvii).

6.2.3 Basic theorems of G(Xn)

Using

xi < xxm ⇐⇒ xi <

(
x
xm
xn

)
xn

35d = d(xn), d = d(xn).
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and that these inequalities imply i < m, it directly follows from definition
F (Xn, x) it follows (269)

F (Xm, x) =
n

m
F

(
Xn, x

xm
xn

)
,

for every m ≤ n and x ∈ [0, 1). Also for any increasing sequence of positive
integers xn, n = 1, 2, . . . , we define a counting function A(t) as

A(t) = #{n ∈ N; xn < t}.

Then for every x ∈ (0, 1] we have the equality (270)

nF (Xn, x)

xxn
=
A(xxn)

xxn
,

which we shall use to compute the asymptotic density of xn. We have the
lower asymptotic density d, and the upper asymptotic density d of xn, n =
1, 2, . . . as

d = lim inf
t→∞

A(t)

t
= lim inf

n→∞

n

xn
, d = lim sup

t→∞

A(t)

t
= lim sup

n→∞

n

xn
.

Using Helly’s selection principle from the sequence (m,n) we can select a
subsequence (mk, nk) such that F (Xnk

, x) → g(x), F (Xmk
, x) → g̃(x) as

k → ∞, furthermore xmk
/xnk

→ β and mk/nk → α, but α may be infinity.
These limits have the following connection.

Theorem 120 ([173, Prop. 3.1]). Let mk and nk be two increasing integer
sequences satisfying mk ≤ nk, for k = 1, 2, . . . and assume that

(i) limk→∞ F (Xnk
, x) = g(x) a.e.,

(ii) limk→∞ F (Xmk
, x) = g̃(x) a.e.,

(iii) limk→∞
xmk

xnk
= β > 0,

(iv) g(β − 0) > 0.
Then there exists limk→∞

nk

mk
= α <∞ such that

g̃(x) = αg(xβ) a.e. on [0, 1], and α =
g̃(1− 0)

g(β − 0)
. (271)
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Proof. Firstly we prove

lim
k→∞

F

(
Xnk

, x
xmk

xnk

)
= g(xβ). (272)

Denoting βk = xmk
/xnk

and substituting u = xβk, we find

0 ≤
∫ 1

0

(F (Xnk
, xβk)− g(xβk))2dx =

1

βk

∫ βk

0

(F (Xnk
, u)− g(u))2du

≤ 1

βk

∫ 1

0

(F (Xnk
, u)− g(u))2du→ 0,

which leads to (F (Xnk
, xβk)− g(xβk))→ 0 a.e. as k →∞ (here necessarily

β > 0). Furthermore,∫ 1

0

(F (Xnk
, xβk)−g(xβ))2dx =

∫ 1

0

(F (Xnk
, xβk)−g(xβk)+g(xβk)−g(xβ))2dx

≤ 2

(∫ 1

0

(F (Xnk
, xβk)− g(xβk))2dx+

∫ 1

0

(g(xβk)− g(xβ))2dx
)
.

Since g(x) is continuous a.e. on [0, 1] then (g(xβk) − g(xβ)) → 0 a.e. and

applying the Lebesgue theorem of dominant convergence we find
∫ 1

0
(g(xβk)−

g(xβ))2dx → 0. This gives (272). The existence of the limit limk→∞
nk

mk
=

α <∞ follows from (1) and (iv). Now, let tn ∈ [0, 1) increases to 1 and g̃(x)
be continuous in tn. Then g(xβ) is also continuous in tn and g̃(tn) = αg(tnβ)
for n = 1, 2, . . . . The limit of this equation gives the desired form of α.

In the simple form we have
Let g(x) ∈ G(Xn), β ∈ (0, 1), and assuming that
(i) g(x) is continuous at β,
(ii) g(x) increases at β, 36

(iii) g(β) > 0,
(iv) all d.f. in G(Xn) are continuous at 1.

Then
g(xβ)

g(β)
∈ G(Xn). (273)

36The assumption (ii) can be replaced by a requirement that β is a limit point of
xi

xnk
, i = 1, 2, . . . , nk, k = 1, 2, . . . , where weakly F (Xnk

, x)→ g(x).
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Theorem 121 ([173, Prop.6.1]). Assume for a sequence nk, k = 1, 2, . . .
that

(i) limk→∞ F (Xnk
, x) = g(x),

(ii) limk→∞
nk

xnk
= dg.

Then there exists

(iii) limk→∞
A(xxnk

)

xxnk
= dg(x) and

g(x) =
x

dg
dg(x). (274)

Here the limits (i) and (iii) can be considered for all x ∈ (0, 1] or all continuity
points x ∈ (0, 1] of g(x).

Proof. Directly by (270).

Definition 8. If limk→∞ F (Xnk
, x) = g(x) and limk→∞

nk

xnk
= dg. we shall

call dg as a local asymptotic density for d.f. g(x).

6.2.4 Continuity of g ∈ G(Xn)

If all g ∈ G(Xn) are everywhere continuous on [0, 1], then relation (271) is of
the form

g(xβ)

g(β)
∈ G(Xn). (275)

As a criterion for continuity of all g ∈ G(Xn) we can adapt the Wiener-
Schoenberg theorem (cf. [92, 6, p. 55]), but here we give the following
simple sufficient condition.

Theorem 122 ([173, Th. 4.1]). Assume that all d.f.s in G(Xn) are contin-
uous at 1. Then all d.f. in G(Xn) are continuous on (0, 1], i.e. the only
discontinuity point may be 0.

Proof. Assume that xmk
/xnk

→ β and F (Xnk
, x) → g(x) as k → ∞. If

from (mk, nk) we can select two sequences (m′
k, n

′
k) and (m′′

k, n
′′
k) such that

n′
k/m

′
k → α1 and n

′′
k/m

′′
k → α2 with a finite α1 ̸= α2, then α1g(xβ), α2g(xβ) ∈

G(Xn) and thus one of such d.f. g̃(x) must be discontinuous at 1 (it holds
also for g continuous at β). Thus, assuming that G(Xn) has only continuous
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d.f.s at 1, the limits xmk
/xnk

→ β > 0 and F (Xnk
, x) → g(x) imply the

convergence of nk/mk. Now by [173, Th. 3.2]: If β is a point of discontinuity
of g(x) with g(β + 0)− g(β − 0) = h > 0, then there exists a closed interval
I ⊂ [0, 1], with length |I| ≥ h such that for every 1

α
∈ I we have αg(xβ) ∈

G(Xn). Thus g(x) cannot have a discontinuity point in (0, 1].

Theorem 123 ([173, Th. 6.2]). (i) If d > 0, then there exits g ∈ G(Xn)
such that g(x) ≤ x for every x ∈ [0, 1].

(ii) If d > 0, then there exits g ∈ G(Xn) such that g(x) ≥ x for every
x ∈ [0, 1].

(iii) If d > 0, then for every g ∈ G(Xn) we have

(d/d)x ≤ g(x) ≤ (d/d)x (276)

for every x ∈ [0, 1].

(iv) If d > 0, then every g ∈ G(Xn) is everywhere continuous in [0, 1].

(v) If d > 0, then for every limit point β > 0 of xm/xn there exist g ∈
G(Xn) and 0 ≤ α <∞ such that αg(xβ) ∈ G(Xn).

Proof. (i). Assume that nk/xnk
→ d as k → ∞. Select a subsequence n′

k of
nk such that F (Xn′

k
, x) → g(x) a.e. on [0, 1]. Since dg(x) ≤ d a.e. in (274)

gives (g(x)/x)d ≤ d a.e., which leads to g(x) ≤ x a.e. and implies g(x) ≤ x
for every x ∈ [0, 1].

(ii). Similarly to (i), let nk/xnk
→ d as k → ∞. Select a subsequence

n′
k of nk such that F (Xn′

k
, x) → g(x) a.e. on [0, 1]. Since d2(x) ≥ d a.e.,

(274) implies (g(x)/x)d ≥ d a.e. again, which gives g(x) ≥ x a.e., whence,
g(x) ≥ x everywhere on x ∈ [0, 1].

(iii). For any g ∈ G(Xn) there exists nk such that F (Xnk
, x)→ g(x) a.e.

From nk we can choose a subsequence n′
k such that n′

k/xn′
k
→ d1. Using (274)

and the fact that d ≤ d1 ≤ d and d ≤ d2 ≤ d we have (g(x)/x)d ≤ d and
(g(x)/x)d ≥ d a.e. If d > 0, these inequalities are valid for every x ∈ (0, 1].

(iv). Continuity of g ∈ G(Xn) at 1 follows from [173, Prop 4.2]: Denote

d(ε) = lim sup
n→∞

#{i ≤ n; (1− ε)xn < xi < xn}
n

.
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Every g ∈ G(Xn) is continuous at 1 if and only if limε→0 d(ε) = 0. Since

d(ε) ≤ lim sup
n→∞

ε
xn
n

=
ε

d
,

applying [173, Th. 4.1]= Theorem 18, we have continuity of g in (0, 1].
Continuity at 0 follows from (276).

(v). It follows from the fact that if d > 0 and limk→∞ xmk
/xnk

= β > 0 for
mk < nk, then lim supk→∞ nk/mk < ∞. More precisely, if we pick (m′

k, n
′
k)

from (mk, nk) such that n′
k/m

′
k → α, then

d

dβ
≤ α ≤ d

dβ
. (277)

This is so because if we select (m′′
k, n

′′
k) from (m′

k, n
′
k) such that n′′

k/xn′′
k
→ d1

and m′′
k/xm′′

k
→ d2, then, by

n′′
k

m′′
k

=

n′′
k

xn′′
k

xn′′
k

m′′
k

xm′′
k

xm′′
k

,

we see α = d1/(d2β).

6.2.5 Singleton G(Xn) = {g}

For general G(Xn), the connection between G(Xn) and G(xm/xn) is open,
but for singleton G(Xn) we have

Theorem 124 ([173, Th. 8.1]). If G(Xn) = {g}, then G(xm/xn) = {g}.

Proof. A proof of the theorem is the same as the proof of [130, Prop. 1, (ii)],
since

lim
n→∞

|Xn|
|X1|+ · · ·+ |Xn|

= lim
n→∞

n

n(n+ 1)/2
= 0.

Theorem 125 ([173, Th. 8.2]). Assume that G(Xn) = {g}. Then either

(i) g(x) = c0(x) for x ∈ [0, 1] or

(ii) g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1]. Moreover,
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(iii) if d > 0 then g(x) = x.

Proof. Let G(Xn) = {g}. We divide the proof into the following six steps.

(I). By [173, Th. 7.1], we have
∫ 1

0
g(x)dx ≥ 1

2
which implies g(x) ̸= c1(x).

(II). g must be continuous on (0, 1), since otherwise [173, Th. 3.2], for a
discontinuity point β ∈ (0, 1), guarantees the existence of α1 ̸= α2 such that
α1g(xβ) = α2g(xβ) = g(x) a.e. which is a contradiction.

(III). Assume that g(x) increases in every point β ∈ (0, 1). In this case
relation (5) gives the well-known Cauchy equation g(x)g(β) = g(xβ) for a.e.
x, β ∈ [0, 1] For a monotonic g(x) the Cauchy equation has solutions only of
the type g(x) = xλ.

(IV). Assume that g(x) has a constant value on the interval (γ, δ) ⊂ [0, 1].
For β ∈ (0, 1] satisfying (j) g(x) increases in β and (jj) g(β) > 0 the basic
relation (271) gives g(x) = αg(xβ) which implies that g(x) has a constant
value also on β(γ, δ) and if δ ≤ β then also on β−1(γ, δ). Thus, if (γi, δi),
i ∈ I is a system of all intervals (maximal under inclusion) in which g(x)
possesses constant values, then for every i ∈ I there exists j ∈ I such
that β(γi, δi) = (γj, δj) and vice-versa for every j ∈ I, δj ≤ β, there exists
i ∈ I such that β−1(γj, δj) = (γi, δi). This is true also for β = βn1

1 β
n2
2 . . . ,

where β1, β2, . . . satisfy (j) and (jj) and n1, n2, · · · ∈ Z. Thus, there exists
0 < θ < 1 such that every such β has the form θn, n ∈ N. The end points
γi, δi (without γi = 0) satisfy (j) and (jj) and thus the intervals (γi, δi) is
of the form (θn, θn−1), n = 1, 2, . . . and all discontinuity points of g(x) are
θn, n = 1, 2, . . . , a contradiction with (II). For g(x) = c0(x) there exists no
β ∈ (0, 1] satisfying (j) and (jj).

(V). We have the possibilities g(x) = c0(x) and g(x) = xλ for some λ > 0.

Applying [173, Th. 7.1] we have
∫ 1

0
g(x)dx ≥ 1/2 which reduces λ to λ ≤ 1.

(VI). If d > 0, then by [173, Th. 6.2, (i)]= Theorem 125 must be g(x) ≤ x
which is contrary to xλ > x for λ < 1.

Notes 21. The possibilities (i), (ii) are achievable. Trivially, for xn = [nλ], G(Xn) =

{x1/λ} and for xn satisfying limn→∞ xn/xn+1 = 0 we have G(Xn) = {c0(x)}. Less

trivially, every lacunary xn, i.e. xn/xn+1 ≤ λ < 1, gives G(Xn) = {c0(x)}.

The following limit covers all of G(Xn) = {g}.

Theorem 126 ([173, Th. 8.3]). The set G(Xn) is a singleton if and only if

lim
m,n→∞

(
1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ xixm − xj
xn

∣∣∣∣
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− 1

2m2

m∑
i,j=1

∣∣∣∣ xixm − xj
xm

∣∣∣∣− 1

2n2

n∑
i,j=1

∣∣∣∣ xixn − xj
xn

∣∣∣∣ ) = 0. (278)

Proof. It follows directly from the limit (278) in the form

lim
m,n→∞

∫ 1

0

(F (Xm, x)− F (Xn, x))
2dx = 0,

after applying∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0

|x− y|dg(x)dg̃(y)

−1

2

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)− 1

2

∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg̃(y) (279)

for g(x) = F (Xm, x) and g̃(x) = F (Xn, x).

6.2.6 One-step d.f. cα(x) of G(Xn)

In [173] there is proved that singleton G(Xn) = {c1(x)} does not exist, since
(by [173, Th. 7.1]) for every increasing sequence xn of positive integers we
have

max
g(x)∈G(Xn)

∫ 1

0

g(x)dx ≥ 1

2
. (280)

In [173] is also proved (see Th. 8.4, 8.5) that

Theorem 127.

G(Xn) = {c0(x)} ⇐⇒ lim
n→∞

1

nxn

n∑
i=1

xi = 0, (281)

G(Xn) = {c0(x)} ⇐⇒ lim
n→∞

1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ xixm − xj
xn

∣∣∣∣ = 0, (282)

G(Xn) ⊂ {cα(x);α ∈ [0, 1]} ⇐⇒ lim
n→∞

1

n2xn

n∑
i,j=1

|xi − xj| = 0. (283)

Proof. (281).
∫ 1

0
xdg(x) = 1−

∫ 1

0
g(x)dx = 0 only if g(x) = c0(x).

212



(282). Assume that F (Xmk
, x) → g̃(x) and F (Xnk

, x) → g(x) a.e. as
k →∞. Riemann-Stieltjes integration yields

1

mknk

mk∑
i=1

nk∑
j=1

∣∣∣∣ xixmk

− xj
xnk

∣∣∣∣ = ∫ 1

0

∫ 1

0

|x− y|dF (Xmk
, x)dF (Xnk

, y) (284)

which, after using Helly’s theorem, tends to∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg(y) (285)

as k → ∞. Then (285) is equal to 0 if and only if g̃(x) = g(x) = cα(x) for
some fixed α ∈ [0, 1]. By Theorem 125, α must be 0. (d = 0 follows from
Theorem 123, part (i)).

(283). Again
∫ 1

0

∫ 1

0
|x − y|dg(x)dg(y) = 0 if and only if g(x) = cα(x) for

α ∈ [0, 1] and thus

lim
k→∞

1

nknk

nk∑
i=1

nk∑
j=1

∣∣∣∣ xixnk

− xj
xnk

∣∣∣∣ = 0

for every nk →∞.

Furthermore, if G(Xn) ⊂ {cα(x);α ∈ [0, 1]}, then d(xn) = 0. Here we
prove that

Theorem 128 ([66, Th. 6]). Let xn, n = 1, 2, . . . , be an increasing sequence
of positive integers. Assume that G(Xn) ⊂ {cα(x);α ∈ [0, 1]}. Then c0(x) ∈
G(Xn) and if G(Xn) contains two different d.f.s, then also c1(x) ∈ G(Xn).

Proof. We start from the equation (2) (see [173, p. 756, (1)])

F (Xm, x) =
n

m
F

(
Xn, x

xm
xn

)
,

which is valid for every m ≤ n and x ∈ [0, 1]. Assuming, for two increasing
sequences of indices mk ≤ nk, that, as k →∞

(i) F (Xmk
, x)→ cα1(x) a.e.,

(ii) F (Xnk
, x)→ cα2(x) a.e.,
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(iii) nk

mk
→ γ,

(iv)
xmk

xnk
→ β,

(such sequences mk ≤ nk exist by Helly theorem) then we have:
a) If β > 0 and γ <∞ (see (3) in [173]), then

cα1(x) = γcα2(xβ) (13)

for almost all x ∈ [0, 1].
b) If β = 0 and γ < ∞, then by Helly theorem there exists subsequence

(m′
k, n

′
k) of (mk, nk) such that F

(
Xn′

k
, x

xm′
k

xn′
k

)
→ h(x) a.e. and since

F

(
Xnk

, x
xm′

k

xn′
k

)
≤ F (Xnk

, xβ′)

for every β′ > 0 and sufficiently large k, we get h(x) ≤ cα2(xβ
′). Summariz-

ing, we have
cα1(x) ≤ γcα2(xβ

′) (14)

for every β′ > 0 a.e. on [0, 1].
We distinguish the following steps (notions (i)-(iv), a) and b) are pre-

serve):
10. Let cα1(x) ∈ G(Xn), 0 ≤ α1 < 1, and let mk, k = 1, 2, . . . , be an
increasing sequence of positive integers for which

(i)F (Xmk
, x)→ cα1(x).

Relatively to the mk, we choose an arbitrary sequence nk, mk ≤ nk, such
that

(iii) nk

mk
→ γ, 1 < γ <∞.

From (mk, nk) we select a subsequence (m′
k, n

′
k) such that

(ii)F (Xn′
k
, x)→ cα2(x) a.e. on [0, 1],

(iv)
xm′

k

xn′
k

→ β for some β ∈ [0, 1].

a) If β > 0, then (13) cα1(x) = γcα2(xβ) a.e. is impossible, because γ > 1
and for x > α1 we have cα1(x) = 1. Thus β = 0.
b) The condition β = 0 implies (14) cα1(x) ≤ γcα2(xβ

′) for every β′ > 0 and
a.e. on x ∈ [0, 1]. If α2 > 0, then cα2(xβ

′) = 0 for all x < α2

β′ , which implies,

using β′ ≤ α2, that cα1(x) = 0 for x ∈ (0, 1), and this is contrary to the
assumption α1 < 1.
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Thus α2 = 0 and we have: If 0 ≤ α1 < 1 and cα1(x) ∈ G(Xn) then

c0(x) ∈ G(Xn). Now, applying [173, Th. 7.1] we have maxcα(x)∈G(Xn)

∫ 1

0
cα(x)dx =

1 − α ≥ 1
2
. Then the assumption cα1(x) ∈ G(Xn), 0 ≤ α1 < 1 is true, thus

c0(x) ∈ G(Xn) holds.
20. In this case we start with the sequence nk and we assume that cα2(x) ∈ G(Xn),
0 < α2 ≤ 1, and

(ii)F (Xnk
, x)→ cα2(x) a.e. on [0, 1].

Then we choose arbitrary mk such that mk ≤ nk and
(iii) nk

mk
→ γ, 1 < γ <∞.

From (mk, nk) we select a subsequence (m′
k, n

′
k) such that

(ii)F (Xm′
k
, x)→ cα1(x) a.e. on [0, 1],

(iv)
xm′

k

xn′
k

→ β for some β ∈ [0, 1].

a) If β > 0, then by (13) cα1(x) = γcα2(xβ) a.e. If α1 < 1, then γ > 1 implies
cα1(x) > 1 for some x ∈ (0, 1), a contradiction. Thus α1 = 1 (in this case
β ≤ α2).
b) Now, β = 0 implies (14) cα1(x) ≤ γcα2(xβ

′) for every β′ > 0 and a.e. on
x ∈ [0, 1] and the assumption α2 > 0 implies cα2(xβ

′) = 0 for all x < α2

β′ ,

which gives α1 = 1. Summarizing, if G(Xn) contains two different d.f.s, then
it contains c0(x) and c1(x) simultaneously.

6.2.7 Connectivity of G(Xn)

As we have proved in Theorem 6, for a usual sequence yn the set G(yn) of
all d.f. of yn is nonempty, closed and connected in the weak topology, and
consists either of one or infinitely many functions. The closedness of G(Xn)
is clear, but connectivity of G(Xn) is does not have to pay. A general block
sequence Yn with non-connected G(Yn) can be found trivially. For our special
Xn we have only the following sufficient condition.

Theorem 129 ([173, Th. 5.1]). If

lim
n→∞

(
1

n(n+ 1)

n+1∑
i=1

n∑
j=1

∣∣∣∣ xixn+1

− xj
xn

∣∣∣∣
− 1

2(n+ 1)2

n+1∑
i,j=1

∣∣∣∣ xixn+1

− xj
xn+1

∣∣∣∣− 1

2n2

n∑
i,j=1

∣∣∣∣ xixn − xj
xn

∣∣∣∣ ) = 0,

(286)
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then G(Xn) is connected in the weak topology.

Proof. The connection follows from the limit

lim
n→∞

∫ 1

0

(F (Xn+1, x)− F (Xn, x))
2 dx = 0,

since by a theorem of H. G. Barone [16] (Theorem 8 in this book) if tn is a
sequence in a metric space (X, ρ) satisfying

(i) any subsequence of tn contains a convergent subsequence and

(ii) limn→∞ ρ(tn, tn+1) = 0,

then the set of all limit points of tn is connected. Next we use the expression∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0

|x− y|dg(x)dg̃(y)− 1

2

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)

− 1

2

∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg̃(y).

Putting g(x) = F (Xn+1, x) and g̃(x) = F (Xn, x) we get the desired limit.
37

As a consequence we have:

Theorem 130. If limn→∞
xn
xn+1

= 1, then G(Xn) is connected.

Proof. After some manipulation (437) it follows from

lim
n→∞

(
1

nxn

n∑
i=1

xi

)(
1− xn

xn+1

)
= 0.

Note that by [173, Th. 4.1] all d.f.’s in G(Xn) are continuous everywhere
on [0, 1] if they are continuous at 0 and 1.

In [173, Th. 3.2] is proved that if g(x) ∈ G(Xn), g(x) increases at β ∈
[0, 1), g(β) > 0, then there exists α ∈ [1,∞) such that αg(xβ) ∈ G(Xn).

37ρ2(g, g̃) =
∫ 1

0
(g(x)− g̃(x))2dx.

In Example 99 is given Xn such that G(Xn) is connected but lim supn→∞ ρ(tn+1, tn) = 1.
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Using this fact, we can define on G(Xn) the relation g̃(x) ≺ g(x) if there
exist α, β such that g̃(x) = αg(xβ). For every element g(x) ∈ G(Xn) we
define [g(x)] as the set of all g̃(x) ∈ G(Xn) for which g̃(x) ≺ g(x). Assuming
that all d.f.s in G(Xn) are continuous and strictly increasing, then we have

[g(x)] = {g(xβ)/g(β); β ∈ (0, 1]}.
Denote as G(g(x)) the set of all possible limits limk→∞ g(xβk)/g(βk), where
βk → 0 and put

[g(x)]∗ = [g(x)] ∪G(g(x)).

Theorem 131. Assume that all d.f.s in G(Xn) are continuous and strictly
increasing. If G(Xn) = ∪ki=1[gi(x)]

∗, then G(Xn) is connected if and only if
gi(x), i = 1, 2, . . . , k can be reordered into gin(x), n = 1, 2, . . . , k such that

(i) [gin(x)]
∗ ∩ [gin+1(x)]

∗ ̸= ∅, n = 1, 2, . . . , k − 1.

Proof. 10. Firstly we prove that [g(x)]∗ is nonempty, closed and connected,
for every g(x) ∈ G(Xn). Note that, in the following we say that we can go
connectively g1(x)→ g2(x) through the set H if for every ε > 0 there exists a
chain gin(x) ∈ H, n = 1, 2, . . . ,m such that ρ(g1, gi1) < ε, ρ(gi2 , gi3) < ε, . . . ,
ρ(gim , g2) < ε.
Connectivity: If g1(x) = g(xβ1)/g(β1) and g2(x) = g(xβ2)/g(β2) then we can
go connectively g1(x) → g2(x) through g(xβ)/g(β), where β is between β1
and β2, since

g(xβ)

g(β)
− g(xβ′)

g(β′)
=

(
g(xβ)− g(xβ′)

g(β)
+ g(xβ′)

g(β′)− g(β)
g(β)g(β′)

)
→ 0

as (β′ − β)→ 0, where β, β′ ≥ ε > 0.
If g1(x) = limk→∞ g(xβk)/g(βk) and g2(x) = limk→∞ g(xβ′

k)/g(β
′
k), then we

can go connectively

g1(x)→ g(xβk)/g(βk)→ g(xβ′
k)/g(β

′
k)→ g2(x)

through [g(x)]. Similarly for the rest

g1(x) = g(xβ1)/g(β1) and g2(x) = lim
k→∞

g(xβk)/g(βk).

Closedness: If limk→∞ g(xβk)/g(βk) = g1(x), we can select βk such that
βk → β. If β > 0, then from continuity g(x) we have g1(x) = g(xβ)/g(β).
The closedness of G(g(x)) follows from definition of G(g(x)).
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20. Assume that (i) holds and select g∗n(x) ∈ [gin(x)]
∗ ∩ [gin+1(x)]

∗, i =
1, 2, . . . , k − 1. Let g1(x) ∈ [gi1(x)]

∗ and g2(x) ∈ [gi3(x)]
∗. Then we can

go connectively

g1(x)→
gi1(xβ1)

gi1(β1)
→ g∗1(x)→

gi2(xβ2)

gi2(β2)
→ g∗2(x)→

gi3(xβ3)

gi3(β3)
→ g2(x),

similarly in a general case.
30. Assume that (i) does not hold. Then [gi(x)]

∗, i = 1, 2, . . . , k, can be
divided into two parts such that

(∪i∈A[gi(x)]∗) ∩ (∪i∈B[gi(x)]∗) = ∅,

where A ∪ B = {1, 2, . . . , k}. From closedness of such sets follows ρ(g, g̃) ≥
δ > 0 for some δ and every g(x) ∈ ∪i∈A[gi(x)]∗ and g̃(x) ∈ ∪i∈B[gi(x)]∗,
which contradicts the connectivity of G(Xn).

6.2.8 Everywhere density of xm/xn, m,n = 1, 2, . . .

Theorem 132 ([172]). Let xn, n = 1, 2, . . . be an increasing sequence of
positive integers. If d(xn) ≥ (1/2) then the ratio sequence xm/xn, m,n =
1, 2, . . . , is everywhere dense in [0,∞). Conversely, if 0 ≤ γ < 1/2 then
there exists an xn ∈ N such that d(xn) = γ and xm/xn, m,n = 1, 2, . . . , is
not everywhere dense in [0,∞).

The proof immediately follows from the following theorem.

Theorem 133. Let xn ∈ N and the interval (α, β), 0 ≤ α < β ≤ 1 be such
that (α, β) ∩ {xm/xn,m, n = 1, 2, . . . } = ∅. Then

d(xn) ≤
α

β
min(1− d(xn), d(xn)) and (287)

d(xn) ≤ 1− (β − α). (288)

Proof of (287). Let A ⊂ N be listed in a strictly increasing order as x1 <
x2 < · · · < xn < . . . . If (α, β) ∩ {xm/xn,m, n = 1, 2, . . . } = ∅, then the
intervals

(αxn, βxn), n = 1, 2, . . .

cannot intersect A but they may have mutually nonempty intersections. We
can select pairwise disjoint subintervals

(αx[θn], αx[θn] + α), (αx[θn]+1, αx[θn]+1 + α), . . . ,
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(αxn−1, αxn−1 + α), (289)

(αxn, βxn) (290)

for some 0 ≤ θ ≤ 1 (here we put x[θn] = 0 if [θn] = 0). Denote B = N−A and
B(x) = #{b ≤ x; b ∈ B}. Counting the number of integer points belonging
to (289) we obtain

B(βxn) ≥ (n− [θn])(α− 1) + ((β − α)xn − 1) +B(αx[θn])

for all sufficiently large n. To eliminate 1 in (α − 1) we replace n with nk
and α with kα. Then (289) transforms into pairwise disjoint subintervals of
the form

(αx[θn]k, αx[θn]k + kα), (αx([θn]+1)k, αx([θn]+1)k + kα), . . . ,

(αx(n−1)k, αx(n−1)k + kα), (αxnk, βxnk). (291)

Thus, we have

B(βank)

βank
≥ (n− [θn])(kα− 1)

βank
+

((β − α)ank − 1)

βank
+
B(αa[θn]k)

αa[θn]k

α

β

a[θn]k
ank

.

To compute the lim sup of the left and right hand side, respectively, use that

(i) lim supn→∞B(βank)/βank ≤ d(B) = 1− d(A),

(ii) lim supn→∞ nk/ank = d(A),

(iii) lim infn→∞B(αa[θn]k)/αa[θn]k ≥ d(B) = 1− d(A), and

(iv) by selecting indices n for which limn→∞ nk/ank = d(A) we have (as-
suming d(A) > 0)

lim inf
n→∞

a[θn]k
ank

= lim inf
n→∞

a[θn]k
[θn]k

lim
n→∞

[θn]k

ank
≥ 1

d(A)
d(A)θ.

Thus, letting k →∞ we get

1− d(A) ≥ (1− θ)α
β
d(A) +

β − α
β

+ (1− d(A))α
β
θ.

Computing the maximum of the right hand side for 0 ≤ θ ≤ 1 yields

1− d(A) ≥ β − α
β

+
α

β
max(d(A), 1− d(A)),

which justifies (287).
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Proof of (288). A proof of (288) is given in [172], p. 69–71: Every infinite
set A ⊂ N with infinite complement N−A can be expressed as the set of the
integer points lying in the intervals

[b1, c1], [b2, c2], . . . , [bn, cn], . . . , (292)

whose endpoints form two integer sequences ordered as

b1 ≤ c1 < b2 ≤ c2 < · · · < bn ≤ cn < . . . .

Clearly

d(A) = lim inf
n→∞

1

bn

n−1∑
i=1

(ci − bi + 1), (293)

d(A) = lim sup
n→∞

1

cn

n∑
i=1

(ci − bi + 1). (294)

The points of A ∩ [1, cn] divided by i, i ∈ [bn, cn], form a subset Rn ⊂ R(A);
38 we obtain the intervals[

b1
i
,
c1
i

]
,

[
b2
i
,
c2
i

]
, . . . ,

[
bn−1

i
,
cn−1

i

]
,

[
bn
i
,
cn
i

]
which have the following property: the distance of any two neighbouring
points of Rn lying in [bn−k/i, cn−k/i] is less than 1/bn and the same holds for
the union

cn∪
i=bn

[
bn−k
i
,
cn−k
i

]
=

[
bn−k
cn

,
cn−k
bn

]
.

Thus, for sufficiently large n, every interval (α, β) ⊂ [0, 1] satisfying (α, β) ∩
R(A) = ∅must lie in the complement of [bn−k/cn, cn−k/bn], k = 0, 1, . . . , n−1,
which is formed by the pairwise disjoint intervals(

cn−k
bn

,
bn−k+1

cn

)
, k = 1, 2, . . . , n− 1, (295)

some of which may be empty. Hence, a necessary condition for (α, β) ∩
R(A) = ∅ is the existence of an integer sequence kn, kn < n, such that

(α, β) ⊂
(
cn−kn
bn

,
bn−kn+1

cn

)
(296)

38R(A) = {a/b; a, b ∈ A}.
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for all sufficiently large n. This also gives

bn−kn+1

cn
− cn−kn

cn
≥ β − α.

Now we can express the upper asymptotic density as

d(A) = lim sup
n→∞

(
cn − b1
cn

+
n

cn
−
(
b2 − c1
cn

+
b3 − c2
cn

+ · · ·+ bn − cn−1

cn

))
(297)

whence
d(A)− d(C) ≤ 1− (β − α), (298)

where C is the range of cn. For sufficiency of (296) we need the set R(A)l of
all limit points of R(A). 39

By the above reasoning we see that (α, β)∩R(A)l = ∅ if and only if there
exists kn < n satisfying (296) for all sufficiently large n. Thus, inequality
(298) holds for (α, β) satisfying (α, β) ∩R(A)l = ∅ as well.

Now, for a positive integer k, transform

[bn, cn]→ [kbn, kcn + k − 1]

and denote by Ak the set of all integer points lying in [kbn, kcn + k − 1],
n = 1, 2, . . . . Similarly, Ck is the set of all kcn + k − 1. Evidently

d(Ak) = d(A), d(Ck) = d(C)/k, and R(Ak)
l = R(A)l

which gives
d(A)− d(C)/k ≤ 1− (β − α)

and (288) follows.

Notes 22. Everywhere density of xm/xn was first investigated by T. Šalát [140]. He
proved

Theorem 134. If d(xn) > 0 or d(xn) = 1, then xm/xn, m,n = 1, 2, . . . is everywhere
dense in [0,∞). Also xm/xn is everywhere dense if A(x)/ cx

logα x → 1 for x → ∞, where

c > 0, α > 0 and A(x) = #{a ≤ x; a ∈ A}.

39R(A)l is the set of all limit points x = limi→∞
ami

ani
of R(A).

R(A)d is the set of all accumulation points of R(A) i.e. the points x which can be
expressed as a limit x = limi→∞

ami

ani
of a one-to-one sequence

ami

ani
.
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Using (287) and (288) Theorem 132 has also the form

Theorem 135. For every increasing integers xn, if d(xn) + d(xn) ≥ 1 then xm/xn is
everywhere dense in [0,∞).

Theorem 136. The ratio sequence xm/xn, m,n = 1, 2, . . . is everywhere
dense in [0, 1] if

(i) limn→∞
1

n2xn

∑n
i,j=1 |xi − xj| = 0,

(ii) lim infn→∞
1
nxn

∑n
i=1 xi = 0,

(iii) lim supn→∞
1
nxn

∑n
i=1 xi = 1.

Proof. It follows from Theorem 19.

6.2.9 U.d. of Xn

By Theorem 124, u.d. of the single block sequence Xn implies the u.d. of the
ratio sequence xm/xn. Applying [173, Th 6.3, (i)] (d/d)x ≤ g(x) ≤ (d/d)x
for every x ∈ [0, 1], we have

Theorem 137. If the increasing sequence xn of positive integers has a pos-
itive asymptotic density, i.e. d = d > 0, then the associated ratio sequence
xm/xn, m = 1, 2, . . . , n, n = 1, 2, . . . is u.d. in [0, 1].

Positive asymptotic density is not necessary. According to T. Šalát [140]
we can use also a sequence xn with d = 0.

Theorem 138 ([173, Th. 9.2]). Let xn be an increasing sequence of positive
integers and h : [0,∞)→ [0,∞) be a function satisfying

(i) A(x) ∼ h(x) as x→∞, where

(ii) h(xy) ∼ xh(y) as y →∞ and for every x ∈ [0, 1], and

(iii) limn→∞
n

h(xn)
= 1.

Then Xn (and consequently xm/xn) is u.d. in [0, 1].
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Proof. Starting with (33) F (Xn, x)n = A(xxn) it follows from (i) that

F (Xn, x)n

h(xxn)
→ 1

as n→∞, then by (ii)
F (Xn, x)n

xh(xn)
→ 1

which gives by (iii) the limit

F (Xn, x)
n

h(xn)
→ x

as n→∞.

Notes 23. Assuming only (i) and (ii), we have lim infn→∞ n/h(xn) ≥ 1, since otherwise

nk/h(xnk
)→ α < 1 implies F (Xnk

, x)→ x/α for every x ∈ [0, 1] which is a contradiction.

Also, G(Xn) ⊂ {xλ;λ ∈ [0, 1]}.

6.2.10 L2 discrepancy of Xn

It has the form

D(2)(Xn) =
1

3
+

1

nx2n

n∑
i=1

x2i −
1

nxn

n∑
i=1

xi −
1

2n2xn

n∑
i,j=1

|xi − xj|. (299)

Proof. Applying (720) we have

D(2)(Xn) =

∫ 1

0

(F (Xn, x)− x)2dx =
1

n2

n∑
i,j=1

F0

(
xi
xn
,
xj
xn

)
,

where

F0(x, y) =
1

3
+
x2 + y2

2
− x+ y

2
− |x− y|

2
.

Then

Theorem 139. For every increasing sequence xn of positive integers we have

lim
n→∞

D(2)(Xn) = 0⇐⇒ lim
n→∞

F (Xn, x) = x.
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Notes 24. The left hand-side can be divided into three limits (cf. [160, Th. 1])

lim
n→∞

D(2)(Xn) = 0⇐⇒


(i) limn→∞

1
nxn

∑n
i=1 xi =

1
2 ,

(ii) limn→∞
1

nx2
n

∑n
i=1 x

2
i = 1

3 ,

(iii) limn→∞
1

n2xn

∑n
i,j=1 |xi − xj | =

1
3 .

Also note that if D(2)(Xn)→ 0, then xm/xn is everywhere dense.

Notes 25. Weyl’s criterion for u.d. of Xn is not well applicable in our case. It says (cf.
[145, (7)]).

Theorem 140. Xn is u.d. if and only if

lim
n→∞

1

n

n∑
k=1

e2πih
xk
xn = 0

for all positive integers h.

6.2.11 Boundaries of g(x) ∈ G(Xn)

Theorem 141 ([11, Th. 5]). For every increasing sequence of positive inte-
gers xn, n = 1, 2, . . . , there exists g(x) ∈ G(Xn) such that g(x) ≥ x for all
x ∈ [0, 1].

Proof. If d > 0, select nk so that nk

xnk
→ d > 0, and F (Xnk

, x) → g(x). For

such g(x), (274) implies
g(x)

x
d ≥ d.

Now, let d = 0. Select nk such that

nk
xnk

= min
i≤nk

i

xi
,

and F (Xnk
, x)→ g(x). Then for every x ∈ (0, 1],

A(xxnk
)

xxnk

≥ nk − 1

xnk

.

Applying (33) yields
F (Xnk

, x)

x

nk
xnk

≥ nk − 1

xnk

,

and taking the limit, as k →∞, we obtain g(x) ≥ x for all x ∈ [0, 1]. 40

40L. Mǐśık.
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See [11, Th. 6]:

Theorem 142 (L. Mǐśık). Let x1 < x2 < . . . be a sequence of positive
integers with positive lower asymptotic density d > 0, and upper asymptotic
density d. Then all d.f.s g(x) ∈ G(Xn) are continuous, non-singular, and
bounded by h1(x) ≤ g(x) ≤ h2(x), where

h1(x) =

x
d

d
, if x ∈

[
0, 1−d

1−d

]
;

d
1
x
−(1−d) , otherwise,

(300)

h2(x) = min

(
x
d

d
, 1

)
. (301)

Moreover, h1(x) and h2(x) are the best possible in the following sense: for
given 0 < d ≤ d, there exists x1 < x2 < . . . with lower and upper asymptotic

densities d, d, such that g(x) = h1(x) for x ∈
[
1−d
1−d , 1

]
; also, there exists

x1 < x2 < . . . with given 0 < d ≤ d such that g(x) = h2(x) ∈ G(Xn).

Proof. For g(x) ∈ G(Xn), let nk, k = 1, 2, . . . , be an increasing sequence of
indices such that F (Xnk

, x) → g(x). From nk we can select a subsequence
(for simplicity written as the original nk)

41 such that

nk
xnk

→ dg > 0. (302)

Then, by (274), we have

g(x) = x
dg(x)

dg
, where

A(xxnk
)

xxnk

→ dg(x) (303)

for arbitrary x ∈ (0, 1].
We will continue in six steps 10–60.
10. We prove the continuity of g(x) at x = 1 (improving (iv) in [173, Th.

6.2]) for each g(x) ∈ G(Xn).
In view of the definition of the counting function A(t)

0 ≤ A(xnk
)− A(xxnk

) ≤ xnk
− xxnk

;

41We call dg a local asymptotic density related to g(x).
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thus,

0 ≤ A(xnk
)

xnk

− A(xxnk
)

xnk

=
nk − 1

xnk

− A(xxnk
)

xxnk

x ≤ 1− x,

and, as k →∞, we have 0 ≤ dg − dg(x)x ≤ 1− x, which implies

0 ≤ dg − dg(x) + dg(x)(1− x) ≤ 1− x.

Consequently, limx→1 dg(x) = dg, and so limx→1 g(x) = limx→1 x
dg(x)

dg
= 1.

Since g(x) ∈ G(Xn) is arbitrary, [173, Th. 4.1,Th. 6.2] gives continuity of
g(x) in the whole unit interval [0, 1].

20. We prove that g(x) has a bounded right derivative for every x ∈ (0, 1),
and for each g(x) ∈ G(Xn).

For 0 < x < y < 1 again

0 ≤ A(yxnk
)− A(xxnk

) ≤ (y − x)xnk
,

which implies

0 ≤ A(yxnk
)

yxnk

y − A(xxnk
)

xxnk

x ≤ y − x.

Letting k →∞, we get 0 ≤ dg(y)y − dg(x)x ≤ y − x, hence

0 ≤ g(y)− g(x) = dg(y)y − dg(x)x
dg

≤ y − x
dg

.

Consequently,

0 ≤ g(y)− g(x)
y − x

≤ 1

dg
(304)

for all x, y ∈ (0, 1), x < y, which gives the upper bound of the right deriva-
tives of g(x) for every x ∈ (0, 1). Note that a singular d.f. (continuous,
strictly increasing, having zero derivative a.e.) has infinite right Dini deriva-
tives in a dense subset of (0, 1).

30. We prove a local form of Theorem 47.
As d ≤ dg ≤ d, (303) implies

x
d

dg
≤ g(x) ≤ x

d

dg
(305)
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for every x ∈ [0, 1]. It follows from (304), that there exists an extreme point
Ag = (xg, yg) on the line y = x d

dg
such that g(x) has no common point with

this line for x > xg. This point Ag is the intersection of the lines

y = x
d

dg
and, y = x

1

dg
+ 1− 1

dg
(306)

therefore,

Ag = (xg, yg) =

(
1− dg
1− d

,
d

dg

1− dg
1− d

)
. (307)

It means that for a given g(x) ∈ G(Xn), h1,g(x) ≤ g(x) ≤ h2,g(x), where

h1,g(x) =

{
x d
dg

, if x < y0 =
1−dg
1−d ;

x 1
dg

+ 1− 1
dg
, if y0 ≤ x ≤ 1,

(308)

h2,g(x) = min

(
x
d

dg
, 1

)
. (309)

40. Now we find h1(x), and h2(x) such that

h1(x) ≤ h1,g(x) ≤ h2,g(x) ≤ h2(x)

for every g ∈ G(Xn).
In the parametric expression (307) of Ag, the local asymptotic density

dg defined by (302) belongs to the interval [d, d]. The well-known Darboux
property of the asymptotic density implies that for an arbitrary d ∈ [d, d]
there exists an increasing nk, k = 1, 2, . . . , such that nk

xnk
→ d 42, and

then the Helly selection principle implies the existence of a subsequence of
nk such that F (Xnk

, x) → g(x) for some g(x) ∈ G(Xn). Thus, if g(x)
runs over G(Xn), then dg runs over the entire interval [d, d]. Substituting
dg = 1− xg(1− d) in Ag = (xg, yg) we get

yg = yg(xg) =
d

1
xg
− (1− d)

,

where xg = 1−dg
1−d runs through the interval I =

[
1−d
1−d , 1

]
for dg ∈ [d, d]. By

putting xg = x, and yg = h1 we find a part of h1(x) for x ∈ I in (300).

42A simple proof follows from the fact that for every d ∈ (d, d) there exist infinitely
many n ∈ N such that A(n)/n ≤ d ≤ A(n+ 1)/(n+ 1). These n we denote as nk.

227



The remaining part of h1(x), and also the whole h2(x), follow from the basic
inequality (305), see [11, Fig. 1.]. The optimality of h1(x) and h2(x) are
proved in 50 and 60 pages 518–522 of [11]. 43

Figure 1: Boundaries of g(x) ∈ G(Xn)

43L. Mǐśık.
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6.2.12 Applications of boundaries of g(x)

An application of d.f.s in Theorem 142 to elementary number theory:

Theorem 143 ([11, Th. 7]). For every increasing sequence x1 < x2 < . . .
of positive integers with lower and upper asymptotic densities 0 < d ≤ d we
have

1

2

d

d
≤ lim inf

n→∞

1

n

n∑
i=1

xi
xn
, (310)

lim sup
n→∞

1

n

n∑
i=1

xi
xn
≤ 1

2
+

1

2

(
1−min(

√
d, d)

1− d

)(
1− d

min(
√
d, d

)

)
. (311)

Here the equations in (310) and (311) can be attained.

Proof. By Helly theorem, if F (Xnk
, x)→ g(x), then∫ 1

0

xdF (Xnk
, x) =

1

nk

nk∑
i=1

xi
xnk

→
∫ 1

0

xdg(x) = 1−
∫ 1

0

g(x)dx.

If d > 0, then h1(x) ≤ g(x) ≤ h2(x) which implies

1−
∫ 1

0

h2(x)dx ≤ 1−
∫ 1

0

g(x)dx ≤ 1−
∫ 1

0

h1(x)dx. (312)

For x1 < x2 < . . . for which h2(x) ∈ G(Xn) in the left of (312) we have
equation, but because by (xi) in every case h1(x) /∈ G(Xn) for 0 < d < d,
which implies strong inequality in the right, i.e.

lim sup
n→∞

1

n

n∑
i=1

xi
xn

< 1− 1

2

d

d

(
1− d
1− d

)2

− d

(1− d)2

(
log

d

d
− (d− d)

)
. (313)

Since for every g(x) ∈ G(Xn) in 30 we have h1,g(x) ≤ g(x) ≤ h2,g(x), then

lim sup
n→∞

1

n

n∑
i=1

xi
xn
≤ max

g(x)∈G(Xn)

(
1−

∫ 1

0

h1,g(x)dx

)
. (314)

If the maximum in (314) is attained in g0(x) ∈ G(Xn) and h1,g0(x) ∈ G(Xn),
then g0(x) = h1,g0(x) and we have

lim sup
n→∞

1

n

n∑
i=1

xi
xn

= 1−
∫ 1

0

h1,g0(x)dx. (315)
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Using (105) we find∫ 1

0

h1,g(x)dx =
1

2

(
1 +

1− dg
1− d

(
d

dg
− 1

))

for dg ∈ [d, d] with derivative
(∫ 1

0
h1,g(x)dx

)′
= 1

2(1−d)

(
1− d

(dg)2

)
and which

gives that min
∫ 1

0
h1,g(x)dx is attained in dg0 = min(

√
d, d).

Now, to prove (315) we can construct integer x1 < x2 < . . . with 0 < d ≤
d such that h1,g0(x) ∈ G(Xn).

We starting with the sequence of indices nk, and then by (105) we must
find indices m′

k < mk < nk and integers xm′
k
< xmk

< xnk
such that

(i) nk

xnk
→ dg0 ,

(ii) mk

nk
→ d

dg0

1−dg0
1−d ,

(iii)
xmk

xnk
→ 1−dg0

1−d ,

(iv)
xm′

k

xnk
→ 0,

(v)
m′

k

n′
k
→ 0,

(vi)
m′

k

xm′
k

→ d.

Then from (i), (ii) and (iii) follows mk

xmk
→ d. Furthermore we must again

assumed
(v) xmk

− xm′
k
≥ mk −m′

k,
(vi) xnk

− xmk
≥ nk −mk,

(vii) xm′
k+1
− xnk

≥ m′
k+1 − nk,

(viii) nk < m′
k+1,

(ix) m′
1 ≤ xm′

1
.

It can be solved naturally and complement values xn we define linearly.

6.2.13 Lower and upper d.f.s of G(Xn)

In the Introduction 6.2, (xv), we notify the result [11, Th. 7] that for every
integer sequence 1 ≤ x1 < x2 < . . . with d > 0 and every d.f. g(x) ∈ G(Xn)
we have h1(x) ≤ g(x) ≤ h2(x), where h1(x) and h2(x) are defined in (14) and
(23), respectively. Furthermore, by [11, 60 of Proof], there exists an integer
sequence 1 ≤ x1 < x2 < . . . with d > 0 such that h2(x) ∈ G(Xn). In this
case h2(x) = g(x) and G(Xn) has the following additional properties.
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Theorem 144. Let 1 ≤ x1 < x2 < . . . be an integer sequence with d > 0
such that h2(x) ∈ G(Xn). Then the set G(Xn) contains uncountable many
different d.f.s gα(x), α ∈ [1,∞), of the form

gα(x) =


x 1
αβ

d
d

if x ∈
[
0, d

d
β
]
,

1
α

if x ∈
[
d

d
β, β

]
,

nondecreasing if x ∈
[
β, 1],

(316)

where for β = β(α) we have 1 ≤ αβ ≤ d
d
. Furthermore, g(x) = x is also in

G(Xn).

Proof. We use two steps.
10. Assume that F (Xnk

, x) → h2(x) as k → ∞ for x ∈ [0, 1]. For every
α ∈ [1,∞) we can choose n′

k > nk so that

(i)
n′
k

nk
→ α.

From the sequence (n′
k, nk), k = 1, 2, . . . , we can select subsequence (with

the same notation) such that
(ii)

xnk

xn′
k

→ β,

where β = β(α) but it is not given uniquely. We have only 1
α
d

d
≤ β ≤ 1

α
d
d

because

n′
k

nk

xnk

xn′
k

=

n′
k

xn′
k

nk

xnk

→ αβ

and which gives α < ∞ ⇔ β > 0. Now, from (n′
k, nk) we again select a

subsequence such that
(iii) F (Xn′

k
, x)→ g(x)

for all x ∈ [0, 1]. Applying the identity (750)

F (Xnk
, x) =

n′
k

nk
F
(
Xn′

k
, x
xnk

xn′
k

)
(317)

and assuming that d > 0, which implies everywhere continuity of g(x) (see
[173, Th. 6.2]) and g(x) > 0 for 0 < x ≤ 1, then we can take limit in (317)
to obtain

h2(x) = αgα(xβ) (318)

for x ∈ [0, 1]. Now, using h2(x) = 1 for x ∈
[
d

d
, 1
]
, (318) implies gα(x) =

1
α
for

x ∈
[
d

d
β, β

]
and h′2(x) =

d
d
for x ∈

[
0, d

d

]
implies g′α(x) =

d
d

1
αβ

for x ∈
[
0, d

d
β
]
.

Then we obtain (316) and since gα(x) ≤ h2(x), then 1 ≤ αβ.
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20. Again, let F (Xnk
, x) → h2(x) for x ∈ [0, 1]. For every limit point 44

β > 0 of xi
xnk

, i = 1, 2, . . . , nk, k = 1, 2, . . . , we can select mk < nk such that

(i)
xmk

xnk
→ β,

(ii) nk

mk
→ α

(iii) F (Xmk
, x)→ g(x).

The identity (750) in the form F (Xmk
, x) = nk

mk
F
(
Xnk

, x
xmk

xnk

)
implies

g(x) = αh2(xβ) =
h2(xβ)

h2(β)
(319)

for x ∈ [0, 1]. From the form of h2(x) we have guaranteed that β ∈
[
0, d

d

]
is

a limit point of xi
xnk

and in this case (319) gives

g(x) =
xβ d

d

β d
d

= x.

For β > d

d
, if exists, we have g(x) = h2(xβ) for x ∈ [0, 1], i.e.,

g(x) =

{
xβ d

d
if x ∈

[
0, d

d
1
β

]
,

1 if x ∈
[
d

d
1
β
, 1
]
.

(320)

Finally, for h2(x) defined in (23) for which h2(x) = g(x) for special 1 ≤
x1 < x2 < . . . , we see directly that

h2(xy) ≤ h2(x)h2(y) (321)

for every x, y ∈ [0, 1]. Also for h1(x) defined in (14), in the case x ≥
√

1−d
1−d ,

for which there exists a special sequence xn (see [173, pp. 774–777, Ex. 11.2])
such that the lower d.f. g(x) = h1(x) we have 45(

d
1
x
− (1− d)

)(
d

1
y
− (1− d)

)
≤ d

1
xy
− (1− d)

(322)

for xy ≥
√

1−d
1−d . In the following theorem we extend (321) and (322) for

arbitrary lower g(x) and upper g(x) d.f.s.

44In the following α and β have another meaning as in 10.
45This holds also for arbitrary x, y ∈ (0, 1), since it is equivalent to x(1− y) ≤ 1− y.
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Theorem 145. For every increasing sequence of positive integers 1 ≤ x1 <
x2 < . . . , with d > 0, the lower d.f. g(x) and the upper d.f. g(x) satisfy

g(x).g(y) ≤ g(x.y) ≤ g(x.y) ≤ g(x).g(y) (323)

for every x, y ∈ (0, 1).

Proof. d > 0 implies that arbitrary g(x) ∈ G(Xn) is everywhere continuous
and g(x) > 0 for x > 0. Let y ∈ (0, 1).

10. Firstly we prove the left-hand side of (323).
a) If y is an increasing point 46 of g(x), n = 1, 2, . . . then by (123) we

have g(xy)
g(y)
∈ G(Xn) and thus g(x) ≤ g(xy)

g(y)
which implies

g(x)g(y) ≤ g(x)g(y) ≤ g(xy) (324)

for every x ∈ (0, 1).
b) Let g(x) does not increase at y. Since every g(x) ∈ G(Xn) is continuous

and d

d
x ≤ g(x) ≤ d

d
x for x ∈ [0, 1], there exists the nearest neighboring point

y1 < y, y1 > 0 at which g(x) increases. Thus g(xy1)
g(y1)

∈ G(Xn) which implies

g(x) ≤ g(xy1)
g(y1)

. Because g(y1) = g(y), g(xy1) ≤ g(xy), then again

g(x)g(y) ≤ g(x)g(y) = g(x)g(y1) ≤ g(xy1) ≤ g(xy) (325)

for every x ∈ (0, 1).
Since g ∈ G(Xn) is arbitrary, and for x, y ∈ (0, 1) by (323) and (324)

we have g(x)g(y) ≤ g(xy), then the definition of lower d.f. of G(Xn) as
g(xy) = infg∈G(Xn) g(xy) implies g(x)g(y) ≤ g(xy).

20. Now, we prove the right-hand side of (323).

a) Again, if y is an increasing point of g(x), then g(xy)
g(y)

∈ G(Xn), thus
g(xy)
g(y)
≤ g(x) which implies

g(xy) ≤ g(y)g(x) ≤ g(y)g(x) (326)

for x ∈ (0, 1).
b) Let g(x) be non increasing at y and let y2 be the nearest point to the

right at which g(x) is increasing. Again, by d

d
x ≤ g(x) ≤ d

d
x, this point exists

46Either g(y − ε) < g(y) or g(y) < g(y + ε), for arbitrary ε > 0.
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and thus for given g(x) ∈ G(Xn) we have
g(xy2)
g(y2)

∈ G(Xn),
g(xy2)
g(y2)

≤ g(x) which
implies

g(xy) ≤ g(xy2) ≤ g(y2)g(x) ≤ g(y)g(x) ≤ g(y)g(x) (327)

for x ∈ (0, 1). Then g(xy) = supg∈G(Xn) g(xy) implies g(x.y) ≤ g(x).g(y) for
x, y ∈ (0, 1).

Notes 26. By J. Aczél [1, p. 144–145, Th. 4] every continuous d.f. g(xy) = g(x)g(y) has

the form g(x) = xc for a constant c and x ∈ [0, 1].

6.2.14 Algorithm for constructing g̃(x) ≤ g(x)

[12, p. 5]: Let 1 ≤ x1 < x2 < . . . be an increasing sequence of positive
integers. Put x0 = 0 and

tn = xn − xn−1, n = 1, 2, . . .

For every n = 1, 2, . . . we compute the finite integer sequence

t
(n)
1 , t

(n)
2 , . . . , t(n)n

from t1, t2, . . . by the following procedure:

10. For n = 1, t
(1)
1 = t1 = x1;

20. For n = 2, t
(2)
1 = t1 + t2 − 1 = x2 − 1 and t

(2)
2 = 1;

30. Assume that for n − 1 ≥ 2 we have t
(n−1)
i , i = 1, 2, . . . , n − 1. For n we

first define the initial auxiliary sequence t′1, t
′
2, . . . , t

′
n such that t′i = t

(n−1)
i ,

i = 1, 2, . . . , n − 1, and t′n = tn. Then we repeatedly modify this sequence
using following steps (a) and (b).

(a) If there exists k, 1 < k < n, such that t′1 = t′2 = · · · = t′k−1 > t′k and
t′n > 1, then we put t′k := t′k + 1, t′n := t′n − 1 and t′i := t′i in all other
cases.

(b) If such k does not exist and t′n > 1, then we put t′1 := t′1+1, t′n := t′n−1
and t′i := t′i in all other cases.

Repeated application of (a) and (b) shows that the step 30 terminates if

t′n = 1 and outputs the sequence t
(n)
1 := t′1, . . . , t

(n)
n := t′n.

40. Put n− 1 := n and use the output t
(n)
1 , . . . , t

(n)
n as the new input in 30.

Thus the final output of Algorithm is the infinite sequence of finite integers
block t

(n)
1 , t

(n)
2 , . . . , t

(n)
n for n = 1, 2, . . . .

234



Theorem 146 ([12, Lemma 1]). Assuming that tn ̸= 1 for infinitely many

n, then the output t
(n)
1 , t

(n)
2 , . . . , t

(n)
n of the Algorithm can be of the following

two possible forms:

(A) t
(n)
1 = · · · = t(n)m = Dn > t

(n)
m+1 ≥ t

(n)
m+2 = t

(n)
m+3 = . . . t(n)n = 1,

(B) t
(n)
1 = · · · = t(n)m = Dn > t

(n)
m+1 = · · · = t

(n)
m+s = Dn − 1

≥ t
(n)
m+s+1 = · · · = t(n)n = 1,

for some m = m(n), s = s(n) and for Dn := t
(n)
1 .

Theorem 147 ([12, Lemma 2]). For Dn defined in Theorem 146 there are
two possibilities:

(I) Dn is bounded;
(II) Dn →∞.

In the case (I) we have only the form (A) and Dn = const. = c ≥ 2 for all
sufficiently large n.
In the case (II) both cases (A) and (B) are possible.

Construction of g̃(x) ≤ g(x)

[12, p. 8]: Assume that, for every n = 1, 2, . . . , we have given n-terms
sequence

t
(n)
1 , t

(n)
2 , . . . , t(n)n

such that for every n = 1, 2, . . .

t
(n)
1 ≤ t

(n+1)
1 , t

(n)
2 ≤ t

(n+1)
2 , . . . , t(n)n ≤ t(n+1)

n . (328)

Then, we define xn, x
(n)
j and X

(n)
n as

xn =
n∑
i=1

t
(n)
i , n = 1, 2, . . . ; (329)

x
(n)
j =

j∑
i=1

t
(n)
i , j = 1, 2, . . . , n; (330)

X(n)
n =

(
x
(n)
1

x
(n)
n

,
x
(n)
2

x
(n)
n

, . . . ,
x
(n)
n

x
(n)
n

)
, n = 1, 2, . . . . (331)
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Clearly x
(n)
n = xn and using (328) we see that

xj =

j∑
i=1

t
(j)
i ≤

j∑
i=1

t
(n)
i = x

(n)
j , j = 1, 2, . . . , n

which implies

F (X(n)
n , x) ≤ F (Xn, x) for all x ∈ [0, 1], n = 1, 2, . . . . (332)

Selecting a sequence of indices nk, k = 1, 2, . . . , such that F (Xnk
, x)→ g(x)

and F (X
(nk)
nk , x)→ g̃(x) for all x ∈ [0, 1], we have

g̃(x) ≤ g(x) for all x ∈ [0, 1]. (333)

The case d = 0

[12, p. 12]: In the case d = 0 the Algorithm implies limn→∞Dn =∞ since if

Dn = const. = c, then t
(n)
1 , t

(n)
2 , . . . , t

(n)
n satisfy (A) and dg =

1
α(c−1)+1

≥ 1
c
> 0.

Note that, in the opposite direction, limn→∞Dn =∞ need not imply d = 0,
see the Construction.

The following theorem we shall formulate for the case (B), since the case
(A) gives the same result, putting γ = 0 and sk = 0.

Theorem 148 ([12, Th. 3]). Let xn, n = 1, 2, . . . , be an increasing sequence

of positive integers such that d = 0 and let t
(n)
1 , t

(n)
2 , . . . , t

(n)
n be a sequence

produced by Algorithm. For a selected sequence of indices nk, k = 1, 2, . . . ,
assume that

(i) F (Xnk
, x)→ g(x) and F (X

(nk)
nk , x)→ g̃(x) for all x ∈ [0, 1];

(ii) t
(nk)
1 = · · · = t

(nk)
mk = Dnk

> t
(nk)
mk+1 = · · · = t

(nk)
mk+sk

= Dnk
− 1

≥ t
(nk)
mk+sk+1 = · · · = t

(nk)
nk = 1;

(iii) mk

nk
→ α;

(iv) sk
nk
→ γ.

Then we have g̃(x) ≤ g(x) for all x ∈ [0, 1], where
(a) If α + γ > 0 then dg = 0 and g̃(x) = x(α + γ) for all x ∈ [0, 1].
(b) If α + γ = 0 and mk+sk

nk
Dnk

→ ∞ then dg = 0 and g̃(x) = 0 for all

x ∈ (0, 1).
(c) If α + γ = 0 and mk+sk

nk
Dnk
→ δ, 0 < δ <∞, then dg =

1
δ+1

and

g̃(x) =

{
0 if x < y2 =

δ
δ+1

,

x(δ + 1)− δ if y2 ≤ x ≤ 1.
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(d) If α + γ = 0 and mk+sk
nk

Dnk
→ δ = 0, then dg = 1 and g̃(x) = x.

6.2.15 g(x) ∈ G(Xn) with constant intervals

Theorem 149 ([174]). Assume that d > 0. If there exists an interval (u, v) ⊂
[0, 1] such that every g ∈ G(Xn) has a constant value on (u, v) (may be
different), then every g ∈ G(Xn) has infinitely many intervals with constant
values such that g increases at their endpoints.

Proof. Since

xi < xxm ⇐⇒ xi <

(
x
xm
xn

)
xn,

then we have (22)

F (Xm, x) =
n

m
F

(
Xn, x

xm
xn

)
,

for every m ≤ n and x ∈ [0, 1). Using the Helly selection principle, we can
select a subsequence (mk, nk) of the sequence (m,n) such that F (Xnk

) →
g(x), F (Xmk

)→ g̃(x) as k →∞; furthermore xmk
/xnk

→ β and nk/mk → α,
but α may be infinity. Assuming β > 0 and g(β − 0) > 0, we have α < ∞
and (271)

g̃(x) = αg(xβ) a.e. on [0, 1].

Thus, if g̃(x) has a constant value on (u, v), then g(x) must be constant on
the interval (uβ, vβ). Furthermore, if d > 0, then for every g ∈ G(Xn) we
have (276)

(d/d)x ≤ g(x) ≤ (d/d)x

for every x ∈ [0, 1]. Thus, there exists a sequence βk ∈ (0, 1) such that
βk ↘ 0 and g(x) increases in βk, g(βk) > 0, k = 1, 2, . . . . For such βk, g(x),
applying the Helly principle, we can find sequences αk and g̃k(x) ∈ G(Xn)
such that

g̃k(x) = αkg(xβk)

a.e. on [0, 1]. Every g̃k(x) has a constant value on the interval (u, v), hence,
g(x) must be constant on the intervals (uβk, vβk) for k = 1, 2, . . . .
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6.2.16 Transformation of Xn by 1/x mod 1

The mapping 1/x mod 1 transforms the block Xn to the block

Zn =

(
xn
x1
,
xn
x2
, . . . ,

xn
xn

)
mod 1.

For example, the block sequence Xn =
(
1
n
, 2
n
, . . . , n

n

)
, n = 1, 2, . . . which is

u.d. is transformed to the block sequence

Zn =
(n
1
,
n

2
, . . . ,

n

n

)
mod 1, n = 1, 2, . . .

which has a.d.f.

g(x) =

∫ 1

0

1− tx

1− t
dt =

∞∑
n=1

x

n(n+ x)
= γ0 +

Γ′(1 + x)

Γ(1 + x)
,

where γ0 is Euler’s constant. This was proved by G. Pólya, (see I.J. Schoen-
berg [143]). The following theorem, which generalizes [92, p.56, Th. 7.6]
describes a relation between G(Xn) and G(Zn).

Theorem 150 ([66, Th. 7]). If every g(x) ∈ G(Xn) is continuous on [0, 1],
then

G(Zn) =

{
g̃(x) =

∞∑
n=1

g(1/n)− g(1/(n+ x)); g(x) ∈ G(Xn)

}
.

Proof. For f(x) = 1/x mod 1 we have f−1([0, t)) = ∪∞
i=1(1/(t+ i), 1/i]. Thus

F (Zn, t) =
∑∞

i=1(F (Xn, 1/i)− F (Xn, 1/(t+ i))).
10. Assume that F (Xnk

, x)→ g(x), where g(x) is everywhere continuous on
[0, 1]. Thus

K∑
i=1

(F (Xnk
, 1/i)− F (Xnk

, 1/(t+ i)))→
K∑
i=1

(g(1/i)− g(1/(t+ i))),

∞∑
i=K+1

(F (Xnk
, 1/i)− F (Xnk

, 1/(t+ i))) ≤ F (Xnk
, 1/(K + 1))

→ g(1/(K + 1))→ 0.

Thus F (Znk
, t)→ g̃(t) =

∑∞
i=1(g(1/i)− g(1/(t+ i))) for t ∈ [0, 1].

20. Assume that F (Znk
, t)→ g̃(t) weakly. From nk there can be selected n′

k

such that F (Xn′
k
, x)→ g(x). Assuming continuity of g(x), we apply 10.
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6.2.17 Construction H ⊂ G(Xn) of d.f.s

Basic open problem is that characterize a nonempty set H of d.f.s for which
there exists an increasing sequence of positive integers xn such that G(Xn) =
H. In [11] we found integer sequence 1 ≤ x1 < x2 < . . . such that the
piecewise linear function h2(x) defined in (23) belongs to G(Xn). Now we
are going to extend this construction. In [12] is proved:

Theorem 151. Let H be a nonempty set of d.f.s defined on [0, 1]. Then
there exists an integer sequence 1 ≤ x1 < x2 < . . . such that H ⊂ G(Xn).

Proof. The proof contains the following 5 steps.
10. To the set H it can be constructed a sequence of continuous strictly

increasing piecewise linear functions hn(x), n = 1, 2, . . . , such that every
f(x) ∈ H is a weak limit hnk

(x)→ f(x).
20. For every h(x) possessing at points β1 = 0 < β2 < · · · < βs−1 < βs = 1

the values α1 = 0 < α2 < · · · < αs−1 < αs = 1, respectively, and being
linear in each interval [βi, βi+1], we can define a sequence of integer intervals

[m
(1)
k , nk], k = 1, 2, . . . , and their divisions

m
(1)
k < m

(2)
k < · · · < m

(s−1)
k < m

(s)
k < nk

in which we can define integers

x
m

(1)
k
< x

m
(2)
k
< · · · < x

m
(s−1)
k

< x
m

(s)
k
< xnk

such that for i = 1, 2, . . . , s we have

(i)
x
m

(i)
k

xnk
→ βi,

(ii)
m

(i)
k

nk
→ αi,

(iii) x
m

(i)
k
− x

m
(i−1)
k
≥ m

(i)
k −m

(i−1)
k ,

(iv) xnk
− x

m
(s)
k
≥ nk −m(s)

k .

For other n ∈ [m
(1)
k , nk] we define xn linearly, i.e. for n ∈ [m

(i−1)
k ,m

(i)
k ] we

put
(v)

xn = x
m

(i−1)
k

+

[(
n−m(i−1)

k

)xm(i)
k
− x

m
(i−1)
k

m
(i)
k −m

(i−1)
k

]
.
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Directly from (i), (ii) and (v) it follows that

#
{
n ∈ [m

(1)
k , nk];

xn
xnk

< x
}

nk
→ h(x) (334)

for x ∈ (0, 1) as k →∞.

�
�
�
�

�
�
�

�
�
�
�

�
�

m
(i+1)
k

nk

x
m

(i+1)
k

xnk

q

q

αi+1

βi+1

q

q
m

(i)
k

nk

x
m

(i)
k

xnk

qq
αi

βi
q
q

Figure: A part of graph of h(x) and (i)-(ii) properties.

Note that, in this step, the intervals [m
(1)
k , nk], k = 1, 2, . . . , can intersect.

For necessity of pairwise disjointness we use the next step.

m
(1)
k m

(2)
k

x
m

(1)
k

x
m

(2)
k

q q
q

q

m
(s)
k

nk

x
m

(s)
k

xnk

q qq q

q
q

Figure: (iii)-(iv) properties.
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30. One solution [m
(1)
k , nk], k = 1, 2, . . . in 20 gives infinitely many so-

lutions by the following: Let Ak < Bk be two positive integer sequences.
Replace [m

(1)
k , nk] by [Akm

(1)
k , Aknk] with division

Akm
(1)
k < Akm

(2)
k < · · · < Akm

(s−1)
k < Akm

(s)
k < Aknk

and define the values of xn as

x
Akm

(i)
k

= Bkxm(i)
k
,

i = 1, 2, . . . , s and xAknk
= Bkxnk

. Then the limit (i) and (ii) again hold

x
Akm

(i)
k

xAknk

=
Bkxm(i)

k

Bkxnk

→ βi,
Akm

(i)
k

Aknk
→ αi.

Also (iii) and (iv) hold, since

x
Akm

(i)
k
− x

Akm
(i−1)
k

= Bkxm(i)
k
−Bkxm(i−1)

k

≥ Bk(m
(i)
k −m

(i−1)
k ) ≥ Akm

(i)
k − Akm

(i−1)
k .

40. Let hi(x), i = 1, 2, . . . be a dense set of d.f. in H and for hi(x) = h(x)

rewrite the interval [m
(1)
k , nk] in 20 as [m

(1,i)
k , n

(i)
k ]. Order these intervals to

infinite matrix A

[m
(1,1)
1 , n

(1)
1 ], [m

(1,1)
2 , n

(1)
2 ], . . . , [m

(1,1)
k , n

(1)
k ], . . .

[m
(1,2)
1 , n

(2)
1 ], [m

(1,2)
2 , n

(2)
2 ], . . . , [m

(1,2)
k , n

(2)
k ], . . .

. . .

[m
(1,i)
1 , n

(i)
1 ], [m

(1,i)
2 , n

(i)
2 ], . . . , [m

(1,i)
k , n

(i)
k ], . . .

. . .

and reorder it to a linear sequence by diagonals, i.e. to

[m
(1,1)
1 , n

(1)
1 ], [m

(1,2)
1 , n

(2)
1 ], [m

(1,1)
2 , n

(1)
2 ], . . .

and denote it as a new sequence [m
(1)
k , nk], k = 1, 2, . . . . Since these intervals

can intersect we use in 30 suitable Ak < Bk, k = 1, 2, . . . such that the
resulting sequence is disjoint and

(vi) x
m

(1)
k+1
− xnk

≥ m
(1)
k+1 − nk,
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(vii) x
m

(1)
1
≥ m

(1)
1 .

For n which are not in the intervals [m
(1)
k , nk], k = 1, 2, . . . we can define xn

linearly. Now, if from nk, k = 1, 2, . . . we select n′
k corresponding to ith line

of A, then F (Xn′
k
, x)→ hi(x) for x ∈ [0, 1].

50. Finally, we give a solution of (i)-(iv) in 20. We start with increasing
sequence of indices nk, k = 1, 2, . . . , and let λ > 1 and put (integer parts are
omitted)

xnk
= λnk,

x
m

(i)
k

= βiλnk,

m
(i)
k = αink.

For (iv) we need

x
m

(i)
k
− x

m
(i−1)
k

=βiλnk − βi−1λnk = λ(βi − βi−1)nk

≥ m
(i)
k −m

(i−1)
k = (αi − αi−1)nk

which gives assumption
λ > max αi−αi−1

βi−βi−1
.

Notes 27. By Theorem 151 there exists an integer sequence 1 ≤ x1 < x2 < . . . such that

G(Xn) contains all d.f.s. Especially, for every sequence yn ∈ [0, 1), n = 1, 2, . . . , there

exists an Xn such that G(yn) ⊂ G(Xn).

6.2.18 Examples

Example 57. [173]: Put xn = pn, the nth prime and denote

Xn =

(
2

pn
,
3

pn
, . . . ,

pn−1

pn
,
pn
pn

)
.

The sequence of blocks Xn is u.d. and therefore the ratio sequence pm/pn,
m = 1, 2, . . . , n, n = 1, 2, . . . is u.d. in [0, 1]. This generalizes a result of
A. Schinzel (cf. W. Sierpiński (1964, p. 155)). Note that from u.d. of Xn

applying for the L2 discrepancy of Xn we get the following limit

lim
n→∞

1

n2pn

n∑
i,j=1

|pi − pj| =
1

3
.
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Example 58. [173, Ex. 11.1]: Let γ, δ, and a be given real numbers satis-
fying 1 ≤ γ < δ ≤ a. Let xn be an increasing sequence of all integer points
lying in the intervals

(γ, δ), (γa, δa), . . . , (γak, δak), . . . .

Then G(Xn) = {gt(x); t ∈ [0, 1]}, where gt(x) has constant values

gt(x) =
1

ai(1 + t(a− 1))
for x ∈ (δ, aγ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and on the component intervals it has a constant derivative

g′t(x) =
tδ + (1− t)γ

(δ − γ)( 1
a−1

+ t)
for x ∈ (γ, δ)

ai+1(tδ + (1− t)γ)
, i = 0, 1, 2, . . .

and x ∈
(

γ

tδ + (1− t)γ
, 1

)
,

where

F (Xnk
, x)→ gt(x) for nk for which xnk

= [akγ + tak(δ − γ)] (335)

Here we write (xz, yz) = (x, y)z and (x/z, y/z) = (x, y)/z. From it
follows that the set G(Xn) has the following properties:

(i) Every g ∈ G(Xn) is continuous.

(ii) Every g ∈ G(Xn) has infinitely many intervals with constant values ,
i.e. with g′(x) = 0, and in the infinitely many complement intervals it
has a constant derivative g′(x) = c, where 1

d
≤ c ≤ 1

d
and for lower d

and upper d asymptotic density of xn we have d = (δ−γ)
γ(a−1)

, d = (δ−γ)a
δ(a−1)

.

(iii) The graph of every g ∈ G(Xn) lies in the intervals
[
1
a
, 1
]
×
[
1
a
, 1
]
∪[

1
a2
, 1
a

]
×
[

1
a2
, 1
a

]
∪ . . . Moreover, the graph g in

[
1
ak
, 1
ak−1

]
×
[

1
ak
, 1
ak−1

]
is similar to the graph of g in

[
1

ak+1 ,
1
ak

]
×
[

1
ak+1 ,

1
ak

]
with coefficient 1

a
.

Using the parametric expression, it can be written for all x ∈
(

1
ai+1 ,

1
ai

)
that gt(x) =

gt(aix)
ai

, i = 0, 1, 2, . . . .

(iv) G(Xn) is connected and the upper distribution function g(x) = g0(x) ∈
G(Xn) and the lower distribution function g(x) /∈ G(Xn). The graph of

g(x) on
[
1
a
, 1
]
×
[
1
a
, 1
]
coincides with the graph of y(x) =

(
1 + 1

d

(
1
x
− 1
))−1

on
[
γ
δ
, 1
]
, further, on

[
1
a
, γ
δ

]
we have g(x) = 1

a
.
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(v) G(Xn) =
{
g0(xβ)
g0(β)

; β ∈
[
1
a
, δ
aγ

]}
.

For the proofs of i-v we only note: Assume that xn ∈ ak(γ, δ), i, i + 1, i +
2, · · · ∈ aj(γ, δ) for some j < k, and let F (Xn, x) → g(x) for some se-
quence of n. Then g(x) has a constant derivative in the intervals containing
i
xn
, i+1
xn
, i+2
xn
, . . . , since

1
n

i+1
xn
− i

xn

=
xn
n
,

and thus xn
n

must be convergent to g′(x), so 1
d
≤ g′(x) ≤ 1

d
. For xn =

[takδ + (1− t)akγ] we can find

g′(x) = lim
n→∞

xn
n

= lim
k→∞

ak(tδ + (1− t)γ)∑k−1
j=0 a

j(δ − γ) + ak(tδ + (1− t)γ)− akγ

=
tδ + (1− t)γ

(δ − γ)
(

1
a−1

+ t
) .

Using Theorem 61 and [11, Ex. 3] we shall add the following properties
moreover:

(vi) By Definition 8 of the local asymptotic density dg and by (335) for
g(x) = gt(x) we have

dgt = lim
k→∞

nk
xnk

= lim
k→∞

∑k−1
i=0 a

i(δ − γ) + tak(δ − γ)
akγ + tak(δ − γ)

=
(δ − γ)(1 + t(a− 1))

(a− 1)(γ + t(δ − γ))
(336)

and for t = 0 we have dg0 = d and for t = 1 we have dg1 = d and we see

g′t(x) =
1

dgt
(337)

for x with the constant derivative of gt(x).
(vii) For the function h1,g(x) defined in (308), putting g(x) = gt(x), we

have:

d

dgt
=

γ + t(δ − γ)
γ(1 + t(a− 1))

,
1− dgt
1− d

=
γ

γ + t(δ − γ)
,
d

dgt

1− dgt
1− d

=
1

1 + t(a− 1)
.

Then

h1,gt(x) =

x
d
dgt
, for x ∈

(
0, γ

γ+t(δ−γ

)
,

gt(x) = x 1
dgt

+ 1− 1
dgt
, for x ∈

(
γ

γ+t(δ−γ , 1
)
,

(338)
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see the following Fig.
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Figure : gt(x) and h1,gt(x).

(viii) In proof of the upper bound (311) we have proved that 1−
∫ 1

0
h1,g(x)dx

is maximal for dg = min(
√
d, d). Let t0 ∈ [0, 1] be such that dgt0 = min(

√
d, d).

t0 can be computed by inverse formula to (336)

t =
dgt(a− 1)γ − (δ − γ)
(δ − γ)(a− 1)(1− dgt)

. (339)

(ix) Let P (t) be the area in
[
1
a
, 1
]
×
[
1
a
, 1
]
bounded by the graph of gt(x).

Then ∫ 1

0

gt(x)dx =P (t)
1

1− 1
a2

+
1

a+ 1

=
1

2
+

1

2
.

1

(a+ 1)
.

(γa− δ)
(1 + t(a− 1))(γ + t(δ − γ))

+
1

2
.

t(δ − γa)
(1 + t(a− 1))(γ + t(δ − γ))

(340)

and since g0(x) = g(x) we have that maxt∈[0,1]
∫ 1

0
gt(x)dx is attained at t = 0.

Using derivative of P (t) it can be see that the mint∈[0,1]
∫ 1

0
gt(x)dx is attained

at t = 1. It also follows from the fact that for xn+1 = xn + 1 we have

1

n+ 1

n+1∑
i=1

xi
xn+1

− 1

n

n∑
i=1

xi
xn
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=
1

n+ 1
−
(

1

xn + 1
+

1

n+ 1
.

1

1 + 1
xn

)(
1

n

n∑
i=1

xi
xn

)
> 0

because c1(x) /∈ G(Xn) and thus lim supn→∞
1
n

∑n
i=1

xi
xn
< 1. Now, denoting

the index nk for xnk
= [akδ], the lim sup of 1

n

∑n
i=1

xi
xn

is attained over n = nk,
k = 0, 1, 2, . . . and for such nk we have F (Xnk

, x)→ g1(x) for x ∈ [0, 1].
(x) Thus we have

lim inf
n→∞

1

n

n∑
i=1

xi
xn

= 1−
∫ 1

0

g0(x)dx =
1

2
− 1

2
.

1

(a+ 1)

(
γa− δ
γ

)
, (341)

lim sup
n→∞

1

n

n∑
i=1

xi
xn

= 1−
∫ 1

0

g1(x)dx =
1

2
+

1

2
.

1

(a+ 1)

(
γa− δ
δ

)
. (342)

The upper bound (311) coincide with the maximal value of 1−
∫ 1

0
h1,g(x)dx

attained for dg = min(
√
d, d). Since 1 −

∫ 1

0
g1(x)dx is maximal for all 1 −∫ 1

0
gt(x)dx, t ∈ [0, 1] and 1−

∫ 1

0
g1(x)dx ≤ 1−

∫ 1

0
h1,g1(x)dx then the upper

bound (342) satisfies (311).
(xi) Using explicit formulas

d =
(δ − γ)
γ(a− 1)

, d =
(δ − γ)a
δ(a− 1)

(343)

for asymptotic densities we see again that (341) and (342) satisfy (310) and
(311), respectively, in Theorem 143.

Example 59. [66, Ex. 2]: Let xn and yn, n = 1, 2, . . . , be two strictly
increasing sequences of positive integers such that for the related block se-

quencesXn =
(
x1
xn
, . . . , xn

xn

)
and Yn =

(
y1
yn
, . . . , yn

yn

)
, we have singletonG(Xn) =

{g1(x)} and G(Yn) = {g2(x)}. Furthermore, let nk, k = 1, 2, . . . , be an
increasing sequence of positive integers such that Nk =

∑k
i=1 ni satisfies

nk

Nk
→ 1. Denote by zn the following increasing sequence of positive integers

composed by blocks (here we use the notation a(b, c, d, . . . ) = (ab, ac, ad, . . . ))

(x1, . . . , xn1), xn1(y1, . . . , yn2), xn1yn2(x1, . . . , xn3), xn1yn2xn3(y1, . . . , yn4), . . .

Then the sequence of blocks Zn =
(
z1
zn
, . . . , zn

zn

)
has the set of d.f.s

G(Zn) = {g1(x), g2(x), c0(x)} ∪ {g1(xyn);n = 1, 2, . . . }
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∪ {g2(xxn);n = 1, 2, . . . }

∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x);α ∈ [0,∞)

}
∪
{

1

1 + α
c0(x) +

α

1 + α
g2(x);α ∈ [0,∞)

}
,

where g1(xyn) = 1 if xyn ≥ 1, similarly for g2(xxn).

Proof. For every n = 1, 2, . . . there exists an integer k such that

Nk−1 < n ≤ Nk

(here N0 = 0). Put n′ = n−Nk−1. For every n we have

zn =

{
xn1yn2 . . . xnk−1

yn′ if k is even,

xn1yn2 . . . ynk−1
xn′ if k is odd.

Firstly we assume that k is even. Then Zn has the form

Zn =(
. . . ,

xn1yn2 . . . ynk−2
(x1, . . . , xnk−1

)

xn1yn2 . . . xnk−1
yn′

,
xn1yn2 . . . xnk−1

(y1, . . . , yn′)

xn1yn2 . . . xnk−1
yn′

)
=(

. . . ,
1

xnk−1
yn′

(
y1
ynk−2

, . . . ,
ynk−2

ynk−2

)
,
1

yn′

(
x1
xnk−1

, . . . ,
xnk−1

xnk−1

)
,

(
y1
yn′

, . . . ,
yn′

yn′

))
and thus for x > 1

xnk−1
we have

F (Zn, x) =
Nk−2 + nk−1F (Xnk−1

, xyn′) + n′F (Yn′ , x)

Nk−1 + n′

=
Nk−2

Nk−1 + n′ +

nk−1

Nk−1

1 + n′

Nk−1

F (Xnk−1
, xyn′) +

1

1 + Nk−1

n′

F (Yn′ , x).

If n → ∞, then the first term tends to zero. If F (Zn, x) → g(x) for some
sequence of n, we can select a subsequence of n’s such that n′

Nk−1
→ α for

some α ∈ [0,∞), or n′

Nk−1
→ ∞. For such n′ we distinguish the following

cases:
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(a) If n′ = constant, then

nk−1

Nk−1

1 + n′

Nk−1

F (Xnk−1
, xyn′)→ g1(xyn′)( here g1(xyn′) = 1 for xyn′ > 1)

1

1 + Nk−1

n′

F (Yn′ , x)→ 0

and thus F (Zn, x)→ g1(xyn′).
(b) If n′ →∞, then F (Xnk−1

, xyn′)→ 1; precisely F (Xnk−1
, xyn′)→ c0(x).

(b1) If n′

Nk−1
→ 0, then F (Zn, x)→ c0(x).

(b2) If n′

Nk−1
→ α ∈ (0,∞), then F (Zn, x)→ 1

1+α
c0(x) +

α
1+α

g2(x).

(b3) If n′

Nk−1
→∞, then F (Zn, x)→ 0 + g2(x).

For k-odd we use a similar computation.

Now, identify xn = yn and select xn such that g1(x) = x (e.g., xn = n or
xn = pn, the nth prime) and put nk = 2k

2
for k = 1, 2, . . . . Then the set of

all d.f.s

G(Zn) = {g1(x), c0(x)} ∪ {g1(xxn);n = 1, 2, . . . }

∪
{

1

1 + α
c0(x) +

α

1 + α
g1(x);α ∈ [0,∞)

}

is disconnected, as can be seen in the following Figures

Example 60. In [55] is proved that xn
xn+1
→ 1 does not imply that G(Xn) is

a singleton. This is a negative answer to the Problem 1.9.2 in [166].
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Let ak, nk, k = 1, 2, . . . , and xn, n = 1, 2, . . . be three increasing integer
sequences and h1 < h2 be two positive integers. Assume that

(i) nk

nk+1
→ 0 for k →∞;

(ii) ak
nk+1
→ 0 for k →∞;

(iii) for odd k we have
ah2k ≤ xnk

= (ak−1 + nk − nk−1)
h1 ≤ (ak + 1)h2 and

xi = (ak + i− nk)h2 for nk < i ≤ nk+1;
(iv) for even k we have
ah1k ≤ xnk

= (ak−1 + nk − nk−1)
h2 ≤ (ak + 1)h1 and

xi = (ak + i− nk)h1 for nk < i ≤ nk+1.
Then xn

xn+1
→ 1 and the set G(Xn) of all distribution functions of the sequence

of blocks Xn is G(Xn) = G1 ∪G2 ∪G3 ∪G4, where

G1 = {x
1
h2 .t; t ∈ [0, 1]},

G2 = {x
1
h2 (1− t) + t; t ∈ [0, 1]},

G3 = {max(0, x
1
h1 − (1− x

1
h1 )u);u ∈ [0,∞)} and

G4 = {min(1, x
1
h1 .v); v ∈ [1,∞)}.

In [173, Th. 5.2, p. 762] it is proved that the condition xn
xn+1
→ 1 implies the

connectivity of G(Xn)

Proof. 1. Firstly we prove that for any h1 < h2 the sequences ak, nk, xn
satisfying (i)–(iv) exist:

For i = 1, . . . , n1 we put xi = ih1 and then we find a1 such that ah21 ≤
xn1 ≤ (a1+1)h2 . If we have selected, for an odd step k, all ai, i = 1, 2, . . . , k−
1, xi, i = 1, 2, . . . , nk, then we find ak such that ah2k ≤ xnk

< (ak + 1)h2 , and
then we put xi = (ak + i − nk)h2 for nk < i ≤ nk+1, where we choose nk+1

sufficiently large to satisfy the limits (i) and (ii). For an even step k we
proceed similarly replacing h2 by h1.

2. In contrary to the independence of ak and nk+1 we have

ak

n
h1
h2
k

→ 1 for odd k →∞, ak

n
h2
h1
k

→ 1 for even k →∞. (344)

This follows from (iii) and (iv), directly, e.g. from (iii) we have

ah2k
nh1k

<

(
ak−1

nk
+ 1− nk−1

nk

)h1
<

(ak + 1)h2

nh1k
.
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As an application of (344) we have

ak
nk
→ 0 for odd k →∞, ak

nk
→∞ for even k →∞. (345)

3. Now we prove xi
xi+1
→ 1 as i→∞. Let i ∈ (nk, nk+1) and let e.g. k be

odd. Then by (iii)

xi
xi+1

=

(
1− 1

ak + i+ 1− nk

)h2
>

(
1− 1

ak

)h2
and for i = nk again

xnk

xnk+1

>
ah2k

(ak + 1)h2
>

(
1− 1

ak

)h2
which implies the limit 1 as odd k →∞. Similarly for even k.

4. Let N ∈ [nk, nk+1] be an integer sequence (we shall omit the index in
Nk) for k →∞. For x ∈ (0, 1) we have

F (XN , x) =
#{1 ≤ i ≤ nk−1;

xi
xN

< x}
N

+
#{nk−1 < i ≤ nk;

xi
xN

< x}
N

+
#{nk < i ≤ N ; xi

xN
< x}

N
= o(1) +

A

N
+
B

N
. (346)

To compute A
N

for odd k we use

xi
xN

=
(ak−1 + i− nk−1)

h1

(ak +N − nk)h2
< x⇐⇒ i− nk−1 < x

1
h1 (ak +N − nk)

h2
h1 − ak−1

and we have

A

N
=

min(nk − nk−1,max(0, [x
1
h1 (ak +N − nk)

h2
h1 − ak−1]))

N
. (347)

Similarly, for even k

A

N
=

min(nk − nk−1,max(0, [x
1
h2 (ak +N − nk)

h1
h2 − ak−1]))

N
. (348)

For B
N

and odd k we use

xi
xN

=

(
ak + i− nk
ak +N − nk

)h2
< x⇐⇒ i− nk < x

1
h2 (ak +N − nk)− ak
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which gives

B

N
=

min(N − nk,max(0, [x
1
h2 (ak +N − nk)− ak]))
N

. (349)

Similarly, for even k we have

B

N
=

min(N − nk,max(0, [x
1
h1 (ak +N − nk)− ak]))
N

. (350)

In the following we will distinguish three cases

nk
N
→ t > 0,

nk
N
→ 0 and

N

nk+1

→ 0, and
N

nk+1

→ t > 0.

5. Now, let nk

N
→ t > 0 as k →∞.

a) Assume that k is odd and compute the limit of A
N

by (347). We have
nk−nk−1

N
→ t and if t < 1 we see

x
1
h1

(
ak

N
h1
h2

+
N

N
h1
h2

(
1− nk

N

))h2
h1

− ak−1

N
→∞

since N

N
h1
h2

for h1 < h2 is unbounded and by (344)

ak

N
h1
h2

=
ak

n
h1
h2
k

(nk
N

)h1
h2 → t

h1
h2 .

is bounded. Thus, for 0 < t < 1, we have

A

N
→ t for odd k →∞. (351)

a1) Let for the moment t = 1. We have ak

n

h1
h2
k

→ 1 and

x
1
h1

(
ak

N
h1
h2

+
N − nk
N

h1
h2

)h2
h1

− ak−1

N
→ x

1
h1 (1 + u)

h2
h1
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assuming the limit N−nk

N
h1
h2

→ u, where u ∈ [0,∞) can be arbitrary. Put

v = (1 + u)
h2
h1 . Thus for t = 1 and corresponding v ∈ [1,∞) we have

A

N
→ min(1, x

1
h1 v) for odd k →∞. (352)

If N−nk

N
h1
h2

→∞, then

A

N
→ 1 for odd k →∞. (353)

b) Now, again 0 < t ≤ 1. For even k in (348) we have

x
1
h2

(
ak

N
h2
h1

+
N

N
h2
h1

(
1− nk

N

))h1
h2

− ak−1

N
→ x

1
h2 .t

since by (344)

ak

N
h2
h1

=
ak

n
h2
h1
k

(nk
N

)h2
h1 → t

h2
h1 .

Thus
A

N
→ x

1
h2 .t for even k →∞. (354)

c) For the limit B
N
as odd k →∞ we compute (349) by using N−nk

N
→ 1−t

and
x

1
h2

(ak
N

+ 1− nk
N

)
− ak
N
→ x

1
h2 (1− t)

since by (345) we have ak
N

= ak
nk

nk

N
→ 0. Thus

B

N
→ x

1
h2 (1− t) for odd k →∞. (355)

d) Again by (345), for even k we have ak
N

= ak
nk

nk

N
→ ∞, then (assuming

x < 1)

x
1
h1

(ak
N

+ 1− nk
N

)
− ak
N
→ −∞.

Thus
B

N
→ 0 for even k →∞. (356)
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e) Summing up (351), (354), (355) and (356) we find, for every x ∈ (0, 1),

F (XN , x)→

{
x

1
h2 (1− t) + t, for odd k →∞,

x
1
h2 .t, for even k →∞

(357)

for nk

N
→ t, 0 < t < 1. For nk

N
→ t = 1, N−nk

N
h1
h2

→ u and v = (1+ u)
h2
h1 we have

applying (352)

F (XN , x)→ min(1, x
1
h1 .v) for odd k →∞, (358)

and for N−nk

N
h1
h2

→∞ we have

F (XN , x)→ c0(x) for odd k →∞, (359)

where c0(x) = 1 for x ∈ (0, 1).
6. In the case nk

N
→ 0 and N

nk+1
→ 0 we have A

N
= o(1) and then it suffices

to compute the limit B
N

by (349) or (350).

a) Assume that odd k → ∞. Since N−nk

N
→ 1 and by (345) we have

ak
N

= ak
nk

nk

N
→ 0 and thus

x
1
h2

(ak
N

+ 1− nk
N

)
− ak
N
→ x

1
h2 . (360)

b) Assume that even k →∞. In this case (by (344) and (ii)) we have

ak
N

=
ak

n
h2
h1
k

n
h2
h1
k

N
,

ak

n
h2
h1
k

→ 1,
ak
nk+1

→ 0, then
n

h2
h1
k

nk+1

→ 0.

Thus, for any u ∈ [0,∞) we can find a subsequence of N such that

n
h2
h1
k

N
→ u. (361)

Then
x

1
h1

(ak
N

+ 1− nk
N

)
− ak
N
→ x

1
h1 − (1− x

1
h1 )u. (362)

c) Summing up (748) and (362) we find for every x ∈ (0, 1)

F (XN , x)→

{
x

1
h2 for odd k →∞,

max(0, x
1
h1 − (1− x

1
h1 )u) for even k →∞

(363)
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for nk

N
→ 0, N

nk+1
→ 0 and for u ∈ (0,∞) satisfying (361) if k is even. If

n

h2
h1
k

N
→∞ then

F (XN , x)→ c1(x) for even k →∞, (364)

where c1(x) = 0 for x ∈ (0, 1).
7. Finally, let N

nk+1
→ t > 0. Then ak

N
→ 0, because (ii) ak

nk+1
→ 0.

Computing the limit B
N

by (349) or (350) we find

F (NN , x)→

{
x

1
h2 , for odd k →∞,

x
1
h1 , for even k →∞.

(365)

8. Now, assume that F (XN , x) → g(x) for some sequence of N ∈
[nk, nk+1], i.e. g(x) ∈ G(Xn). Then we can find subsequence of N (denoting

again as N) such that nk

N
, N−nk

N
h1
h2

, N
nk+1

, and
n

h2
h1
k

N
converge. Consequently g(x)

is contained in the collection of (357), (358), (359), (360), (363), (364) and
(365).

Thus the proof is finished.
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6.2.19 Block sequence An = (1/qn, a2/qn, . . . , aφ(qn)/qn) of reduced ra-
tional numbers

Let qn be a an infinite sequence of positive integer numbers. Denote

An =

(
1

qn
,
a2
qn
, . . . ,

aφ(qn)
qn

)
,

where g.c.d(ai, qn) = 1. In [154] we have proved: Denote
dij = (qi, qj) is a common greatest divisor qi and qj,
qij =

qiqj
d2ij

,

p is a prime,
v(n) = #{p; p|n},
µ is the Möbius funkction,
φ is the Euler’s funkction.

For every N =
∑n

i=1 φ(qi), n = 1, 2, . . . , we have L2 discrepancy

N2

∫ 1

0

(
A([0, x);N ;An)

N
− x
)2

dx = N2D
(2)
N

=
1

12

n∑
i,j=1

2v(dij)

qij

∏
p|qiqj
p-dij

(1− p)
∏
p|dij
p-qij

(
1− 1

p

) ∏
p|dij
p|qij

(
1− p

2

(
1 +

1

p2

))

=
1

2π2

∞∑
h=1

1

h2

∣∣∣∣∣∣ ϕ(qi)

ϕ
(

qi
(h,qi)

)µ( qi
(h, qi)

)∣∣∣∣∣∣
2

.

For A1 this formula is implicitly in E. Space [150] and explicitly in H. Delange
[36].

6.2.20 Block sequence An = (1/qn, 2/qn, . . . , qn/qn) of non-reduced
rational numbers

Let qn be an infinite sequence of positive integer numbers. Denote

An =

(
1

qn
,
2

qn
, . . . ,

qn
qn

)
.
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For N of the form N = Nn + k where Nn =
∑n

i=1 qi and 0 ≤ k < qn+1 in
[130] for L2 discrepancy we have proved

N2D
(2)
N =

1

4
n2 +

1

12

n∑
i,j=1

(qi, qj)
2

qiqj
+

(
k

qn+1

)2(
1

3
k2 +

1

2
k +

1

6

)

+

(
k

qn+1

)(
−2

3
k2 − 1

2
k +

1

6

)
+

1

3
k2 +

1

2
kn+

1

6
k

n∑
i=1

1

qi

+2

∫ k/qn+1

0

{xqn+1}

(
n∑
i=1

{xqi}

)
dx− 2qn+1

∫ k/qn+1

0

x

(
n∑
i=1

{xqi}

)
dx

−2k
∫ 1

k/qn+1

(
n∑
i=1

{xqi}

)
dx.

In proof we have used the following formulas∫ k/b

0

{xb}{xa}dx =
1

b

(
ak

3b
− k

2ba
(a− 1)

(
2

3
a+

1

6

)
+

a−1∑
s=0

k−1∑
i=0

2s+ 1

2a2

{
s+ ia

b

})
,∫ t

0

x{xa}dx =
t2

4
+

t

12a
− {ta}

3

2a2
+
t{ta}2

2a
− t{ta}

2a
+
{ta}2

4a2
− {ta}

12a2
,∫ t

0

{xa}dx =
t

2
+
{ta}2

2a
+
{ta}
2a

.

The block sequence An was investigated S. Knapowski [86] who proved the
sufficiency of

lim
n→∞

qn+1

q1 + q2 + · · ·+ qn
= 0. (366)

for the u.d. of An, n = 1, 2, . . . . In [130] is proved that (366) is also satisfac-
tory and we have the following conditions:

(i) If increasing qn satisfies limn→∞ qn−1/qn = 1, then qn satisfies (366);
contrary if increasing qn satisfies (366), then lim supn→∞ qn−1/qn = 1.

(ii) Increasing sequence qn with qn = o(n2) satisfies (366).

(iii) Increasing qn with positive upper asymptotic density implies (366).

(iv) If qn satisfies (366), then limn→∞ n−1 log(q1 + q2 + · · ·+ qn) = 0.
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(v) If the sequence qn increase and its subsequence qnk
satisfies (366), then

qn also satisfies (366).

(vi) If two increasing sequences pn and qn satisfies (366), then also pn + qn
and the convolution p1dn + p2qn−1 + · · ·+ pnq1 satisfy (366).

(vii) If two increasing sequences pn a qn satisfy pn = O(n3/2) and qn =
o(n3/2), then pnqn satisfies (366).

(viii) Let p(x) be a polynomial with integers coefficients, with a positive
leading coefficient. Then increasing qn and p(n)qn satisfy (366) simul-
taneously.

(ix) Let qn be increasing linear recurrence with the characteristic polynomial
Q(x). Then qn satisfies (366) if and only if (a) every root of Q(x) is a
root of 1; (b) Q(1) = 0 and the multiplicity of 1 is at least 2 and it is
strongly greater that a multiplicity of any other root of Q(x).

(x) Consequence. Increasing linear recurring sequence qn satisfies (366) if
and only if limn→∞ qn−1/qn = 1.

6.3 The sequence φ(n)/n, n ∈ (k, k +N ]

In this section we describe result in [10].
Many papers have been devoted to the study of the distribution of the se-
quence

φ(n)

n
, n = 1, 2, 3, . . . ,

where φ denotes the classical Euler totient function. I. J. Schoenberg [145],
[146] established, among other results, that this sequence has a continuous
and strictly increasing a.d.f. and P. Erdős [45] showed that this function is
singular (i.e., the derivative exists almost everywhere on [0, 1] and is zero,
see [171, p. 2–191]). Recall that the a.d.f. g0(x) of φ(n)/n, n = 1, 2, 3 . . . , is
defined as

g0(x) = lim
N→∞

1

N

N∑
n=1

c[0,x)

(
φ(n)

n

)
, for any x ∈ [0, 1],

where c[0,x)(t) denotes the characteristic function of the subinterval [0, x) of
[0, 1]. An explicit construction of g0(x) can be found in B. A. Venkov [186].
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For any interval (k, k +N ] define the step distribution function

F(k,k+N ](x) =
1

N

∑
k<n≤k+N

c[0,x)

(
φ(n)

n

)
(x ∈ [0, 1)) and F(k,k+N ](1) = 1.

In this part, convergence properties of F(kn,kn+Nn] are investigated for se-
quences of intervals (km, km +Nm], m = 1, 2, 3, . . . using and mixing mainly
two methods. The first one designed as the P. Erdős’s approach introduces
a parameter t to separate the prime divisors of integers into those greater
that t and the others. The second one associated to the name of H. Dav-
enport, takes also his foundation from the works of S. Ramanujan [133], P.
Erdős [44, 47], B.A. Venkov [186], and many other people, is related to the
notion of primitive x-abundant number introduced about the divisor func-
tion.

The initial source of this section is the following result of P. Erdős [46]:
if

lim
m→∞

log log log km
Nm

= 0

(for given increasing subsequences km and Nm of integers) then

lim
m→∞

F(km,km+Nm](x) = g0(x), for every x ∈ [0, 1] . (367)

In the opposite direction, P. Erdős complete his theorem by constructing
sequences km and Nm such that limm

log log log km
Nm

= 1
2
and the sequence of

distribution functions F(km,km+Nm] do not converges in distribution to g0.
In the sequel, for short, the indexation bym should be omitted but having

in mind that Nm and km, both go to infinity. In that case we write simply
k,N →∞ if the constraints on these sequences are unambiguous.

In Section 6.3.1, a necessary and sufficient condition to have (367) is
given, that depends on divisors d of n, d > N , with n ∈ (k, k+N ]. In Section
6.3.2, we analyze the Erdős approach and improve his result by exhibiting
some error terms. In Section 6.3.3, examples of sequences of intervals (k, k+
N ] (k,N → ∞) are given such that limN→∞

log log log k
N

= ∞ but (367) still
holds. Next, in Section 6.3.4, we analyze the H. Davenport’s method and
find a necessary and sufficient condition such that F(k,k+N ](x) converges to
a given distribution function g(x) (as N → ∞). Finally, applying Schinzel–
Wang’s Theorem [142] in Section 6.3.5, we show that asymptotic distribution
F(k,k+N ](x)→ g(x) (k,N →∞), can have the form g(x) = g̃

(
x
α

)
(x ∈ [0, 1]),

where g̃(x) is an arbitrary given distribution function and α is a related
constant depending on g̃(x).
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6.3.1 A necessary and sufficient condition

Theorem 152. For any two increasing sequences of natural numbers Nm

and km, the limit (367) holds if and only if for every positive integer s,

lim
m→∞

1

Nm

∑
km<n≤km+Nm

∑
d>Nm
d |n

Φs(d) = 0, (368)

where

Φs(d) :=
∏
p | d

(p prime)

((
1− 1

p

)s
− 1

)
(369)

for any square-free integer d, Φs(1) := 1 and Φs(d) := 0 otherwise.

Proof. By applying Weyl’s limit relation (see [171, p. 1–12, Th. 1.8.1.1]) we
get (367) if and only if, for all positive integers s,

lim
m→∞

1

Nm

∑
km<n≤km+Nm

(
φ(n)

n

)s
=

∫ 1

0

xsdg0(x). (370)

By a general theorem of H. Delange (see [35, Théorème 2]) we derive that

lim
N→∞

1

N

N∑
n=1

(
φ(n)

n

)s
=
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)s)
. (371)

Now we use the equality
∑

d |nΦs(d) =
(
φ(n)
n

)s
to expand

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
.

To this aim, we write

∑
k<n≤k+N

∑
d|n

Φs(d) =
k+N∑
d=1

Φs(d)

([k +N

d

]
−
[k
d

])

=
k+N∑
d=1

N
Φs(d)

d
+

k+N∑
d=1

Φs(d)

({
k

d

}
−
{
k +N

d

})
,
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where [x] denote the integer part of x and {x} the fractional part of x. Since{
k

d

}
−
{
k +N

d

}
=

{
−
{
N
d

}
if
{
k
d

}
+
{
N
d

}
< 1,

1−
{
N
d

}
otherwise,

(372)

the summation up to k +N can be reduced to N to get

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
=

N∑
d=1

Φs(d)

d
+

1

N

N∑
d=1

Φs(d)

({
k

d

}
−
{
k +N

d

})
+

1

N

∑
N<d≤k+N
{ k

d}+N
d
≥1

Φs(d). (373)

Let us prove that ∑
N<d≤k+N
{ k

d}+N
d
≥1

Φs(d) =
N∑
j=1

∑
d|k+j
d>N

Φs(d) (374)

for any positive integers s, k and N by using the following theorem:

Theorem 153. Let d > N , then
{
k
d

}
+ N

d
≥ 1 if and only if there exists

1 ≤ j ≤ N such that
d | k + j,

and in that case, j is unique.

Proof. Let us start with any integer d, that is to say without assuming d > N .
Let k = mdd + kd and N = ndd + Nd be Euclidean divisions, so that md,
kd, nd and Nd are integers satisfying 0 ≤ kd < d, md ≥ 0, 0 ≤ Nd < d and
nd ≥ 0. Readily {

k

d

}
+

{
N

d

}
≥ 1⇐⇒ kd +Nd ≥ d.

Now we prove the lemma in four steps:
1. If kd + Nd ≥ d, then kd > 0, Nd > 0 and there exists 0 ≤ id < Nd

such that kd = d − Nd + id. In particular k = (md + 1)d − (Nd − id) with
0 < Nd − id ≤ Nd. Hence d | k + j with j = Nd − id.

2. Reciprocally, assume that d | k + j for an integer j with 1 ≤ j ≤ Nd.
Write j as j = Nd− id with integers 0 ≤ id < Nd. From the above notations,
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k + j = mdd + kd +Nd − id, hence d|kd +Nd − id, implying kd +Nd ≥ d as
expected.

3. If there exist 1 ≤ j1 ≤ Nd and 1 ≤ j2 ≤ Nd, such that d | k + j1 and
d | k + j2, then d | j1 − j2, but |j1 − j2| ≤ Nd < d, hence j1 = j2.

4. Now we assume d > N so that Nd = N ; that ends the proof.

Applying Theorem 153 in (373) we obtain the following basic equality

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
=

N∑
d=1

Φs(d)

d
+

1

N

N∑
d=1

Φs(d)

({
k

d

}
−
{
k +N

d

})
+

1

N

∑
k<n≤k+N

∑
d>N, d |n

Φs(d) . (375)

Clearly, |Φs(d)| ≤ sω(d)

d
, if d is square free, where ω(d) denote the number of

different primes which divide d and successively, from A. G. Postnikov [131,
p. 361–363 or English trans. p. 264–266],

N∑
d=1

|Φs(d)| ≤ (1 + logN)s, (376)

∞∑
d=N+1

|Φs(d)|
d

≤ 3s(1 + logN)s

N
, (377)

∞∑
d=1

Φs(d)

d
=
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)s)
. (378)

Consequently, Theorem 152 follows from (371), (375) and the above relations.

Notes 28. Using (375) and

1

N

∑
k<n≤k+N

∑
d>N
d |n

Φs(d) +
1

N

∑
k<n≤k+N

∑
d≤N
d |n

Φs(d) =
1

N

∑
k<n≤k+N

(
φ(n)

n

)s

we obtain

1

N

∑
k<n≤k+N

∑
d≤N
d |n

Φs(d) =
N∑

d=1

Φs(d)

d
+O

(
(1 + logN)s

N

)
,

the error term being independent of k and thus, when the integer N goes to infinity,

the left hand side of this equality converges to
∏

p

(
1− 1

p + 1
p

(
1− 1

p

)s)
uniformly with

respect to k.
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6.3.2 The Erdős’ approach

For any positive integer n and real number t ≥ 2, set

n(t) :=
∏
p|n
p≤t

p, n′(t) :=
∏
p|n
p>t

p, and P (t) :=
∏
p≤t

p, (379)

where p are primes and the empty product is 1. P. Erdős in [46] proved
(without any explicit error term and for s = 1) the following theorem:

Theorem 154. For every positive integers k, N and for t = N , the equality

1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
=

1

N

N∑
n=1

(
φ(n)

n

)s
+O

(
3s(1 + logN)s

N

)
(380)

holds for all integers s ≥ 1

Proof. As above, from the definition of Φs, we have for any t ≥ 2∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
=

∑
k<n≤k+N

∑
d |n(t)

Φs(d)

=
∑
d |P (t)

Φs(d)

(⌊
k +N

d

⌋
−
⌊
k

d

⌋)

= N
∑
d |P (t)

Φs(d)

d
+
∑
d |P (t)

Φs(d)

({
k

d

}
−
{
k +N

d

})
.

Observe that ∑
d|P (t)

|Φs(d)| ≤
∑
d|P (t)

sω(d)

d
=
∏
p≤t

(
1 +

s

p

)
and using the classical estimate(∏

p≤t

(
1− 1

p

))−1

≤ (eγ log t)
(
1 + c(log t)−2)

)
with an absolute constant c > 0 (see J.B. Rosser and L. Schoenfeld L. [137]
for explicit value of c) we get∏

p≤t

(
1 +

s

p

)
≤

∏
p≤t

(
1− 1

p2

)s∏
p≤t

(
1− 1

p

)−s
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≤ (3/4)ses(γ+c(log t)
−2)(log t)s .

In particilar, there exists an integer t0 ≥ 2 (which is explicit) such that∑
d|P (t)

|Φs(d)| ≤ 3s(log t)s .

for any t ≥ t0 and s ≥ 1.
Now, due to the multiplicativity of n 7→ Φs(n)/n,

∑
d|P (t)

Φs(d)

d
=
∏
p≤t

1 +

(
1− 1

p

)s
− 1

p


and from [131, p. 363, or english trans. p. 264 and p. 265] one has the
quantitative form of the above result of Schur

1

N

N∑
n=1

(
φ(n)

n

)s
=
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)s)
+O

(
3s(1 + logN)s

N

)
where the constant involved by the big O is absolute and also (see (377)),∣∣∣∣∣1−∏

p>N

(
1− 1

p
+

1

p

(
1− 1

p

)s)∣∣∣∣∣ ≤∑
n>N

|Φs(n)|
n

≤ 3s(1 + logN)s−1

N
.

Consequently, for all integers s ≥ 1 and N ≥ 2,∣∣∣ ∏
p≤N

(
1− 1

p
+

1

p

(
1− 1

p

)s)
−
∏
p

(
1− 1

p
+

1

p

(
1− 1

p

)s) ∣∣∣
≤ (3/4)

3s(1 + logN)s−1

N
.

Taking into account all these bounds leads to (380)).

In his work, Erdős used implicitly the following theorem:

Theorem 155. For every two increasing sequences of integers km and Nm

and for t = Nm if

lim
m→∞

( ∏
km<n≤km+Nm

φ(n′(t))

n′(t)

) 1
Nm

= 1 =⇒ lim
m→∞

F(km,km+Nm](x) = g0(x)

(381)
holds for all x ∈ [0, 1].
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Proof. We used the following theorem:

Theorem 156. Let xn, n = 1, 2, . . . , be a sequence in the interval (0, 1). All
the following limits are equivalent:

(i) 1
N

∑N
n=1 xn → 1,

(ii) 1
N

∑N
n=1 x

s
n → 1,

(iii) 1
N

∑N
n=1 log xn → 0,

(iv)
(∏N

n=1 xn

)1/N
→ 1,

were N → ∞. Every of the limits (i)-(iv) implies that xn → 1 converges
statistically, i.e. for every ε > 0 and Aε = {n ≤ N ;xn ≤ 1− ε} we have

#Aε
N
→ 0.

Proof. The equivalence (iii) and (iv) is clear, and for (i)-(iii) we follow [171].
Define the step distribution function FN(x) as

FN(x) =
#{n ≤ N ;xn ∈ [0, x)}

N
.

By Riemann-Stiltjes integration for every continuous function f(x) on [0, 1]

we have 1
N

∑N
n=1 f(xn) =

∫ 1

0
f(x)dFN(x). By Helly theorem, if FN(x) →

g(x), then, as N →∞,∫ 1

0

f(x)dFN(x)→
∫ 1

0

f(x)dg(x).

Thus the limits (i), (ii) and (iii) separately imply

(i)
∫ 1

0
xdg(x) = 1,

(ii)
∫ 1

0
xsdg(x) = 1,

(iii)
∫ 1

0
log xdg(x) = 0 (precise

∫ 1

0
log xdg(x) = limε→0

∫ 1

ε
log xdg(x)).
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Any of (i)-(iii) implies that g(x) = c1(x)-the d.f. has step 1 at x = 1. This
is equivalent that the sequence xn, n = 1, 2, . . . , statistically converge to 1.
Note that for every continuous function f(x) we have the ordinary limit

1

N

N∑
n=1

f(xn) =

∫ 1

0

F (x)dFN(x)→
∫ 1

0

f(x)dc1(x) = f(1)

and the statistical limit f(xn)→ f(1).

Now, we shall return to proof of Theorem 156. The equivalence of limits
(i)–(iv) we apply to the blocks sequence

xn =
φ(n′(t))

n′(t)
, n ∈ (k, k +N ], t = N.

Then by (i)⇐⇒(ii) we have

1

N

∑
k<n≤k+N

(
φ(n′(t))

n′(t)

)
→ 1⇐⇒ 1

N

∑
k<n≤k+N

(
φ(n′(t))

n′(t)

)s
→ 1

and assuming (ii) then for

Aε =

{
n ∈ (k, k +N ];

(
φ(n′(t))

n′(t)

)s
< 1− ε

}
we have #Aε

N
→ 0 for every ε > 0. Now, in

φ(n)

n
=
φ(n(t))

n(t)

φ(n′(t))

n′(t)

we replace φ(n′(t))
n′(t)

by 1− ε, then we see that

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
≥

(
1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s)
(1− ε)− (1− ε)#Aε

N
.

(382)
and the other hand

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
≤ 1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
.
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The Theorem 154 implies

(1− ε)
∫ 1

0

xsdg0(x) ≤ lim
N→∞

1

N

∑
k<n≤k+N

(
φ(n)

n

)s
≤
∫ 1

0

xsdg0(x).

Thus we have

Theorem 157. For every two sequences k and N and t = N we have

1

N

∑
k<n≤k+N

φ(n′(t))

n′(t)
→ 1 =⇒ F(k,k+N ](x)→ g0(x) (383)

for all x ∈ [0, 1].

Finally, Theorem 155 follows from (iv).

Notes 29. In (381) we have only implication, since the right-hand side of (382) has the
following precise form

(1− ε)

 1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
− (1− ε)

 1

N

∑
k<n≤k+N,n∈Aε

(
φ(n(t))

n(t)

)s


and it can be
(

1
N

∑
k<n≤k+N,n∈Aε

(
φ(n(t))
n(t)

)s)
→ 0 and #Aε

N → δ > 0.

Finally Erdős proved the following theorem but we give here a more
readable proof for the convenience of the reader.

Theorem 158. For any increasing sequences of integers km and Nm such
that

lim
m→∞

log log log km
Nm

= 0 (384)

one has
lim
m→∞

F(km,km+Nm](x) = g0(x) (385)

for all x ∈ [0, 1].

Proof. The basic fact is that for t = N the integers n′(t) such that k < n ≤
k + N are pairwise relatively prime, because the interval (k, k + N ] cannot
contain two different integers divisible by the same prime number p > N .
Set

M ′(k,N, t) :=
∏

k<n≤k+N

n′(t) (386)
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but use the notation M ′(t) for short and let x(k,N) be defined such that the
number of prime numbers p, N < p ≤ x, is equal to ω(M ′(t)), where t = N .
From the classical Mertens’ formula∏

p≤y

(
1− 1

p

)
=

e−γ

log y

(
1 +O

( 1

log y

))
(387)

(see [106, p. 259, VII. 29] for example) we get

φ(M ′(t))

M ′(t)
≥

∏
N<p≤x

(
1− 1

p

)
≥ c1

logN

log x

for a constant c1 > 0. Therefore, for any increasing sequences km and

Nm, if
(

logNm

log x(km,Nm)

)1/Nm
converges to 1, then the corresponding sequence(φ(M ′(Nm))

M ′(Nm)

)1/Nm
converges also to 1. Having in mind the Landau inequalities

log 2 ≤ lim inf
x→∞

1

x

∑
p≤x

log p ≤ lim sup
x→∞

1

x

∑
p≤x

log p ≤ 2 log 2 (388)

(see [97, p. 83]) we conclude there exist suitable absolute positive constants
c2, c3 such that

ec2x(k,N)−c3N ≤
∏

N<p≤x(k,N)

p

and, after considering the inequalities∏
N<p≤x(k,N)

p ≤ (k + 1)(k + 2) . . . (k +N) < (k +N)N ,

we obtain x(k,N) < c4N log(k +N) with c4 > 0.

Consequently, if the sequence
(

logNm

log(Nm log(km+Nm))

)1/Nm
converges to 1, the

same is true for the sequence
(

logNm

log x(km,Nm)

)1/Nm
, hence the corresponding se-

quence
(φ(M ′(t))

M ′(t)

)1/Nm
also converge to 1 and so, F(km,km+Nm](x) converges to

g0(x) for all x ∈ [0, 1] by Theorem 155. The proof ends by noticing that

lim
m→∞

1

Nm

(
log

logNm

log(Nm log(km +Nm))

)
= 0⇐⇒ lim

m→∞

log log log km
Nm

= 0.
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Notes 30. Assume that P (t) | k, where P (t) =
∏

p≤t p and t = N . As in (379), we
introduce for divisors d of n the integers

d(t) =
∏
p | d
p≤t

p and d′(t) =
∏
p | d,
p>t

p.

Since d(t) |n, n = k+ j with j ≤ N and d(t) | k, it follows that d(t) ≤ N . Hence, if d > N
one has d′(t) > 1. Therefore∑

d>N
d |n

Φs(d) =
∑

d |n(t)

Φs(d)
∑

d′ |n′(t)
d′ ̸=1

Φs(d
′)

=

(
φ(n(t))

n(t)

)s ((
φ(n′(t))

n′(t)

)s

− 1

)
leading to ∣∣∣∣ ∑

d>N
d |n

Φs(d)

∣∣∣∣ ≤ 1−
(
φ(n′(t))

n′(t)

)s

.

If for all s = 1, 2, 3, . . . one has

lim
m→∞

1

Nm

∑
km<n≤km+Nm

(
φ(n′(t))

n′(t)

)s

= 1

for a given subsequence of integers km and Nm with P (Nm) | km. By Theorem 152 we
conclude to (367), but in fact Theorem 157 gives the same conclusion without such a
constraint on km.

Notice that due to φ(M ′(k,N,t))
M ′(k,N,t) ≤ φ(n′(t))

n′(t) for k < n ≤ k + N (with M ′(k,N, t) =∏
k<n≤k+N n′(t) as above in (386)) one obtains

Theorem 159. If the sequence φ(M ′(km,Nn,Nm))
M ′(km,Nn,Nm) converges to 1 for increasing sequences

of integers km and Nm, then the sequence of distribution functions F(km,km+Nm] converges
to the d.f. g0.

To end this section we prove the following quantitative version of Theo-
rem 152.

Theorem 160. For any positive integers k, N and s, we have

1

N

∑
k<n≤k+N

∑
d>N
d |n

Φs(d) =
1

N

∑
k<n≤k+N

(φ(n)
n

)s
− 1

N

N∑
n=1

(φ(n)
n

)s

+O
((1 + logN)s

N

)
(389)

and the constant in the big O can be chosen equal to 2.
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Proof. Let t = N . Notice that∑
d>N
d |n

Φs(d) =
∑
d>N
d |n(t)

Φs(d) +
∑

d |n(t)n′(t)
d′(t)̸=1

Φs(d)

and the second sum is equal to
(
φ(n(t)
n(t)

)s ((
φ(n′(t))
n′(t)

)s
− 1
)
. Summing from

k + 1 to k +N gives

1

N

∑
k<n≤k+N

∑
d>N
d|n

Φs(d) =
1

N

∑
k<n≤k+N

∑
d>N
d|n(t)

Φs(d) +
1

N

∑
k<n≤k+N

(φ(n)
n

)s

− 1

N

∑
k<n≤k+N

(φ(n(t))
n(t)

)s
. (390)

Now, successively

1

N

∑
k<n≤k+N

∑
d |n(t)

Φs(d) =
1

N

∑
k<n≤k+N

(
φ(n(t))

n(t)

)s
=

1

N

∑
k<n≤k+N

∑
d≤N
d |n(t)

Φs(d) +
1

N

∑
k<n≤k+N

∑
d>N
d |n(t)

Φs(d)

=
N∑
d=1

Φs(d)

d
+

1

N

N∑
d=1

Φs(d)

({
k

d

}
−
{
k +N

d

})
+

1

N

∑
k<n≤k+N

∑
d>N
d |n(t)

Φs(d)

=
N∑
d=1

Φs(d)

d
+

1

N

∑
k<n≤k+N

∑
d>N
d |n(t)

Φs(d) +O
(
(1 + logN)s

N

)

and after inserting

N∑
d=1

Φs(d)

d
=

N∑
n=1

(
φ(n)

n

)s
+O

(
(1 + log)s

N

)
,
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which can be obtained from (375) with k = 0, we get

1

N

∑
k<n≤k+N

∑
d>N
d|n(t)

Φs(d) =
1

N

∑
k<n≤k+N

(φ(n(t))
n(t)

)s
−

N∑
n=1

(φ(n)
n

)s

+O
((1 + log)s

N

)
.

Inserting this equality in (390) gives (389). Finally, notice that the error
term comes from the bound (376) used twice.

6.3.3 Examples

To show that his assumption in Theorem 158 is optimal, Erdős gave the
following example.

Example 61. Take t large enough to write P (t) =
∏

p≤t p as the product of
N numbers A1, A2, . . . , AN such that

(i) Ai, i = 1, . . . , N , are relatively prime,

(ii) φ(Ai)
Ai

< 1
2
for i = 1, . . . , N ,

(iii) if p is the maximal prime in Ai, then for A′
i = Ai/p one has

φ(A′
i)

A′
i
> 1

2
.

The part (iii) implies φ(Ai)
Ai

> 1
4
and thus(

1

4

)N
<
∏
p≤t

(
1− 1

p

)
=
φ(A1)

A1

. . .
φ(AN)

AN
<

(
1

2

)N
.

From it, applying (387), we find N < c1 log log t. By Chinese theorem there
exists k0 < A1 . . . AN such that k0 ≡ −i (mod Ai) for i = 1, . . . , N . Put
k = k0 + A1 . . . AN , then we have

ec2t < P (t) = A1 . . . AN < k

which implies t < c3 log k and log log t < c4 log log log k. Thus

log log log k

N
>

1

c1c4

log log t

log log t
.

Furthermore, for these k and N , the sequence of d.f.s F(k,k+N ](x) does not
converge to g0(x) due to (ii) that gives

1

N

∑
k<n≤k+N

φ(n)

n
<

1

2
<

1

N

N∑
n=1

φ(n)

n
=

6

π2
+O

(
logN

N

)
.
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Example 62. In Example 61, replace in (ii) the ratio 1/2 by 1/N and use the
corresponding definition of the An as above. Then, by the Chinese theorem,
for every N we can find k such that An|k+n, n = 1, . . . , N , and consequently

1

N

∑
k<n≤k+N

(
φ(n)

n

)
≤ 1

N

N∑
n=1

(
φ(An)

An

)
≤ 1

N
.

Now select sequences of such integers k and N , but with a distribution func-
tion g(x) such that limk,N→∞ F(k,k+N ](x) = g(x) a.e. in [0, 1]. By this con-

struction, we obtain
∫ 1

0
xdg(x) = 0. Therefore g(x) is the the Heaviside

distribution function (jump 1 at x = 0).

In the next example we construct sequences of integers k, N , for which
(367) holds but limN→∞

log log log k
N

=∞.

Example 63. For any integer N ≥ 1, let x = x(N) be a real number, x > N ,

that will be chosen later but very large with respect to N (like x(N) = ee
eN

for example). Let k :=
∏

p≤x p, (where p are primes), consider the interval
(k,N+k] and defineM∗ :=

∏
x<p≤x+y(x) p, where y(x) is chosen such thatM∗

has the same number of prime divisors than the product M ′(k,N, t) (t = N)
defined in (386). Presently, if a prime number p verifies p > N and p|k + j

with j ≤ N then p > x. Thus, φ(M
∗)

M∗ ≤ φ(M ′(t))
M ′(t)

and to satisfy the assumption

of Theorem 159 it suffices that the ratio φ(M∗)
M∗ =

∏
x<p≤x+y(x)

(
1− 1

p

)
converge

to 1 as x tends to infinity. According to the Mertens’ formula it is equivalent
to have

lim
x→∞

log
(
1 + y(x)

x

)
log x

= 0 . (391)

The inequalities

M∗ ≤M ′ =
∏

k<n≤k+N

n′(t) ≤ (k +N)N ≤ (2k)N

lead to
∑

x<p≤x+y(x) log p ≤ 2N
∑

p≤x log p and thus∑
p≤x+y(x)

log p ≤ (2N + 1)
∑
p≤x

log p. (392)
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Using (388) in (392), we see that for any ε > 0, there exists x0 such that
x ≥ x0(ε) implies

(log 2− ε)(x+ y(x)) ≤ (2N + 1)(2 log 2 + ε)x ,

so that y(x)
x
≤ cN for a positive constant c. Therefore, (391) holds and

consequently (367) holds also, if we chose x = x(N) ≥ eN . Since k(N) =∏
p≤x(N) p ≥ ec1x(N), by taking x(N) = ee

eN

the limit

lim
N→∞

log log log k

N
=∞

holds as expected.

6.3.4 x-numbers

Let f : N → (0, 1] be a multiplicative function i.e. f(1) = 1 and f(mn) =
f(m)f(n) if (m,n) = 1. Assume that 0 < f(n) ≤ 1 for all n; it is useful to
introduce for any x ∈ (0, 1) the increasing sequence ak(x) of all integers a
such that f(a) ≤ x but f(d) > x for every divisor d of a, d ̸= a. In the case
f(n) = n/σ(n) (where σ(n) is the sum of divisors of n) such an integer a is
classically called primitive x-abundant number. In 1933, H. Davenport [34]
using this notion proved that the sequence n/σ(n) has a d.f. and found an
explicit construction of it. In addition he gave sufficient conditions for f to
have a d.f. These conditions are easily verified for both sequences n/σ(n)
and φ(n)/n.

B.A. Venkov applied the same method in his paper [186] but for the

sequence of ratios φ(n)
n

. Following him, we introduce, for convenience, the
definition of x-numbers (also called primitive x-numbers in [131]), that is to

say integers a > 0 such that φ(a)
a
≤ x and for every d | a but d ̸= a one has

φ(d)
d

> x. We denote by A(x) the set of all x-numbers ordering in increase
magnitude i.e.,

a1(x) < a2(x) < a3(x) < . . .

From now on, the sequence p1, p2, p3, . . . denotes the increasing sequence of all
prime numbers. From the above definitions we get the following properties.

(i) Every x-number is square-free.

272



(ii) Every square-free a is an x-number for some x. Concretely, if a =
q1q2 . . . qm with q1 < q2 < · · · < qm, all prime numbers, then a is

x-number for every x in the interval
[∏m

i=1

(
1− 1

qi

)
,
∏m−1

i=1

(
1− 1

qi

))
.

(iii) For every i < j we have ai(x) - aj(x).

(iv) Let ps be the s-th prime number and choose x ∈
[
1− 1

ps
, 1
)
. Then

a1(x) = p1 = 2, a2(x) = p2 = 3 and so on, as(x) = ps. Furthermore, if
x < 1− 1

ps+1
then for every j > s, the integer aj(x) cannot be a prime

and pi - aj(x) for i = 1, 2, . . . , s.

Proof. By (ii), prime numbers p1, p2, . . . , ps are x-numbers for x ≥ 1−
1
ps
. If for some j we have p1 ≤ aj(x) ≤ ps and p | aj(x), p prime, then

p ≤ ps and aj(x) = p, since pq | aj(x) with q > 1 contradicts (iii).

Now, x < 1− 1
ps+1

implies that ps+1 and any pk > ps is not an x-number

and by (iii) pi - aj(x) for i = 1, . . . , s.

(v) If x ∈
[∏s

i=1

(
1− 1

pi

)
,
∏s−1

i=1

(
1− 1

pi

))
, then a1(x) =

∏s
i=1 pi.

Proof. By contradiction. The integer a =
∏s

i=1 pi is an x-number,
hence a1(x) ≤ a. Assume that a1(x) < a and let a1(x) = pi1pi2 . . . pik
with i1 < i2 < · · · < ik, then k < s. By definition,

x ∈

[
k∏
j=1

(
1− 1

pij

)
,

k−1∏
i=1

(
1− 1

pij

))

hence
∏k

j=1

(
1− 1

pij

)
<
∏s−1

i=1

(
1− 1

pi

)
which implies k > s − 1, a

contradiction.

(vi) For every positive integer n and every x ∈ (0, 1) we have

φ(n)

n
≤ x⇐⇒ ∃ i ∈ N (ai(x)|n).

(vii) Assume that 0 < x < x′ < 1. Then for every x-number ai(x) there
exists an x′-number aj(x

′) such that aj(x
′)|ai(x). This property follows

from (vi) and the fact that for n = ai(x) one has φ(n)
n

< x′.
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(viii) Let [b1, . . . , bj] denote the least common multiple of the integers b1, . . . , bj,
then the asymptotic density of the set

{n ∈ N; am(x)|n, a1(x) - n, a2(x) - n, . . . , am−1(x) - n}

is given by

Am(x) =
1

am(x)
+

m−1∑
u=1

∑
1≤j1<j2<···<ju<m

(−1)u

[aj1(x), . . . , aju(x), am(x)]
.

(ix) Define
Bn(x) = {a ∈ N ; a |n and ∃ i ∈ N (a = ai(x))}. (393)

Applying (vi) we see that 47

F(k,k+N ](x) =
#{n ∈ (k, k +N ];Bn(x) ̸= ∅}

N
. (394)

(x) Directly from (vi) and (ix) we have by B.A. Venkov [186] (see also H.
Davenport [34]) the theorem:

Theorem 161. The a.d.f. g0(x) of the sequence φ(n)
n

, n = 1, 2, 3 . . . ,
can be expressed by

g0(x) =
∞∑
m=1

Am(x) . (395)

Proof. In fact, the right hand side of (395) is the asymptotic density
of all integers n divisible by some x-number.

In this part we prove that the asymptotic distribution function g(x) in
(367) cannot be arbitrary. The proof of the following theorem combines
Erdős’ Lemma 154 and (395).

Theorem 162. Assume that limm→∞ F(km,km+Nm](x) = g(x) for all x ∈
[0, 1]. Then g0(x) ≤ g(x) for all x ∈ [0, 1].

47In this paper we have defined F(k,k+N ](x) = 1
N

∑
k<n≤k+N c[0,x)

(φ(n)
n

)
but in this

part, due to the definition of x-number, we use c[0,x] in place of c[0,x).
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Proof. Set

R
(1)
(k,k+N ](x) :=

#{n ∈ (k, k +N ];Bn(x) ̸= ∅,∃ a ∈ Bn(x)
(
∀ p (p prime and p|a⇒ p ≤ N)

)
}

N
,

(396)

R
(2)
(k,k+N ](x) :=

#{n ∈ (k, k +N ];Bn(x) ̸= ∅,∀ a ∈ Bn(x)
(
∃ p (p prime, p|a and p > N)

)
}

N
.

(397)

By (394),

F(k,k+N ](x) = R
(1)
(k,k+N ](x) +R

(2)
(k,k+N ](x). (398)

The monotonicity of R
(1)
(k,k+N ](x) (x ∈ [0, 1]) follows from (vii) and then for the

d.f.s F(k,k+N ](x) and R
(1)
(k,k+N ](x) we can apply Helly selection principle to ex-

hibit a subsequence of the intervals (km, km+Nm], still denoted (km, km+Nm],
such that for every x ∈ (0, 1) we have both limm→∞ F(km,km+Nm](x) = g(x)

and limm→∞R
(1)
(km,km+Nm](x) = g(1)(x) for a suitable d.f. g(1)(x). Therefore,

we also have the limit

lim
m→∞

R
(2)
(km,km+Nm](x) = g(2)(x) = g(x)− g(1)(x).

Now we prove the equality

g(1)(x) = g0(x) (399)

for all x, that is to say

g(x) = g0(x) + g(2)(x). (400)

For the sequence φ(n(t))
n(t)

, n ∈ (k, k +N ], n(t) =
∏
p|n
p≤t

p, where t = N , define

F̃(k,k+N ](x) :=
#{n ∈ (k, k +N ]; φ(n(t))

n(t)
≤ x}

N
. (401)

By property (vi), if φ(n(t))
n(t)

≤ x, then there exists x-number ai(x) such that

ai(x) |n(t). Since n(t) |n it follows that ai(x)|n and furthermore for all prime
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numbers p, p | ai(x) implies p ≤ t (= N). Reciprocally, if ai(x)|n and for all

prime numbers p, p | ai(x) implies p ≤ t, then ai(x) |n(t) and φ(n(t))
n(t)

≤ x.
Thus

F̃(k,k+N ](x) = R
(1)
(k,k+N ](x) (402)

and consequently, F̃(k,k+N ](x)→ g(1)(x) too. By Erdős’ Theorem 154∫ 1

0

xsdg(1)(x) =

∫ 1

0

xsdg0(x)

for s = 1, 2, 3 . . . and thus g(1)(x) = g0(x) for x ∈ (0, 1) a.e.

Theorem 163. For every d.f. g(x) such that

lim
m→∞

F(km,km+Nm](x) = g(x)

a.e. on [0, 1] (with km, Nm →∞), there exists a constant c1 such that∫ 1

0

xsdg(x) ≤
∫ 1

0

xsdg0(x) ≤
c1

log(s+ 1)
, (403)

for every positive integer s.

Proof. The first inequality in (403) follows from Lemma 154, since
(
φ(n)
n

)s
≤(

φ(n(t))
n(t)

)s
. It also follows from Theorem 162, because

∫ 1

0
xsdg(x) ≤

∫ 1

0
xsdg0(x)

is equivalent to
∫ 1

0
xs−1g(x)dx ≥

∫ 1

0
xs−1g0(x)dx. The second inequality in

(403) was proved by B.A. Venkov [186, Theorem 3] in the form

lim
s→∞

(∫ 1

0

xsdg0(x)

)
log s = e−γ,

where γ is the Euler’s constant.

Theorem 164. For every α ∈ (0, 1) there exists a sequence of intervals
(km, km + Nm] (km, Nm → ∞) such that F(km,km+Nm](x) converges to a dis-
tribution function g(x) with g(x) = 1 for α ≤ x ≤ 1.
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Proof. Let α ∈ (0, 1) be fixed and let ps be the greatest prime number pi

verifying
(
1− 1

pi

)
≤ α. The α-numbers being square free, we can select

a subsequence of them as1(α) < as2(α) < as3(α) < . . . pairwise co-prime.
By Chinese theorem, there exists a positive integer k such that k + i ≡ 0
(mod asi(α)) for i = 1, . . . , N . Therefore

#{n ∈ (k, k +N ];Bn(α) ̸= ∅} = N

and thus, by (394),
F(k,k+N ](α) = 1. (404)

Notes 31. If 1 − 1
ps
≤ x, then readily 1 ≤ g0(x) +

∏s
i=1(1 − p

−1
i ) since the second term

of this sum is the density of natural numbers coprime to p1 · · · ps. So,

g0(x) ≥ 1−
∏

p≤ 1
1−x

(
1− 1

p

)
≥ 1− c2

log
(

1
1−x

) (405)

for all x ∈ (0, 1). This inequality was first proved by B.A. Venkov [186]. He also proved

(i) limx→1
x<1

(1− g0(x)) log 1
1−x = e−γ .

(ii) limx→0
x>0

(x log log 1
g0(x)

= e−γ .

(iii) Let p be a prime number. If 1− 1
p ≤ x, then

1

p
=

∞∑
n=0

(−1)n(p− 1)ng0

(
x
(
1− 1

p

)n)
.

(iv) The function g0(x) at every value x = φ(n)
n , n = 1, 2, 3, . . . , has an infinite left

derivative.

6.3.5 Schinzel–Wang theorem

A. Schinzel and Y. Wang [142] proved that for every fixed integer N the
(N − 1)-dimensional sequence(

φ(k + 2)

φ(k + 1)
,
φ(k + 3)

φ(k + 2)
, . . . ,

φ(k +N)

φ(k +N − 1)

)
, k = 1, 2, 3 . . . (406)
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is dense in [0,∞)N−1. Thus, for any given N -tuple (α1, α2, . . . , αN−1) in
[0,∞)N−1 we can select an increasing sequence of integers km, such that the
sequence of N -tuples(

φ(km + 2)

φ(km + 1)
,
φ(km + 3)

φ(km + 2)
, . . . ,

φ(km +N)

φ(km +N − 1)

)
converge to (α1, α2, . . . , αN−1). Using the factorization

φ(k + n)

k + n
=

φ(k + n)

φ(k + n− 1)

φ(k + n− 1)

φ(k + n− 2)
· · · φ(k + 2)

φ(k + 1)

φ(k + 1)

k + 1

k + 1

k + n
(407)

we can chose integers km such that the sequence of ratios φ(km+1)
km+1

converges,
say to α, hence

lim
m→∞

(
φ(km + 1)

km + 1
,
φ(km + 2)

km + 2
, . . . ,

φ(km +N)

km +N

)
= (α, αα1, αα1α2, . . . , αα1α2 . . . αN−1).

In the following we apply the above fact but for an infinite sequence αn,
n = 1, 2, 3 . . . .

Theorem 165. Let g̃(x) be an arbitrary d.f. There exists α ∈ (0, 1] and a se-
quence of intervals (km, km+Nm] such that the sequence of d.f.s F(km,km+Nm](x)
converges to a d.f. g(x) such that for a.e. x ∈ [0, 1) one has

g(x) =

{
g̃
(
x
α

)
if x ∈ [0, α),

1 if x ∈ [α, 1].
(408)

Proof. For arbitrary d.f. g̃(x) there exists a sequence αn, n = 1, 2, . . . in
(0,∞) such that for every n = 1, 2, 3, . . . we have α1α2 . . . αn ∈ (0, 1) and
the sequence

α1α2 . . . αn, n = 1, 2, . . . (409)

has a.d.f. g̃(x). Now, using density of (406), for an arbitrary sequence ε(N)
with ε(N) > 0 and ε(N)→ 0, there exist integers k = k(N) such that∣∣∣∣φ(k + 2)

φ(k + 1)

φ(k + 3)

φ(k + 2)
· · · φ(k + n)

φ(k + n− 1)
− α1α2 . . . αn−1

∣∣∣∣ < ε(N) (410)
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for every n = 2, . . . , N and ∣∣∣∣ k + 1

k +N
− 1

∣∣∣∣ < ε(N). (411)

From the sequence of couples (k(N), N), N = 1, 2, 3, . . . , we select a subse-
quence (k′, N ′), k′ = k(N ′), such that

φ(k′ + 1)

k′ + 1
→ α as N ′ →∞, (412)

for some α in (0, 1], but α cannot be arbitrary. Then, from (410), (411) and
(412) there exists a sequence of positive real numbers ε′(N ′) that tends to 0
as N ′ go to infinity along a subsequence of integers such that∣∣∣∣φ(k′ + n)

k′ + n
− αα1 . . . αn−1

∣∣∣∣ < ε′(N ′) (413)

for n = 1, . . . , N ′.
Now we use the following fact: let xn and yn in [0, 1) for n = 1, 2, . . . , N

and define on [0, 1] the step d.f.s

F
(1)
N (x) :=

1

N

N∑
n=1

c[0,x)(xn), F
(2)
N (x) :=

1

N

N∑
n=1

c[0,x)(yn).

By triangular inequality one has∫ 1

0

∣∣F (1)
N (x)− F (2)

N (x)
∣∣dx ≤ 1

N

N∑
n=1

∫ 1

0

|c[0,x)(xn)− c[0,x)(yn)|dx

=
1

N

N∑
n=1

|xn − yn| . (414)

Choose

xn =
φ(k′ + n)

k′ + n
and yn = αα1 . . . αn−1

for n = 1, . . . , N ′. By construction of yn, the sequence of d.f. F
(2)
N ′ (x) con-

verges to g̃
(
x
α

)
and from (413) and (414) the distribution function F

(1)
N ′ (x),

that is to say F(k′,k′+N ′](x), converges along a subsequence of integers N ′ to
g(x) almost every where and so, g(x) satisfies (408).
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Notes 32. As we already have mentioned, the value of α in (412) cannot be arbitrary.
Applying (403) we see that∫ α

0

xsdg̃
(x
α

)
= αs

∫ 1

0

xsdg̃(x) ≤
∫ 1

0

xsdg0(x), (415)

for every positive integer s. Recall that for s = 1 we have the classical result∫ 1

0

xdg0(x) =
6

π2

and more generally, we have (371). Consequently, with the d.f. g̃(x) = x2 on [0, 1] and
s = 1 we obtain α ≤ 9

π2 and the case where g̃(x) is the step d.f. with jump 1 at x = 1
gives the inequality α ≤ 6

π2 . It can be compared with Theorem 164 in which α is arbitrary
but g(x) is a special d.f.

6.3.6 Additional property of φ(n)/n

As in above, let g0(x) be the a.d.f. of the sequence (φ(n)/n), n = 1, 2, . . . . It
is proved that g0(x) is singular. In the connection of the body Ω of the form(∫ 1

0

g(x)dx,

∫ 1

0

xg(x)dx,

∫ 1

0

g2(x)dx

)
,

where g(x) run the set of all d.f.s, the point corresponding to g0(x)

X(0) = (X
(0)
1 , X

(0)
2 , X

(0)
3 ) :=

(∫ 1

0

g0(x)dx,

∫ 1

0

xg0(x)dx,

∫ 1

0

g20(x)dx

)
is an interior point of Ω. Using the following (416) we have

X
(0)
1 = 1− 6

π2
, X

(0)
2 =

1

2
− 1

2

∏
p−prime

(
1− 2

p2
+

1

p3

)
= 0.285 . . . .

Intersect Ω by straight line (X
(0)
1 , X

(0)
2 , X3) and then we find boundary 48

0.250 · · · = minX3 ≤ X
(0)
3 ≤ maxX3 = 0.307 . . . .

48The point (X
(0)
1 , X

(0)
2 ) lies in the projections Π4 and Π5 to the plane X1 ×X2. Then

we use expression of Π4 and Π5 by X3 and then we find

minX3 =
4(X

(0)
1 )3

9(X
(0)
1 −X(0)

2 )
a maxX3 = 2X

(0)
1 − 1 +

(1−X(0)
1 )3

1− 2X
(0)
2

.
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For better estimation we need better computation of∫ 1

0

g20(x)dx.

We shall transform it to compute the limit

lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣φ(m)

m
− φ(n)

n

∣∣∣∣
Proof. Applying H. Delange [35] we can compute all moments of g0(x) (s =
1, 2, . . . ) as ∫ 1

0

xsdg0(x) = lim
N→∞

1

N

N∑
n=1

(
ϕ(n)

n

)s
=

∏
p−prime

(
1− 1

p
+

1

p

(
1− 1

p

)s)
. (416)

Using ∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y) = 2

(∫ 1

0

g(x)dx−
∫ 1

0

g2(x)dx

)
and∫ 1

0

xdg0(x) = 1−
∫ 1

0

g0(x)dx = lim
N→∞

1

N

N∑
n=1

ϕ(n)

n
=
∏
p

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2

we find ∫ 1

0

g20(x)dx = 1− 6

π2
− 1

2
lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣ϕ(m)

m
− ϕ(n)

n

∣∣∣∣ .

6.3.7 Upper bound of lim
N→∞

1
N2

∑N
m,n=1

∣∣∣ϕ(m)
m
− ϕ(n)

n

∣∣∣ .
Expressing the L2 discrepancy in the form∫ 1

0

(
A([0, x), ωN)

N
− g̃(x)

)2

dx =
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=1 +

∫ 1

0

g̃2(x)dx− 2

∫ 1

0

g̃(x)dx+
2

N

N∑
n=1

∫ xn

0

g̃(x)dx

− 1

N

N∑
n=1

xn −
1

2N2

N∑
m,n=1

|xm − xn|. (417)

Applying(
1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dg̃(x)

)2

≤
∫ 1

0

(FN(x)− g̃(x))2dx
∫ 1

0

(f ′(x))2dx

(418)
to L2 discrepancy (417) we find

1

N2

N∑
m,n=1

|xm − xn| ≤2
(
1 +

∫ 1

0

g̃2(x)dx− 2

∫ 1

0

g̃(x)dx+
2

N

N∑
n=1

∫ xn

0

g̃(x)dx

− 1

N

N∑
n=1

xn −

(
1
N

∑N
n=1 f(xn)−

∫ 1

0
f(x)dg̃(x)

)2
∫ 1

0
(f ′(x))2dx

)
.

(419)

It hold for arbitrary index N , for arbitrary sequence xn in [0, 1], for arbitrary
d.f. g̃(x) and arbitrary f : [0, 1] → R with continuous derivative f ′(x) on
[0, 1]. Putting g̃(0) = 0 and g̃(x) = 1 for x ∈ (0, 1], f(x) =

∑k
s=1 asx

s and
xn = φ(n)/n, then ∫ 1

0

(f ′(x))2dx =
k∑

i,j=1

aiaj
ij

i+ j − 1
,

and (419) has the form

lim
N→∞

1

N2

N∑
m,n=1

∣∣∣∣ϕ(m)

m
− ϕ(n)

n

∣∣∣∣ ≤ 2
∏
p

(
1− 1

p2

)
−

−2

∑k
i,j=1 aiaj

∏
p

(
1− 1

p
+ 1

p

(
1− 1

p

)i) ∏
p−prime

(
1− 1

p
+ 1

p

(
1− 1

p

)j)
∑k

i,j=1 aiaj
ij

i+j−1

.
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For k = 1 we have the limit

≤ 2

 ∏
p−prime

(
1− 1

p2

)
−

( ∏
p−prime

(
1− 1

p2

))2
 = 2

6

π2

(
1− 6

π2

)
= 0.476 . . . .

6.3.8 Lover bound of lim
N→∞

1
N2

∑N
m,n=1

∣∣∣ϕ(m)
m
− ϕ(n)

n

∣∣∣ .
To do this we use (see [160])∣∣∣∣∣ 1N

N∑
n=1

f(xn)− f

(
1

N

N∑
n=1

xn

)∣∣∣∣∣ ≤ c

N2

N∑
m,n=1

|xm − xn|,

with holds for arbitrary N , for arbitrary xn ∈ [0, 1] assuming |f ′(x)| ≤ c for
x ∈ [0, 1]. Putting f(x) = x2 and using moments (416) for s = 1, 2 then we
find

1

2

(
6

π2

)2
( ∏
p−prime

(
1 +

1

(p+ 1)2(p− 1)

)
− 1

)
≤ lim

N→∞

1

N2

N∑
m,n=1

∣∣∣∣φ(m)

m
− φ(n)

n

∣∣∣∣ .
using the first term p = 2 we have

2

π4
≤ lim

N→∞

1

N2

N∑
m,n=1

∣∣∣∣φ(m)

m
− φ(n)

n

∣∣∣∣ := L.

For L we have L ∈ [0.021, 0.392].

Notes 33. J.-Ch. Schlage-Puchta (2009) have a method which gives L ∈ [0.27425, 0.274465].

6.4 Benford’s law (continuation of 3.9)

6.4.1 D.f. of sequences involving logarithm

D.f.s of logb xn mod 1 which we need in (86) can be computed by Theorem
48. We repeat it:

Theorem 166 ([169]). Let the real-valued function f(x) be strictly increasing
for x ≥ 1 and let

f−1(x) be its inverse function and
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FN(x) =
1
N
#{n ≤ N ; f(n) mod 1 ∈ [0, x)}.

Assume that
(i) limx→∞ f ′(x) = 0,
(ii) limk→∞ f−1(k + 1)− f−1(k) =∞,

(iii) limk→∞
f−1(k+w(k))

f−1(k)
= ψ(w) for every sequence w(k) ∈ [0, 1] for which

limk→∞w(k) = w, where this limit defines the function ψ : [0, 1]→ [1, ψ(1)],
(iv) ψ(1) > 1.

Then for the sequence f(n) mod 1, n = 1, 2, . . . , we have

G(f(n) mod 1) =
{
gw(x) =

1

ψ(w)

ψ(x)− 1

ψ(1)− 1
+
min(ψ(x), ψ(w))− 1

ψ(w)
;w ∈ [0, 1]

}
.

(420)
Now, if f(Ni) mod 1 is a subsequence f(n) mod 1 such that f(Ni) mod 1→
w then FNi

(x)→ gw(x) for every x ∈ [0, 1].

Similar Theorem 53 valid also for f(pn), where pn are primes. We repeat
it:

Theorem 167 ([122]). Let FN(x) =
1
N
#{n ≤ N ; f(pn) mod 1 ∈ [0, x)} for

x ∈ [0, 1], where pn is the increasing sequence of all primes. Assume (i)-(iv)
from Theorem 166. Then the sequence f(pn) mod 1, n = 1, 2, . . . , has

G(f(pn) mod 1) = G(f(n) mod 1).

Now, if f(pNi
) mod 1 is a subsequence f(pn) mod 1 such that f(pNi

) mod
1→ w then FNi

(x)→ gw(x) for every x ∈ [0, 1].

A proof of Theorem 166 and 167 can be found in p. 76.

6.4.2 B.L. for natural numbers

Applying Theorem 166 to the sequence
f(n) = logb n

r, n = 1, 2, . . . we have
f−1(x) = b

x
r ,

limk→∞
f−1(k+w)
f−1(k)

= b
k+w
r

b
k
r

= b
w
r = ψ(w),

G(logb n
r mod 1) =

{
gw(x) =

1

b
w
r

b
x
r −1

b
1
r −1

+ min(b
x
r ,b

w
r )−1

b
w
r

;w ∈ [0, 1]
}
.

If limi→∞{f(Ni)} = limi→∞{logb(N r
i )} = w, then we have

lim
i→∞

#{n ≤ Ni; first s digits of nr are k1k2 . . . ks}
Ni
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= gw
(
logb k1 · k2k3 . . . (ks + 1)

)
− gw

(
logb k1.k2k3 . . . ks

)
. (421)

Some examples of w :
1. Assume that Ni = bi and r is a positive integer then
limi→∞{logb(bir)} = 0 = w and thus for (421) we have

=
b(logb k1·k2...(ks+1))/r − 1

b1/r − 1
− b(logb k1·k2...ks)/r − 1

b1/r − 1

=
(k1.k2k3 . . . (ks + 1))(1/r) − (k1.k2k3 . . . ks))

(1/r)

b1/r − 1

=
1

br−1

1

b− 1
if r = 1.

2. PutNi = [b
i+w
r ], where i is a positive integer. The limi→∞{logb(N r

i )} =
w. Proof.

We have Ni = [b
i+w
r ] = b

i+w′
r where w′ < w and {logb(N r

i )} = w′. Further

|b i+w′
r − b i+w

r | = |w′ − w|.b i+x
r . log b1

r
.

Since |b i+w′
r − b i+w

r | < 1, then |w′ − w| → 0.
Thus limi→∞{logb(N r

i )} = w.

6.4.3 B.L. for primes

Applying Theorem 123 for the sequence
f(pn) = logb p

r
n, n = 1, 2, . . . , pn is the nth prime we have

f(x) = logb x
r,

G(logb p
r
n mod 1) =

{
gw(x) =

1

b
w
r

b
x
r −1

b
1
r −1

+ min(b
x
r ,b

w
r )−1

b
w
r

;w ∈ [0, 1]
}
.

If {f(pNi
)} = {logb(prNi

)} → w then

lim
i→∞

#{n ≤ Ni; first s digits of prn = k1k2 . . . ks}
Ni

= gw
(
logb k1 · k2k3 . . . (ks + 1)

)
− gw

(
logb k1.k2k3 . . . ks

)
.

Some examples of w:
1. If Ni = π(b

i+w
r ), then limi→∞{logb prπ(Ni)

)} = w.

Proof. Denote FN(x) =
1
N
#{n ≤ N ; f(pn) mod 1 ∈ [0, x)}. As we see in

(436)

FN(x) =

∑K−1
k=0 (π(f

−1(k + x))− π(f−1(k)))

N
+
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+
min(π(f−1(K + x)), π(f−1(K + w)))− π(f−1(K))

N

+
O(K)

N
+
O(f−1(0))

N
,

where f−1(K + w) = pN but for Fπ(N)(x) we have f−1(K + w) = N .

2. If Ni = bb
i
and r = 1, then {logb pNi

} → {logb log b}. Proof.

pn = n

(
log n+ log log n− 1 + o

(
log logn
logn

))
logb pn = logb n+ logb log n

(
1 + log logn−1

logn
+ o
(
log logn
log2 n

)))
logb pn = logb n+ logb log n+ logb

(
1 + log logn−1

logn
+ o
(
log logn
log2 n

)))
If n = bi, then
{logb pn} = {logb log bi}+ o(1) = {logb i+ logb log b}
for sufficiently large n. Thus
If Ni = bb

i
then {logb pNi

} → {logb log b}.

6.4.4 The same B.L. for natural and prime numbers

From Section 6.4.2 and 6.4.3 follows that the sequences
logb n

r mod 1, n = 1, 2, . . . ,
logb p

r
n mod 1, n = 1, 2, . . . ,

have the same distribution functions
gw(x) =

1

b
w
r

b
x
r −1

b
1
r −1

+ min(b
x
r ,b

w
r )−1

b
w
r

;w ∈ [0, 1].

Since limr→∞
b
x
r −1

b
1
r −1

= x then limr→∞ gw(x) = x.

Thus, as r →∞ the sequences nr and prn tends to B.L.
This is qualitative proof of results in [42].

6.4.5 Rate of convergence of FN(x) of the sequence logb n
r mod 1

All the following results are from Y. Ohkubo and O. Strauch[123]:

Theorem 168. Let N, b be positive integers, b > 1, r > 0, w0 ∈ [0, 1].
Denote

FN(x) =
#{n ≤ N ; logb(n

r) mod 1 ∈ [0, x)}
N

,
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gw0(x) =
1

b
w0
r

· b
x
r − 1

b
1
r − 1

+
min(b

x
r , b

w0
r )− 1

b
w0
r

,

K = [r logbN ], w = {r logbN}.

Then for every x ∈ [0, 1] we have

|FN(x)− gw0(x)| ≤
|w − w0|

r
· log b · b

1
r · (b

1
r + 1) +

3

N
+
r logbN

N
. (422)

Proof. Firstly we repeat a proof of (29).
For a positive integer N define

• KN = [f(N)], abbreviating KN = K,

• wN = {f(N)}, abbreviating wN = w,

• AN([x, y)) = #{n ≤ N ; f(n) ∈ [x, y)},

• FN(x) = #{n≤N ;f(n) mod 1∈[0,x)}
N

.

Clearly f−1(K+w) = N and for every x ∈ [0, 1] and FN(x) in (106) we have

FN(x) =

∑K−1
k=0 AN([k, k + x))

N
+

+
AN([K,K + x) ∩ [K,K + w))

N
+
O(AN([1, f

−1(0))))

N

From monotonicity of f(x) it follows AN([x, y)) = f−1(y)−f−1(x)+θ, where
|θ| ≤ 1. Thus

FN(x) =

∑K−1
k=0 (f

−1(k + x)− f−1(k))

N
+

+
min(f−1(K + x), f−1(K + w))− f−1(K)

N
+
O(K)

N
+
O(f−1(0))

N
,

(423)

where
O(K) ≤ K + 1 and O(f−1(0)) ≤ f−1(0). (424)

The assumption (ii) implies 1/(f−1(k+1)−f−1(k))→ 0 which together with
Cauchy-Stolz (other name is Stolz-Cesàro, see [171, p. 4–7]) lemma implies
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that K/f−1(K) → 0 and thus K/N → 0. Furthermore we can express the
first term of FN(x) in (423) as∑K−1

k=0 (f
−1(k + x)− f−1(k))∑K−1

k=0 (f
−1(k + 1)− f−1(k))

· f
−1(K)− f−1(0)

f−1(K + w)
(425)

and the second term as

min
(
f−1(K+x)
f−1(K)

, f
−1(K+w)
f−1(K)

)
− 1

f−1(K+w)
f−1(K)

. (426)

Using the assumption (ii) and (iii) the Cauchy-Stolz lemma implies

lim
K→∞

∑K−1
k=0 (f

−1(k + x)− f−1(k))∑K−1
k=0 (f

−1(k + 1)− f−1(k))
= lim

k→∞

f−1(k + x)− f−1(k)

f−1(k + 1)− f−1(k)
=
ψ(x)− 1

ψ(1)− 1
,

(427)
where K = [f(N)], N = 1, 2, . . . . Now, for increasing subsequence Ni of
indices N , denote Ki = [f(Ni)] and wi = {f(Ni)}. If wi → w, then by (iii)
f−1(Ki)/f

−1(Ki + wi) → 1/ψ(w), and f−1(Ki + x)/f−1(Ki) → ψ(x). Thus
(425), (426), (427) imply (420)

FNi
(x)→ gw(x) =

1

ψ(w)
· ψ(x)− 1

ψ(1)− 1
+

min(ψ(x), ψ(w))− 1

ψ(w)

for all x ∈ [0, 1).
In the following we prove a quantitative form of (420). Put
• K = [f(N)],
• w = {f(N)},
• N = f−1(K + w).

Then

FN (x)− gw0(x) =

+

(∑K−1
k=0 (f−1(k + x)− f−1(k))∑K−1
k=0 (f−1(k + 1)− f−1(k))

· f
−1(K)− f−1(0)

f−1(K + w)
− ψ(x)− 1

ψ(1)− 1
· 1

ψ(w0)

)

+

(
min

(
f−1(K+x)
f−1(K) , f

−1(K+w)
f−1(K)

)
− 1

f−1(K+w)
f−1(K)

− min(ψ(x), ψ(w0))− 1

ψ(w0)

)

+

(
O(K)

N
+
O(f−1(0))

N

)
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=(I)

(∑K−1
k=0 (f−1(k + x)− f−1(k))∑K−1
k=0 (f−1(k + 1)− f−1(k))

− ψ(x)− 1

ψ(1)− 1

)(
f−1(K)− f−1(0)

f−1(K + w)

)
(428)

+ (II)

(
f−1(K)− f−1(0)

f−1(K + w)
− 1

ψ(w0)

)(
ψ(x)− 1

ψ(1)− 1

)
(429)

+ (III)

(
min

(
f−1(K + x)

f−1(K)
,
f−1(K + w)

f−1(K)

)
−min(ψ(x), ψ(w0))

)(
1

f−1(K+w)
f−1(Ki)

)
(430)

+ (IV )

(
ψ(w0)−

f−1(K + w)

f−1(K)

)(
min(ψ(x), ψ(w0))− 1

f−1(K+w)
f−1(K) · ψ(w0)

)
(431)

+ (V )

(
O(K)

N
+
O(f−1(0))

N

)
. (432)

Every second term in (I)=(428), (II)=(429), (III)=(430) and (IV)=(431) is
bounded, precisely(

f−1(K)− f−1(0)

f−1(K + w)

)
≤ 1,

(
ψ(x)− 1

ψ(1)− 1

)
≤ 1,(

1
f−1(K+w)
f−1(K)

)
≤ 1,

(
min(ψ(x), ψ(w0))− 1

f−1(K+w)
f−1(K)

· ψ(w0)

)
≤ ψ(1)− 1.

Now put f(x) = logb(x
r). This function satisfies Theorem 166 and

f−1(x) = b
x
r ,

lim
k→∞

f−1(k + x)

f−1(k)
=
b

k+x
r

b
k
r

= b
x
r = ψ(x),

gw0(x) =
1

b
w0
r

· b
x
r − 1

b
1
r − 1

+
min(b

x
r , b

w0
r )− 1

b
w0
r

f−1(0) = b
0
r = 1, ψ(1) = b

1
r ,

K = [r logbN ], ω = {r logbN}, N = b
K+w

r .

Then for first terms (I)=(428), (II)=(429), (III)=(430) and (IV)=(431) we
have:

(I)

∣∣∣∣∣
∑K−1

k=0 (f
−1(k + x)− f−1(k))∑K−1

k=0 (f
−1(k + 1)− f−1(k))

− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣
289



=

∣∣∣∣∣
∑K−1

k=0 (b
k+x
r − b k

r )∑K−1
k=0 (b

k+1
r − b k

r )
− b

x
r − 1

b
1
r − 1

∣∣∣∣∣ = 0,

(II)

∣∣∣∣∣f−1(K)− f−1(0)

f−1(K + w)
− 1

ψ(w0)

∣∣∣∣∣ =
∣∣∣∣∣b

K
r − 1

b
K+w

r

− 1

b
w0
r

∣∣∣∣∣ ≤
∣∣∣∣∣ 1bw

r

− 1

b
w0
r

∣∣∣∣∣+ 1

N
,

(III)

∣∣∣∣∣min

(
f−1(K + x)

f−1(K)
,
f−1(K + w)

f−1(K)

)
−min(ψ(x), ψ(w0))

∣∣∣∣∣
= |min(ψ(x), ψ(w))−min(ψ(x), ψ(w0))|
≤ |ψ(w)− ψ(w0)| = |b

w
r − b

w0
r |( a proof see in appendix), (433)

(IV )

∣∣∣∣∣ψ(w0)−
f−1(K + w)

f−1(K)

∣∣∣∣∣(ψ(1)− 1) = |b
w
r − b

w0
r |(b

1
r − 1),

(V )

(
O(K)

N
+
O(f−1(0))

N

)
≤ K + 1 + f−1(0)

N
≤ r logbN + 2

N
.

In the end of proof we use

|b
w
r − b

w0
r | ≤ |w − w0|

r
· log b · b

1
r .

Example 64. Let r > 0, w = {r logbN}. Then for D = d1d2 · · · ds the 49

fraction
1
N
#{1 ≤ n ≤ N ; the leading block of s digits of nr is equal to D}

it can be approximated by

gw

(
logb

(
D + 1

bs−1

))
− gw

(
logb

(
D

bs−1

))
(434)

with the error term

2

(
3

N
+
r logbN

N

)
= Ob,r

(
logN

N

)
. (435)

49Previously, we have used K = k1k2 . . . ks.
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Proof. We have

1

N
#{1 ≤ n ≤ N ; the leading block of s digits of nr is equal to K}

=FN

(
logb

(
D + 1

bs−1

))
− FN

(
logb

(
D

bs−1

))
.

Applying Theorem 168 with w0 = w, we have
|FN(x)− gw(x)| ≤ 3

N
+ r logbN

N
.

For example: Let r > 0 and i be a positive integer. By (434), (435) for
D = d1d2 · · · ds the fraction

1
bi
#{1 ≤ n ≤ bi; the leading block of s digits of nr is equal to D}

it can be approximated by

(D+1
bs−1 )

1
r − ( D

bs−1 )
1
r

b
1
r − 1

with the error term
2ri+ 6

bi
.

6.4.6 Rate of convergence of FN(x) for logb p
r
n mod 1 with primes pn

Similar method it can be used to approximate |FN(x)− gw(x)| for

FN(x) =
#{n ≤ N ; logb(pn

r) mod 1 ∈ [0, x)}
N

,

gw(x) =
1

b
w
r

· b
x
r − 1

b
1
r − 1

+
min(b

x
r , b

w
r )− 1

b
w
r

,

K = [r logb pN ], w = {r logb pN}.

We have

f(pn) < x⇐⇒, 0 ≤ f(pn)− k < x⇐⇒
k ≤ f(pn) < k + x⇐⇒ f−1(k) ≤ pn < f−1(k + x).

Let π(x) = #{p ≤ x; p− prime }. Using π(x) = #{p < x; p− prime }+O(1),
then we have
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FN(x) =

∑K−1
k=0 (π(f

−1(k + x))− π(f−1(k)))

N
+

+
min(π(f−1(K + x)), π(f−1(K + w)))− π(f−1(K))

N

+
O(K)

N
+
O(f−1(0))

N
. (436)

As in (428), (429), (430), (431), (432), then we have

|FN(x)− gw0(x)| ≤

(I)

∣∣∣∣∣
∑K−1

k=0 (π(f
−1(k + x))− π(f−1(k)))∑K−1

k=0 (π(f
−1(k + 1))− π(f−1(k)))

− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣ (437)

+ (II)

∣∣∣∣∣π(f−1(K))− π(f−1(0))

π(f−1(K + w))
− 1

ψ(w0)

∣∣∣∣∣ (438)

+ (III)

∣∣∣∣∣min

(
π(f−1(K + x))

π(f−1(K))
,
π(f−1(K + w))

π(f−1(K))

)
−min(ψ(x), ψ(w0))

∣∣∣∣∣
(439)

+ (IV )

∣∣∣∣∣ψ(w0)−
π(f−1(K + w))

π(f−1(K))

∣∣∣∣∣(ψ(1)− 1) (440)

+ (V )

(
O(K)

N
+
O(f−1(0))

N

)
. (441)

But the following upper bounds in (437), (438), (439), (440), and (441) are
very unclear. Now in the following we use Prime number theorem in the
form

π(x) =
x

log x
θ(x), θ(x)→ 1, if x→∞. (442)

Using (see Wikipedia, Prime number theorem, p. 12)

x

log x+ 2
< π(x) <

x

log x− 4
(443)

for x ≥ 55 then we have

log x

log x+ 2
< θ(x) <

log x

log x− 4
. (444)
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In our case
f(x) = logb x

r,
f−1(x) = b

x
r ,

ψ(x) = b
x
r ,

gw0(x) =
1

b
w0
r
· b

x
r −1

b
1
r −1

+ min(b
x
r ,b

w0
r )−1

b
w0
r

.

For an upper bound of (I)=(437) we use the inequality proved later

(I)

∣∣∣∣∣
∑K−1

k=0 (π(f−1(k + x))− π(f−1(k)))∑K−1
k=0 (π(f−1(k + 1))− π(f−1(k)))

− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣
≤ Ψk1 +

∣∣∣∣∣π(f−1(k1))− π(f−1(0))

π(f−1(K))− π(f−1(0))

∣∣∣∣∣, (445)

where K ≥ k1, Ψk1 = supk≥k1
Φk and

Φk =

∣∣∣∣∣π(f−1(k + x))− π(f−1(k))

π(f−1(k + 1))− π(f−1(k))
− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣. (446)

Applying (442) to (446) we have

Φk =

∣∣∣∣∣b
x
r

((
k

k+x

)
θ(b

k+x
r )

θ(b
k
r )
− 1
)
+ b

x
r − 1

b
1
r

((
k
k+1

)
θ(b

k+1
r )

θ(b
k
r )
− 1
)
+ b

1
r − 1

− b
x
r − 1

b
1
r − 1

∣∣∣∣∣ (447)

For (II)=(438) we have

(II)

∣∣∣∣∣π(b
K
r )− π(1)
π(b

K+w
r )

− 1

b
w0
r

∣∣∣∣∣ =
∣∣∣∣∣ 1bw

r

(K + w

K

) θ(b
K
r )

θ(b
K+w

r )
− 1

b
w0
r

∣∣∣∣∣
≤ 1

b
w
r

∣∣∣∣∣(K + w

K

) θ(b
K
r )

θ(b
K+w

r )
− 1

∣∣∣∣∣+
∣∣∣∣∣ 1bw

r

− 1

b
w0
r

∣∣∣∣∣
(448)

For (III)=(439) we use

(III) ≤

∣∣∣∣∣min

(
π(f−1(K + x))

π(f−1(K))
,
π(f−1(K + w))

π(f−1(K))

)
−min(ψ(x), ψ(w))

∣∣∣∣∣
+ |min(ψ(x), ψ(w))−min(ψ(x), ψ(w0))| (449)

293



≤ max

(∣∣∣∣∣π(f−1(K + x))

π(f−1(K))
− ψ(x)

∣∣∣∣∣,
∣∣∣∣∣π(f−1(K + w))

π(f−1(K))
− ψ(w)

∣∣∣∣∣
)

+ |ψ(w)− ψ(w0)|

= max

(
b

x
r

∣∣∣∣∣
(

K

K + x

)
θ(b

K+x
r )

θ(b
K
r )
− 1

∣∣∣∣∣, bw
r

∣∣∣∣∣
(

K

K + w

)
θ(b

K+w
r )

θ(b
K
r )
− 1

∣∣∣∣∣
)

+ |b
w
r − b

w0
r |. (450)

For (IV)=(732) we have

(IV )

∣∣∣∣∣bw0
r − π(b

K+w
r )

π(b
K
r )

∣∣∣∣∣(b 1
r − 1)

≤

(∣∣∣bw0
r − b

w
r

∣∣∣+ b
w
r

∣∣∣∣∣
(

K

K + w

)
θ(b

K+w
r )

θ(b
K
r )
− 1

∣∣∣∣∣
)
(b

1
r − 1). (451)

For V=(344) we have

(V )

(
O(K)

N
+
O(f−1(0))

N

)
=
K + 1 + π(f−1(0))

N
=
K + 1

N

=
[f(pN)] + 1

N
≤ r logb pN + 1

N
.

In all (I)=(447), (II)=(448), (III)=(450) and (IV)=(451) we have common

factors
∣∣∣( K

K+w

)
θ(b

K+w
r )

θ(b
K
r )
−1
∣∣∣ our ∣∣∣(K+w

K

)
θ(b

K
r )

θ(b
K+w

r )
−1
∣∣∣. Assuming log b− 4r

k+x
> 0

then (444) implies

log b− 4r
k

log b+ 2r
k+x

<
θ(b

k+x
r )

θ(b
k
r )

<
log b+ 2r

k

log b− 4r
k+x

and we have

−x
r
log b− 6

k+x
r

log b+ 2
<

(
k

k + x

)
θ(b

k+x
r )

θ(b
k
r )
− 1 <

−x
r
log b+ 6

k+x
r

log b− 4

which gives ∣∣∣∣∣
(

k

k + x

)
θ(b

k+x
r )

θ(b
k
r )
− 1

∣∣∣∣∣ ≤ log b+ 6r

k log b− 4r
(452)
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or ∣∣∣∣∣
(
k + x

k

)
θ(b

k
r )

θ(b
k+x
r )
− 1

∣∣∣∣∣ ≤ log b+ 6r

k log b− 4r
. (453)

Applying (452) and (453) to (I)=(447) we find

Φk1 ≤
2b

1
r

log b+6r
k1 log b−4r

b
1
r − 1− 1− b 1

r
log b+6r
k1 log b−4r

. (454)

In this case (454) is decreasing with respect to k and in (15) it can be using
Φk1 . Then for approximate (I) we need approximate second term in (445):∣∣∣∣∣π(f−1(k1))− π(f−1(0))

π(f−1(K))− π(f−1(0))

∣∣∣∣∣ = π(b
k1
r )

π(b
K
r )

=
K

k1

1

b
K−k1

r

θ(b
k1
r )

θ(b
K
r )
, (455)

Also for (I)=(445), (II)=(448), (III)=(450) and (IV)=(451) then we find

Theorem 169.

|FN(x)− gw0(x)| ≤

(I)
2b

1
r

log b+6r
k1 log b−4r

b
1
r − 1− b 1

r
log b+6r
k1 log b−4r

+
1

b
K−k1

r

.
K log b+ 2r

k1 log b− 4r

+ (II)
1

b
w
r

.
log b+ 6r

K log b− 4r
+

∣∣∣∣∣ 1

b
w0
r

− 1

b
w
r

∣∣∣∣∣
+ (III) b

1
r .

log b+ 6r

K log b− 4r
+ |b

w0
r − b

w
r |

+ (IV ) b
w
r (b

1
r − 1)

log b+ 6r

K log b− 4r
+ (b

1
r − 1).|b

w0
r − b

w
r |

+ (V )
r logb pN + 1

N
.

Notes 34. Proof of the inequality (445). Denote Ψk1 = supk≥k1
Φk and

Φk =

∣∣∣∣∣π(f−1(k + x))− π(f−1(k))

π(f−1(k + 1))− π(f−1(k))
− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣.
For k ≥ k1 we have

−Ψk1 ≤
π(f−1(k + x))− π(f−1(k))

π(f−1(k + 1))− π(f−1(k))
− ψ(x)− 1

ψ(1)− 1
≤ Ψk1 .
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Then

π(f−1(k + x))− π(f−1(k)) ≤

(
Ψk1 +

ψ(x)− 1

ψ(1)− 1

)
(π(f−1(k + 1))− π(f−1(k))),

(π(f−1(k + 1))− π(f−1(k)))

(
−Ψk1 +

ψ(x)− 1

ψ(1)− 1

)
≤ π(f−1(k + x))− π(f−1(k)),

Thus we have

−Ψk1 +
ψ(x)− 1

ψ(1)− 1
≤
∑K−1

k=k1
(π(f−1(k + x))− π(f−1(k)))∑K−1

k=k1
(π(f−1(k + 1))− π(f−1(k)))

≤ Ψk1 +
ψ(x)− 1

ψ(1)− 1
.

Abbreviated

A =

K−1∑
k=k1

(π(f−1(k + x))− π(f−1(k)));

B =
K−1∑
k=k1

(π(f−1(k + 1))− π(f−1(k)));

C =

k1−1∑
k=0

(π(f−1(k + x))− π(f−1(k)));

D =

k1−1∑
k=0

(π(f−1(k + 1))− π(f−1(k)));

Then
A+ C

B +D
− A

B
=
D
(
C
D −

A
B

)
B +D

, where

0 ≤ C

D
≤ 1, 0 ≤ A

B
≤ 1, D = π(f−1(k1))− π(f−1(0)), B +D = π(f−1(K))− π(f−1(0)).

From it ∣∣∣∣∣A+ C

B +D
− A

B

∣∣∣∣∣ ≤ π(f−1(k1))− π(f−1(0))

π(f−1(K))− π(f−1(0))
and using∣∣∣∣∣A+ C

B +D
− ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣ ≤
∣∣∣∣∣A+ C

B +D
− A

B

∣∣∣∣∣+
∣∣∣∣∣AB − ψ(x)− 1

ψ(1)− 1

∣∣∣∣∣
this implies (445).

Proof of the inequality (433) and (449).

A := |min(ψ(x), ψ(w))−min(ψ(x), ψ(w0))| ≤ |ψ(w)− ψ(w0)|

in (433) and (449).
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We compute all cases:
x < w < w0; A = x− x,
x < w0 < w; A = x− x,
w0 < x < w; A = |x− w0| < |w0 − w|
w0 < w < x; A = |w − w0|,
w < w0 < x; A = |w − w0|,
w < x < w0; A = |w − x| < w0 − w|.

6.4.7 Discrepancy DN of the sequence logb n
r mod 1

We have the sequence {logb 1r}, {logb 2r}, {logb 3r}, . . . {logbN r}. Put
FN(x) =

1
N
#{n ≤ N ; {logb nr} ∈ [0, x)}. Then discrepancy is defined as

DN = supx∈[0,1] |FN(x)− x|. Clearly we have

DN ≤ sup
x∈[0,1]

|FN(x)− gw0(x)|+ |gw0(x)− x|. (456)

For the first part of (456) we use Theorem 168. Now we put w0 = 0 and for
the second part we need found upper bound of

x− g0(x) = x− b
x
r − 1

b
1
r − 1

.

By Lagrange theorem

b
x
r − 1 = (x− 0)b

x1
r
log b

r
, x1 ∈ (0, x),

b
1
r − 1 = (1− 0)b

x2
r
log b

r
, x2 ∈ (0, 1).

Thus

x− g0(x) = x
(
1− b

x1−x2
r

)
= x(0− (x1 − x2))b

x3
r
log b

r
, x3 ∈ (x1, x2).

The upper bound is

|x− g0(x)| < 1.b
1
r
log b

r

and applying Theorem 168 we have

DN ≤
|w − 0|
r

· log b · b
1
r · (b

1
r + 1) +

3

N
+
r logbN

N
+ b

1
r
log b

r
. (457)

Thus is of the type O(1/r) as in [42].
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6.4.8 Benford’s law of xn and properties of G(xn)

In this Section we characterize u.d. of logb xn mod 1 by d.f.s in G(xn). We
proceed from [13].

Theorem 170. Let xn, n = 1, 2, . . . , be a sequence in (0, 1) and G(xn) be
the set of all d.f.s of xn. Assume that every d.f. g(x) ∈ G(xn) is continuous
at x = 0. Then the sequence xn satisfies B.L. in the base b if and only if for
every g(x) ∈ G(xn) we have

x =
∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
for x ∈ [0, 1]. (458)

Proof. Firstly we note that the sequences logb xn mod 1 and − logb xn mod 1
are u.d. simultaneously and in the following we study − logb xn mod 1, n =
1, 2, . . . . Now, considering the function − logb x defined on the domain (0, 1].
The domain (0, 1] is divided into infinitely many parts

(
1

bi+1 ,
1
bi

]
, for i =

0, 1, 2, . . . and on each part
(

1
bi+1 ,

1
bi

]
denote

fi(x) = − logb x mod 1 = − logb x− i.

Then, for every term xn ∈ (0, 1) and x ∈ [0, 1] we have

0 ≤ − logb xn mod 1 < x⇐⇒ ∃i ∈ {0, 1, 2, . . . }
(
xn ∈ f−1

i ([0, x))
)
, (459)

where f−1
i ([0, x)) =

(
1

bi+x ,
1
bi

]
.

0 1

− logb x mod 1

1
b

1
b2

1
b3

1
b4

x

1
bx

1
b1+x

Figure: Intervals f−1
i ([0, x)), i = 0, 1, 2, . . .
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Following (2), denote two types of step d.f.s

F
(1)
N (x) =

#{n ≤ N ;− logb xn mod 1 ∈ [0, x)}
N

,

F
(2)
N (x) =

#{n ≤ N ;xn mod 1 ∈ [0, x)}
N

.

Then (459) has the form

F
(1)
N (x) =

∞∑
i=0

F
(2)
N

(
1

bi

)
− F (2)

N

(
1

bi+x

)
. (460)

Moreover, by definition of F
(2)
N (x) we see

∞∑
i=K

F
(2)
N

(
1

bi

)
− F (2)

N

(
1

bi+x

)
≤ F

(2)
N

(
1

bK

)
. (461)

Now, assume that d.f. g(x) ∈ G(xn), i.e. there exist a sequence of indices

N1 < N2 < . . . such that limNk→∞ F
(2)
Nk

(x) = g(x) for every x ∈ [0, 1]. By

Helly theorem from Nk can be select N ′
k such that also limN ′

k→∞ F
(1)

N ′
k
(x) =

g̃(x). Summing up (460) and (461) we find∣∣∣∣∣g̃(x)−
K−1∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))∣∣∣∣∣ ≤ g

(
1

bK

)
(462)

for x ∈ [0, 1]. The continuity implies g
(

1
bK

)
→ 0 and we have

g̃(x) = x⇐⇒ x =
∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+x

))
. (463)

Conclusion of proof: If xn satisfies B.L., i.e. g̃(x) = x, then (458) holds for
every g(x) ∈ G(xn). Vice verse (458) implies g̃(x) = x for every d.f. of

− log xn mod 1, since we can starting with limNk→∞ F
(1)
Nk

(x) = g̃(x) and then

select N ′
k such that limN ′

k→∞ F
(2)

N ′
k
(x) = g(x).

Notes 35. The continuity of g(x) at x = 0 is necessary, since the sequence xn = αn,

n = 1, 2, . . . , 0 < α < 1, logb α is irrational, satisfies B.L. in base b, but G(xn) = {c0(x)},
where d.f. c0(x) defined as c0(x) = 1 for x ∈ (0, 1], does not satisfy (458).
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The following criterion of continuity directly follows from [90, Th. 2.1]

Theorem 171. Every d.f. g(x) ∈ G(xn) is continuous at x = 0 if and only
if for every subsequence xnk

→ 0 (k →∞) the asymptotic density d(nk) = 0.

In the following Examples 65, 66 and 67 we shall find some partial so-
lutions of the equation (458). It is motivated by the following construction
of sequences xn satisfying B.L.: Let g(x) be the d.f. continuous at x = 0,
which solves (458). Then by [92, p. 140, Th. 4.4] there exists a sequence
xn ∈ (0, 1) with a.d.f. g(x) and by Theorem 170, this xn satisfies B.L. Note
that if g1(x), . . . , gk(x) are solutions of (458) and α1 + · · ·+ αk = 1, αi ≥ 0,
i = 1, 2, . . . , k, then α1g1(x)+ · · ·+αkgk(x) also satisfies (458). Finally, note
that by [171, p. 1–9], if H is nonempty, closed and connected set of solutions
of (458) and continuous at x = 0, then there exists a sequence xn ∈ (0, 1),
n = 1, 2, . . . , such that H = G(xn) and this xn satisfies B.L.

Example 65. We can find a solution g(x) satisfying (458) such that we
choice increasing g(x) on the interval

[
0, 1

b

]
, g(0) = 0, and then g(x) on(

1
b
, 1
]
must satisfy

g

(
1

bx

)
=

∞∑
i=1

(
g

(
1

bi

)
− g

(
1

bi+x

))
+ 1− x. (464)

Such defined g : [0, 1]→ [0, 1] will be d.f. if the following conditions hold:

(i) g(x) is nondecreasing for x ∈
(
1
b
, 1
]
,

(ii) g
(
1
b

)
≤ limx→1−0 g

(
1
bx

)
,

(iii) limx→0 g
(

1
bx

)
≤ 1.

We assume further that g(x) is differentiable on
(
1
b
, 1
]
. Then by differenti-

ating (458) , the condition (i) is equivalent to

g′
(

1

bx

)
= bx −

∞∑
i=1

g′
(

1

bi+x

)
.
1

bi
≥ 0. (465)

Now, we put g(x) = x on the interval
[
0, 1

b

]
. Then (465) has the form

g′
(

1

bx

)
= bx −

∞∑
i=1

1

bi
= bx − 1

b− 1
≥ 0.
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For (ii) we compute (464) and we find

g

(
1

bx

)
=

∞∑
i=1

((
1

bi

)
− g

(
1

bi+x

))
+1−x = 1−x+

(
1− 1

bx

)
1

b− 1
. (466)

Thus g(x) = x for x ∈
[
0, 1

b

]
satisfies (458) because

(i) g′
(

1
bx

)
= bx − 1

b−1
> 0,

(ii) g
(
1
b

)
≤ limx→1 g

(
1
bx

)
= limx→1 1− x+

(
1− 1

bx

)
1
b−1

= 1
b
,

(iii) limx→0 g
(

1
bx

)
= 1.

Replacing 1
bx

by x in (464) we find g(x) for x ∈
[
1
b
, 1
]
which satisfies (i)–(iii)

and thus we have the following solution g(x) of (458)

g(x) =

{
x if x ∈

[
0, 1

b

]
,

1 + logb x+ (1− x) 1
b−1

if x ∈
[
1
b
, 1
]
.

(467)

Definition 9. For every term xn of a sequence, xn = 0.00 . . . 0a1a2 . . . , where
a1 is the first nonzero digit of xn, define:

x̃n = 0.a1a2 . . . , i.e. the first zero digits are omitted.
x∗n = 0.0a1a2 . . . , i.e. we add in the first position a zero digit.

Note that if one of three sequences xn, x̃n, and x
∗
n satisfies B.L. then all

three sequences xn, x̃n, and x
∗
n satisfy B.L. simultaneously. 50

Example 66. By definition of B.L. the sequence xn ∈ (0, 1), n = 1, 2, . . . ,
and x̃n, n = 1, 2, . . . , satisfy B.L. simultaneously. Since x̃n ∈

[
1
b
, 1
)
every

g̃(x) ∈ G(x̃n) is continuous in x = 0 and thus xn satisfies B.L. if and only if
for every g̃(x) ∈ G(x̃n) the equation (458) holds. Since g̃(x) = 0 for x ∈

[
0, 1

b

]
the equation (458) has the form x = 1− g̃

(
1
bx

)
+ 0, for x ∈ [0, 1] and thus

g̃(x) =

{
0 if x ∈

[
0, 1

b

]
,

1 + log x
log b

if x ∈
[
1
b
, 1
]
.

(468)

50For a sequence xn ∈ (0, 1) the set of all d.f.s G(xn) does not depend on a base b in
which xn are expressed, but the sequence x̃n is depend.
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Example 67. A.d.f. g∗(x) of x∗n can be computed by g∗(x) = g̃(f−1(x)),
where f(x) = x

b
. Thus we have

g∗(x) =


0 if x ∈

[
0, 1

b2

]
,

2 + log x
log b

if x ∈
[
1
b2
, 1
b

]
,

1 if x ∈
[
1
b
, 1
] (469)

again for g∗(x) the equation (458) holds. Similarly, putting x∗∗n = 0.00a1a2 . . . ,
the a.d.f. of x∗∗n , n = 1, 2, . . . , is

g∗∗(x) =


0 if x ∈

[
0, 1

b3

]
,

3 + log x
log b

if x ∈
[
1
b3
, 1
b2

]
,

1 if x ∈
[
1
b2
, 1
] (470)

and g∗∗(x) again satisfies (458) again.

A.d.f g̃(x) of the sequence x̃n, n = 1, 2, . . . , can be computed directly
from a.d.f g(x) of xn, n = 1, 2, . . . .

Theorem 172. Assume that xn ∈ (0, 1) has an a.d.f. g(x) continuous at
x = 0. Then the sequence x̃n has a.d.f. g̃(x) of the form

g̃(x) =
∞∑
i=0

(
g
( x
bi

)
− g

(
1

bi+1

))
(471)

for x ∈
[
1
b
, 1
]
and g̃(x) = 0 for x ∈

[
0, 1

b

]
.

Proof. Every t ∈
[

1
bi+1 ,

1
bi

)
has the first i digits equal to zero and thus tbi ∈[

1
b
, 1
)
. Thus, for every x ∈

[
1
b
, 1
)
we have unique t = x

bi
such that t ∈[

1
bi+1 ,

1
bi

)
. Moreover

#{n ≤ N ;xn ∈
[

1
bi+1 ,

x
bi

)
}

N
→ g

( x
bi

)
− g

(
1

bi+1

)
(472)

and the expression (471) follows from the continuity of g(x) at x = 0.

Example 68. Let xn, n = 1, 2, . . . , be a sequence in (0, 1) with the a.d.f.
g(x) defined by (467). By Theorem 170 the sequence xn satisfies B.L. in the
base b. By Theorem 172 if x ∈

[
1
b
, 1
]
then we have

g̃(x) =
∞∑
i=0

(
g
( x
bi

)
− g

(
1

bi+1

))
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= g(x)− 1

b
+

(
x− 1

b

)
1

b
+

(
x− 1

b

)
1

b2
+ . . .

= 1 + logb x+ (1− x) 1

b− 1
− 1

b
+

(
x− 1

b

)
1

b− 1

which gives 1 + logb x equal to (468) which we are expecting.

From Example 66 directly follows

Theorem 173. The sequence xn ∈ (0, 1), n = 1, 2, . . . , satisfies B.L. in the
base b if and only if the sequence x̃n, n = 1, 2, . . . , has an a.d.f of the form
(468). Moreover, if the sequence xn ∈ (0, 1) has a.d.f. (468), then this a.d.f.
has also x̃n.

The following theorem simplified functional equation (458) in Theorem 170.

Theorem 174. Assume that every d.f. g(x) ∈ G(xn) is continuous at x = 0.
Then xn satisfies B.L. in the base b if and only if

1 + logb x =
∞∑
i=0

(
g
( x
bi

)
− g

(
1

bi+1

))
for x ∈

[
1

b
, 1

]
(473)

for every d.f. g(x) ∈ G(xn).

Proof. Assume d.f. g(x) ∈ G(xn), g(x) is continuous in x = 0 and FNi
(x)→

g(x) as i → ∞. Similarly as in Theorem 172 the sequence x̃n has d.f. g̃(x)
of the form (471) and for the same sequence of indices Ni. It follows from
Theorem 173 that g̃(x), for every sequence of indices Ni, must have the form
(468), which gives (473).

An alternative proof follows directly from (458), transforming 1
bx
→ x.

As we can see in the following Examples 69 and 70 there exist integer
sequences satisfying strong B.L. for arbitrary base b, but it does not hold for
sequences xn ∈ (0, 1).

Example 69. By [171, p. 2–117, 2.12.14], the sequence

αn logτ n mod 1, α ̸= 0, 0 < τ ≤ 1, (474)

is u.d. From this follows that xn = nn satisfies strong B.L. for arbitrary
integer base b, because logb n

n = n log n 1
log b

. In this case 1
xn
∈ (0, 1) has the

a.d.f. c0(x), which is discontinuous at x = 0.
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Example 70. By [171, p. 2–117, 2.12.15], the sequence

αn2 logτ n mod 1, α ̸= 0, 0 < τ ≤ 1, (475)

is u.d. From this follows that xn = nn
2
satisfies B.L. for arbitrary integer

base b. Again, the reciprocal sequence 1
xn

has the a.d.f. c0(x).

Example 71. The sequence xn = b{nα}, n = 1, 2, . . . , where α is an irra-
tional, satisfies strong B.L. in the base b, but not strong in the base br for
r ≥ 2, since

logbr b
{nα} =

{nα}
r
∈ [0, 1/r).

Moreover, xn does not satisfy B.L. in the base br of order 1, because every d.f.
g(x) of {nα}/r is constant on [1/r, 1] and for x = 0.(b− 1)(b− 1) . . . (b− 1)
we have 1− x = 1/br. Thus g(x) ̸= x and the criterion in Theorem 44 does
not hold.

In the following example we can see that there exists a sequence xn ∈
(0, 1), which satisfies B.L. with respect to a finite set of different bases.

Example 72. Let xn ∈ (0, 1) be a sequence with a.d.f. g1(x) of the form
(468), i.e.

g1(x) =

0 if x ∈
[
0, 1

b1

]
,

1 + logb1 x if x ∈
[

1
b1
, 1
]
.

(476)

Then by Example 22 this sequence satisfies strong B.L. with respect to b1.
Now we compute all basis b for which xn satisfies B.L. simultaneously. Every
such b must satisfy (473) with g(x) = g1(x) and for x ∈

[
1
b
, 1
]
. This gives

inequality (480) of the form

1 + logb x ≤ g1(x) ≤ 1 + logb x+ g1

(
1

b

)
.

a) Let b1 < b.

Then for x ∈
[
1
b
, 1
b1

]
we have g1(x) = 0, which contradicts to (480).

b) Let b < b1.
Let k be the first positive integer such that

1

bk
≤ 1

b1
<

1

bk−1
.
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Then (473) has the form

1 + logb x =
k−1∑
i=0

(
g1

( x
bi

)
− g1

(
1

bi+1

))
, (477)

where

g1

( x
bi

)
− g1

(
1

bi+1

)
=
(
1 + logb1

x

bi

)
−
(
1 + logb1

1

bi+1

)
for i = 1, 2, . . . , k − 2. For i = k − 1 we have g1

(
1
bk

)
= 0 and

g1

( x

bk−1

)
= 1 + logb1

x

bk−1
for x ∈

[
bk−1

b1
, 1

]
.

Thus (477) has the form

1+logb x = logb1

(
x.
x

b
. . .

x

bk−1

)
−logb1

(
1

b
. . .

1

bk−1

)
+1 = 1+logb1 x

k (478)

and the equation (478) holds if and only if log x
log b

= k log x
log b1

, which is equivalent

b1 = bk. In the case b1 = bk we have x ∈
[
bk−1

b1
, 1
]
=
[
1
b
, 1
]
and thus xn,

n = 1, 2, . . . , satisfies B.L. also for bases b, which are integer roots of b1.

Similar result we find also for d.f of the type (467).

Example 73. Let xn, n = 1, 2, . . . , be a sequence in (0, 1) with a.d.f. g(x)
defined by (467) for b = b1, i.e.

g1(x) =

x if x ∈
[
0, 1

b1

]
,

1 + logb1 +(1− x) 1
b1−1

if x ∈
[

1
b1
, 1
]
.

(479)

Then by Theorem 170 the sequence xn satisfies B.L. in the base b1. In the
following we find all other basis b for which xn satisfies B.L. again. Every
such b must satisfy (473) with g(x) = g1(x) and for x ∈

[
1
b
, 1
]
.

a) Assume that b1 < b. Then for x ∈
[
1
b
, 1
]
we have x

bi
, 1
bi+1 ∈

[
0, 1

b1

]
for

i = 1, 2, . . . and (104) has the form

1 + logb x = g1(x)− g1
(
1

b

)
+

∞∑
i=1

(
x

bi
− 1

bi+1

)
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and for x ∈
[
1
b
, 1
b1

]
we have g1(x)− g1

(
1
b

)
= x− 1

b
and

1 + logb x =

(
x− 1

b

)
b

b− 1
,

a contradiction.
b) Let b < b1 and let k be integer such that 1

bk
≤ 1

b1
< 1

bk−1 . In every

cases x ∈
[
1
b
, 1
]
implies x

bi
∈
[

1
bi+1 ,

1
bi

]
. In the case b) we have:

(i) In the intervals
[

1
bi+1 ,

1
bi

]
, i = 1, 2, . . . , k − 2, d.f. g1(x) has the form

g1(x) = 1 + logb1 x+ (1− x) 1
b1−1

.

(ii) The same form of g1(x) we have also in
[

1
b1
, 1
bk−1

]
.

(iii) In the intervals
[

1
bi+1 ,

1
bi

]
, i = k, k + 1, . . . , the d.f. g1(x) = x.

Using (i)–(iii) for g1
(
x
bi

)
, g1

(
1

bi+1

)
, g1

(
x

bk−1

)
, and g1

(
1
bk

)
, we find (473) in the

form

1 + logb(x) = logb1 x
x

b
. . .

x

bk−2
− logb1

1

b
. . .

1

bk−1

− x

b1 − 1

(
1 +

1

b
+ · · ·+ 1

bk−2

)
+

1

b1 − 1

(
1

b
+ · · ·+ 1

bk−1

)
+

(
1 + logb1

x

bk−1
+
(
1− x

bk−1

) 1

b1 − 1

)
− 1

bk

+
x

bk
1

1− 1
b

− 1

bk+1

1

1− 1
b

.

Summing this we have, for x
bk−1 ∈

[
1
b1
, 1
bk−1

]
,

1 + logb x = 1 + logb1 x
k + (1− x) b(bk − 1)

(b1 − 1)(b− 1)bk
− (1− x) b

(b− 1)bk
,

which holds only if b1 = bk. In this case the assumption x
bk−1 ∈

[
1
b1
, 1
bk−1

]
⇔

x ∈
[
bk−1

b1
, 1
]
⇔ x ∈

[
1
b
, 1
]
and (473) holds. Thus the sequence xn satisfies

B.L. also for the base b = k
√
b1.

The Example 72 and 73 give an impulse to the following theorem:

Theorem 175. For a sequence xn ∈ (0, 1), n = 1, 2, . . . , assume that every
d.f. g(x) ∈ G(xn) is continuous at x = 0. Then there exist only finitely many
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different integer bases b for which the sequence xn satisfies B.L. simultane-
ously. Moreover, if the sequence xn satisfies B.L. in base b, and for some
k = 1, 2, . . . there exists kth integer root k

√
b, then xn satisfies B.L. also in

the base k
√
b.

Proof. 10. Assume that xn satisfies B.L. in the base b and and let g(x) ∈
G(xn). Then by Theorem 174 for x ∈

[
1
b
, 1
]
we have (473). Rewrite it in the

form

g(x) = 1 + logb x+ g

(
1

b

)
−

∞∑
i=1

(
g
( x
bi

)
− g

(
1

bi+1

))
this gives

1 + logb x ≤ g(x) ≤ 1 + logb x+ g

(
1

b

)
. (480)

If the sequence xn satisfies B.L. for infinitely many b, then (480) implies
g(x) = 1 for x ∈ (0, 1], a contradiction. Quantitatively, if g(x0) < 1, then
either x0 <

1
b
, i.e., b < 1

x0
, or 1

b
≤ x0 and by (480) we have 1+logb x0 ≤ g(x0),

then 1− g(x0) ≤ − log x0
log b

, which gives

b ≤ max

(
1

x0
, e

− log x0
1−g(x0)

)
. (481)

20. Now, assume that xn satisfies B.L. in the base b, i.e. the sequence
logb xn mod 1 is u.d. Applying well known Weyl’s criterion we have the
following chain of implications.

(i) 1
N

∑N
n=1 e

2πih logb xn → 0 as N →∞ and for every h = 1, 2, . . . , thus

(ii) 1
N

∑N
n=1 e

2πihk logb xn → 0 as N →∞ and for every h, k = 1, 2, . . . and
then we obtain

(iii) xkn satisfies B.L. in base b again.
(iv) Thus, if g(x) ∈ G(xn) then g( k

√
x) ∈ G(xkn) and vice versa, because

xkn < x⇔ xn < k
√
x.

(v) Furthermore, for every d.f. g(x) continuous at x = 0, the g(x) and
g( k
√
x), k = 1, 2, . . . , solve (473) simultaneously.

Thus (473) implies

1 + logb x =
∞∑
i=0

(
g

(
k

√
x

bi

)
− g

(
k

√
1

bi+1

))
, for x ∈

[
1

b
, 1

]
. (482)
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For technical necessity using

∞∑
i=0

(
g

(
1

bi

)
− g

(
1

bi+1

))
= 1

we rewrite (473) to the form

1 + logb x = 1−
∞∑
i=0

(
g

(
1

bi

)
− g

( x
bi

))
for x ∈

[
1

b
, 1

]
(483)

and (482) to

1 + logb x = 1−
∞∑
i=0

(
g

(
k

√
1

bi

)
− g

(
k

√
x

bi

))
, for x ∈

[
1

b
, 1

]
. (484)

Let for integer k we have integer root k
√
b. Using

(i) 1 + logb x = 1 + log k√
b

k
√
x,

(ii) g
(

k

√
1
bi

)
− g

(
k
√

x
bi

)
= g

(
1

(
k√
b)i

)
− g

(
k
√
x

(
k√
b)i

)
,

(iii) x ∈
[
1
b
, 1
]
⇔ k
√
x ∈

[
1
k√
b
, 1
]

and exchanging k
√
x→ x, then (484) has the form

1 + log k√
b
x = 1−

∞∑
i=0

(
g

(
1

( k
√
b)i

)
− g

(
x

( k
√
b)i

))
. (485)

By Theorem 174 the sequence xn satisfies B.L. in the base k
√
b.

6.4.9 Two-dimensional Benford’s law

Let xn > 0, yn > 0, n = 1, 2, . . . and b is an integer base,
K1 = k

(1)
1 k

(1)
2 . . . k

(1)
r1 in base b,

K2 = k
(2)
1 k

(2)
2 . . . k

(2)
r2 in base b,

u1 = logb
(

K1

br1−1

)
,

u2 = logb
(
K1+1
br1−1

)
,

v1 = logb
(

K2

br2−1

)
,

v2 = logb
(
K2+1
br2−1

)
.

By (81) we have
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first r1 digits (starting a non-zero digit) of xn = K1 ⇐⇒ {logb xn} ∈ [u1, u2),
first r2 digits (starting a non-zero digit) of yn = K2 ⇐⇒ {logb yn} ∈ [v1, v2).
Denote 51

FN(x, y) =
#{n ≤ N ; {logb xn} < x and {logb yn} < y}

N
.

Theorem 176. Let g(x, y) ∈ G({logb xn}, {logb yn}) and limk→∞ FNk
(x, y) =

g(x, y) for (x, y) ∈ [0, 1]2. Then

lim
k→∞

#{n ≤ Nk; first r1 digits of xn = K1 and first r2 digits of yn = K2

Nk

= g(u2, v2) + g(u1, v1)− g(u2, v1)− g(u1, v2). (486)

Example 74. We have (see (757))

G({logb n}, {logb(n+ 1)})

=

{
gu(x, y) =

bmin(x,y) − 1

b− 1

1

bu
+
bmin(x,y,u) − 1

bu
;u ∈ [0, 1]

}
.

Another, by Sklar’s theorem 209

gu(x, y) = min(gu(x), gu(y)), where

gu(x) =
bx − 1

b− 1
· 1
bu

+
bmin(x,u) − 1

bu
.

Thus

lim
k→∞

#{n ≤ Nk; first r1 digits of xn = K1 and first r2 digits of yn = K2

Nk

= gu(u2, v2) + gu(u1, v1)− gu(u2, v1)− gu(u1, v2). (487)

If K1 = K2 then = gu(u2)− gu(u1). It can be found directly.

In the following examples we use known examples of statistical indepen-
dent sequences:

Let xn ∈ [0, 1), n = 1, 2, . . . , be an u.d. sequence. Then
(I) xn and logb n mod 1 are statistically independent (Theorem 92 accord-

ing to G. Rauzy (1973) [135] also see [171, p. 2–27, 2.3.6.]).

51In the following the sentence ”starting a non-zero digit” we will not mention.
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(II) xn and logb(n log n) mod 1 are statistically independent (Theorem 93
according to Y. Ohkubo (2011) [122]).

(III) xn and logb pn mod 1 are statistically independent (Theorem 94 ac-
cording to Y. Ohkubo (2011) [122]).

Example 75. Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence. Then

G(xn, {logb n}) = {gu(x, y) = x.gu(y);u ∈ [0, 1]},

where

gu(x) =
bx − 1

b− 1
· 1
bu

+
bmin(x,u) − 1

bu

and FNk
(x, y)→ gu(x, y) if {logbNk} → u.

Example 76. Let xn ∈ [0, 1), n = 1, 2, . . . , be u.d. sequence. Then

G(xn, {logb pn}) = {gu(x, y) = x.gu(y);u ∈ [0, 1]},

where

gu(x) =
bx − 1

b− 1
· 1
bu

+
bmin(x,u) − 1

bu

and FNk
(x, y)→ gu(x, y) if {logbNk} → u.

Example 77. We have

G({logb Fn}, {logb pn}) = {x.gu(y);u ∈ [0, 1]}

and let {logbNk} → u. Then

lim
k→∞

#{n ≤ Nk;Fn has the first r1 digits = K1 and pn has the first r2 digits = K2}
Nk

= u2gu(v2) + u1gu(v1)− u2gu(v1)− u1gu(v2), (488)

where

u1 = logb

(
K1

br1−1

)
, u2 = logb

(
K1 + 1

br1−1

)
,

v1 = logb

(
K2

br2−1

)
, v2 = logb

(
K2 + 1

br2−1

)
,

gu(x) =
bx − 1

b− 1
· 1
bu

+
bmin(x,u) − 1

bu
.
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This Section 6.4.9 has been inspired by F. Luca and P. Stanica [101]:

Theorem 177. There exists infinite many n such that Fibonacci number Fn
starts with digits K1 and φ(Fn) starts with digits K2 in the base b represen-
tation. Here K1 and K2 are arbitrary and φ(x) is the Euler function.

In the following we see that this claim is equivalent that the sequence

(logb Fn, logb φ(Fn)) mod 1, n = 1, 2, . . . ,

is everywhere dense in [0, 1]2, but the authors use the following method:
(i) By the first author φ(Fn)/Fn is dense in [0, 1]. Thus, for an interval I

with arbitrary small length and containingK2/K1, there exists φ(Fa)/Fa ∈ I.
(ii) Then φ(Fap)/Fap ∈ I for all sufficiently large prime p.
(iii) There exists infinitely many primes p such that Fap starts with K1.
(iv) Finally, multiplying I by Fap they find φ(Fap) which starts with K2.

Notes 36. The 3x+ 1 function T (n) is given by T (n) = 3n+1
2 if n is odd, and T (n) = n

2
if n is even. J.C. Lagarias and K. Soundararajan [95] shows that for most initial values
n the sequence xk = T (k)(n), k = 1, 2, . . . , N approximately satisfy B.L. in the sense that
the discrepancy of the sequence logb(xk), k = 1, 2, . . . , N is small.

The 3x+ 1 Conjecture asserts when started from any positive integer n, some iterate

T (k)(n) = 1.

6.5 Gauss-Kuzmin theorem and g(x) = gf(x)

Denote

f(x) = 1/x mod 1,

gf (x) =
∞∑
n=1

g

(
1

n

)
− g
(

1

n+ x

)
for d.f. g(x), x ∈ [0, 1],

gf (x) =

∫
f−1([0,x))

1.dg(x),

(gfn)f (x) = gfn+1(x),

g0(x) =
log(1 + x)

log 2
.

The problem is to find all solutions g(x) of the functional equation

g(x) = gf (x) for x ∈ [0, 1], where (489)
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gf (x) =
∞∑
n=1

g

(
1

n

)
− g
(

1

n+ x

)
for x ∈ [0, 1]. (490)

Proof of (490). We have
f−1([0, x)) = ∪∞

k=1

(
f−1
k (x), 1

k

)
, where

f−1
k (x) = 1

k+x
and thus

gf (x) =
∑∞

k=1

(
g(f−1

k (0))− g(f−1
k (x))

)
for x ∈ [0, 1].

The following is known:

(I) g0(x) satisfies (489).

Theorem 178 (Gauss-Kuzmin). If g(x) = x, then gfn(x)→ g0(x) and
the rate of convergence is O(q

√
n), 0 < q < 1.

(II) Theorem 178 was proved by R. Kuzmin [94] and for a starting function
g(x) for which

(i) 0 < g′(x) < M and

(ii) |g′′(x)| < µ.

Thus, if g(x) satisfies (i), (ii), and (489), then gf (x) = g0(x).

(III) Theorem 178 it was inspired by Gauss, who conjecturedmn(x)→ g0(x),
where mn(x) = |{α ∈ [0, 1]; 1/rn(α) < x}| and for continued fraction
expansion α = [a0(α); a1(α), a2(α), . . . ], rn(α) = [an+1(α); an+2(α), . . . , ].
In this casemn(x) = gfn(x) for g(x) = x, since f(1/rn(α)) = 1/rn+1(α).

Theorem 178 can be extended to

Theorem 179 (P. Lévy [99]).

gfn(x) = log(1 + x)/ log 2 +O(θn) (0 < θ < 1)

for every starting d.f. g(x) two-times differentiable and f(x) = (1/x) mod
1.

Theorem 180 (E.A. Wirsing [195]).

gfn(x) = log(1 + x)/ log 2 +O(θn) + (−λ)nΨ(x) +O(x(1− x)θn),

where d.f. g(x) is two-times differentiable, the constants 0 < θ < λ =
0.303 . . . are independent on g(x) and Ψ is a function defined on [0, 1]
independent on g(x) with continuous second derivatives, Ψ(0) = Ψ(1) =
0. The O constant depend on g(x). Again f(x) = (1/x) mod 1.
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(IV) For starting point x0 ∈ [0, 1] we define the iterate sequence xn as

x1 = f(x0), x2 = f(f(x0)), x3 = f(f(f(x0))), . . .

Then every g(x) ∈ G(xn) solve (489). For example, the sequence x1 =

1/r1, x2 = 1/r2, . . . for
√
5−1
2

= [0; 1, 1, 1, . . . ] produces solution g(x) =
c√

5−1
2

(x).

(V) If g1(x) and g2(x) solve the equation g(x) = gf (x) and g1(x) = g2(x) for
x ∈ [0, 1/2) then g1(x) and g2(x) coincide on the whole interval [0, 1].

Notes 37. The above method can be used to proving uniqueness of g = gf also for other
function as f(x) = 1/x mod 1. In M.Y. Goh and E. Schmutz [60] and in generalization of
P. Schatte [141] is proved

gfn(x) = g0(x) +O(θn), (0 < θ < 1)

where
f = g−1

0 ◦ f0 ◦ g0;
f0 is pairwise monotone uniform distribution preserving function (see Section 12.3);
g0 is d.f., g0 ∈ C2([0, 1]) and g′0(x) ≥ δ > 0.

For example, if

f(x) =

{
2x if x ∈ [0, 1/2],

2− 2x if x ∈ [1/2, 1].

then the functional equation g(x) = gf (x) i.e.
g(x) = g(x/2) + 1− g(1− (x/2))

has a unique solution g(x) = x on d.f. in C2([0, 1]). 52

Notes 38. For two-dimensional function

f(x, y) = (1/x− [1/x], ([1/x] + y)−1)

H. Nakada [112] proved the solution of g = gf in the form

g(x, y) = log(1 + xy)/ log 2.

K. Dajani and C. Kraaikap [33] proved an iteration

gfn(x, y) = log(1 + xy)/ log 2 +O(θn)

for starting g(x, y) = xy.

52C2([0, 1]) is the set of all f : [0, 1]→ R with continuous second derivative.
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Theorem 181. Let
f(x) = 1

x
mod 1 and

xi(t) =
t

(i−1)t+1
where i = 1, 2, . . . and

gf (x) =
∑∞

n=1 g
(
1
n

)
− g
(

1
n+x

)
for x ∈ [0, 1].

Then ∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

1/2

1

t2

( ∞∑
i=1

(g(xi(t))− g̃(xi(t))
)2

dt (491)

Proof. By the proof in (490) we have
gf (x) =

∑∞
i=1

(
g(f−1

i (0))− g(f−1
i (x))

)
for x ∈ [0, 1]. Thus∫ 1

0

(g(x)− g̃(x))2dx

=

∫ 1

0

( ∞∑
i=1

(
g(f−1

i (0))− g(f−1
i (x))

)
−

∞∑
i=1

(
g̃(f−1

i (0))− g̃(f−1
i (x))

))2

dx

=

∫ 1

0

( ∞∑
i=1

(
g(f−1

i (x))− g̃(f−1
i (x))

))2

dx

=
∞∑
i=1

∞∑
j=1

∫ 1

0

((
g(f−1

i (x))− g̃(f−1
i (x))

)(
g(f−1

j (x))− g̃(f−1
j (x))

))
dx

(492)

Here we assume
∞∑
i=1

(
g(f−1

i (0))− g̃(f−1
i (0))

)
= 0. (493)

Applying substitution
f−1
i (x) = 1

x+i
= y,

x = 1
y
− i,

dx = − 1
y2
dy,

f−1
j (x) = 1

x+j

f−1
j

(
1
y
− i
)
= y

(j−i)y+1

to the one part of (492) we find∫ 1

0

((
g(f−1

i (x))− g̃(f−1
i (x))

)(
g(f−1

j (x))− g̃(f−1
j (x))

))
dx =
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∫ 1/(i+1)

1/i

(
g(y)− g̃(y)

)(
− 1

y2

)(
g
( y

(j − i)y + 1

)
− g̃
( y

(j − i)y + 1

))
dy.

(494)

Using substitution
y = t

(i−1)t+1
= xi(t)

y
(j−i)y+1

= xj(t)
1
y2
dy = 1

t2
dt

on (494) then we find

=

∫ 1

1/2

(
g(xi(t))− g̃(xi(t))

) 1
t2
(
g(xj(t))− g̃(xj(t))

)
dt (495)

which gives (491).

6.6 Uniformly maldistributed sequences (continuation
of 3.7)

Here we repeat and extend the results of Section 3.7.
Let xn, n = 1, 2, . . . , be a given sequence.
The sequence xn is said to be uniformly maldistributed (u.m.) if for every

nonempty proper subinterval I ⊂ [0, 1] we have both

lim inf
N→∞

1

N
#{n ≤ N ;xn ∈ I} = 0 and lim sup

N→∞

1

N
#{n ≤ N ; xn ∈ I} = 1.

The definition of uniform maldistribution is due to G. Myerson [109] , who
mentioned that the first condition is superfluous, and showed the following
three properties:

The sequence xn = {log log n} of fractional parts of the iterated logarithm
is u.m.

Let Mk, k = 1, 2, . . . be a sequence of natural numbers with lim
k→∞

(M1 +

· · ·+Mk)/Mk = 1, and let yn, n = 1, 2, . . . by dense in [0, 1). Finally, let xn
be defined by xn = yk if

∑k−1
i=1 Mi ≤ n <

∑k
i=1Mi. Then xn is u.m.

Theorem 182. The sequence xn is u.m. if and only if

lim inf
N→∞

1

N

N∑
n=1

f(xn) = min f, lim sup
N→∞

1

N

N∑
n=1

f(xn) = max f
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for every function f continuous on [0, 1].

In the following we comment results from [160]:
It is easily seen that

Theorem 183. The sequence xn is u.m. if and only if

{cα(x);α ∈ [0, 1]} ⊂ G(xn).

Thus, in the theory of u.m. we need not consider d.f.s other than one-
jump d.f. cα(x) which has a jump of size 1 at α. This suggests the definition

Definition 10. The sequence xn is said to be uniformly maldistributed in
the strict sense (u.m.s.) if G(xn) = {cα(x);α ∈ [0, 1]}.

Let us consider the following moment problem∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0

in d.f. g : [0, 1] → [0, 1], where F (x, y) is continuous on the unit square
[0, 1]2. As before we denote G(F ) as the set of all solutions g(x) of this
moment problem. By Theorem 126 necessary and sufficient conditions for
the set inclusion G(xn) ⊂ G(F ) is that lim

N→∞
1
N2

∑N
m,n=1 F (xm, xn) = 0.

By Theorem 58 for any sequence xn ∈ [0, 1) we have

G(xn) ⊂ {cα(x);α ∈ [0, 1]} ⇐⇒ lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0

and if G(xn) ⊂ {cα(x);α ∈ [0, 1]}, then G(xn) = {cα(x);α ∈ I}, where I is a
closed subinterval

I =

[
lim inf
N→∞

1

N

N∑
n=1

xn, lim sup
N→∞

1

N

N∑
n=1

xn

]
,

with the length |I| = lim sup
M,N→∞

1
MN

∑M
m=1

∑N
n=1 |xm−xn|. The following asser-

tion is evident from the preceding.
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Theorem 184. The sequence xn ∈ [0, 1) is u.m.s. if and only if

lim
N→∞

1

N2

N∑
m,n=1

|xm − xn| = 0 and lim sup
M,N→∞

1

MN

M∑
m=1

N∑
n=1

|xm − xn| = 1,

or alternatively

lim sup
N→∞

1

N

N∑
n=1

xn − lim inf
N→∞

1

N

N∑
n=1

xn = 1.

Example 78. Let {x} be the fractional part of x. It is shown Theorem 48,
(100) ([27, p. 58]) that, for xn = {log n}, n = 1, 2, . . . ,

G(xn) =

{
1

eu
ex − 1

e− 1
+
emin(x,u) − 1

eu
;u ∈ [0, 1]

}
.

Starting with xn = {log log n} all the sequences {log log . . . log n}, n =
n0, n0 + 1, . . . , have

G(xn) = {cα(x);α ∈ [0, 1]} ∪ {hα(x);α ∈ [0, 1]}

and thus are u.m.

Proof. For the first iterated logarithm we chose an index-sequence Nk, with
Nk = [exp exp(k + α)]. Then we have limk→∞ FNk

(x) = cα(x). For Nk =
[exp exp(k+ εk)], where εk → 0 such that (exp exp(k+ εk))/(exp exp k)→ β,
we have limk→∞ FNk

(x) = hα(x), where α = (β − 1)/β.
On the other hand, let limn→∞ FNn(x) = g(x). Then Nn = exp exp(kn +

εn), where kn = [log logNn], εn = {log logNn}, and the sequence εn cannot
have different limit points.

The same distribution function are of course obtained if we replace log log t
by log . . . log t and exp exp t by exp . . . exp t in the above limits.

By Example 24: Let xn, n = 1, 2, . . . be defined as

xn =

{
1 + (−1)

[√
[
√

log2 n]
] {√[√

log2 n
]}}

,

were [x] denotes the integral part and {x} the fractional part of x. Then
G(xn) = {cα(x);α ∈ [0, 1]}.
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From [183, Satz 9] follows the fact that any everywhere dense sequence
in [0, 1) can be rearranged to a sequence xn for which G(xn) is the set of all
distribution functions g : [0, 1] → [0, 1]. Application of Theorem 183 to xn
gives immediately that this xn is u.m.

Theorem 185. Suppose the continuous function f(x) which map [0, 1] onto
itself has bounded derivative |f ′| ≤ c. Let xn ∈ [0, 1) be u.m.s. Then so is
f(xn), n = 1, 2, . . . .

Proof. This follows from criterion in Theorem 184, since it can be easily
verified that

1

N2

N∑
m,n=1

|f(xm)− f(xn)| ≤
c

N2

N∑
m,n=1

|xm − xn|,

and ∣∣∣∣∣ 1N
N∑
n=1

f(xn)− f

(
1

N

N∑
n=1

xn

)∣∣∣∣∣ ≤ c

N2

N∑
m,n=1

|xm − xn|.

Notes 39. Consider a given sequence xn ∈ [0, 1), n = 1, 2, . . . . For every continuous

function f : [0, 1]→ R the set of limit points of the sequence 1
N

∑N
n=1 f(xn), N = 1, 2, . . .

coincides with the set {∫ 1

0

f(x)dg(x); g ∈ G(xn)
}
.

Moreover, this set constitutes a subinterval of [min f,max f ]. If for d.f. g(x) we have

max f =
∫ 1

0
f(x)dg(x), then g(x) has a special structure e.g.

∫
[0,1]\f−1(max f)

1.dg(x) = 0.

Thus we can find information about G(xn) whenever

max f ∈
{∫ 1

0

f(x)dg(x); g ∈ G(xn)
}
.

Similarly for min f . Using this we can rewrite Theorem 182 in the form

{cα(x);α ∈ [0, 1]} ⊂ G(xn)⇐⇒
{∫ 1

0

f(x)dg(x); g ∈ G(xn)
}

= [min f,max f ]

for every continuous f : [0, 1]→ R.

Note that we do not consider all continuous f , but only such f with f−1(max f) consisting
of only one point. This suggests the following result.
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Theorem 186. The sequence xn ∈ [0, 1) is u.m. if and only if

lim sup
N→∞

1

N

N∑
n=1

fα(xn) = 1

for every α ∈ (0, 1). Here fα(x) are triangular functions defined by

fα(x) =

{
x/α, if x ∈ [0, α),

(1− x)/(1− α), if x ∈ [α, 1].

6.6.1 Applications of u.m. sequences

A quasi-Monte Carlo method for the approximate evaluation of the extreme
values of a function was proposed by H. Niederreiter [128]. He shows that
the error between the approximate value max

1≤n≤N
f(xn) and the correct value

max
x∈[0,1]

f(x) can be estimated in terms of dispersion of x1, x2, . . . , xN and the

modulus of continuity of f (cf. [119, Theorem 1]). The dispersion of a finite
sequence x1, x2, . . . , xN is defined as

dN = max
x∈[0,1]

min
1≤n≤N

|x− xn|;

it is a measure of the denseness of a sequence.
The dispersion is related to the well-known discrepancy of x1, x2, . . . , xN ,

which is a measure of the uniform distribution of a sequence (cf.[119, Theorem
3]). An analogous relation between u.m.s. and denseness of a sequence can
be derived on the basis of Theorem 184 and the following bound of dispersion
(see [160]).

Theorem 187. For a given finite sequence x1, x2, . . . , xN in (0, 1) define the
numbers AN and BN by

AN = min
1≤M≤N

1

M

M∑
n=1

xn, BN = max
1≤M≤N

1

M

M∑
n=1

xn.

Assume that these min and max are attained in M1 and M2, respectively,
and denote CN by

CN = max
min(M1,M2)≤M≤max(M1,M2)

1

M2

M∑
m,n=1

|xm − xn|.
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Then,
dN ≤ max(AN , 1−BN , 2CN)

and the limit limN→∞ max(AN , 1−BN , 2CN) = 0 characterize u.m.s.

Proof. Let xi < xj be neighbouring points from x1, x2, . . . , xN (i.e. (xi, xj)∩
{x1, x2, . . . , xN} = ∅) and consider the mean (xi+xj)/2. We distinguish two
cases.

1o We either have (xi + xj)/2 ∈ [0, AN ] ∪ [BN , 1] and then xj − xi ≤
2max(AN , 1−BN), or

2o (xi+xj)/2 ∈ (AN , BN). If we assume thatM1 < M2 (the caseM2 < M1

is completely similar), then there is an integer M ′ such that M ′,M ′ + 1 ∈
[M1,M2] and

1

M ′

M ′∑
n=1

xn ≤
xi + xj

2
≤ 1

M ′ + 1

M ′+1∑
n=1

xn.

There are four possibilities for the situation of xi, xj,
1
M ′

∑M ′

n=1 xn(= A),

and 1
M ′+1

∑M ′+1
n=1 xn(= B),

(i) either xi, xj ∈ [A,B], or

(ii) A ∈ (xi, xj) and B /∈ (xi, xj), or

(iii) B ∈ (xi, xj) and A /∈ (xi, xj), or

(iv) A,B ∈ (xi, xj).

There is a simple relationship between the configurations (i)–(iv) and the
bound of xj − xi which we shall establish by using the following properties:

For any finite sequence x1, x2, . . . , xM , we have∣∣∣∣∣ 1M
M∑
n=1

xn −
1

M + 1

M+1∑
n=1

xn

∣∣∣∣∣ ≤ 2

(M + 1)2

M+1∑
m,n=1

|xm − xn|. (496)

Assuming 1
M

∑M
n=1 xn ∈ (u, v) ⊂ [0, 1] and (u, v) ∩ {x1, x2, . . . , xM} = ∅, we

have

min

(
1

M

M∑
n=1

xn − u, v −
1

M

M∑
n=1

xn

)
≤ 1

M2

M∑
m,n=1

|xm − xn|. (497)
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It follows from the above inequalities that xj − xi ≤ 2CN for (i), and
xj − xi ≤ 4CN for (ii),(iii) and (iv).

Since (496) is evident, we shall begin with proving (497).
Integration by parts shows that every continuous f with piecewise con-

tinuous derivative f ′∣∣∣∣∣ 1M
M∑
n=1

f(xn)−
∫ 1

0

f(x)dcα(x)

∣∣∣∣∣ =
∣∣∣∣∫ 1

0

(FM(x)− cα(x))f ′(x)dx

∣∣∣∣ . (498)

Now let us take as f the following function

f(x) =


0, if x ∈ [0, u),

x− u, if x ∈ [u, α),
α−u
v−α (v − x), if x ∈ [α, v),

0, if x ∈ [v, 1],

where α ∈ (u, v) and α− u = min(α− u, v− α). Then, after the application
of Cauchy inequality, we obtain

min(α− u, v − α) ≤ 2

∫ 1

0

(FM(x)− cα(x))2dx.

By an easy computation, we evaluate∫ 1

0

(FM(x)− cα(x))2dx =
1

M

M∑
n=1

|xn − α| −
1

2M2

M∑
m,n=1

|xm − xn|. (499)

Setting α = 1
M

∑M
n=1 xn we thus conclude (497).

6.6.2 The multidimensional u.m.

The following Theorems are from P.J. Grabner, O. Strauch and R.F. Tichy
[63]:

Theorem 188. Let Mi, i = 1, 2, . . . be a sequence of positive numbers sat-
isfying limk→∞

∑k−1
i=1 Mi/Mk = 0. For a given sequence yk, k = 1, 2, . . . in

[0, 1]s, let the sequence xn, n = 1, 2, . . . in [0, 1]s be constructed by xn = yk
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for
∑k−1

i=1 Mi ≤ n <
∑k

i=1Mi. Finally, let H ⊂ [0, 1]s × [0, 1]s denote the set
of all limit points of the sequence (yk−1,yk), k = 2, 3, . . . . Then

G(xn) = {tcα(x) + (1− t)cβ(x) : t ∈ [0, 1], (α,β) ∈ H}

where

cα(x) =

{
1, for x ∈ [α,1],

0, otherwise.

Proof. For N =
∑k−1

i=1 Mi + θkMk, 0 ≤ θk < 1, we have

A([0,x);N ;xn) = B([0,x), (yk−1,yk)) + o(N),

where

B([0,x), (yk−1,yk)) =


Mk−1, if yk−1 ∈ [0,x) and yk /∈ [0,x),

θkMk, if yk−1 /∈ [0,x) and yk ∈ [0,x),

Mk−1 + θkMk, if yk−1,yk ∈ [0,x) and

0, if yk−1,yk /∈ [0,x).

Assume that A([0,x), ωN)/N → g(x), x ∈ [0, 1]s for selected sequences of
indices N =

∑k−1
i=1 Mi+ θkMk, k = k(N). Then we can further chose N such

that (yk−1,yk) → (α,β), Mk−1/(Mk−1 + θkMk) → t, and θkMk/(Mk−1 +
θkMk)→ (t− 1), for some α,β, and t. Thus g(x) = tcα(x) + (1− t)cβ(x).

On the other hand we can construct a sequenceNk =
∑k−1

i=1 Mi+θkMk sat-
isfyingMk−1/(Mk−1+θkMk)→ t for any t ∈ [0, 1] provided that (yk−1,yk)→
(α,β). Then A([0,x), ωNk

)/Nk → tcα(x) + (1− t)cβ(x).

This theorem has the following consequences:

Theorem 189. For a given H ⊂ [0, 1]s suppose that there exist a sequence
yk, k = 1, 2, . . . in [0, 1]s such that

(i) H coincides with the set of limit points of σ,

(ii) lim
k→∞

yk − yk−1 = 0.

Then there exists a sequence xn, n = 1, 2, . . . in [0, 1]s

G(xn) = {cα(x) : α ∈ H}.
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Proof. According to (i) and (ii), we have Hσ = {(α,α) : α ∈ H}. Hence,
Theorem 189 is a consequence of Theorem 188.

Theorem 190. Let H ⊂ [0, 1]s be such that there exists a continuous function
ϕ; [0, 1] → [0, 1]s, for which H = {ϕ(t); t ∈ [0, 1]}. Then there exists a
sequence xn, n = 1, 2, . . . in [0, 1]s such that G(xn) = {cα(x) : α ∈ H}.

Proof. For the proof, we note that (i) and (ii) from Theorem 189 hold for
yk = ϕ(yk), k = 1, 2, . . . , where

yk =
{
(−1)[

√
k]
√
k
}
.

Here [x] denotes the integral part and {x} the fractional part of x. The
density of yk, k = 1, 2, . . . and lim

k→∞
yk − yk−1 = 0 are proved (in a more

general form) in Theorem 191, below.

Theorem 191. [63], [171, 3.13.1., p. 3–49]. Let p1, . . . , ps be mutually
co-prime positive integers and j > 1. Then the set of all d.f.s of the s–
dimensional sequence

xn =
(
(−1)[[log(j) n]1/p1 ][log(j) n]1/p1 , . . . , (−1)[[log(j) n]1/ps ][log(j) n]1/ps

)
mod 1

(500)
is

G(xn) = {cα(x);α ∈ [0, 1]s}, (501)

Proof. The line of construction of the sequence (500) is the same as in Theo-
rem 188. Precisely, for exp(j) k < n < exp(j)(k+1), (exp(j) k = exp . . . exp k)
we have xn = yk, where

yk =
(
(−1)[k1/p1 ]k1/p1 , . . . , (−1)[k1/ps ]k1/ps

)
mod 1. (502)

Thus, in order to show (501) it suffices to prove that

(i) yk, k = 1, 2, . . . is dense in [0, 1]s, and

(ii) lim
k→∞

yk − yk−1 = 0.

Condition (i) follows from Propositions 3,4 and Remark 2 in [63], see:

Notes 40.
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Definition 11. Let m1, . . . ,ms be integers ≥ 2. A sequence (xn) = (xn1, . . . , xns)
in Rs is called (m1, . . . ,ms)-uniformly distributed, if the sequence (xn1, . . . , xns, [xn1]
mod m1, . . . , [xns] mod ms) is uniformly distributed in Rs/Zs × Zm1 × · · · × Zms .

Theorem 192 ([63], Proposition 3). A sequence xn in Rs is (m1, . . . ,ms)-uniformly
distributed, if and only if (xn1/m1, . . . , xns/ms) is uniformly distributed modulo 1.

Theorem 193 ([63], Corollary 3). Let 1, α1, . . . , αs be linearly independent over the ra-
tionals and set α = (α1, . . . , αs). Then the sequence (nα) is (m1, . . . ,ms)-uniformly
distributed for any choice of (m1, . . . ,ms).

Theorem 194 ([63], Remark 2). If a sequence (xn1, . . . , xns) is (2, . . . , 2)-uniformly dis-
tributed, then ((−1)[xn1]xn1, . . . , (−1)[xns]xns) is u.d. mod1.

Theorem 195 ([63], Proposition 4). Let ai, bi, ci be real numbers with ai, bi ̸= 0 (i =
1, . . . , s) and 0 < ui < 1 and let vi be given such that 0 < u1v1 < u2v2 < · · · < usvs and
uivi ̸∈ Z for all i = 1, . . . , s. Set

xni = (ai[bin
vi ] + ci)

ui ,

and xn = (xn1, . . . , xns). Then the s-dimensional sequence xn, n = 1, 2, . . . is u.d.
mod 1.

Condition (ii) follows from the expression

yki =

{{
k1/pi

}
for k ∈ ∪∞

n=0

[
(2n)pi , (2n+ 1)pi

)
1−

{
k1/pi

}
for k ∈ ∪∞

n=0

[
(2n+ 1)pi , (2n+ 2)pi

)
.

yki, for k ∈
[
(2n)pi , (2n+ 1)pi

)
, increases from 0 to

(
(2n+ 1)pi − 1

)1/pi − 2n

(→ 1 as n → ∞) with differences yki − y(k−1)i = k1/pi − (k − 1)1/pi (→ 0
as k → ∞), and, for k ∈

[
(2n + 1)pi , (2n + 2)pi

)
, yki decreases from 1 to

1 −
((
(2n + 2)pi − 1

)1/pi − (2n + 1)
)
(→ 0 as n → ∞) with differences

yki − y(k−1)i = (k − 1)1/pi − k1/pi (→ 0 as k →∞). Thus lim
k→∞

yki − y(k−1)i =

0.

Theorem 196. [63], [171, 3.13.2., p. 3–49]. Let p1, . . . , ps be mutually
coprime positive integers and j > 1. Then the set of all d.f.s of the s–
dimensional sequence

xn =
(
[log(j) n]1/p1 , . . . , [log(j) n]1/ps

)
mod 1.

is
G(xn) =

{
tcα(x) + (1− t)cβ(x)

}
,

where t ∈ [0, 1], α = (α1, . . . , αs),β = (β1, . . . , βs) ∈ [0, 1]s, and if αi ̸= βi
then αi = 1, βi = 0 for i = 1, . . . , s.
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Proof. As in Theorem 188, for exp(j) k < n < exp(j)(k+1), we have xn = yk,
where

yk =
(
k1/p1 , . . . , k1/ps

)
mod 1.

First we show that the sequence (yk−1,yk), k = 2, 3, . . . has two types of
limit points:

(i) (α,α), where α ∈ [0, 1]s is arbitrary, and

(ii) (α,β), where α ̸= β ∈ [0, 1]s and αi ̸= βi ⇒ αi = 1, βi = 0 for i =
1, . . . , s.

Proof:
1o. Let us assume k ̸= npi , for n = 1, 2, . . . and i = 1, 2, . . . , s. Then

there exist positive integers n1, . . . , ns such that k ∈
(
np11 , (n1 + 1)p1

)
∩ · · · ∩(

npss , (ns + 1)ps
)
, and so,

yki − y(k−1)i =
(
npii + j

)1/pi − (npii + j − 1
)1/pi → 0,

as k → ∞. By applying [92, Th. 3.5] to yk one shows that yk, k = 1, 2, . . .
is u.d. in [0, 1]s. But the k with k = npi have zero density, and so we derive
that the sequence (yk−1,yk), k = 2, 3, . . . , k ̸= npi , for n = 1, 2, . . . and
i = 1, 2, . . . , s has limit points of type (i).

2o. Now we take k = npii , for i ∈ I, and assume that k ̸= npj , for
n = 1, 2, . . . and j ∈ {1, 2, . . . , s} \ I. Then yki = 0 and

y(k−1)i =
(
npii − 1

)1/pi − (ni − 1
)
→ 1.

Put
∏

i∈I pi = A and {1, 2, . . . , s}\I = {j1 . . . , jl}. Because of the assumption
A/pj1 , . . . , A/pjl are pairwise different and nonintegers. Thus, using [92, Th.
3.5], the sequence

(
(nA)1/pj1 , . . . , (nA)1/pjl

)
, n = 1, 2, . . . is u.d. mod 1.

This property remains, if we restrict n to be ̸= mpji , for m = 1, 2, . . . and
i = 1, . . . , l. This shows that the sequence (yk−1,yk), k = 2, 3, . . . , where
k = nA, and n ̸= mpj for m = 1, 2, . . . and j ∈ {1, 2, . . . , s} \ I, has a limit
point of type (ii) with coordinates αi = 1 and βi = 0 for i ∈ I, and αj = βj
for j ∈ {1, 2, . . . , s} \ I for arbitrary αj ∈ [0, 1]. Finally, we apply Theorem
188, and the proof is complete.

Example 79. [171, 3.13.3., p. 3–50]. Let 1, α1, . . . , αs be linearly indepen-
dent over the rationals. Then the set G(xn) of all d.f.s of the sequence

xn = (α1 log log n, . . . , αs log log n) mod 1
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satisfies
G(xn) ⊃

{
cα(x);α ∈ [0, 1]s

}
.

In other words, the sequence is u.m. This example was given by G. Myerson
[109].

Notes 41. G. Myerson [109] notes that if the sequence xn, n = 1, 2, . . . , in [0, 1) is u.m.
then the s dimensional sequence

xn = (xn+1, xn+2, . . . , xn+s)

does not u.m. but for every interval ∅ ̸= I ⊂ [0, 1]s we have

lim sup
N→∞

A(I;N ;xn)

N
≥ 1

s
.

7 The multi-dimensional d.f.s

7.1 The two-dimensional d.f.s.: basic results

In the multi–dimensional case we can proceed in a manner similar to the
one–dimensional one. A basic notion is a differential:

dxdyF (x, y)

= F (x+ dx, y + dy) + F (x, y)− F (x+ dx, y)− F (x, y + dy), (503)

dxdydzF (x, y, z)

= F (x+ dx, y + dy, z + dz)− F (x, y, z)
+ F (x+ dx, y, z) + F (x, y + dy, z) + F (x, y, z + dz)

− F (x+ dx, y + dy, z)− F (x, y + dy, z + dz)− F (x+ dx, y, z + dz) (504)

Note that

dxdyF (x, y) =
∂2F (x, y)

∂x∂y
dxdy, dxdydzF (x, y, z) =

∂3F (x, y)

∂x∂y∂z
dxdydz,

if the needs partial derivatives exist.
Now we starting with s = 2.
Let (xn, yn), n = 1, 2, . . . , be two-dimensional sequence in the unit square

[0, 1)2. Define a step d.f. FN(x, y) of (x1, y1), . . . , (xN , yN) by

FN(x, y) =
1

N
#{n ≤ N ; (xn, yn) ∈ [0, x)× [0, y)}

and put FN(1, 1) = 1. We have
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(i) FN(x+∆x, y +∆y) + FN(x, y)− FN(x+∆x, y)− FN(x, y +∆y)

= 1
N
#{n ≤ N ; (xn, yn) ∈ [x, x+∆x)× [y, y +∆y)} ≥ 0;

for [x, x+∆x)× [y, y +∆y) ⊂ [0, 1)2.

(ii) FN(0, 0) = FN(x, 0) = FN(0, y) = 0 for x, y ∈ [0, 1].

Since a two-dimensional d.f. g(x, y) is a limit of FN(x, y) we have the follow-
ing definition:

Definition 12. A two-dimensional function g : [0, 1]2 → [0, 1] is d.f. if

(i) dg(x, y) = g(x+dx, y+dy) + g(x, y)− g(x+dx, y)− g(x, y+dy) ≥ 0,
for (x, y) ∈ (0, 1)2 and dx, dy ≥ 0.

(ii) g(0, 0) = g(x, 0) = g(0, y) = 0 for x, y ∈ [0, 1].

From (i) and (ii) directly follows that g(x, y) is non-decreasing for every
variable x and y.

Example 80. Define g(x, y) = 0 for (x, y) ∈ [0, 1)2 and g(x, 1) = x and
g(1, y) = y. Then g(x, y) is not d.f. since the differential

g(x+∆x, y +∆y) + g(x, y)− g(x, y +∆y)− g(x+∆x, y) = 1− x− y < 0

for x, y,∆x,∆y given by Figure:
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�
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��

0 1

(x, y) (x+∆x, y)

(x+∆x, y +∆y) = (1, 1)(x, y +∆y)

g(x, y) is not d.f.

Other examples can be found in R.G. Nelsen [114, p. 6] (1999), c.f.
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Example 81. For g(x, y) = max(x, y) we have dxdyg(x, y) = −dx for x = y,
dx = dy > 0, thus by (i) it is not d.f.

Example 82. For g(x, y) = (2x − 1)(2y − 1) we have dxdyg(x, y) = 4dxdy
for x, y ∈ (0, 1), but (ii) not holds and thus it is not d.f.

Y. Ohkubo [122] generalized Theorem 10 to the following two-dimensional
form. 53

Theorem 197. Let (xn, yn) and (x′n, y
′
n), n = 1, 2, . . . be two-dimensional

sequences. Assume:
(i) ||xn − x′n|| → 0 and ||yn − y′n|| → 0.
(ii) Every d.f. g(x, y) ∈ G((xn, yn)) is continuous in (0, 0),(0, 1), (1, 0)

and (1, 1).
Then G((xn, yn)) = G((x′n, y

′
n)).

Proof. For g1(x, y) ∈ G((xn, yn)) there exists Nk, k = 1, 2, . . . and g2(x, y) ∈
G((x′n, y

′
n)) such that FNk

(x, y) → g1(x, y) and F ′
Nk
(x, y) → g2(x, y), where

FN(x, y) and F ′
N(x, y) are step function defined for (xn, yn) and (x′n, y

′
n),

respectively. By Riemann-Stieltjes integration we have∫ 1

0

∫ 1

0

e2πi(hx+ky)dxdyFNk
(x, y) =

1

Nk

Nk∑
n=1

e2πi(hxn+kyn),

∫ 1

0

∫ 1

0

e2πi(hx+ky)dxdyF
′
Nk
(x, y) =

1

Nk

Nk∑
n=1

e2πi(hx
′
n+ky

′
n),

Put
An = |e2πi(hxn+kyn) − e2πi(hx′n+ky′n)|

for n = 1, 2, . . . . If An → 0, then∣∣∣∣ 1Nk

Nk∑
n=1

e2πi(hxn+kyn) − 1

Nk

Nk∑
n=1

e2πi(hx
′
n+ky

′
n)

∣∣∣∣→ 0,

which implies, by Helly theorem,∫ 1

0

∫ 1

0

e2πi(hx+ky)dxdyg1(x, y) =

∫ 1

0

∫ 1

0

e2πi(hx+ky)dxdyg2(x, y) (505)

53He also describe multidimensional form.
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for every integer h and k. The two-dimensional Weierstrass theorem on
approximation of continuous functions by trigonometric polynomials follows
that (505) implies: For every continuous F (x, y) on [0, 1]2 for which F (0, 0) =
F (0, 1) = F (1, 0) = F (1, 1) we have∫ 1

0

∫ 1

0

F (x, y)dg1(x, y) =

∫ 1

0

∫ 1

0

F (x, y)dg2(x, y). (506)

Note that by a classical inequality

An ≤ 2π|hxn + kyn − (hx′n + ky′n)|,
An ≤ 2π(h|xn − x′n|+ k|yn − y′n|),
An ≤ 2π(h{xn − x′n}+ k{yn − y′n}),
An ≤ 2π(h|{xn} − {x′n}|+ k|{yn} − {y′n}|),
An ≤ 2π(h||xn − x′n||+ k||yn − y′n||),
An ≤ 2π(h|xn − x′n − A|+ k|yn − y′n −B|) (507)

for An → 0 it can be used not only assumption (i) but also arbitrary from
(507).

In the following we modify Ohkubo’s proof by applying (541). For i = 1, 2
we have ∫ 1

0

∫ 1

0

F (x, y)dxdygi(x, y) = F (1, 1)−
∫ 1

0

gi(1, y)dyF (1, y)

−
∫ 1

0

gi(x, 1)dxF (x, 1) +

∫ 1

0

∫ 1

0

gi(x, y)dxdyF (x, y).

Applying Theorem 10, the assumption (i) implies that
(j) g1(x, 1) = g2(x, 1) and
(jj) g1(1, y) = g2(1, y)

in the points (x, y) of continuity. Then (506) implies∫ 1

0

∫ 1

0

g1(x, y)dxdyF (x, y) =

∫ 1

0

∫ 1

0

g2(x, y)dxdyF (x, y). (508)

Now, we define F (x, y) as

F (x, y) =

{
1 if (x, y) ∈ [x1, x2]× [y1, y2],

0 otherwise.
(509)
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Note that the function F (x, y) is not continuous, but its little change gives
a continuous function. For F (x, y) defined by (508) we have[

dxdyF (x, y)
]
(x1,y1)

= 1,
[
dxdyF (x, y)

]
(x2,y2)

= 1,[
dxdyF (x, y)

]
(x1,y2)

= −1,
[
dxdyF (x, y)

]
(x2,y1)

= −1.

This implies by (508)

g1(x1, y1) + g1(x2, y2)− g1(x1, y2)− g1(x1, y1)
= g2(x1, y1) + g2(x2, y2)− g2(x1, y2)− g2(x1, y1) (510)

for arbitrary (x1, y1) and (x2, y2) in [0, 1]2. Putting (x1, y1) = (x, y) and
(x2, y1) = (1, 1) the (510) implies

g1(x, y) = g2(x, y)

for (x, y) ∈ [0, 1]2.

Theorem 198. Let (x1, y1) and (x2, y2) be any points in [0, 1]2 and g(x, y)
be a d.f. Then

|g(x2, y2)− g(x1, y1)| ≤ |g(x2, 1)− g(x1, 1)|+ |g(1, y2)− g(1, y1)| (511)

Proof. R.B. Nelson [114, p.7]: From the triangle inequality
|g(x2, y2)− g(x1, y1)| ≤ |g(x2, y2)− g(x1, y2)|+ |g(x1, y2)− g(x1, y1)|.
If x1 ≤ x2, then g(x2, y2) − g(x1, y1) ≤ g(x2, 1) − g(x1, 1). An analogous

inequality holds when x2 ≤ x1. Thus
|g(x2, y2)− g(x1, y1)| ≤ |g(x2, 1)− g(x1, 1)|.
Similarly for any y1, y2.

Theorem 199. Every two-dimensional d.f. g(x, y) satisfies

g(x, y) ≤ min(g(x, Y2) + g(X1, y)− g(X1, Y2), g(x, Y1) + g(X2, y)− g(X2, Y1)),
(512)

g(x, y) ≥ max(g(x, Y2) + g(X2, y)− g(X2, Y2), g(x, Y1) + g(X1, y)− g(X1, Y1))
(513)

for every (x, y) ∈ [X1, X2]× [Y1, Y2].

Proof. Schematically, for minimum
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(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)

(x, y)
⊕

⊕⊖

(X1, y)

(x, Y2)

⊖⊕

⊕

(x, Y1)

(X2, y)

Here, if in point (u, v) we have add ⊕ or ⊖ then in g(x, y) we add +g(u, v)
or −g(u, v), respectively.

Schematically for maximum

(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)

(x, y)⊕

⊕ ⊖

(X1, y)

(x, Y2)

⊖ ⊕

⊕

(x, Y1)

(X2, y)

7.2 The multidimensional d.f.s

Let x = (x1, . . . , xs), xi ∈ [0, 1), i = 1, . . . , s and xn = (xn,1, . . . , xn,s) ∈ Rs,
n = 1, 2, . . .
• Define the s–dimensional step d.f. FN(x) of the sequence xn as

(i) FN(x) =
1
N
#{n ≤ N ; {xn,1} ∈ [0, x1), . . . , {xn,s} ∈ [0, xs)},

(ii) FN(x) = 0 for every x having a vanishing coordinate,

(iii) FN(1) = 1,

(iv) FN(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) = FN(xi1 , xi2 , . . . , xil)
for every restricted l–dimensional face sequence (xn,i1 , xn,i2 , . . . , xn,il) of
xn for l = 1, 2, . . . , s.
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Then
• If f : [0, 1]s → R is continuous, again

1

N

N∑
n=1

f(xn mod 1) =

∫
[0,1]s

f(x)dFN(x).

Definition 13. An s-dimensional function g : [0, 1]s → [0, 1] is d.f. if

(i) g(1) = 1,

(ii) g(0) = 0, and also g(x) = 0 for every x with a vanishing coordinate,

(iii) g(x) is non–decreasing, i.e.

∆(g, J) =
2∑

ε1=1

· · ·
2∑

εs=1

(−1)ε1+···+εsg(x(1)ε1 , . . . , x
(s)
εs ) ≥ 0 (514)

for every interval J = [x
(1)
1 , x

(1)
2 ]× [x

(2)
1 , x

(2)
2 ]× · · · × [x

(s)
1 , x

(s)
2 ] ⊂ [0, 1]s.

(iv) For every l = 1, 2, . . . , s− 1 the l–dimensional marginal d.f.

g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) of g in variables

(xi1 , xi2 , . . . , xil) ∈ (0, 1)l, is d.f.

• The differential dg(x) of g(x) at the point x = (x1, . . . , xs) is defined by
dg(x) = ∆(g, J), where J = [x1, x1 + dx1]× · · · × [xs, xs + dxs], and g(x) is
non–decreasing if and only if dg(x) ≥ 0 for every x ∈ [0, 1)s.

Example 83. Putting F (x1, x2, . . . , xs) = max(x1, x2, . . . , xs), x1 = · · · =
xs = x, then we have

dF (x, . . . , x) = (−1)1+1+···+1x+
2∑

ε1=1

· · ·
2∑

εs=1

(−1)ε1+···+εs(x+ dx)

(ε1, . . . , εs) ̸= (1, . . . , 1)

=
2∑

ε1=1

· · ·
2∑

εs=1

(−1)ε1+···+εs(x+ dx)− (−1)1+1+···+1dx

= (−1)s+1dx.
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• If g is an s-dimensional d.f. then
∫
[0,1]s

dg(x) = 1.

• We shall identify two d.f.s g(x) and g̃(x) if:

(i) g(x) = g̃(x) at every common point x ∈ (0, 1)s of continuity, and

(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= g̃(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1)

at every common point (xi1 , xi2 , . . . , xil) ∈ (0, 1)l of continuity in every
l–dimensional marginal d.f. of g and g̃, l = 1, 2, . . . , s− 1.

• The s–dimensional d.f. g(x) is a d.f. of the sequence xn mod 1 if

(i) g(x) = limk→∞ FNk
(x) for all continuity points x ∈ (0, 1)s of g (the

so–called weak limit) and,

(ii) g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xil , 1 . . . , 1) =

= limk→∞ FNk
(xi1 , xi2 , . . . , xil)

weakly over (0, 1)l and every l–dimensional marginal sequence of xn for
l = 1, 2, . . . , s−1, and for a suitable sequence of indices N1 < N2 < . . . .

• The Second Helly theorem (see Theorem 2) shows that the weak limit54

FNk
(x)→ g(x) implies∫

[0,1]s
f(x)dFNk

(x)→
∫
[0,1]s

f(x)dg(x)

for every continuous f : [0, 1]s → R.
• G(xn mod 1) is the set of all d.f.s of xn mod 1.

Theorem 200. G(xn mod 1) is again a non–empty, closed and connected
set, and either it is a singleton or it has infinitely many elements.

Proof can be found in R. Winkler (1997) (cf. [193, p. 1–9]). Note that
the connection is in the weak topology on which is metrizable by the metric

d(g1, g2) =

(∫ 1

0

(g1(x)− g2(x))2dx
)1/2

.

54that is (i), and (ii) above are fulfilled
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7.3 L2 discrepancies

The following discrepancies are known, see [92, Chap. 2], [38, Chap. 1] and
[171, p. 1–40, 1.9; p. 1–71, 1.11.4].

For sequences xn ∈ [0, 1), n = 1, 2, . . . , yn ∈ [0, 1), n = 1, 2, . . . , zn ∈
[0, 1), n = 1, 2, . . . , (xn, yn), n = 1, 2, . . . , and (xn, yn, zn), n = 1, 2, . . . we
denote

F
(1)
N (x) - the step d.f. of the sequence xn, n = 1, 2, . . . ;

F
(2)
N (y) - the step d.f. of the sequence yn, n = 1, 2, . . . .

F
(3)
N (z) - the step d.f. of the sequence zn, n = 1, 2, . . . .

FN(x, y) - the step d.f. of the sequence (xn, yn), n = 1, 2, . . . ;

FN(x, y, z) - the step d.f. of the sequence (xn, yn, zn), n = 1, 2, . . . ;

We use the following L2 discrepancies:

(i)
∫ 1

0
(F

(1)
N (x)− x)2dx - the L2-discrepancy of x1, . . . , xN ;

(ii)
∫ 1

0

∫ 1

0
(FN(x, y)−xy)2dxdy - the L2 discrepancy of (x1, y1),. . . , (xN , yN);

(iii)
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)−xyz)2dxdydz - the L2 discrepancy of (x1, y1, z1),. . .

,(xN , yN , zN);

(iv)
∫ 1

0

∫ 1

0
(FN(x, y)−F (1)

N (x)F
(2)
N (y))2dxdy - the L2 discrepancy of statis-

tical independence of x1, . . . , xN and y1, . . . , yN .

(v)
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)−F (1)

N (x)F
(2)
N (y)F

(3)
N (z))2dxdydz - the L2 discrep-

ancy of statistical independence of x1, . . . , xN , y1, . . . , yN , and z1, . . . , zN .

(vi)
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)− FN(x, y)F (3)

N (z))2dxdydz - the L2 discrepancy
of statistical independence of (x1, y1) . . . , (xN , yN) and z1, . . . , zN .

Every L2 discrepancy can be expressed as arithmetic mean of relevant func-
tions, see [158]. In the cases (i)–(iv) we use

F0(x, y) =
1

3
− 1− x2

2
− 1− y2

2
+ (1−max(x, y)); (515)

F0((x, y), (u, v)) =

(
1

3

)2

− 1− x2

2

1− y2

2
− 1− u2

2

1− v2

2

+ (1−max(x, u))(1−max(y, v)); (516)

F0((x, y, z), (u, v, w)) =

(
1

3

)3

− 1− x2

2

1− y2

2

1− z2

2
− 1− u2

2

1− v2

2

1− w2

2
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+ (1−max(x, u))(1−max(y, v))(1−max(z, w)); (517)

F1((x, y), (u, v), (s, t), (z, w)) = (1−max(x, u))(1−max(y, v))

+ (1−max(x, s))(1−max(v, w))− 2(1−max(x, s))(1−max(y, w)).
(518)

We have

(i)

∫ 1

0

(F
(1)
N (x)− x)2dx =

1

N2

N∑
m,n=1

F0(xm, xn) =

=

∫ 1

0

∫ 1

0

F0(x, y)dF
(1)
N (x)dF

(1)
N (y);

(ii)

∫ 1

0

∫ 1

0

(FN(x, y)− xy)2dxdy =
1

N2

N∑
m,n=1

F0((xm, ym), (xn, yn)) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F0((x, y), (u, v))dFN(x, y)dFN(u, v);

(iii)

∫ 1

0

∫ 1

0

∫ 1

0

(FN(x, y, z)− xyz)2dxdydz =

=
1

N2

N∑
m,n=1

F0((xm, ym, zm), (xn, yn, zn)) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F0((x, y, z), (u, v, w))dFN(x, y, z)dFN(u, v, w);

(iv)

∫ 1

0

∫ 1

0

(FN(x, y)− F (1)
N (x)F

(2)
N (y))2dxdy

=
1

N4

N∑
m,n,k,l=1

F1((xm, ym), (xn, yn), (xk, yk), (xl, yl)) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F1((x, y), (u, v), (s, t), (z, w))·

· d(FN(x, y)− F (1)
N (x)F

(2)
N (y))d(FN(u, v)− F (1)

N (u)F
(2)
N (v)).

From (i)–(iv), Helly and Lebesgue theorems imply

(i)

∫ 1

0

(g(x)− x)2dx =

∫ 1

0

∫ 1

0

F0(x, y)dg(x)dg(y);
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(ii)

∫ 1

0

∫ 1

0

(g(x, y)− xy)2dxdy =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F0((x, y), (u, v))dg(x, y)dg(u, v);

(iii)

∫ 1

0

∫ 1

0

∫ 1

0

(g(x, y, z)− xyz)2dxdydz =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F0((x, y, z), (u, v, w))dg(x, y, z)dg(u, v, w);

(iv)

∫ 1

0

∫ 1

0

(g(x, y)− g(x, 1)g(1, y))2dxdy

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F1((x, y), (u, v), (s, t), (z, w))·

· d(g(x, y)− g(x, 1)g(1, y))d(g(u, v)− g(u, 1)g(1, v)),

for arbitrary d.f.s g(x), g(x, y) and g(x, y, z).
Similarly, we can compute L2 discrepancy of statistical independence of

coordinate sequences of (xn, yn, zn), n = 1, 2, . . . , N , i.e.,

(v)

∫ 1

0

∫ 1

0

∫ 1

0

(FN(x, y, z)− F (1)
N (x)F

(2)
N (y)F

(3)
N (z))2dxdydz.

We apply the method described in (29) and (30) from [158, Th. 3]: Denote
the set Xm,n,k ⊂ [0, 1]3 as

Xm,n,k = {(x, y, z) ∈ [0, 1]3; (xm, yn, zk) ∈ [0, x)× [0, y)× [0, z)}

and cX(x, y, z) is the characteristic function of X ⊂ [0, 1]3. Then

∫ 1

0

∫ 1

0

∫ 1

0

(
1

N

N∑
n=1

cXn,n,n(x, y, z)−
1

N3

N∑
m,n,k=1

cXm,n,k
(x, y, z)

)2

dxdydz

=
1

N2

N∑
n,n′=1

|Xn,n,n ∩Xn′,n′,n′|+ 1

N6

N∑
m,n,k,m′,n′,k′=1

|Xm,n,k ∩Xm′,n′,k′|

− 2

N4

N∑
m,m′,n′,k′=1

|Xm,m,m ∩Xm′,n′,k′ |.
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Because

|Xm,n,k ∩Xm′,n′,k′| = (1−max(xm, xm′))(1−max(yn, yn′))(1−max(zk, zk′))

= (1−max(x, x′))(1−max(y, y′))(1−max(z, z′))dFN(x, y, z)dFN(x
′, y′, z′)

for (x, y, z) = (xm, yn, zk), (x
′, y′, z′) = (xm′ , yn′ , zk′), we have∫ 1

0

∫ 1

0

∫ 1

0

(FN(x, y, z)− F (1)
N (x)F

(2)
N (y)F

(3)
N (z))2dxdydz = (519)∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1−max(x, u))(1−max(y, v))(1−max(z, w))·

(520)

· d(FN(x, y, z)− F (1)
N (x)F

(2)
N (y)F

(3)
N (z))d(FN(u, v, w)− F (1)

N (u)F
(2)
N (v)F

(3)
N (w))
(521)

which gives (v). Proof of (vi) is similar. Note that using, for the left hand
side of (521), the Lebesgue theorem of dominant convergence and in the right
the Helly second theorem we find that for every d.f. g(x, y, z), g1(x), g2(y),
g3(z) we have∫ 1

0

∫ 1

0

∫ 1

0

(g(x, y, z)− g1(x)g2(y)g3(z))2dxdydz =∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1−max(x, u))(1−max(y, v))(1−max(z, w))·

· d(g(x, y, z)− g1(x)g2(y)g3(z))d(g(u, v, w)− g1(u)g2(v)g3(w)),

and also similarly∫ 1

0

∫ 1

0

∫ 1

0

(g(x, y, z)− g1(x, y, z))2dxdydz =∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1−max(x, u))(1−max(y, v))(1−max(z, w))·

· d(g(x, y, z)− g1(x, y, z))d(g(u, v, w)− g1(u, v, w)). (522)

This gives the following generalization
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7.4 Multidimensional generalization of L2 discrepancy

For x = (x1, . . . , xs) and y = (y1, . . . , ys) denote

(1−max(x,y)) = (1−max(x1, y1)) . . . (1−max(xs, ys)) (523)

and 0 = (0, . . . , 0) and 1 = (1, . . . , 1). Using [158] the (522) can be general-
ized to∫ 1

0

(g1(x)−g2(x))2dx =

∫ 1

0

∫ 1

0

(1−max(x,y))d(g1(x)−g2(x))d(g1(y)−g2(y))

(524)
directly, for every two d.f.s g1(x) and g2(x) defined in [0, 1]s. Now, divide
the vector x = (x1, . . . , xs) into two face vectors x(1) = (xi1 , . . . , xil) and
x(2) = (xj1 , . . . , xjk), l + k = s. Similarly divide

the s-dimensional sequence xn, n = 1, 2, . . . in [0, 1)s with step d.f.
FN(x) = FN(x

(1),x(2)) into two face sequences

l-dimensional x
(1)
n , n = 1, 2, . . . , with step d.f. FN(x

(1),1), and

k-dimensional x
(2)
n n = 1, 2, . . . , with step d.f. FN(1,x

(2)).
Using (524) we see that the L2 discrepancy (with respect to g(x)) and the
statistical L2 discrepancy have the following similar structures∫ 1

0

(FN(x)− g(x))2dx (525)

=

∫ 1

0

∫ 1

0

(1−max(x,y))d(FN(x)− g(x))d(FN(y)− g(y)), (526)

∫ 1

0

(FN(x)− FN(x(1),1)FN(1,x
(2)))2dx =

∫ 1

0

∫ 1

0

(1−max(x,y))·

· d(FN(x)− FN(x(1),1)FN(1,x
(2)))d(FN(y)− FN(y(1),1)FN(1,y

(2))) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1−max(x(1),y(1)))(1−max(x(2),y(2)))·

· d(FN(x(1),x(2))− FN(x(1),1, )FN(1,x
(2)))·

· d(FN(y(1),y(2))− FN(y(1),1, )FN(1,y
(2))). (527)

Expressing L2 discrepancy (526) as∫ 1

0

(FN(x)− g(x))2dx =
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=

∫ 1

0

∫ 1

0

[(
FN(x

(1),x(2))− FN(x(1),1)FN(1,x
(2))
)
+

+
(
FN(x

(1),1)− g(x(1),1)
)
FN(1,x

(2))+

+ g(x(1),1)
(
FN(1,x

(2))− g(1,x(2))
)
+

+
(
g(x(1),1)g(1,x(2))− g(x(1),x(2))

)]2
dx(1)dx(2)

the Cauchy inequality implies√∫ 1

0

(FN(x)− g(x))2dx ≤

≤

√∫ 1

0

∫ 1

0

(
FN(x(1),x(2))− FN(x(1),1)FN(1,x(2))

)2
dx(1)dx(2)+

+

√∫ 1

0

∫ 1

0

(
g(x(1),x(2))− g(x(1),1)g(1,x(2))

)2
dx(1)dx(2)+

+

√∫ 1

0

(
FN(x(1),1)− g(x(1),1)

)2
dx(1)

∫ 1

0

F 2
N(1,x

(2))dx(2)+

+

√∫ 1

0

(
FN(1,x(2))− g(1,x(2))

)2
dx(2)

∫ 1

0

g2(x(1),1)dx(1). (528)

Thus in (528) we have an upper bound of the classical L2 discrepancy (526)
of x1, . . . ,xN which contains the L2 discrepancy of statistical independence
of partial sequences x

(1)
1 , . . . ,x

(1)
N and x

(2)
1 , . . . ,x

(2)
N . Note that the infinite

partial sequences x
(1)
n , n = 1, 2, . . . , and x

(2)
n , n = 1, 2, . . . of the sequence

xn, n = 1, 2, . . . are statistically independent if and only if for every d.f.
g(x) ∈ G(xn) we have

g(x) = g(x(1),1) · g(1,x(2)) (529)

in common points of continuity od d.f.s. It can be used as a definition of
independence, cf. [171, p. 1–17, 1.8.9].

By the formula (526) the s–dimensional L2 discrepancy of x1, . . . ,xN in
[0, 1)s, where xn = (xn,1, . . . , xn,s) can be expressed in the form∫ 1

0

(FN(x)− x1x2 . . . xs)2dx =
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=
1

3s
+

1

N2

N∑
m,n=1

s∏
j=1

(1−max(xm,j, xn,j))−
1

2s−1N

N∑
n=1

s∏
j=1

(1− x2n,j).

This formula can be found in T.T. Warnock (1972) (see [171, p. 1–71]).

7.5 A.d.f. of (xn, xn+k1, xn+k2, . . . , xn+ks−1
)

In Section 8.10.1 we have proved that two, three end four-dimensional van
der Corput shifted sequences have an a.d.f. It would be appropriate to prove
the following theorem.

Theorem 201. Let xn, n = 1, 2, . . . , be a u.d. sequence in [0, 1) and let
k1, k2, . . . , ks−1 be the increasing sequence of nonnegative integers. Then the
sequence

xn = (xn, xn+k1 , xn+k2 , . . . , xn+ks−1), n = 1, 2, . . . (530)

has in some cases an a.d.f., e.g. G(xn) is singleton.

Proposal. We are starting with

xn = (xn, xn+1, xn+2, . . . , xn+s−1), n = 1, 2, . . . (531)

and let FN(x) be the step d.f. of (531). Insert it to (524), then∫ 1

0

(FM(x)− FN(x))2dx

=

∫ 1

0

∫ 1

0

(1−max(x,y))d(FM(x)− FN(x))d(FM(y)− FN(y))

=
1

M2

M∑
m,n=1

(1−max(xm,xn)) +
1

N2

M∑
m,n=1

(1−max(xm,xn))

−2 1

MN

M∑
m=1

N∑
n=1

(1−max(xm,xn)). (532)

Expressing 1−max(xm,xn) by (523) we find (532) as

1

M2

M∑
m,n=1

(1−max(xm, xn)) . . . (1−max(xm+s−1, xn+s−1))
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+
1

N2

N∑
m,n=1

(1−max(xm, xn)) . . . (1−max(xm+s−1, xn+s−1))

− 2
1

MN

M∑
m=1

N∑
n=1

(1−max(xm, xn)) . . . (1−max(xm+s−1, xn+s−1)). (533)

Now, the sequence xn, n = 1, 2, . . . , has an a.d.f. if and only if the limit
M,N,→∞ of

1

M2

M∑
m,n=1

(1−max(xm, xn)) +
1

N2

N∑
m,n=1

(1−max(xm, xn))

− 2
1

MN

M∑
m=1

N∑
n=1

(1−max(xm, xn)) (534)

tends to zero. In some cases (533) is bounded by (534), then (532) tend to
zero.

Generally Theorem 201 not holds for all u.d. xn. In the following we give
u.d. sequence zn such that (zn, zn+1) not have an a.d.f.

Example 84. Let n = 1, 2, . . .
Let (xn, yn) by two-dimensional sequence in [0, 1)2.
Assume that G(xn, yn) coincide with the set of all copulas. Thus xn and

yn are u.d.
The sequence x1, y1, x2, y2, x3, y3, x4, y4, . . . we denote as zn, n = 1, 2, . . .
The two-dimensional sequence (zn, zn+1) can be divided on two subse-

quences
(xn, yn), and
(yn, xn+1). We have

A(n ≤ 2Nk; (zn, zn+1) ∈ [0, x)× [0, y))

2Nk

(535)

=
A(n ≤ Nk; (xn, yn) ∈ [0, x)× [0, y))

2Nk

(536)

+
A(n ≤ Nk; (yn, xn+1) ∈ [0, x)× [0, y))

2Nk

. (537)

Assume that as k →∞
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(535) tends to g(x, y),
(536) tens to (1/2)gt(x, y),
(537) tens to (1/2)g̃t(x, y).

Then we find
g(x, y) = (1/2)gt(x, y) + (1/2)g̃t(x, y). (538)

Here gt(x, y) is an arbitrary copula. The equation (538) not holds for fixed
g(x, y) since we can find gt(x, y) such that

g(x, y) + g(x, y)− gt(x, y) (539)

is not a copula. This (539) can be proved by using one-dimensional d.f.

Notes 42. Let β be a PV-number. Using β-adic expansion of n the authors [98] define
Monna map ϕβ(n) and they study the s-dimensional sequence

(ϕβ(kn + n1), . . . , ϕβ(kn + ns)), n = 1, 2, . . . (540)

Assuming that the sequence of integers kn, n = 1, 2, . . . is Hartman uniformly distributed

and Lp-good universal for a p ∈ [1,∞], the authors prove that the sequence (540) has an

a.d.f. (Also see Section 11.7.)

7.6 Computation of integrals by d.f.s

In Riemann-Siltjes integral the integration by parts can be used, see:

Theorem 202. For every continuous F (x, y) and arbitrary d.f. g(x, y) we
have ∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) = F (1, 1)−
∫ 1

0

g(1, y)dyF (1, y)

−
∫ 1

0

g(x, 1)dxF (x, 1) +

∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y). (541)

Proof. Integration by parts∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y)

=

[∫ 1

0

F (x, y)dyg(x, y)

]x=1

x=0

−
∫ 1

0

∫ 1

0

dyg(x, y)dxF (x, y)
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=

∫ 1

0

F (1, y)dyg(1, y)−
∫ 1

0

∫ 1

0

dyg(x, y)dxF (x, y)

= [F (1, y)g(1, y)]y=1
y=0 −

∫ 1

0

g(1, y)dyF (1, y)

−
[∫ 1

0

g(x, y)dxF (x, y)

]y=1

y=0

+

∫ 1

0

∫ 1

0

g(x, y)dydxF (x, y).

Here we use g(0, y) = g(x, 0) = 0 for every x, y ∈ [0, 1].

Notes 43. Main part in the above proof is integration by parts∫ 1

0
f(x)dg(x) = [f(x)g(x)]10 −

∫ 1

0
g(x)df(x).

It holds for every Riemann-Stieltjes integrable functions f(x), g(x), which not have com-

mon points od discontinuity.

Example 85. Put F (x, y) = xαyβ, g(x, y) = xy. Then (541) has the form∫ 1

0

∫ 1

0

xαyβdxdy = 1−
∫ 1

0

xdxα −
∫ 1

0

ydyβ +

∫ 1

0

∫ 1

0

dxdyx
αyβ

which gives

1

α + 1

1

β + 1
= 1− α

α + 1
− β

β + 1
+ αβ

1

α + 1

1

β + 1

what is true.

Repeating (541) we can find:

Theorem 203. For every continuous F (x, y, u, v) and any d.f. g(x, y) we
have∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, u, v)dxdyg(x, y)dudvg(u, v) =

F (1, 1, 1, 1)−
∫ 1

0
g(1, v)dvF (1, 1, 1, v)−

∫ 1

0
g(u, 1)duF (1, 1, u, 1)

+
∫ 1

0

∫ 1

0
g(u, v)dudvF (1, 1, u, v)

−
∫ 1

0
g(1, y)dyF (1, y, 1, 1) +

∫ 1

0

∫ 1

0
g(1, y)g(1, v)dvdyF (1, y, 1, v)

+
∫ 1

0

∫ 1

0
g(1, y)g(u, 1)dudyF (1, y, u, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(1, y)g(u, v)dudvdyF (1, y, u, v)

−
∫ 1

0
g(x, 1)dxF (x, 1, 1, 1) +

∫ 1

0

∫ 1

0
g(x, 1)g(1, v)dvdxF (x, 1, 1, v)

+
∫ 1

0

∫ 1

0
g(x, 1)g(u, 1)dudxF (x, 1, u, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(x, 1)g(u, v)dudvdxF (x, 1, u, v)
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+
∫ 1

0

∫ 1

0
g(x, y)dydxF (x, y, 1, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)g(1, v)dvdydxF (x, y, 1, v)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)g(u, 1)dudydxF (x, y, u, 1)

+
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)g(u, v)dudvdydxF (x, y, u, v).

Theorem 204. For every continuous F (x, y, z) defined on [0, 1]3 and any
3-dimensional d.f. g(x, y, z) we have∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, z)dxdydzg(x, y, z) = F (1, 1, 1)

−
∫ 1

0
g(1, 1, z)dzF (1, 1, z)−

∫ 1

0
g(1, y, 1)dyF (1, y, 1)−

∫ 1

0
g(x, 1, 1)dxF (x, 1, 1)

+
∫ 1

0

∫ 1

0
g(1, y, z)dydzF (1, y, z) +

∫ 1

0

∫ 1

0
g(x, 1, z)dxdzF (x, 1, z)

+
∫ 1

0

∫ 1

0
g(x, y, 1)dxdyF (x, y, 1)−

∫ 1

0

∫ 1

0

∫ 1

0
g(x, y, z)dxdydzF (x, y, z).

Theorem 205. Assume that F (x, y, z, u) is a continuous in [0, 1]4 and g(x, y, z, u)
is a 4-dimensional d.f. Then∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z, u)dxdydzdug(x, y, z, u) = F (1, 1, 1, 1)

−
∫ 1

0

g(x, 1, 1, 1)dxF (x, 1, 1, 1)−
∫ 1

0

g(1, y, 1, 1)dyF (1, y, 1, 1)

−
∫ 1

0

g(1, 1, z, 1)dzF (1, 1, z, 1)−
∫ 1

0

g(1, 1, 1, u)duF (1, 1, 1, u)

+

∫ 1

0

∫ 1

0

g(x, y, 1, 1)dxdyF (x, y, 1, 1) +

∫ 1

0

∫ 1

0

g(x, 1, z, 1)dxdzF (x, 1, z, 1)

+

∫ 1

0

∫ 1

0

g(1, y, z, 1)dydzF (1, y, z, 1) +

∫ 1

0

∫ 1

0

g(x, 1, 1, u)dxduF (x, 1, 1, u)

+

∫ 1

0

∫ 1

0

g(1, y, 1, u)dyduF (1, y, 1, u) +

∫ 1

0

∫ 1

0

g(1, 1, z, u)dzduF (1, 1, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z, 1)dxdydzF (x, y, z, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(1, y, z, u)dudydzF (1, y, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, 1, z, u)dxdzduF (x, 1, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, 1, u)dudydxF (x, y, 1, u)
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+

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z, u)dxdydzduF (x, y, z, u).

Theorem 206. Let F : [0, 1] → R and Q : [0, 1]s → [0, 1] be continuous
functions. Then∫

[0,1]s
F (Q(u1, u2, . . . , us))du1du2 . . . dus =

∫ 1

0

F (x)dg(x),

where g(x) is the a.d.f. of the sequence Q(xn1 , xn2 , . . . , xns), n1, n2, . . . , ns =
1, 2, . . . , where xn, n = 1, 2, . . . , is u.d. in [0, 1] and s-dimensional sequence
(xn1 , xn2 , . . . , xns) is ordered such that (xn1 , xn2 , . . . , xns), n1, n2, . . . , ns =
1, 2, . . . , N formed first N s terms.

Proof. By generalized Weyl’s limit relation

lim
N→∞

1

N s

N∑
n1,...,ns

F (Q(xn1 , . . . , xns)) =

∫
[0,1]s

F (Q(u1, . . . , us))du1 . . . dus

=

∫ 1

0

F (x)dg(x).

In another direction, define

�
�
�
�
�

�
�
�
�

�
�
�
�

�
��A
B

D

C

E

F

1− |u− v|

|u− v|0 1

Figure: Division of [0, 1]2.

345



and

gu,v(x, y) =



x if (x, y) ∈ A,
y − (1− |u− v|) if (x, y) ∈ B,
x+ y − 1 if (x, y) ∈ C,
0 if (x, y) ∈ D,
x− |u− v| if (x, y) ∈ E,
y if (x, y) ∈ F.

(542)

Then we have

Theorem 207. Let K(x, y) be continued function defined on [0, 1]2. Then
for every (u, v) ∈ [0, 1]2 we have∫ 1

0

K({u+ z}, {v + z})dz =
∫ 1

0

∫ 1

0

K(x, y)dxdygu,v(x, y). (543)

Proof. For the sequence (u + zn, v + zn) mod 1, zn, n = 1, 2, . . . , zn is u.d.
we denote a.d.f. as gu,v(x, y). Then

lim
N→∞

1

N

N∑
n=1

K({u+ zn, v + zn}) =
∫ 1

0

K({u+ z}, {v + z})dz

=

∫ 1

0

∫ 1

0

K(x, y)dxdygu,v(x, y). (544)

By Weyl’s limit relation (544) implies (717). In the following, for gu,v(x, y),
we prove (542).

Let 0 ≤ u ≤ v ≤ 1 be fixed and x, y ∈ [0, 1] be variables and define
hu(x) = xu mod 1, hv(y) = yv mod 1. Then
gu,v(x, y) = |h−1

u ([0, x)) ∩ h−1
v ([0, y))|.

Using the following graphs of hu(x)
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Figure: The graph of hu(x).

then we see

h−1
u ([0, x]) =

{
[1− u, 1− u+ x] if x ≤ u,

[0, x− u] ∪ [1− u, 1] if u ≤ x.
(545)

Hence

gu,v(x, y)

=


∣∣[1− u, 1− u+ x] ∩ [1− v, 1− v + y]

∣∣ if x ≤ u, y ≤ v,∣∣[1− u, 1− u+ x] ∩ ([0, y − v] ∪ [1− v, 1])
∣∣ if x ≤ u, y > v,∣∣([0, x− u] ∪ [1− u, 1]) ∩ [1− v, 1− v + y]
∣∣ if x > u, y ≤ v,∣∣([0, x− u] ∪ [1− u, 1]) ∩ ([0, y − v] ∪ [1− v, 1])

∣∣ if x > u, y > v.

(546)

Now we using minimum and maximum formula for the length of intersection
of two intervals [α, β] and [γ, δ]∣∣[α, β] ∩ [γ, δ]

∣∣ = max
(
min(β, δ)−max(α, γ), 0

)
. (547)

Insert (547) into (546) we see
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gu,v(x, y)

=


max

(
min(y, x− u+ v), 0

)
if x ≤ u, y ≤ v,

max
(
min(x, y − v − 1 + u), 0

)
+max(v − u+ x, 0) if x ≤ u, y > v,

y if x > u, y ≤ v,

min(x− u+ v, y) + max(y − v − 1 + u, 0) if x > u, y > v,

(548)

which implies (542).

Note that gu,v(x, y) is a copula.

8 Copulas

We denote by Gs,k the set of all d.f.s g(x) on [0, 1]s for which all k-dimensional
marginal (i.e. face) d.f.s satisfy

g(1, . . . , 1, xi1 , 1, . . . , 1, xi2 , 1, . . . , 1, xik , 1, . . . , 1) = xi1xi2 . . . xik .

For k = 1, these d.f.s are called copulas, which were introduced by M. Sklar
(1959)[148]. Basic properties of copulas can be found in monographs R.B. Nelsen
(1999) [114], N. Balakrishnan and Chin-Diew Lai [6], and in Proccedings of
EDS: P. Jaworski, F. Durante, W. Härdle and T. Rychlik [80].

Let
xn = (xn,1, xn,2, . . . , xn,s), n = 1, 2, . . . ,

be an infinite s-dimensional sequence in the unit cube [0, 1)s. We assume
that, for fixed k < s, all k-dimensional marginal sequences (xn,i1 , . . . , xn,ik)
are uniformly distributed (abbreviating u.d.) We introduce the following two
problems:
(I) If xn is not u.d., find all possible d.f.s of xn.
(II) Find some (possible ”minimal”) criterions which imply u.d. of the origi-
nal sequence xn, n = 1, 2, . . . . To illustrate (II) we give the following non-u.d.
sequence:

Example 86. Let θ be an algebraic number of the degree s such that for
its minimal polynomial p(x) =

∑s
i=0 aix

i we have ai ̸= 0 for i = 0, 1, . . . , s.
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Define the sequence xn = (xn,1, . . . , xn,s), n = 1, 2, . . . , with coordinate se-
quences xn,i = nθi mod 1, i = 1, 2, . . . , s. Applying the well-known Kro-
necker theorem (cf. [DT, p. 15, Coroll. 1.20], [SP, p. 3-9, 3.4.1]) all marginal
sequences with dimensions k = 1, 2, . . . , s− 1 are u.d. but xn is not.

1

0.8
0.6

y0.4
0

0.2
0 0.2

0.2

0.4 0.6

0.4

0.8
0

x 1

0.6

0.8

1

Figure 2: Graph of g(x, y) = min(x, y)

8.1 The set of s-dimensional copulas Gs,1

Theorem 208 (Frécet-Hoeffding copula bounds). For any copula g(x1, . . . , xs) ∈
Gs,1 and any (x1, . . . , xs) ∈ [0, 1]s the following bounds hold:

max(1− s+
s∑
i=1

xi, 0) ≤ g(x1, . . . , xs) ≤ min(x1, . . . , xs). (549)

Here min(x1, . . . , xs) is always a copula. The lower bound is a copula
only in two dimensions. It is only point-wise sharp, in the sense that for
fixed (u1, . . . , us) there exists a copula g(x1, . . . , xs) such that g(u1, . . . , us) =
max(1− s+

∑s
i=1 ui, 0), see [81] and [28].

Theorem 209 (Sklar’s theorem). A multivariete d.f. g(x1, . . . , xs) with
marginals gi(xi) = g(1, . . . , 1, xi, 1, . . . , 1) can be written as

g(x1, . . . , xs) = c(g1(x1), . . . , gs(xs)), (550)
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Figure 3: Graph of g(x, y) = xy

where c(x1, . . . , xs) is a copula. This copula is defined unique, assuming that
the marginals gi are continuous.

This theorem provides the theoretical foundation for the application of
copulas.

8.2 Dimension s = 2

As we denoted in Section 8, G2,1 is the set of all two-dimensional d.f.s
g(x, y) defined on [0, 1]2 such that their marginal d.f.s satisfy g(x, 1) = x
and g(1, y) = y. Telegraphically, to illustrate G2,1 we give copulas:

g1(x, y) = xy,

g2(x, y) = min(x, y), 55

g3(x, y) = max(x+ y − 1, 0),

gθ(x, y) = (min(x, y))θ(xy)1−θ, where θ ∈ [0, 1] (Cuadras-Augé family, cf.
[114, p. 12, Ex. 2.5]),

g4(x, y) =
xy

x+y−xy (see [114, p. 19, 2.3.4]),

g̃(x, y) = x + y − 1 + g(1 − x, 1 − y) for every g(x, y) ∈ G2,1 (Survival
copula, see [114, p. 28, 2.6.1]),

55min(x, y) ≤ 2xy
x+y for every x > 0, y > 0.
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Figure 4: Graph of g(x, y) = max(x+ y − 1, 0)

g5(x, y) = min(ya(x), xb(y)), where a(0) = b(0) = 0, a(1) = b(1) = 1 and
a(x)/x, b(y)/y are both decreasing on (0, 1] (Marshall copula, cf. [114, p. 51,
Exerc. 3.3]).

8.3 Basic properties of G2,1

There are some basic properties of G2,1:
(I) G2,1 is closed under pointwise limit and convex linear combinations.
(II) For every g(x, y) ∈ G2,1 and every (x1, y1), (x2, y2) ∈ [0, 1]2 we have

|g(x2, y2)− g(x1, y1)| ≤ |x2 − x1|+ |y2 − y1|.
I.e. every copula is uniformly continuous, c.f. [115, p. 9]. Furthermore, The
horizontal, vertical and diagonal sections of copula are all nondecreasing and
uniformly continuous on [0, 1], see [115, p. 9, Cor.2.26].

(III) For every g(x, y) ∈ G2,1

g3(x, y) = max(x + y − 1, 0) ≤ g(x, y) ≤ min(x, y) = g2(x, y) (Fréchet-
Hoeffding bounds [114, p. 9]).

(IV) M. Sklar (1959) proved that for every d.f. g(x, y) on [0, 1]2 there
exists c(x, y) ∈ G2,1 such that g(x, y) = c(g(x, 1), g(1, y)) for every (x, y) ∈
[0, 1]2. If g(x, 1) and g(1, y) are continuous, then c(x, y) is defined unique (cf.
[114, p. 15, Th. 2.3.3] and for multidimensional case see Theorem 209).

(V) For d.f. g(x, y) denote the marginal g1(x) = g(x, 1) and g2(y) =
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g(1, y) and by Sklar g(x, y) = c(g1(x), g2(y)). Then for every continuous
F (x, y) we have∫ 1

0

∫ 1

0

F (x, y)dg(x, y) =

∫ 1

0

∫ 1

0

F (g
(−1)
1 (x), g

(−1)
2 (y))dc(x, y), (551)

see M. Hofer and M.R. Iacò [75].
Here are some new copulas:

(VI) g6(x, y) =
1
z0
min(xy, xz0, yz0) for fixed z0, 0 < z0 ≤ 1.

(VII) g7(x, y) =
1

z0u0
min(xyz0, xyu0, xz0u0, yz0u0) for fixed z0, u0 ∈ (0, 1]2.

In Definition 14 is a copula called shuffle of M . Here we give the following
generalization:

(VIII) Let f : [0, 1]→ [0, 1] be a function and denote

graph f = {(x, f(x));x ∈ [0, 1]}.

Then
cgraphf (x, y) =

∣∣Projectx(graph f ∩ [0, x]× [0, y))
∣∣ (552)

is a copula if and only if the function f preserve the Lebesgue measure (called
measure preserving)

In the books [6] and [80] copulas are studied in the position d.f.s of ran-
dom variables. In the following we apply some parts of uniform distribution
theory.

(IX) Let f1 and f2 be measure preserving functions [0, 1] → [0, 1] (cf.
Section 12.3). Then

cf1,f2(x, y) = |f−1
1 [0, x] ∩ f−1

2 [0, y]| (553)

is a copula. Furthermore, for every copula c(x, y) there exist measure pre-
serving f1, f2 such that c(x, y) = cf1,f2(x, y).

(X) If ϕ is a measure preserving function, then

cf1,f2(x, y) = cf1◦ϕ,f2◦ϕ(x, y). (554)

(XI) Examples:
cf,f (x, y) = min(x, y) for arbitrary measure preserving f .
cgraphf (x, y) = cf1,f (x, y) if f1(x) = x.
cf1,f2(x, y) = min(x+ y + 1, 0) if f1(x) = x and f2(x) = 1− x.

352



(XII) If (xn, yn), n = 1, 2, . . . , is u.d. sequence in [0, 1)2 and f1, f2 are
u.d.p. functions, then the sequence (f1(xn), f2(yn)), n = 1, 2, . . . , has a.d.f.
the copula cf1,f2(x, y).

(XIII) A copula c is called Archimedean if it admits the representation

c(x1, . . . , xs) = ψ(ψ−1(x1) + · · ·+ ψ−1(xs)), (555)

where the kth derivatives of generator ψ(x) satisfy (−1)kψ(k)(x) ≥ 0 for all
x ≥ 0 and k = 0, 1, . . . , s − 2 and (−1)s−2ψ(s−2)(x) is nonincreasing and
convex. In the following are the most popular ones:

(a) 1−t
ex−t , t ∈ (0, 1) Ali-Mikhail-Haq;

(b) (1 + tx)−1/t, t ∈ (0,∞) Clayton;

(c) e−x
1/t
, t ∈ [1,∞) Gumbel;

(d) 1− (1− e−x)1/t, t ∈ [1,∞) Joe.

8.4 Dimension s = 3

Let G3,2 be the set of all three-dimensional d.f.s g(x, y, z) defined on [0, 1]3

such that their two-dimensional marginals (or faces) d.f.s satisfy g(x, y, 1) =
xy, g(1, y, z) = yz and g(x, 1, z) = xz. E.g., the G3,2 contains

g1(x, y, z) = xyz,

g2(x, y, z) = min(xy, xz, yz),

g3(x, y, z) =
1
u0

min(xyz, xyu0, xzu0, yzu0), for fixed u0, 0 < u0 ≤ 1,

Example 87. Let g4(x, y, z) be the a.d.f. of a three-dimensional sequence
(un, vn, {un−vn}), where two-dimensional (un, vn) is u.d. in [0, 1]2. Applying
Weyl’s criterion (cf. [38, p. 14], [171, p. 3–1]) we see that also (un, {un−vn})
and (vn, {un − vn}) are u.d., thus the marginal d.f.s are

g4(1, x2, x3) = x2x3, g4(x1, 1, x3) = x1x3, g4(x1, x2, 1) = x1x2.

The d.f. g4(x1, x2, x3) has the following explicit form: Divide the unit square
[0, 1]2 into regions A,B,C,D,E, F,G,H, I as shown on the following Fig.
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(0, 0) (1− x3, 0) (1, 0)
→ x1

(0, 1) ↑
x2

(1− x3, 1) (1, 1)

(0, x3) (1, x3)

A

B

E

H

I

C

D

F

G

Then

g4(x1, x2, x3) =



x1x2, if (x1, x2) ∈ A,
−1

2
(x21 + x22 + x23) + x1x2 + x2x3, if (x1, x2) ∈ B,

−1
2
x21 + x1x2, if (x1, x2) ∈ C,

1
2
x22, if (x1, x2) ∈ D,
−1

2
x23 + x2x3, if (x1, x2) ∈ E,

−1
2
x22 + x1x2 + x1x3 + x2x3 − x1 − x3 + 1

2
, if (x1, x2) ∈ F,

1
2
x21 + x1x3 + x2x3 − x1 − x3 + 1

2
, if (x1, x2) ∈ G,

1
2
(x21 + x22 + x23) + x1x3 − x1 − x3 + 1

2
, if (x1, x2) ∈ H,

x1x2 + x2x3 − x2 if (x1, x2) ∈ I.

Proof. If (un, vn) is u.d. in [0, 1]2, then (un, {vn − un}) is also u.d. It follows
from Weyl criterion

1

N

N∑
n=1

e2πi(k1un+k2(vn−un)) =
1

N

N∑
n=1

e2πi((k1−k2)un+k2vn)

and (k1, k2) ̸= (0, 0)⇐⇒ (k1−k2, k2) ̸= (0, 0). Another proof follows directly
from that

{y − x} < x3 ⇐⇒

{
0 ≤ y − x < x3 if y ≥ x,

0 ≤ 1 + y − x if y < x.
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Thus the set {(x, y) ∈ [0, 1]2; {y − x} < x3} has the form

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

0 1− x3 x1 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

which gives |{(x, y) ∈ [0, 1]2; 0 ≤ x < x1, {y − x} < x3}| = x1x3. The a.d.f.
g4(x1, x2, x3) is the Lebesgue measure

g4(x1, x2, x3) = |{(x, y, z) ∈ [0, 1]3; 0 ≤ x < x1, 0 ≤ y < x2, {y − x} < x3}|.

We are investigate nine cases:
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�
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�
�
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�
�
�

�
�
�

�
�
�
�
�

�
�
�
�

0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

(x1, x2)

�
�
�

�
�
�

In this case g(x1, x2, x3) = x1x3, where x1 + x3 ≤ x2.
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0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

(x1, x2)

��

�
�
�
�

In this case g(x1, x2, x3) = −1
2
(x21 + x22 + x23) + x1x2 + x2x3, where x1 ≤ x2 ≤

x1 + x3 and x1 ≤ 1− x3.
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�

0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3
(x1, x2)

��

�
�
�

�
�

In this case g(x1, x2, x3) = −1
2
x23+x2x3, where x2 ≤ x1 ≤ 1−x3 and x3 ≤ x2.
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�
�

�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
��

�
�
�
�

0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3
(x1, x2)

�
�
�

In this case g(x1, x2, x3) = −1
2
x21+x1x2, where x1 ≤ x2 ≤ x3 and x1 ≤ 1−x3.
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0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

(x1, x2)

�
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�

�
�
�

�
�
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�
�
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�

In this case g(x1, x2, x3) =
1
2
+ 1

2
x21−x1−x3+x2x3+x1x3, where x3 ≤ x2 ≤ x1

and x1 ≥ 1− x3.
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0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

(x1, x2)

�
�
�
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�
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�

�
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�

�
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�
�
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�

�
�

In this case g(x1, x2, x3) = 1
2
− x1 − x3 + x1x3 + x1x2 + x2x3 − 1

2
x21, where

x1 ≤ x2 and x1 ≥ 1− x3.
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�
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�

0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3(x1, x2)

�
�
�

�
�

In this case g(x1, x2, x3) =
1
2
+ 1

2
(x21+x

2
2+x

2
3)−x1−x3+x1x3 where x2 ≤ x3

and x1 − x2 ≤ 1− x3 ≤ x1.
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0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3(x1, x2)

�
�
�

In this case g(x1, x2, x3) =
1
2
x22 where x2 ≤ x3 and x1 ≤ 1− x3.
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�

�
�
�
�
�

�
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�

�
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�
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�

�
�
�
�

0 1− x3 1
→ x

1↑
y y = x+ x3

x3 y = x− 1 + x3

(x1, x2)

�� ��

In this case g(x1, x2, x3) = x1x2 + x2x3 − x2 where x2 ≤ x3 and x2 ≤ x1 −
(1− x3).

G3,2 has the following properties:
• For every g(x, y, z) ∈ G3,2 and fixed z0, 0 < z0 ≤ 1 we have 1

z0
g(x, y, z0) ∈

G2,1. Vice versa, if gz(x, y), z ∈ [0, 1] is a system of d.f.s in G2,1 such that

(i) g1(x, y) = xy;

(ii) for every z′ ≤ z, we have z′dxdygz′(x, y) ≤ zdxdygz(x, y) on [0, 1]2,

then g(x, y, z) = zgz(x, y) ∈ G3,2.
This directly follows from definition of G2,1 and G3,2 and that g(x, y, z)

is non-decreasing on [0, 1]3 if every (x1, y1, z1), (x2, y2, z2) ∈ [0, 1]3, x1 ≤ x2,
y1 ≤ y2, z1 ≤ z2 satisfies

g(x1, y1, z2) + g(x2, y2, z2)− g(x1, y2, z2)− g(x2, y1, z2)
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−(g(x1, y1, z1) + g(x2, y2, z1)− g(x1, y2, z1)− g(x2, y1, z1)) ≥ 0.

8.5 Sequences (xn, yn) with both u.d. xn and yn

See also Section 3.10:
Let (xn, yn), n = 1, 2, . . . , be a sequence in [0, 1)2 such that both the

coordinate sequences xn, n = 1, 2, . . . , and yn, n = 1, 2, . . . are u.d. Then
the set G((xn, yn)) of all d.f. of (xn, yn), n = 1, 2, . . . satisfies

(i) G((xn, yn)) ⊂ G2,1,

(ii) G((xn, yn)) is nonempty, closed and connected, and vice-versa

(iii) for every nonempty, closed and connected H ⊂ G2,1, there exists a
sequence (xn, yn) ∈ [0, 1)2 such that G((xn, yn)) = H.

This is a two-dimensional version of Theorem 200 with the metric

ρ(g1, g2) =
(∫ 1

0

∫ 1

0
(g1(x, y)− g2(x, y))2dxdy

)1/2
.

Directly, from the theory of L2 discrepancies [158] in Section 7.3 it follows:

Theorem 210. Let (xn, yn), n = 1, 2, . . . , be a sequence in [0, 1)2 such that
both the coordinate sequences xn, n = 1, 2, . . . , and yn, n = 1, 2, . . . are u.d.
Then the sequence (xn, yn), n = 1, 2, . . . is u.d. if and only if one of the
following conditions is satisfies:
(i) limN→∞

1
N2

∑N
m,n=1 F0((xm, ym), (xn, yn)) = 0;

(ii) limN→∞
1
N4

∑N
m,n,k,l=1 F1((xm, ym), (xn, yn), (xk, yk), (xl, yl)) = 0.

Applying [158, Th. 4] (cf. [171, p. 1–56, 1.10.9]) for searching G((xn, yn))
the following theorem can be used.

Theorem 211. Let (xn, yn), n = 1, 2, . . . , be a sequence in [0, 1)2 for which
both coordinate sequences xn, n = 1, 2, . . . and yn, n = 1, 2, . . . are u.d. Let
F (x, y, u, v, ) be a continuous function defined on [0, 1]4 and assume that

lim
N→∞

1

N2

N∑
m,n=1

F (xm, ym, xn, yn) = 0.

Then every d.f. g(x, y) ∈ G((xn, yn)) is a copula which satisfies the following
equation:
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∫ 1

0

∫ 1

0
g(u, v)dudvF (1, 1, u, v)

+
∫ 1

0

∫ 1

0
g(x, y)dxdyF (x, y, 1, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(u, v)ydydudvF (1, y, u, v)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(u, v)xdxdudvF (x, 1, u, v)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)vdvdxdyF (x, y, 1, v)

−
∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)ududxdyF (x, y, u, 1)

+
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
g(x, y)g(u, v)dudvdxdyF (x, y, u, v)

= −F (1, 1, 1, 1) +
∫ 1

0
vdvF (1, 1, 1, v) +

∫ 1

0
uduF (1, 1, u, 1)

+
∫ 1

0
xdxF (x, 1, 1, 1) +

∫ 1

0
ydyF (1, y, 1, 1)

−
∫ 1

0

∫ 1

0
yvdydvF (1, y, 1, v)−

∫ 1

0

∫ 1

0
yudyduF (1, y, u, 1)

−
∫ 1

0

∫ 1

0
xvdxdvF (x, 1, 1, v)−

∫ 1

0

∫ 1

0
xudxduF (x, 1, u, 1) = 0.

Proof. By Helly theorem
limk→∞

1
N2

k

∑Nk

m,n=1 F (xm, ym, xn, yn)

=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, u, v)dg(x, y)dg(u, v) = 0

for FNk
(x, y)→ g(x, y). Next, for the 4-dimensional integral we use Theorem

203 and then apply that g(x, 1) = x and g(1, y) = y. 56

As an application we give the following example.

Example 88. Let pn, n = 1, 2, . . . , be the increasing sequence of all primes.
For the two-dimensional sequence

(xn, yn) =

(
pi
pn
,
i

n

)
, i = 1, 2, . . . , n

the coordinate sequences xn and yn are u.d., see [173] (cf. [171, p. 2–181,
2.19.16]). Using the well-known pn = n log n+ o(n log n) we have that

1

n

n∑
i=1

pi
pn

i

n
→ 1

3
.

Putting F (x, y, u, v) = xyuv − 1
9
and applying Theorem 211 we find that

every d.f. g(x, y) ∈ G((xn, yn)) satisfies∫ 1

0

∫ 1

0

g(x, y)dxdy =
1

3
,

56Extending one-dimensional additional assumptions of [S2, Lemma 4](cf. [SP, p. 1–56,
Th. 1.10.9.1]) to the two-dimensional sequence (xn, yn), n = 1, 2, . . . , G((xn, yn)) it can
be characterized by Theorem 211.
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thus the sequence (xn, yn), n = 1, 2, . . . is not u.d. in [0, 1)2.

Example 89. By Theorem 5 in [127] for xn = nα mod 1, n = 1, 2, . . . ,
α irrational, we have

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α}). (556)

Proof. Applying d.f. Because

{(n+ 1)α} =

{
{nα}+ {α}, if {nα}+ {α} < 1,

{nα}+ {α} − 1, if {nα}+ {α} ≥ 1,
(557)

then every point ({nα}, {(n + 1)α}) lies on the line Y = X + {α} mod 1.
Using this and u.d. of {nα} we can compute a.d.f. g(x, y) of the sequence
({nα}, {(n + 1)α}), n = 1, 2, . . . by the following Figure and similarly to
(593).

0 1

{α}�
�
�

1− {α}
�
�
�

�
�
�

�
��

A

B
C

D

E

F

Figure: Graph of the line Y = x+ {α} mod 1.

If {α} > 1
2
, then the copula g(x, y) has the form

g(x, y) =



0, if (x, y) ∈ A,
x, if (x, y) ∈ B,
{α} − y, if (x, y) ∈ C,
{α} − y + x− (1− {α}), if (x, y) ∈ D,
x− (1− {α}), if (x, y) ∈ E,
y, if (x, y) ∈ F

(558)
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and from it follows

g(x, x) =


0, if x ∈ [0, 1− {α}],
x− (1− {α}), if x ∈ [1− {α}, {α}],
x− (1− {α}) + x− {α}, if x ∈ [{α}, 1].

(559)

Then (559) and (579) implies (556), since

lim
N→∞

1

N

N∑
n=1

|{nα} − {(n+ 1)α}| = 1− 2

∫ 1

0

g(x, x)dx = 2{α}(1− {α}).

Similarly for {α} < 1
2
.

Note that simplify (557) to

{(n+ 1)α} =

{
{nα}+ {α}, if {nα} ∈ [0, 1− {α}),
{nα}+ {α} − 1, if {nα} ∈ [1− {α}, 1)

we have

|{(n+ 1)α} − {nα}| =

{
{α}, if {nα} ∈ [0, 1− {α}),
1− {α}, if {nα} ∈ [1− {α}, 1)

(560)

and then for F (x, y) = |x− y| we can use

1

N

N∑
n=1

F ({nα}, {(n+ 1)α})→
∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y)

=

∫ 1−{α}

0

F (x, x+ {α})dx+
∫ 1

1−{α}
F (x, x+ {α} − 1)dx

which gives (556), again.
More generally: Let

xn ∈ [0, 1) be u.d.,
yn = f(xn), where f : [0, 1)→ [0, 1) be continuous,
F (x, y) be continuous,
g(x, y) be d.f. of (xn, yn). Then, simultaneously

1

N

N∑
n=1

F (xn, yn)→
∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y)
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1

N

N∑
n=1

F (xn, f(xn))→
∫ 1

0

F (x, f(x))dx.

Example 90. Similar method can be used to prove Steinerberger [151] result
that

lim sup
N→∞

1

N

N∑
n=1

(xn − yn)2 ≤
1

3
(561)

for every two u.d. sequences xn and yn in [0, 1).
Put F (x, y) = (x− y)2. Then
F (1, 1) = 0;
dyF (1, y) = −2(1− y)dy;
dxF (x, 1) = −2(1− x)dx;
dxdyF (x, y) = −2dxdy.

Applying (573) then for every copula g(x, y) we have∫ 1

0

∫ 1

0

(x− y)2dxdyg(x, y) =
2

3
− 2

∫ 1

0

∫ 1

0

g(x, y)dxdy.

Now, using lower bound in (575) and computing∫ 1

0

∫ 1

0

max(x+ y − 1, 0)dxdy =
1

6

then we have (561) in the form∫ 1

0

∫ 1

0

(x− y)2dxdyg(x, y) ≤
1

3

for an arbitrary copula g(x, y).

Theorem 212. For every copula g(x, y) we have∫ 1

0

∫ 1

0

|x− y|dxdyg(x, y) ≤
1

2
.

Proof. Input F (x, y) = |x − y| to (541) and bearing in mind F (1, 1) = 0,
F (1, y) = 1− y, F (x, 1) = 1− x,

dxdy|x− y|
= dxdy(y−x) = (y+dy−(x+dx))+(y−x)−(y−(x+dx))−(y+dy−x) = 0

for y > x, similarly for y < x and for y = x, dx = dy
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dxdy|x− y|
= |x+ dx− (x+ dx)|+ |x− x| − |(x+ dx)− x| − |x− (x+ dx)| = −2dx

we have ∫ 1

0

∫ 1

0

|x− y|dxdyg(x, y) = 1− 2

∫ 1

0

g(x, x)dx. (562)

Thus if g1(x, y) ≤ g2(x, y) for (x, y) ∈ [0, 1]2, then∫ 1

0

∫ 1

0

|x− y|dxdyg2(x, y) ≤
∫ 1

0

∫ 1

0

|x− y|dxdyg1(x, y).

The lower bond max(x+ y − 1, 0) ≤ g(x, y) and∫ 1

0

∫ 1

0

|x− y|dxdymax(x+ y − 1, 0) =
1

2

implies theorem.

New, let again xn and yn, n = 1, 2, . . . , be two u.d. sequences in the
unit interval [0, 1). F. Pillichshammer and S. Steinerberger in [127] study
the sequence 1

N

∑N
n=1 |xn − yn| and proved that

lim sup
N→∞

1

N

N∑
n=1

|xn − yn| ≤
1

2
. (563)

Putting yn = xn+1, n = 1, 2, . . . , they found a new necessary condition

lim sup
N→∞

1

N

N∑
n=1

|xn+1 − xn| ≤
1

2
(564)

for u.d. of the sequence xn. They also found

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
2(b− 1)

b2

for van der Corput sequence xn = γb(n) in the base b and

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| = 2{α}(1− {α})

for xn = nα mod 1, where α is irrational. Alternative proofs via d.f.s are in
Examples 92 and 89.
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8.6 Sequences (xn, yn, zn) where (xn, yn), (xn, zn), and (yn, zn)
are u.d.

Theorem 213. Let (xn, yn, zn), n = 1, 2, . . . , be a sequence in [0, 1)3 such
that both the marginal sequences (xn, yn), n = 1, 2, . . . , (xn, zn), n = 1, 2, . . .
and (yn, zn), n = 1, 2, . . . are u.d. in [0, 1)2. Then the sequence (xn, yn, zn),
n = 1, 2, . . . is u.d. if and only if one of the following conditions is satisfies:

(i) lim
N→∞

1

N2

N∑
m,n=1

F0((xm, ym, zm), (xn, yn, zn)) = 0;

(ii) lim
N→∞

1

N6

N∑
m,n,k,l=1

F1((xm, ym, zm), (xn, yn, zn), (xk, yk, zk), (xm′ , ym′ , zm′),

(xn′ , yn′ , zn′), (xk′ , yk′ , zk′)) = 0;

(iii) lim
N→∞

1

N4

N∑
m,n,k,l=1

F1((xm, ym, zm), (xn, yn, zn), (xm′ , ym′ , zm′),

(xn′ , yn′ , zn′)) = 0.

Here

F1((xm, ym, zm), (xn, yn, zn), (xk, yk, zk), (xm′ , ym′ , zm′), (xn′ , yn′ , zn′),

(xk′ , yk′ , zk′)) =

=

(
(1−max(xm, xm′))(1−max(ym, ym′))(1−max(zm, zm′))

+ (1−max(xm, xm′))(1−max(yn, yn′))(1−max(zk, zk′))

− 2(1−max(xm, xm′))(1−max(ym, yn′))(1−max(zm, zk′))

)
;

F1((xm, ym, zm), (xn, yn, zn), (xm′ , ym′ , zm′), (xn′ , yn′ , zn′)) =

=

(
(1−max(xm, xn))(1−max(ym, yn))(1−max(zm, zn))

+ (1−max(xm, xm′))(1−max(ym, ym′))(1−max(zn, zn′))

− 2(1−max(xm, xm′))(1−max(ym, ym′))(1−max(zm, zn′))

)
;

and F0((xm, ym, zm), (xn, yn, zn)) is given in (517).

365



Proof. Assume that the marginal sequences (xn, yn), (yn, zn) and (xn, zn) of
(xn, yn, zn) are u.d. Using the theory of L2 discrepancy, every of the following
zero-limits

(i) lim
N→∞

∫ 1

0

∫ 1

0

∫ 1

0

(FN(x, y, z)− xyz)2dxdydz = 0,

(ii) lim
N→∞

∫ 1

0

∫ 1

0

∫ 1

0

(
FN(x, y, z)− F (1)

N (x)F
(2)
N (y)F

(3)
N (z)

)2
dxdydz = 0,

(iii) lim
N→∞

∫ 1

0

∫ 1

0

∫ 1

0

(
FN(x, y, z)− FN(x, y)F (3)

N (z)
)2
dxdydz = 0,

implies the u.d. of the sequence (xn, yn, zn). Here (i) is the limit of the
classical L2 discrepancy characterizing u.d. of (xn, yn, zn) and limits (ii)
and (iii) are of L2 discrepancies of statistical independence. The (ii) im-
plies that every d.f. g(x, y, z) ∈ G((xn, yn, zn)) has the form g(x, y, z) =
g(x, 1, 1).g(1, y, 1).g(1, 1, z)(= x.y.z) and (iii) implies

g(x, y, z) = g(x, y, 1).g(1, 1, z)(= xy.z)

.

8.7 Method of d.f.s for 1
N

∑N
n=1 F (xn, yn)

Let F (x, y) be a continuous function defined on [0, 1]2 and xn, yn, n =
1, 2, . . . , be two sequences in [0, 1). In this section we study the limit points
of the sequence of arithmetic means

1

N

N∑
n=1

F (xn, yn), N = 1, 2, . . . . (565)

To do this we use a theory of distribution functions (d.f.s). This theory we
also use for computing integrals of the type∫ 1

0

f1(Φ(x))f2(Ψ(x))dx (566)

where f1, f2 are Riemann integrable functions and Φ,Ψ : [0, 1] → [0, 1] are
so called uniformly distribution preserving (u.d.p.) map (see Section 12.3).
This problem was introduced by Steinerberger [151, p. 127].
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Recapitulation:
Let xn and yn, n = 1, 2, . . . , be an arbitrary two sequences in [0, 1).

Denote the step d.f.

FN(x, y) =
#{n ≤ N ; (xn, yn) ∈ [0, x)× [0, y)}

N
,

and let G((xn, yn)) be the set of all possible limits FNk
(x, y) → g(x, y),

which hold for all continuity points (x, y) of g(x, y). These g(x, y) are called
d.f.s of the sequence (xn, yn), n = 1, 2, . . . . If G((xn, yn)) is singleton, i.e.,
G((xn, yn)) = {g(x, y)} then g(x, y) is called asymptotic d.f. (a.d.f.) of
(xn, yn), n = 1, 2, . . . .

By Riemann-Stieltjes integration we have

1

N

N∑
n=1

F (xn, yn) =

∫ 1

0

∫ 1

0

F (x, y)dxdyFN(x, y) (567)

a) If FNk
(x, y) → g(x, y) as k → ∞ then by the second Helly theorem the

equation (567) implies

1

Nk

Nk∑
n=1

F (xn, yn)→
∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) as k →∞. (568)

b) If 1
Nk

∑Nk

n=1 F (xn, yn)→ A as k →∞ then by the first Helly theorem there

exists subsequence N ′
k of Nk such that for some d.f. g(x, y) of (xn, yn) we

have FN ′
k
(x, y)→ g(x, y).

Summary, the set of limit points of (565) has the form{∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y); g(x, y) ∈ G((xn, yn))
}
. (569)

In (569) we can apply∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) = F (1, 1)−
∫ 1

0

g(1, y)dyF (1, y)

−
∫ 1

0

g(x, 1)dxF (x, 1) +

∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y). (570)

It is proved by integration by parts in Riemann-Stieltjes integration in The-
orem 202, or by induction in Theorem 216, p. 372.

Thus problem is to find extreme values of
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y), where

g(x, y) is a copula.
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8.8 Boundaries of 1
N

∑N
n=1 F (xn, yn)

Let xn, yn ∈ [0, 1), n = 1, 2, . . . , both u.d. sequences. In this case two-
dimensional sequence (xn, yn) need not be u.d. but every d.f. g(x, y) ∈
G((xn, yn)) satisfies

(i) g(x, 1) = x for x ∈ [0, 1] and
(ii) g(1, y) = y for y ∈ [0, 1].

The d.f. g(x, y) satisfying (i) and (ii) is called copula and its basic theory
can be found in R.B. Nelsen [114]. Applying this theory we find (see also
Theorem 217)

Theorem 214. Let F (x, y) be a continuous function defined on [0, 1]2. For
differential of F (x, y) assume that dxdyF (x, y) > 0 for every (x, y) ∈ [0, 1]2.
Then for every two u.d. sequences xn, yn ∈ [0, 1), n = 1, 2, . . . , we have

lim sup
N→∞

1

N

N∑
n=1

F (xn, yn) ≤
∫ 1

0

F (x, x)dx, (571)

lim inf
N→∞

1

N

N∑
n=1

F (xn, yn) ≥
∫ 1

0

F (x, 1− x)dx. (572)

Furthermore, for the sequence (xn, yn), n = 1, 2, . . . , we have

lim
N→∞

1

N

N∑
n=1

F (xn, yn) =

∫ 1

0

F (x, x)dx

if and only if (xn, yn) has a.d.f. g(x, y) = min(x, y), and we have

lim
N→∞

1

N

N∑
n=1

F (xn, yn) =

∫ 1

0

F (x, 1− x)dx

if and only if g(x, y) = max(x+ y − 1, 0).
If dxdyF (x, y) < 0 the right hand sides of (571) and (572) are exchanged.

Proof. For a copula g(x, y) the equation (570) has the form∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) = F (1, 1)−
∫ 1

0

ydyF (1, y)

−
∫ 1

0

xdxF (x, 1) +

∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y). (573)
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Thus the set (569) of limit points of (565) coincide with{∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y)

}
(574)

shifting by F (1, 1) −
∫ 1

0
ydyF (1, y) −

∫ 1

0
xdxF (x, 1). Then we use Fréchet-

Hoeffding bounds [114, p. 9]

max(x+ y − 1, 0) ≤ g(x, y) ≤ min(x, y) (575)

which holds for every (x, y) ∈ [0, 1]2 and for every copula g(x, y). The as-
sumption dxdyF (x, y) > 0 implies∫ 1

0

∫ 1

0

max(x+ y − 1, 0)dxdyF (x, y) ≤
∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y)

≤
∫ 1

0

∫ 1

0

min(x, y)dxdyF (x, y).

Since every copula is continuous, then the left inequality is attained if and
only if g(x, y) = max(x + y − 1, 0) and the right if and only if g(x, y) =
min(x, y).

Directly by definition of a.d.f., for every u.d. sequence xn ∈ [0, 1), it can
be proved that

a) the sequence (xn, xn), n = 1, 2, . . . , xn is not u.d., has the a.d.f.
g(x, y) = min(x, y) and

b) the sequence (xn, 1−xn), n = 1, 2, . . . , has the a.d.f. g(x, y) = max(x+
y − 1, 0). From it

lim
N→∞

1

N

N∑
n=1

F (xn, xn) =

∫ 1

0

F (x, x)dx =

∫ 1

0

∫ 1

0

F (x, y)dxdymin(x, y),

(576)

lim
N→∞

1

N

N∑
n=1

F (xn, 1− xn) =
∫ 1

0

F (x, 1− x)dx

=

∫ 1

0

∫ 1

0

F (x, y)dxdymax(x+ y − 1, 0). (577)
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Once again in the following we prove the result (563) appeared in Pil-
lichshammer and Steinerberger [127] repeating the proof of Theorem 212.

Example 91. Putting F (x, y) = |x−y|, we have F (1, 1) = 0, F (1, x) = 1−x,
F (y, 1) = 1− y, and computing, for y > x,

dxdy|y−x| = (y+dy− (x+dx)) = (y−x)− (y− (x+dx))− (y+dy−x) = 0,

and for y = x, dy = dx,

dxdy|y−x| = |x+dx−(x+dx)|+|x−x|−|(x+dx)−x|−|x−(x+dx)| = −2dx

and then applying (573) we have∫ 1

0

∫ 1

0

|x− y|dxdyg(x, y) =
∫ 1

0

g(x, 1)dx+

∫ 1

0

g(1, y)dy − 2

∫ 1

0

g(x, x)dx.

(578)
Thus for a copula g(x, y), g(x, 1) = x, g(1, y) = y we have∫ 1

0

∫ 1

0

|x− y|dxdyg(x, y) = 1− 2

∫ 1

0

g(x, x)dx. (579)

Finally, the lower bound in (575) for copulas g(x, y) give F. Pillichshammer
and S. Steinerberger result [127] in the form∫ 1

0

∫ 1

0

|x− y|dxdyg(x, y) ≤
∫ 1

0

∫ 1

0

|x− y|dxdymax(x+ y−1, 0) =
1

2
. (580)

8.9 D.f. g(x, y) with given marginal g(1, y) and g(x, 1)

In the following theorem the sequences xn and yn are not be u.d., but with
assigned a.d.f. g1(x) and g2(x), respectively.

Theorem 215. Let xn ∈ [0, 1) be a sequence with an a.d.f. g1(x) and yn ∈
[0, 1) with an a.d.f. g2(x). Assume that F (x, y) is a continuous function such
that dxdyF (x, y) ≥ 0 for every (x, y) ∈ [0, 1]2. Then we have

lim sup
N→∞

1

N

N∑
n=1

F (xn, yn) ≤
∫ 1

0

F (g−1
1 (x), g−1

2 (x))dx, (581)
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lim inf
N→∞

1

N

N∑
n=1

F (xn, yn) ≥
∫ 1

0

F (g−1
1 (x), g−1

2 (1− x))dx. (582)

Furthermore, for the sequence (xn, yn), n = 1, 2, . . . , we have

lim
N→∞

1

N

N∑
n=1

F (xn, yn) =

∫ 1

0

F (g−1
1 (x), g−1

2 (x))dx (583)

if (xn, yn) has the a.d.f. g(x, y) = min(g1(x), g2(y)) and we have

lim
N→∞

1

N

N∑
n=1

F (xn, yn) =

∫ 1

0

F (g−1
1 (x), g−1

2 (1− x))dx (584)

if g(x, y) = max(g1(x) + g2(y)− 1, 0).
If dxdyF (x, y) ≤ 0 the right hand sides of (581) and (582) are exchanged.

Proof. Let g(x, y) be a d.f. of the sequence (xn, yn), i.e. there exists a
sequence Nk →∞ such that FNk

(x, y)→ g(x, y) and

lim
k→∞

1

Nk

Nk∑
n=1

F (xn, yn)→
∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y).

Furthermore we have g(x, 1) = g1(x) and g(1, y) = g2(y). Then by the Sklar’s
theorem for any such d.f. g(x, y) there exists a copula c(x, y) such that

g(x, y) = c(g1(x), g2(y))

for every (x, y) ∈ [0, 1]2. Applying the Fréchet-Hoeffding bounds (575) we
find

max(g1(x) + g2(y)− 1, 0) ≤ g(x, y) ≤ min(g1(x), g2(y)). (585)

Now, apply (573) we find (581) and (582).
Let zn, n = 1, 2, . . . , be u.d. sequence in [0, 1). Then the sequence
(i) (g−1

1 (zn), g
−1
2 (zn)) has the a.d.f. g(x, y) = min(g1(x), g2(y)), and

(ii) (g−1
1 (zn), g

−1
2 (1−zn)) has the a.d.f. g(x, y) = max(g1(x)+g2(y)−1, 0).

By Helly theorem, for sequences (i) and (ii) we have (583) and (584)

lim
k→∞

1

Nk

Nk∑
n=1

F (g−1
1 (zn), g

−1
2 (zn))→

∫ 1

0

F (g−1
1 (x), g−1

2 (x))dx
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=

∫ 1

0

∫ 1

0

F (x, y)dxdymin(g1(x), g2(y)),

lim
k→∞

1

Nk

Nk∑
n=1

F (g−1
1 (zn), g

−1
2 (1− zn))→

∫ 1

0

F (g−1
1 (x), g−1

2 (1− x))dx

=

∫ 1

0

∫ 1

0

F (x, y)dxdymax(g1(x) + g2(y)− 1, 0).

Proof of (i) and (ii):
Assume that g1(x) and g2(x) are strictly increasing.

For (i) we note that g−1
1 (zn) < x⇔ zn < g1(x) and g

−1
2 (zn) < y ⇔ zn < g2(y)

and thus (g−1
1 (zn), g

−1
2 (zn)) ∈ [0, x)× [0, y)⇔ zn ∈ [0,min(g1(x), g2(y))).

For (ii) we note that g−1
1 (zn) < x ⇔ zn < g1(x) and g

−1
2 (1− zn) < y ⇔ 1−

zn < g2(y), 1−zn < g2(y)⇔ 1−g2(y) < zn and thus (g−1
1 (zn), g

−1
2 (1−zn)) ∈

[0, x)× [0, y)⇔ zn ∈ (1− g2(y), g1(x)).
On the contrary, if a d.f. g(x) is constant on the interval I = (α, β)

with value c and to the left of α and to the right of β d.f. g(x) increases
simultaneously, then we put in (i) and (ii)

g−1(c) = β (586)

because in this case the g−1
1 (zn) < x⇔ zn < g1(x) also holds for zn = c.

Finally, the uniqueness of extremal d.f. g(x, y) follows from the existence
of common point (x, y) of continuity for any two d.f.s g(x, y).

Completing the above proof we prove (573) in the following discrete form
(587) assuming FN(x, y)→ g(x, y).

Theorem 216. Let F (x, y) be a continuous function defined on [0, 1]2. Then
for arbitrary N-terms sequence (x1, y1), . . . , (xN , yN) in [0, 1)2 with the step
d.f. FN(x, y, ) we have

N

∫ 1

0

∫ 1

0

F (x, y)dxdyFN(x, y) = NF (1, 1)−N
∫ 1

0

FN(1, y)dyF (1, y)

−N
∫ 1

0

FN(x, 1)dxF (x, 1) +N

∫ 1

0

∫ 1

0

FN(x, y)dxdyF (x, y). (587)

Proof. We employ induction. Assume that for N the equation (587) holds
and add in (x1, y1), . . . , (xN , yN) a new point (xN+1, yN+1) and exchange
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FN(x, y) by FN+1(x, y). We have (N + 1)F (1, 1) = NF (1, 1) + F (1, 1) and

(N + 1)

∫ 1

0

∫ 1

0

F (x, y)dxdyFN+1(x, y) =N

∫ 1

0

∫ 1

0

F (x, y)dxdyFN(x, y)

+ F (xN+1, yN+1),

−(N + 1)

∫ 1

0

FN+1(x, 1)dxF (x, 1) =−N
∫ 1

0

FN(x, 1)dxF (x, 1)

− 1.(F (1, 1)− F (xN+1, 1)),

−(N + 1)

∫ 1

0

FN+1(1, y)dyF (1, y) =−N
∫ 1

0

FN(1, y)dyF (1, y)

− 1.(F (1, 1)− F (1, yN+1)),

(N + 1)

∫ 1

0

∫ 1

0

FN+1(x, y)dxdyF (x, y) =N

∫ 1

0

∫ 1

0

FN(x, y)dxdyF (x, y)

+(F (1, 1) + F (xN+1, yN+1)− F (xN+1, 1)− F (1, yN+1)).

Summing up

F (1, 1)− 1.(F (1, 1)− F (xN+1, 1))− 1.(F (1, 1)− F (1, yN+1))

+ (F (1, 1) + F (xN+1, yN+1)− F (xN+1, 1)− F (1, yN+1))

= F (xN+1, yN+1)

we have that (587) valid also for N + 1.

8.10 D.f. of (xn, xn+1, . . . , xn+s−1) where xn is u.d.

8.10.1 Two-dimensional shifted van der Corput sequence

Example 92. For van der Corput sequence xn = γq(n), n = 0, 1, . . . , in the
base q we have

lim
N→∞

1

N

N−1∑
n=0

|xn+1 − xn| =
2(q − 1)

q2
. (588)
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Proof. Every point (γq(n), γq(n+1)), n = 0, 1, 2, . . . , lie on the line segments

Y = X +
1

q
, X ∈

[
0, 1− 1

q

]
, (589)

Y = X − 1 +
1

qi
+

1

qi+1
, X ∈

[
1− 1

qi
, 1− 1

qi+1

]
, i = 1, 2, . . . (590)

Proof. Express an n in the base q

n = nkq
k + nk−1q

k−1 + · · ·+ n1q + n0,

where ni < q and nk > 0. We consider two following cases:
10. n0 < q − 1,
20. n0 = q − 1.
Let

10.n0 < q − 1. Then
n = nkq

k + · · ·+ n0,
n+ 1 = nkq

k + · · ·+ n0 + 1 and by (11)
γq(n+ 1)− γq(n) = 1

q
. In this case

γq(n) =
n0

q
+ · · ·+ nk

qk+1 ≤ q−2
q

+ q−1
q2

+ · · · = q−1
q
.

Thus such (γq(n), γq(n+ 1)) lies on the line-segment (589).
Let

20.n0 = q − 1. Then
n = nkq

k + · · · + ni+1q
i+1 + (q − 1)qi + (q − 1)qi−1 + · · · + (q − 1) and

ni+1 < q − 1, where i = 0, 1, 2, . . . . Then
n+ 1 = nkq

k + · · ·+ (ni+1 + 1)qi+1 + 0.qi + 0.qi−1 + · · ·+ 0. Thus
γq(n) =

q−1
q

+ · · ·+ q−1
qi+1 +

ni+1

qi+2 + · · ·+ nk

qk+1 ,

γq(n+ 1) = ni+1+1
qi+2 + · · ·+ nk

qk+1 , and we have

γq(n+ 1)− γq(n) = 1
qi+2 − q−1

q
(1 + 1

q
+ · · ·+ 1

qi
) = 1

qi+2 − 1 + 1
qi+1 and

1− 1
qi+1 = q−1

q
+ · · ·+ q−1

qi+1 ≤ γq(n) and

γq(n) ≤ q−1
q
+· · ·+ q−1

qi+1+
q−2
qi+2+

q−1
qi+3+· · · = 1− 1

qi+2 . Thus such (γq(n), γq(n+

1)) lies on the segment (590). Thus, for 10, the sequence (γq(n), γq(n + 1))
lies on the diagonal of the interval

IX × IY :=

[
0, 1− 1

q

]
×
[
1

q
, 1

]
(591)
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and for 20, the sequence (γq(n), γq(n+1)) lies on the diagonals of the intervals

I
(i)
X × I

(i)
Y :=

[
1− 1

qi
, 1− 1

qi+1

]
×
[

1

qi+1
,
1

qi

]
, i = 1, 2, . . . (592)

These intervals are maximal with respect to inclusion.

Adding the maps (589) and (590) we found so-called the von Neumann-
Kakutani transformation T : [0, 1] → [0, 1], see the following Fig. Because
γq(n) is u.d., the sequence (γq(n), γq(n + 1)) has a.d.f. copula g(x, y) of the
form

g(x, y) = |ProjectX(([0, x]× [0, y]) ∩ graph T )|
= min

(∣∣[0, x] ∩ IX∣∣, ∣∣[0, y] ∩ IY ∣∣)
+

∞∑
i=1

min
(∣∣[0, x] ∩ I(i)X ∣∣, ∣∣[0, y] ∩ I(i)Y ∣∣), (593)

where ProjectX is the projection of a two dimensional set to the X-axis.

1
q

1
q2

1
q3

1− 1
q

1− 1
q2

1− 1
q3
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B
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D1

C2

D2

X

Y

Figure: Line segments containing (γq(n), γq(n+ 1)), n = 1, 2, ... The graph of the von

Neumann-Kakutani transformation T .

The sum (593) implies
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g(x, y) =


0 if (x, y) ∈ A,
1− (1− y)− (1− x) = x+ y − 1 if (x, y) ∈ B,
y − 1

qi
if (x, y) ∈ Ci,

x− 1 + 1
qi−1 if (x, y) ∈ Di,

(594)

i = 1, 2, . . . Thus

g(x, x) =


0, if x ∈

[
0, 1

q

]
,

x− 1
q
, if x ∈

[
1
q
, 1− 1

q

]
,

2x− 1, if x ∈
[
1− 1

q
, 1
] (595)

and by (579)

lim
N→∞

1

N

N−1∑
n=0

|γq(n)− γq(n+ 1)| = 1− 2

∫ 1

0

g(x, x)dx =
2(q − 1)

q2
.

Example 93. All terms of the sequence (γq(n), γq(n+2)), n = 1, 2, ..., lie in
the line segments

Y = X +
2

q
, X ∈

[
0, 1− 2

q

)
, or (596)

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

q
− 1

qi+1
, 1− 1

q
− 1

qi+2

)
or

(597)

Y = X +
1

q
+

1

qi+1
+

1

qi+2
− 1, X ∈

[
1− 1

qi+1
, 1− 1

qi+2

)
(598)

for i = 0, 1, . . . .
This is the second iteration T 2 of the von Neumann-Kakutany transfor-

mation T : [0, 1]→ [0, 1].

Proof. Express an n in the base q

n = nkq
k + nk−1q

k−1 + · · ·+ n1q + n0, (599)
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where ni < q and nk > 0. We consider three following cases:
10. n0 < q − 2,
20. n0 = q − 2,
30. n0 = q − 1.
Let

10.n0 < q − 2. Then
n = nkq

k + · · ·+ n0,
n+ 2 = nkq

k + · · ·+ n0 + 2 and
γq(n+ 2)− γq(n) = 2

q
. In this case

0 ≤ γq(n) =
n0

q
+ · · ·+ nk

qk+1 <
q−3
q

+ q−1
q2

+ · · · = q−2
q
, and

thus such (γq(n), γq(n+ 2)) lies on the line-segment (596).
Let

20. n0 = q − 2. Then
n = nkq

k + · · · + ni+1q
i+1 + (q − 1)qi + (q − 1)qi−1 + · · · + (q − 2) and

ni+1 < q − 1, then
n+ 2 = nkq

k + · · ·+ (ni+1 + 1)qi+1 + 0.qi + 0.qi−1 + · · ·+ 0. Thus
γq(n) =

q−2
q

+ · · ·+ q−1
qi+1 +

ni+1

qi+2 + · · ·+ nk

qk+1 ,

γq(n+ 2) = ni+1+1
qi+2 + · · ·+ nk

qk+1 , and we have

γq(n+ 2)− γq(n) = 1
qi+2 +

1
q
− q−1

q
(1 + 1

q
+ · · ·+ 1

qi
) = 1

qi+2 +
1
q
− 1 + 1

qi+1 .
Furthermore

1− 1
qi+1 − 1

q
= q−2

q
+ · · ·+ q−1

qi+1 ≤ γq(n) and

γq(n) ≤ q−2
q

+ · · ·+ q−1
qi+1 +

q−2
qi+2 +

q−1
qi+3 + · · · = 1− 1

qi+2 − 1
q
.

Thus in this case (γq(n), γq(n+ 2)) lies on the line-segment (597).
Let

30. n0 = q − 1. then
n = nkq

k + · · · + ni+1q
i+1 + (q − 1)qi + (q − 1)qi−1 + · · · + (q − 1) and

ni+1 < q − 1, then
n+ 2 = nkq

k + · · ·+ (ni+1 + 1)qi+1 + 0.qi + 0.qi−1 + · · ·+ 1. Thus
γq(n) =

q−1
q

+ · · ·+ q−1
qi+1 +

ni+1

qi+2 + · · ·+ nk

qk+1 ,

γq(n+ 2) = 1
q
+ ni+1+1

qi+2 + · · ·+ nk

qk+1 , and we have

γq(n+ 2)− γq(n) = 1
q
+ 1

qi+2 − q−1
q
(1 + 1

q
+ · · ·+ 1

qi
) = 1

qi+2 +
1
q
− 1 + 1

qi+1 .
Furthermore

1− 1
qi+1 = q−1

q
+ · · ·+ q−1

qi+1 ≤ γq(n) and

γq(n) ≤ q−1
q

+ · · ·+ q−1
qi+1 +

q−2
qi+2 +

q−1
qi+3 + · · · = 1− 1

qi+2 .

This gives (598).
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Summary, if the n satisfies 10, then (γq(n), γq(n + 2)) is contained in the
diagonal of

IX × IZ :=

[
0, 1− 2

q

]
×
[
2

q
, 1

]
, (600)

for 20 in the diagonal

I
(i)
X × I

(i)
Z :=

[
1− 1

qi
, 1− 1

qi+1

]
×
[
1

q
+

1

qi+1
,
1

q
+

1

qi

]
, i = 1, 2, . . . , (601)

and for 30 in the diagonals

J
(j)
X × J

(j)
Z :=

[
1− 1

q
− 1

qj
, 1− 1

q
− 1

qj+1

]
×
[

1

qj+1
,
1

qj

]
, j = 1, 2, . . . (602)

The results (596), (597) and (598) gives the following graph of line seg-
ments

0 1

2
q

1
q

1− 2
q

1− 1
q

�
�
�
�

�
�

�
�
�

��

�
�
�

��

Figure: Straight lines containing (γq(n), γq(n+ 2)), n = 01, 2, ... This is the second

iteration T 2 of the von Neumann-Kakutany transformation.

Here the interval
[
1− 2

q
, 1− 1

q

)
on X-axis is divided by

| |
1− 2

q
1− 1

q
1− 1

q
− 1

q2
1− 1

q
− 1

q3
1− 1

q
− 1

qi+1
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and the interval
[
1− 1

q
, 1
)
is divided as

| |
11− 1

q
1− 1

q2
1− 1

q3
1− 1

qi+1

On Y -axes the interval
[
0, 1

q

)
is divided as

| |
1
q

0 1
q2

1
q3

1
qi+1

and the interval
[
1
q
, 2
q

)
is divided as

| |
1
q

2
q

1
q
+ 1

q2
1
q
+ 1

q3
1
q
+ 1

qi+1

and in all above cases i = 1, 2, . . . Note that for q = 2, the interval
[
0, 1 −

2
q

]
×
[
2
q
, 1
]
is zero. Similarly as in (593) we have a.d.f. g(x, y) of the sequence

(γq(n), γq(n+ 2)) is

g(x, y) = min
(
|[0, x] ∩ IX |, |[0, y] ∩ IY |

)
+

∞∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I

(i)
Y |
)

+
∞∑
k=1

min
(
|[0, x] ∩ J (k)

X |, |[0, y] ∩ J
(k)
Y |,

)
. (603)

Divide [0, 1]2 in the following figure

0 1

2
q

1
q

1− 2
q

1− 1
q

�
�
�
�

�
�

�
�
�

��

�
�
�

��

D0

C0

A0

B0

E0

F0

D′
1C ′

1

A′

B′

D′
2

C′
2

D′′
1C ′′

1

A′′

B′′

D′′
2

C′′
2
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we have the following explicit d.f. g(x, y) of the sequence (γq(n), γq(n+ 2)).

g(x, y) =



x if (x, y) ∈ D0,

y − 2
q

if (x, y) ∈ C0,

0 if (x, y) ∈ A0,

y + x− 1 if (x, y) ∈ B0,

x− 1 + 2
q

if (x, y) ∈ E0,

y if (x, y) ∈ F0,

0 if (x, y) ∈ A′,

x+ y − 1 + 1
q

if (x, y) ∈ B′,

x− 1 + 1
q
+ 1

qi
if (x, y) ∈ D′

i,

y − 1
qi+1 if (x, y) ∈ C ′

i,
1
q

if (x, y) ∈ A′′,

x+ y − 1 if (x, y) ∈ B′′,

x− 1 + 1
q
+ 1

qi
if (x, y) ∈ D′′

i ,

y − 1
qi+1 if (x, y) ∈ C ′′

i .

(604)

8.10.2 Three-dimensional shifted van der Corput sequence

Cf. [52]:

Example 94. Firstly we find all maximal 3-dimensional intervals I contain-
ing points (γq(n), γq(n + 1), γq(n + 2)) in the form I = (IX , IY , IZ), where
IX , IY , IZ are projection of I to X, Y, Z, axes respectively. These intervals
IX , IY , IZ are constructed in Example 92 and 93 such that if γq(n) ∈ IX
then γq(n + 1) ∈ IY and γq(n + 2) ∈ IZ . Thus for the lengths we have
|IX | = |IY | = |IZ |. Combining intervals (591), (592), (600), (601), (602) of
equal lengths by following Fig.
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Figure: Mapping between intervals with equal lengths.

we find two following infinite sequences of intervals and an one separate
interval:

I =

([
0, 1− 2

q

]
,

[
1

q
, 1− 1

q

]
,

[
2

q
, 1

])
(605)

I(i) =

([
1− 1

qi
, 1− 1

qi+1

]
,

[
1

qi+1
,
1

qi

]
,

[
1

q
+

1

qi+1
,
1

q
+

1

qi

])
, i = 1, 2, . . . ,

(606)

J (k) =

([
1− 1

q
− 1

qk
, 1− 1

q
− 1

qk+1

]
,

[
1− 1

qk
, 1− 1

qk+1

]
,

[
1

qk+1
,
1

qk

])
, k = 1, 2, . . . ,

(607)
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All these interval are maximal with respect to inclusion. Similarly as in (593),
let D be a union of diagonals of (605), (606) and (607). Then

g(x, y, z) = |ProjectX([0, x]× [0, y]× [0, z] ∩D)| (608)

and it can be rewritten as

g(x, y, z) = min
(
|[0, x] ∩ IX |, |[0, y] ∩ IY |, |[0, z] ∩ IZ |

)
+

∞∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I

(i)
Y |, |[0, z] ∩ I

(i)
Z |
)

+
∞∑
k=1

min
(
|[0, x] ∩ J (k)

X |, |[0, y] ∩ J
(k)
Y |, |[0, z] ∩ J

(k)
Z |
)
. (609)

To calculate minimums in (609) we can use the following Fig. (here q = 3):

| |
0 1
X

1− 2
q

|
1− 1

q

|
1− 1

q
− 1

qk

|
1− 1

q
− 1

qk+1

|
1− 1

qi

|
1− 1

qi+1

|IX J
(k)
X I

(i)
X

| |
0 1
Y

1
q

|
1− 1

q

|
1− 1

qk

|
1− 1

qk+1

|
1

qi+1

|
1

qi

|I
(i)
Y IY J

(k)
Y

| |
0 1
Z

1
q

|
2
q

|
1

qk

|
1

qk+1

|
1
q
+ 1

qi+1

|
1
q
+ 1

qi

|J
(k)
Z I

(i)
Z IZ

PPPPPPPPPPPP

((((((((((((((((((((((((

PPPPPPPPPPPPPPPPPPPPPPPP

((((((((((((((((((((((((

PPPPPPPPPPPP

Figure: Projections of intervals I, I(i), J (k) on axes X,Y, Z.

As an example of application of (106) and Fig. 4 we compute g(x, x, x) for
q ≥ 3 without the need to know of g(x, y, z), 57

g(x, x, x) =


0 if x ∈

[
0, 2

q

]
,

x− 2
q

if x ∈
[
2
q
, 1− 1

q

]
,

3x− 2 if x ∈
[
1− 1

q
, 1
]
.

(610)

57For q = 3 the middle member in (610) is omitting.
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Proof. 1. Let x ∈ [0, 1
q
].

Then |[0, x] ∩ IZ | = 0, |[0, x] ∩ I(i)Z | = 0, |[0, x] ∩ J (k)
Y | = 0, consequently

g(x, x, x) = 0.

2. Let x ∈ [1
q
, 2
q
].

Then |[0, x] ∩ IZ | = 0, |[0, x] ∩ J (k)
Y | = 0, |[0, x] ∩ I(i)X | = 0, consequently

g(x, x, x) = 0.

3. Let x ∈ [2
q
, 1− 1

q
].

Then |[0, x] ∩ I(i)X | = 0, |[0, x] ∩ J (k)
Y | = 0, consequently

g(x, x, x) = min
(
1− 2

q
, x− 1

q
, x− 2

q

)
= x− 2

q
.

4. Let x ∈ [1− 1
q
, 1].

Specify x ∈ I(k1)X , x ∈ J (k1)
Y . Then |[0, x] ∩ I(k)X | = 0, |[0, x] ∩ J (k)

Y | = 0 for
k > k1. Thus (106) implies

g(x, x, x) = min
(
1− 2

q
, 1− 1

q
− 1

q
, x− 2

q

)
+

k1∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I

(i)
Y |, |[0, z] ∩ I

(i)
Z |
)

+

k1∑
k=1

min
(
|[0, x] ∩ J (k)

X |, |[0, y] ∩ J
(k)
Y |, |[0, z] ∩ J

(k)
Z |
)

= x− 2

q
+

k1−1∑
i=1

(
1

qi
− 1

qi+1

)
+ x− 1 +

1

qk1

+

k1−1∑
k=1

(
1

qk
− 1

qk+1

)
+ x− 1 +

1

qk1
= 3x− 2.

For q = 2 we have

g(x, x, x) =


0 if x ∈

[
0, 1

2

]
,

x− 1
2

if x ∈
[
1
2
, 3
4

]
,

3x− 2 if x ∈
[
3
4
, 1
]
.

(611)

Explicit form of g(x, y, z). Let q ≥ 3 be an integer.
Motivated by the abode Fig. we decompose the unit interval [0, 1] on X, Y
and Z axes in the following Fig. of intervals (here q = 4):
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| |
0 1
X

1− 2
q

|
1− 1

q

|

| |
0 1
Y

1
q

|
1− 1

q

|

| |
0 1
Z

1
q

|
2
q

|

Figure: Divisions of the unit intervals.

In this decomposition, for (x, y, z) ∈ [0, 1]3, we have 27 possibilities. All cases
can be found in [52]:

Notes 44. This is the most complicated d.f. in this book.
1. Let x ∈ [0, 1− 2

q ], y ∈ [0, 1q ], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
2. Let x ∈ [0, 1− 2

q ], y ∈ [0, 1q ], z ∈ [ 1q ,
2
q ]. Then

g(x, y, z) = 0.
3. Let x ∈ [0, 1− 2

q ], y ∈ [0, 1q ], z ∈ [ 2q , 1]. Then

g(x, y, z) = 0.
4. Let x ∈ [0, 1− 2

q ], y ∈ [ 1q , 1−
1
q ], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
5. Let x ∈ [0, 1− 2

q ], y ∈ [ 1q , 1−
1
q ], z ∈ [ 1q ,

2
q ]. Then

g(x, y, z) = 0.
6. Let x ∈ [0, 1− 2

q ], y ∈ [ 1q , 1−
1
q ], z ∈ [ 2q , 1]. Then

g(x, y, z) = min
(
x, y − 1

q , z −
2
q

)
.

7. Let x ∈ [0, 1− 2
q ], y ∈ [1− 1

q , 1], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
8. Let x ∈ [0, 1− 2

q ], y ∈ [1− 1
q , 1], z ∈ [ 1q ,

2
q ]. Then

g(x, y, z) = 0.
9. Let x ∈ [0, 1− 2

q ], y ∈ [1− 1
q , 1], z ∈ [ 2q , 1]. Then

g(x, y, z) = min
(
x, z − 2

q

)
.

10. Let x ∈ [1− 2
q , 1−

1
q ], y ∈ [0, 1q ], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
11. Let x ∈ [1− 2

q , 1−
1
q ], y ∈ [0, 1q ], z ∈ [ 1q ,

2
q ]. Then

g(x, y, z) = 0.
12. Let x ∈ [1− 2

q , 1−
1
q ], y ∈ [0, 1q ], z ∈ [ 2q , 1]. Then

g(x, y, z) = 0.
13. Let x ∈ [1− 2

q , 1−
1
q ], y ∈ [ 1q , 1−

1
q ], z ∈ [0, 1q ]. Then
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g(x, y, z) = 0.
14. Let x ∈ [1− 2

q , 1−
1
q ], y ∈ [ 1q , 1−

1
q ], z ∈ [ 1q ,

2
q ]. Then

g(x, y, z) = 0.
15. Let x ∈ [1− 2

q , 1−
1
q ], y ∈ [ 1q , 1−

1
q ], z ∈ [ 2q , 1]. Then

g(x, y, z) = min
(
y − 1

q , z −
2
q

)
.

16. Let x ∈ [1− 2
q , 1−

1
q ], y ∈ [1− 1

q , 1], z ∈ [0, 1q ].

Specify x ∈ J (k1)
X , y ∈ J (k2)

Y , z ∈ J (k3)
Z . Then

g(x, y, z) =



0, if min(k1, k2) < k3,

min
(
x− 1 + 1

q + 1
qk3

, y − 1 + 1
qk3

, z − 1
qk3+1

)
, if k3 = k1 = k2,

min
(
x− 1 + 1

q + 1
qk3

, z − 1
qk3+1

)
, if k3 = k1 < k2,

min
(
y − 1 + 1

qk3
, z − 1

qk3+1

)
, if k3 = k2 < k1,

z + x− 1 + 1
q , if k3 < k1 < k2,

z +min
(
x− 1 + 1

q , y − 1
)
, if k3 < k1 = k2,

z + y − 1 if k3 < k2 < k1.

17. Let x ∈ [1− 2
q , 1−

1
q ], y ∈ [1− 1

q , 1], z ∈ [ 1q ,
2
q ].

Specify x ∈ J (k1)
X , y ∈ J (k2)

Y . Then

g(x, y, z) =


min

(
x− 1 + 2

q , y − 1 + 1
q

)
, if k1 = k2,

x− 1 + 2
q , if k1 < k2,

y − 1 + 1
q , if k1 > k2.

18. Let x ∈ [1− 2
q , 1−

1
q ], y ∈ [1− 1

q , 1], z ∈ [ 2q , 1].

Specify x ∈ J (k1)
X , y ∈ J (k2)

Y . Then

g(x, y, z) =


min

(
x− 1 + 2

q , y − 1 + 1
q

)
+ z − 2

q , if k1 = k2,

x+ z − 1, if k1 < k2,

y + z − 1− 1
q , if k2 < k1.

19. Let x ∈ [1− 1
q , 1], y ∈ [0, 1q ], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
20. Let x ∈ [1− 1

q , 1], y ∈ [0, 1q ], z ∈ [ 1q ,
2
q ].

Specify x ∈ I(i1)X , y ∈ I(i2)Y , z ∈ I(i3)Z . Then we have

g(x, y, z) =



0, if i1 < max(i2, i3),

min
(
x− 1 + 1

qi1
, y − 1

qi1+1 , z − 1
q −

1
qi1+1

)
, if i3 = i2 = i1,

min
(
y, z − 1

q

)
+ x− 1, if i3 = i2 < i1,

min
(
x− 1 + 1

qi1
, y − 1

qi1+1

)
, if i3 < i2 = i1,

min
(
x− 1 + 1

qi1
, z − 1

q −
1

qi1+1

)
, if i2 < i3 = i1,

x+ z − 1− 1
q , if i2 < i3 < i1,

x+ y − 1, if i3 < i2 < i1.
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21. Let x ∈ [1− 1
q , 1], y ∈ [0, 1q ], z ∈ [ 2q , 1].

Specify x ∈ I(i1)X , y ∈ I(i2)Y . Then

g(x, y, z) =


0, if i1 < i2,

min
(
x− 1 + 1

qi1
, y − 1

qi1+1

)
, if i1 = i2,

x+ y − 1, if i2 < i1.

22. Let x ∈ [1− 1
q , 1], y ∈ [ 1q , 1−

1
q ], z ∈ [0, 1q ]. Then

g(x, y, z) = 0.
23. Let x ∈ [1− 1

q , 1], y ∈ [ 1q , 1−
1
q ], z ∈ [ 1q ,

2
q ].

Specify x ∈ I(i1)X , z ∈ I(i2)Z . Then

g(x, y, z) =


0, if i1 < i2,

min
(
x− 1 + 1

qi1
, z − 1

q −
1

qi1+1

)
, if i1 = i2,

x+ z − 1− 1
q , if i2 < i1.

24. Let x ∈ [1− 1
q , 1], y ∈ [ 1q , 1−

1
q ], z ∈ [ 2q , 1]. Then

g(x, y, z) = min
(
y − 1

q , z −
2
q

)
+ x− 1 + 1

q .

25. Let x ∈ [1− 1
q , 1], y ∈ [1− 1

q , 1], z ∈ [0, 1q ].

Specify y ∈ J (k1)
Y , z ∈ J (k2)

Z . Then

g(x, y, z) =


0, if k1 < k2,

min
(
y − 1 + 1

qk1
, z − 1

qk1+1

)
, if k1 = k2,

y + z − 1, if k2 < k1.

26. Let x ∈ [1− 1
q , 1], y ∈ [1− 1

q , 1], z ∈ [ 1q ,
2
q ].

Specify x ∈ I(i1)X , y ∈ J (k1)
Y and z ∈ I(i2)Z . Then

g(z, y, z) =


y − 1 + 1

q , if i1 < i2,

y − 1 + 1
q +min

(
x− 1 + 1

qi1
, z − 1

q −
1

qi1+1

)
, if i1 = i2,

x+ y + z − 2, if i2 < i1.

27. Let x ∈ [1− 1
q , 1], y ∈ [1− 1

q , 1], z ∈ [ 2q , 1]. Then

g(z, y, z) = x+ y + z − 2.

Example 95. The sequence (γq(n), γq(n+ 3)), n = 1, 2, . . . lies on the diag-
onals of the following intervals[

0, 1− 3

q

]
×
[
3

q
, 1

]
,[

1− 2

q
− 1

qi+1
, 1− 1

qi+2
− 2

q

]
×
[

1

qi+2
,

1

qi+1

]
, i = 0, 1, 2, . . . ,
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[
1− 1

q
− 1

qi+1
, 1− 1

qi+2
− 1

q

]
×
[

1

qi+2
+

1

q
,

1

qi+1
+

1

q

]
, i = 0, 1, 2, . . . ,[

1− 1

qi+1
, 1− 1

qi+2

]
×
[

1

qi+2
+

2

q
,

1

qi+1
+

2

q

]
, i = 0, 1, 2, . . . (612)

These intervals are maximal. This is the third iteration T 3 of the von
Neumann-Kakutany transformation T : [0, 1]→ [0, 1].

8.10.3 Four-dimensional shifted van der Corput sequence

Cf. [7]:

Example 96. The sequence (γq(n), γq(n + 1), γq(n + 2), γq(n + 3)), n =
0, 1, 2, . . . , lies in the diagonals of the following 4-dimensional maximal in-
tervals:

I =

[
0, 1− 3

q

]
×
[
1

q
, 1− 2

q

]
×
[
2

q
, 1− 1

q

]
×
[
3

q
, 1

]
(613)

I(i) =

[
1− 1

qi
, 1− 1

qi+1

]
×
[

1

qi+1
,
1

qi

]
×
[
1

q
+

1

qi+1
,
1

q
+

1

qi

]
×
[
2

q
+

1

qi+1
,
2

q
+

1

qi

]
, i = 1, 2, . . . (614)

J (j) =

[
1− 2

q
− 1

qj
, 1− 2

q
− 1

qj+1

]
×
[
1− 1

q
− 1

qj
, 1− 1

q
− 1

qj+1

]
×
[
1− 1

qj
, 1− 1

qj+1

]
×
[

1

qj+1
,
1

qj

]
, j = 1, 2, . . . (615)

K(k) =

[
1− 1

q
− 1

qk
, 1− 1

q
− 1

qk+1

]
×
[
1− 1

qk
, 1− 1

qk+1

]
×
[

1

qk+1
,
1

qk

]
×
[
1

q
+

1

qk+1
,
1

q
+

1

qk

]
, k = 1, 2, . . . (616)

Proof: We started with 2-dimensional intervals in (X, Y ) = (Y, Z) = (Z,U)
axis, respectively, containing (γq(n), γq(n+ 1)), n = 0, 1, 2, . . . , in diagonals.
By [52] they are:[
0, 1− 1

q

]
×
[
1
q
, 1
]
;[

1− 1
qi
, 1− 1

qi+1

]
×
[

1
qi+1 ,

1
qi

]
, i = 1, 2, . . . ;
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Adding intervals in (X,U) axis containing (γq(n), γq(n+3)) in their diagonal,
see (115), (116), (117) and (172):[
0, 1− 3

q

]
×
[
3
q
, 1
]
;[

1− 2
q
− 1

qi
, 1− 2

q
− 1

qi+1

]
×
[

1
qi
, 1
qi+1

]
, i = 1, 2, . . . ;[

1− 1
q
− 1

qi
, 1− 1

q
− 1

qi+1

]
×
[
1
q
+ 1

qi+1 ,
1
q
+ 1

qi

]
, i = 1, 2, . . . ;[

1− 1
qi
, 1− 1

qi+1

]
×
[
2
q
+ 1

qi+1 ,
2
q
+ 1

qi

]
, i = 1, 2, . . . ;

All this we plotted in the following Fig. Collecting intervals of equal length

@
@
@
@

@
@
@
@

@
@
@
@
@

@
@@

@@

�
�
�

��

�
��

�
��

�
��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
��

��
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

@@

X

Y

Z

U
IX,Y

IY,ZIZ,U

IU,X

I
(1)
Z,U I

(1)
Y,Z

I
(1)
X,Y

I
(1)
X,U

J
(1)
X,U

K
(1)
X,U

388



we find that maximal 4-dimensional intervals containing points

(γq(n), γq(n+ 1), γq(n+ 2), γq(n+ 3)), n = 0, 1, 2, . . .

Now, let D be a union of diagonals of (613), (614), (615) and (616). Then

g(x, y, z, u) = |ProjectX([0, x]× [0, y]× [0, z]× [0, u] ∩D)| (617)

and it can be rewritten as

g(x, y, z, u)

= min
(
|[0, x] ∩ IX |, |[0, y] ∩ IY |, |[0, z] ∩ IZ |, |[0, u] ∩ IU |

)
+

∞∑
i=1

min
(
|[0, x] ∩ I(i)X |, |[0, y] ∩ I

(i)
Y |, |[0, z] ∩ I

(i)
Z |, |[0, u] ∩ I

(i)
U |
)

+
∞∑
j=1

min
(
|[0, x] ∩ J (j)

X |, |[0, y] ∩ J
(j)
Y |, |[0, z] ∩ J

(j)
Z |, |[0, u] ∩ J

(j)
U |
)

+
∞∑
k=1

min
(
|[0, x] ∩K(k)

X |, |[0, y] ∩K
(k)
Y |, |[0, z] ∩K

(k)
Z |, |[0, u] ∩K

(k)
U |
)

(618)

Computing g(x, y, z, u) is complicated. By using the following picture
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Figure: Projections of intervals I, I(i), J (j),K(k) on axes X,Y, Z, U .
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it can be find

g(x, x, x, x) =


0, if x ∈

[
0, 3

q

]
,

x− 3
q
, if x ∈

[
3
q
, 1− 1

q

]
,

4x− 3, if x ∈
[
1− 1

q
, 1
] (619)

for q ≥ 4.
Application. We apply Weyl’s limit relation

lim
N→∞

1

N

N−1∑
n=0

F (γq(n), γq(n+ 1), γq(n+ 2), γq(n+ 3))

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z, u)dxdydxdug(x, y, z, u). (620)

Assume that F (x, y, z, u) is a continuous in [0, 1]4 and g(x, y, z, u) is a d.f.
Then∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z, u)dxdydzdug(x, y, z, u) = F (1, 1, 1, 1)

−
∫ 1

0

g(x, 1, 1, 1)dxF (x, 1, 1, 1)−
∫ 1

0

g(1, y, 1, 1)dyF (1, y, 1, 1)

−
∫ 1

0

g(1, 1, z, 1)dzF (1, 1, z, 1)−
∫ 1

0

g(1, 1, 1, u)duF (1, 1, 1, u)

+

∫ 1

0

∫ 1

0

g(x, y, 1, 1)dxdyF (x, y, 1, 1) +

∫ 1

0

∫ 1

0

g(x, 1, z, 1)dxdzF (x, 1, z, 1)

+

∫ 1

0

∫ 1

0

g(1, y, z, 1)dydzF (1, y, z, 1) +

∫ 1

0

∫ 1

0

g(x, 1, 1, u)dxduF (x, 1, 1, u)

+

∫ 1

0

∫ 1

0

g(1, y, 1, u)dyduF (1, y, 1, u) +

∫ 1

0

∫ 1

0

g(1, 1, z, u)dzduF (1, 1, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z, 1)dxdydzF (x, y, z, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(1, y, z, u)dudydzF (1, y, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, 1, z, u)dxdzduF (x, 1, z, u)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, 1, u)dudydxF (x, y, 1, u)
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+

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z, u)dxdydzduF (x, y, z, u).

Put F (x, y, z, u) = max(x, y, z, u). Then

dxF (x, 1, 1, 1) = dyF (1, y, 1, 1) = dzF (1, 1, z, 1) = duF (1, 1, 1, u) = 0,

dxdyF (x, y, 1, 1) = dxdzF (x, 1, z, 1) = dydzF (1, y, z, 1) = dxduF (x, 1, 1, u) =
dyduF (1, y, 1, u) = dzduF (1, 1, z, u) = 0,

dxdydzF (x, y, z, 1) = dxdyduF (x, y, 1, u) = dxdzduF (x, 1, z, u)
= dydzduF (1, y, z, u) = 0.
The differential dxdydzduF (x, y, z, u) is non-zero if and only if

x = y = z = u

and in this case
dxdydzduF (x, y, z, u) = −dx.

Then ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z, u)dxdydzdug(x, y, z, u)

= 1 +

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z, u)dxdydzduF (x, y, z, u)

= 1−
∫ 1

0

g(x, x, x, x)dx. (621)

For q ≥ 4 and by (121) we have∫ 1

0

g(x, x, x, x)dx =

∫ 1− 1
q

3
q

(
x− 3

q

)
dx+

∫ 1

1− 1
q

(4x− 3)dx =
1

2
− 3

q
+

6

q2
.

Also see [7].

8.10.4 s-th iteration of von Neumann-Kakutani transformation

In this part we study distribution of the sequence (γq(n), γq(n + s)), n =
0, 1, 2, . . . , where q is an integer, q ≥ s. Let n = nkq

k + nk−1q
k−1 + · · · +

n1q + n0. We investigate the following cases:
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1. n0 < q − s,
2. n0 = q − s,
3. n0 = q − s+ 1,
. . .
l. n0 = q − s+ l − 2,
. . .
(2 + s− 1). n0 = q − 1.

In the general case l, n0 = q − s+ l − 2, we have

n = nkq
k+ · · ·+ni+1q

i+1+(q−1)qi+(q−1)qi−1+ · · ·+(q−1)q+q−s+ l−2,

where ni+1 < q − 1 and i = 0, 1, 2, . . . ,

n+ s = nkq
k + · · ·+ (ni+1 + 1)qi+1 + 0qi + 0qi−1 + · · ·+ 0q + l − 2 ,

γq(n) =
q − s+ l − 2

q
+
q − 1

q2
+ · · ·+ q − 1

qi
+
q − 1

qi+1
+
ni+1

qi+2
+ · · ·+ nk

qk+1
,

γq(n+ s) =
l − 2

q
+

0

q2
+ · · ·+ 0

qi
+

0

qi+1
+
ni+1 + 1

qi+2
+ · · ·+ nk

qk+1
,

γq(n+ s)− γq(n) =
s− 1

q
+

1

qi+2
+

1

qi+1
− 1 ,

1−s− l + 1

q
− 1

qi+1
≤ q − s+ l − 2

q
+
q − 1

q2
+· · ·+q − 1

qi+1
+

0

qi+2
+· · ·+ 1

qk
≤ γq(n) ,

γq(n) ≤
q − s+ l − 2

q
+
q − 1

q2
+· · ·+q − 1

qi+1
+
q − 2

qi+2
+
q − 1

qi+3
+· · · = 1−s− l + 1

q
− 1

qi+2
.

Thus, if n satisfies the case l, then the point (γq(n), γq(n+ s)) lie in the line
segment

Z = X +
s− 1

q
− 1 +

1

qi+1
+

1

qi+2
,

X ∈
[
1− s− l + 1

q
− 1

qi+1
, 1− 1

qi+2
− s− l + 1

q

]
(622)

and in the diagonal of[
1− s− l + 1

q
− 1

qi+1
, 1− 1

qi+2
− s− l + 1

q

]
×
[
l − 2

q
+

1

qi+2
,
l − 2

q
+

1

qi+1

]
,

(623)

392



where i = 0, 1, 2, . . . . In the following we shall reduce (i + 1) → i and (622)
gives sth iteration of von Neumann-Kakutani transformation T

T s(x) =



x+ s
q

if x ∈
[
0, 1− s

q

]
,

x+ s−1
q
− 1 + 1

qi
+ 1

qi+1 if x ∈
[
1− s−1

q
− 1

qi
, 1− s−1

q
− 1

qi+1

]
∪

∪
[
1− s−2

q
− 1

qi
, 1− s−2

q
− 1

qi+1

]
∪

. . . . . .

∪
[
1− s−l+1

q
− 1

qi
, 1− s−l−1

q
− 1

qi+1

]
∪

. . . . . .

∪
[
1− 1

qi
, 1− 1

qi+1

]
, where

i = 1, 2, . . .

(624)
Also the points (γq(n), γq(n+ s)), n = 0, 1, 2, . . . , are contained in diagonals
of

I0 =
[
0, 1− s

q
]× [ s

q
, 1
]
,

I
(i)
1 =

[
1− s−1

q
− 1

qi
, 1− s−1

q
− 1

qi+1

]
×
[

1
qi+1 ,

1
qi

]
, i = 1, 2, . . . ,

I
(i)
2 =

[
1− s−2

q
− 1

qi
, 1− s−2

q
− 1

qi+1

]
×
[
1
q
+ 1

qi+1 ,
1
q
+ 1

qi

]
, i = 1, 2, . . . ,

I
(i)
3 =

[
1− s−3

q
− 1

qi
, 1− s−3

q
− 1

qi+1

]
×
[
2
q
+ 1

qi+1 ,
2
q
+ 1

qi

]
, i = 1, 2, . . . ,

I
(i)
4 =

[
1− s−4

q
− 1

qi
, 1− s−4

q
− 1

qi+1

]
×
[
3
q
+ 1

qi+1 ,
3
q
+ 1

qi

]
, i = 1, 2, . . . ,

. . .
I
(i)
l−1 =

[
1− s−l+1

q
− 1

qi
, 1− s−l+1

q
− 1

qi+1

]
×
[
l−2
q
+ 1

qi+1 ,
l−2
q
+ 1

qi

]
, i = 1, 2, . . . ,

. . .
I
(i)
s =

[
1− 1

qi
, 1− 1

qi+1

]
×
[
s−1
q

+ 1
qi+1 ,

s−1
q

+ 1
qi

]
, i = 1, 2, . . .

9 Extremes of
∫ 1

0

∫ 1

0 F (x, y)dxdyg(x, y) over cop-

ulas g(x, y)

In this section we comments [53] and [14].
In the previous Section 8.8 we were looking for the extreme limit points of

(565) 1
N

∑N
n=1 F (xn, yn)

which related to the extremes of
(569)

∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y).

But the problem of optimizing the integral
∫ 1

0

∫ 1

0
F (x, y)dC(x, y) over cop-

ulas C(x, y) belongs to the mass transportation problems, or the Monge-
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Kantorovich transportation problem, see e.g. L. Ambrosio and N. Gigli
(2013) [4] or S.T. Rachev and L. Rüschendorf, Mass Transportation Prob-
lems, Volume I: Theory (1998) [132]. In this section we give a criterion for
the copula which maximizes (569). The minimum can be studied similarly.

First of all we repeated and reformulated Theorem 214 and 215 from
Section 8.8 to the following Theorem 217 and 218, respectively.

Theorem 217. Let F (x, y) be a Riemann integrable function defined on
[0, 1]2. Assume that dxdyF (x, y) > 0 for (x, y) ∈ (0, 1)2. Then

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (x, x)dx,

min
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (x, 1− x)dx,

where the max is attained in g(x, y) = min(x, y) and min in g(x, y) =
max(x+ y − 1, 0), uniquely.

Theorem 218. Let us assume that F (x, y) is a continuous function such
that dxdyF (x, y) > 0 for every (x, y) ∈ (0, 1)2. Then for the extremes of

the integral
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) for g(x, y) for which g(x, 1) = g1(x) and

g(1, y) = g2(y) we have

max
g(x,y)

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (g−1
1 (x), g−1

2 (x))dx,

min
g(x,y)

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F (g−1
1 (x), g−1

2 (1− x))dx,

where the maximum is attained in g(x, y) = min(g1(x), g2(y)) and minimum
in g(x, y) = max(g1(x) + g2(y)− 1, 0), uniquely.

9.1 Criterion for maximality

Now, applying Theorem 218 we find the following criterion of a maximality
in [53]:

Theorem 219. Let us assume that a copula g(x, y) maximizes the integral∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) and let [X1, X2] × [Y1, Y2] be an interval in [0, 1]2

such that the differential

g(X2, Y2) + g(X1, Y1)− g(X2, Y1)− g(X1, Y2) > 0.
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If for every interior point (x, y) of [X1, X2]×[Y1, Y2] the differential dxdyF (x, y)
has a constant sign, then:

(i) if dxdyF (x, y) > 0, then

g(x, y) = min(g(x, Y2) + g(X1, y)− g(X1, Y2), g(x, Y1) + g(X2, y)− g(X2, Y1))
(625)

Schematically,

(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)

(x, y)
⊕

⊕⊖

(X1, y)

(x, Y2)

⊖⊕

⊕

(x, Y1)

(X2, y)

Here, if in point (u, v) we have add ⊕ or ⊖ then in g(x, y) we add +g(u, v)
or −g(u, v), respectively.

(ii) if dxdyF (x, y) < 0, then

g(x, y) = max(g(x, Y2)+ g(X2, y)− g(X2, Y2), g(x, Y1)+ g(X1, y)− g(X1, Y1))
(626)

for every (x, y) ∈ [X1, X2]× [Y1, Y2]. Schematically

(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)

(x, y)⊕

⊕ ⊖

(X1, y)

(x, Y2)

⊖ ⊕

⊕

(x, Y1)

(X2, y)

Proof. 10. We start with a linear map [X1, X2]× [Y1, Y2]→ [0, 1]2
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(X1, Y1) (X2, Y1)

(X1, Y2) (X2, Y2)g̃(x, Y2)

F (x, y)

g̃(x, y) g̃(X2, y)

(x, y)
•

(0, 0) (0, 1)

(0, 1) (1, 1)

F ∗(x′, y′)

g∗(x′, y′)

g∗(x′, 1)

g∗(1, y′)

(x′, y′)
•

Figure: Linear map (x, y)→ (x′, y′).

defined by
x−X1

X2 −X1

= x′,
y − Y1
Y2 − Y1

= y′ (627)

with inverse

x = x′(X2 −X1) +X1, y = y′(Y2 − Y1) + Y1. (628)

Using this map [X1, X2] × [Y1, Y2] → [0, 1]2 to the F (x, y) and g(x, y) in
[X1, X2] × [Y1, Y2] → [0, 1]2 we define the following related F ∗(x′, y′) and
g∗(x′, y′) in [0, 1]2:

F ∗(x′, y′) = [F (x, y)]x=x′(X2−X1)+X1,
y=y′(Y2−Y1)+Y1

= F (x′(X2−X1) +X1, y
′(Y2− Y1) + Y1)

(629)
for (x′, y′) ∈ [0, 1]2. We have

dx′dy′F
∗(x′, y′) = dxdyF (x, y)(X2 −X1)(Y2 − Y1).

So the differential of F (x, y) has the same sign as the differential of F ∗(x′, y′).
For a definition of g∗(x′, y′) we use auxiliary g̃(x, y) defined by the fol-

lowing: Let us assume that from (x1, y1) . . . , (xN , yN) there are M -points in
[X1, X2]× [Y1, Y2] with the local step d.f.

F̃M(x, y) =
1

M
#{n ≤ N ; (xn, yn) ∈ [0, x)× [0, y)}

and assume F̃M(x, y)→ g̃(x, y) a.e. on [X1, X2]× [Y1, Y2]. Since

F̃M(x, y) =
FN(x, y) + FN(X1, Y1)− FN(x, Y1)− FN(X1, y)

FN(X2, Y2) + FN(X1, Y1)− FN(X2, Y1)− FN(X1, Y2)
,
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we have

g̃(x, y) =
g(x, y) + g(X1, Y1)− g(x, Y1)− g(X1, y)

g(X2, Y2) + g(X1, Y1)− g(X2, Y1)− g(X1, Y2)
. (630)

Now, we put

g∗(x′, y′) = [g̃(x, y)]x=x′(X2−X1)+X1,
y=y′(Y2−Y1)+Y1

= g̃(x′(X2 −X1) +X1, y
′(Y2 − Y1) + Y1)

(631)
for x′, y′ ∈ [0, 1]2. Since

1

M

M∑
n=1

F (xn, yn) =
1

M

M∑
n=1

F ∗(x′n, y
′
n), (632)

1

M

M∑
n=1

F (xn, yn)→
∫∫

[X1,X2]×[Y1,Y2]

F (x, y)dxdyg̃(x, y), (633)

1

M

M∑
n=1

F ∗(x′n, y
′
n)→

∫ 1

0

∫ 1

0

F ∗(x′, y′)dx′dy′g
∗(x′, y′) (634)

and the differential of F ∗(x′, y′) has a constant sign on the open unit square,
it follows from the Theorem 218 that the integral (634) is maximal if and
only if:

(i) d′
xd

′
yF

∗(x′, y′) > 0 implies g∗(x′, y′) = min(g∗(x′, 1), g∗(1, y′)) and
(ii) d′

xd
′
yF

∗(x′, y′) < 0 implies g∗(x′, y′) = max(g∗(x′, 1)+ g∗(1, y′)− 1, 0).
From maps g∗(x′, 1) ←→ g̃(x, Y2), g

∗(1, y′) ←→ g̃(X2, y) and from (632), it
follows that the integral (633) is maximal if and only if:

(i) dxdyF (x, y) > 0 implies g̃(x, y) = min(g̃(x, Y2), g̃(X2, y)) and
(ii) dxdyF (x, y) < 0 implies g̃(x, y) = max(g̃(x, Y2) + g̃(X2, y)− 1, 0).

Here from (630) we have

g̃(x, Y2) =
g(x, Y2) + g(X1, Y1)− g(x, Y1)− g(X1, Y2)

g(X2, Y2) + g(X1, Y1)− g(X2, Y1)− g(X1, Y2)
,

g̃(X2, y) =
g(X2, y) + g(X1, Y1)− g(X2, Y1)− g(X1, y)

g(X2, Y2) + g(X1, Y1)− g(X2, Y1)− g(X1, Y2)
. (635)

Using (635) in (i) and (ii) we find (625) and (626).

For a fixed F (x, y), the criterion in Theorem 219 can be fulfilling for

several copulas, which form local extremes of
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y). For
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a global extreme of
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) we need to choose g(x, Yi) and

g(Xi, y) optimally in Theorem 219, see the following theorem.

Theorem 220. Let us divide [0, 1]2 to two parts [0, 1]×[Y, 1] and [0, 1]×[0, Y ]
and define continuous F (x, y) by a composition

F (x, y) =

{
F1(x, y), if (x, y) ∈ [0, 1]× [Y, 1],

F2(x, y), if (x, y) ∈ [0, 1]× [0, Y ],

where dxdyF1(x, y) > 0 for interior points of [0, 1]× [Y, 1] and dxdyF1(x, y) <
0 for interior points of [0, 1]× [0, Y ]. Then we have

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y)

= max
h(x)

(∫ 1

0

F1(x, x− h(x) + Y )(1− h′(x))dx+
∫ 1

0

F2(x, Y − h(x))h′(x)dx
)
,

(636)

where the maximum in (636) is over nondecreasing h(x), h(0) = 0, h(1) = Y
and max(x+ Y − 1, 0) ≤ h(x) ≤ min(x, Y ).

Proof. As in the proof of Theorem 219 we start with two linear maps:

[0, 1]× [Y, 1]→ [0, 1]2, where x′ = x, y′ =
y − Y
1− Y

, (637)

[0, 1]× [0, Y ]→ [0, 1]2, where x′ = x, y′ =
y

Y
. (638)

Then, from (630) and from the properties g(0, 0) = g(0, y) = g(x, 0) = 0,
g(1, 1) = 1, g(1, Y ) = Y of copulas g(x, y) we find

g̃1(x, y) =
g(x, y)− g(x, Y )

1− Y
, g̃2(x, y) =

g(x, y)

Y
. (639)

Using transformation (637) and (638) we find

g∗1(x
′, y′) = [g̃1(x, y)] x=x′,

y=y′(1−Y )+Y

=
g(x′, y′(1− Y ) + Y )− g(x′, Y )

1− Y
(640)

g∗2(x
′, y′) = [g̃2(x, y)] x=x′,

y=y′Y

=
g(x′, Y )

Y
see following Fig. (641)
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(0, 0) (1, 0)

(1, 1)(0, 1)

����������

HHHHHHHHHH

g̃1(x, 1) =
x−h(x)
1−Y

F1(x, y)

g̃1(x, y)

g̃1(1, y) = y−Y
1−Y

(x, y)

Y
•

g̃2(x, 1) =
h(x)
Y

F2(x, y)

g̃2(x, y)

g̃2(1, y) = y
Y

(x, y) •

(0, 0) (1, 0)

(1, 1)(0, 1)

F∗
1 (x′, y′)

g∗1 (x′, y′)

g∗1 (x′, 1) =
x′−h(x′)

1−Y

g∗1 (1, y′) = y′

(x′, y′)•

(0, 0) (1, 0)

(1, 1)(0, 1)

F∗
2 (x′, y′)

g∗2 (x′, y′)

g∗2 (x′, 1) =
h(x′)

Y

g∗2 (1, y′) = y′

(x′, y′)•

Figure: Linear maps [0, 1]× [Y, 1]→ [0, 1]2 and [0, 1]× [0, Y ]→ [0, 1]2.

Put g(x, Y ) = h(x). Since g(x, y) is a copula and for every copula max(x+
y − 1, 0) ≤ g(x, y) ≤ min(x, y), then we have h(0) = 0, h(1) = Y , h(x) is
nondecreasing and max(x+ Y − 1, 0) ≤ h(x) ≤ min(x, Y ). Now, from (640)
and (641) we find

g∗1(x
′, 1) =

x′ − h(x′)
1− Y

, g∗1(1, y
′) = y′, (642)

g∗2(x
′, 1) =

h(x′)

Y
, g∗2(1, y

′) = y′. (643)

Then by Theorem 218 the d.f. g∗1(x
′, y′) maximize

∫ 1

0

∫ 1

0
F ∗
1 (x

′, y′)dx′dy′g(x
′, y′)

and g∗2(x
′, y′) maximize

∫ 1

0

∫ 1

0
F ∗
2 (x

′, y′)dx′dy′g(x
′, y′) for fixes (642) and (643)

iff

g∗1(x
′, y′) = min

(
x′ − h(x′)
1− Y

, y′
)
, (644)

g∗2(x
′, y′) = max

(
h(x′)

Y
+ y′ − 1, 0

)
. (645)

Now, from (639) it follows

g(x, y) =

{
g̃1(x, y)(1− Y ) + h(x), if (x, y) ∈ [0, 1]× [Y, 1],

g̃2(x, y)Y, if (x, y) ∈ [0, 1]× [0, Y ].
(646)
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From backward transformations of (637) and (638) we find

g̃1(x, y) = [g∗1(x
′, y′)] x′=x,

y′= y−Y
1−Y

= min

(
x− h(x)
1− Y

,
y − Y
1− Y

)
g̃2(x, y) = [g∗2(x

′, y′)]x′=x,
y′= y

Y

= max

(
h(x)

Y
+
y

Y
− 1, 0

)
. (647)

By inserting (647) to (646) we find

g(x, y) =

{
min(x− h(x), y − Y ) + h(x), if y ∈ [Y, 1],

max(h(x) + y − Y, 0), if y ∈ [0, Y ]
(648)

and for every x ∈ [0, 1]. It can be seen that g(x, y) has a nonzero differential
on the curves y = x− h(x) + Y and y = Y − h(x) only, where

dxdyg(x, y) =

{
(1− h′(x))dx, if y = x− h(x) + Y,

h′(x)dx, if y = Y − h(x).
(649)

Finally, (649) implies∫ 1

0

∫ 1

Y

F1(x, y)dxdyg(x, y) =

∫ 1

0

F1(x, x− h(x) + Y )(1− h′(x))dx∫ 1

0

∫ Y

0

F2(x, y)dxdyg(x, y) =

∫ 1

0

F2(x, Y − h(x))h′(x)dx.

Notes 45. Rewrite (636) in the form
∫ 1

0
G(x, h, h′)dx. Then for searching optimal h(x)

we can apply Euler-Lagrange differential equation in variation method (see [149, p. 208]):

If the integral
∫ 1

0
G(x, h, h′)dx takes on h0(x) a local extreme over all continuous h(x)

with continuous derivative h′(x), h(0) = h0(0) = 0, h(1) = h0(1) = 1, then h0(x) satisfies

∂G

∂h
− d

dx

∂G

∂h′
= 0, (650)

see the following example.

Example 97. Put Y = 1
2
and define, for x ∈ [0, 1]

F (x, y) =

{
F1(x, y) = 2

(
y − 1

2

)
x, if y ∈

[
1
2
, 1
]
,

F2(x, y) = 2
(
1
2
− y
)
x, if y ∈

[
0, 1

2

]
.

(651)
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Then the integral in (636) has the form∫ 1

0

F1(x, x− h(x) + Y )(1− h′(x))dx+
∫ 1

0

F2(x, Y − h(x))h′(x)dx

=
1

6
+ 2

∫ 1

0

(xh(x)− h2(x))dx. (652)

By Euler equation (650) we have

∂(xh− h2)
∂h

= x− 2h(x) = 0

which gives h(x) = x
2
. Such h(x) is nondecreasing, satisfies max(x+ 1

2
−1, 0) ≤

h(x) ≤ min(x, 1
2
) and thus the searched global extreme is

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =
1

6
+ 2

1

12
=

1

3
.

This maximum also holds omitting continuous derivative of h. It follows from
the fact the point (∫ 1

0

xh(x)dx =
1

6
,

∫ 1

0

h2(x)dx =
1

12

)
lie on the boundary of the projectionX3×X2 of the body (X1, X2, X3), where

X1 =
∫ 1

0
g(x)dx, X2 =

∫ 1

0
xg(x)dx, X3 =

∫ 1

0
g2(x)dx and g(x) run over all

d.f.s. The straight line X2 − X3 = 1
12

touches to this projection, see [159]
and Section 4.10 in this book.

From example of the form

Y

∂2F (x,y)
∂x∂y > 0

∂2F (x,y)
∂x∂y < 0

(0, 0) (1, 0)

(0, 1) (1, 1)

we go to (see [14])
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∂2F
∂x∂y > 0

∂2F
∂x∂y < 0

∂2F
∂x∂y > 0

(0, 0) (1, 0)

(0, 1) (1, 1)

In this case we divide unit square [0, 1]2 on [0, x1]× [0, 1], [x1, x2]× [0, 1] and
[x2, 1]× [0, 1], see following Fig.

(0, 0) (1, 0)

(0, 1)⊖ (1, 1)

∂2F (x,y)
∂x∂y > 0 ∂2F (x,y)

∂x∂y > 0

(x, 1) (x1, 1) (x2, 1)
⊕

(x, y)⊕(0, y)

(x, 1)
⊕

(x, y)(x2, y)

⊖

⊕(0, y)
⊕
(x1, y) (1, y)

⊕

⊕ ⊕

⊕
(x, 0) (x, 0)

⊖ ⊖
(x1, 0) (x2, 0)

∂2F (x,y)
∂x∂y < 0

(x, 1)
⊕ ⊖

(x, y) ⊕(x2, y)

⊖
(x, 0)
⊕

(x1, y)⊕

For computing a form of copula g(x, y) which maximize
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y)

we use (625) if x ∈ (0, x1) ∪ (x2, 1) and (626) if x ∈ (x1, x2). Denote
g(x1, y) = h1(y),
g(x2, y) = h2(y).

If x ∈ (0, x1), then

g(x, y) = min(g(0, y) + g(x, 1)− g(0, 1), g(x, 0) + g(x1, y)− g(x1, 0))

402



= min(0 + x− 0, 0 + h1(y)− 0) = min(x, h1(y)). (653)

If x ∈ (x1, x2), then

g(x, y) = max(g(x, 1) + g(x2, y)− g(x2, 1), g(x1, y) + g(x, 0)− g(x1, 0))
= max(x+ h2(y)− x2, h1(y) + 0− 0) = max(x+ h2(y)− x2, h1(y)).

(654)

If x ∈ (x2, 1), then

g(x, y) = min(g(x2, y) + g(x, 1)− g(x2, 1), g(x, 0) + g(1, y)− g(1, 0))
= min(h2(y) + x− x2, 0 + y − 0) = min(x− x2 + h2(y), y). (655)

The differential dxdyg(x, y) of the copula g(x, y) defined by (653), (654) and
(655) is nonzero only for points (x, y) on the curves

x = h1(y), y ∈ [0, 1],

x = x2 − h2(y) + h1(y), y ∈ [0, 1],

x = x2 − h2(y) + y, y ∈ [0, 1]. (656)

Formally,

0 1
→ x

↑ y

x1 x2

x = h1(y)

x = x2 − h2(y) + h1(y)

x = x2 − h2(y) + y

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Fig.1 Fig.2

On the rectangle
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(x, y) (x+ dx, y)

(x, y + dy) (x+ dx, y + dy)

Figure 1.

�
�
�
�

�
�
��

the differential is defined as

dxdyg(x, y) = g(x, y) + g(x+ dx, y + dy)− g(x, y + dy)− g(x+ dx). (657)

For the case x ∈ (0, x1)
we have x = h1(y) and g(x, y) = min(x, h1(y)) and for the vertices of Fig. 1
we have

(i) g(x, y) = x = h1(y);
(ii) g(x+ dx, y + dy) = x+ dx = h1(y + dy) = h1(y) + h′1(y)dy;
(iii) g(x, y + dy) = min(x, h1(y + dy) = x = h1(y);
(iv) g(x+ dx, y) = min(x+ dx, h1(y)) = h1(y) = x.

Thus by (657)

dxdyg(x, y) = h1(y) + (h1(y) + h′1(y)dy)− h1(y)− h1(y) = h′1(y)dy. (658)

For the case x ∈ (x1, x2)
we have x = x2−h2(y)+h1(y) and g(x, y) = max(x+h2(y)− x2, h1(y)) and
the differential in the rectangle

(x+ dx, y) (x, y)

(x+ dx, y + dy) (x, y + dy)

Figure 2.

@
@

@
@

@
@

@@

is equal

dxdyg(x, y) = g(x+dx, y) + g(x, y+dy)− g(x+dx, y+dy)− g(x, y) (659)
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For the vertices of g(x, y) in Fig. 2 we have
(i) g(x, y) = max(x+ h2(y)− x2, h1(y)) = x+ h2(y)− x2 = h1(y);
(ii) g(x+dx, y+dy) = x+dx+h2(y+dy)−x2 = h1(y+dy) = h1(y)+h

′
1(y);

(iii) g(x, y + dy) = max(x+ h2(y + dy)− x2, h1(y + dy))
= max(h1(y) + h′2(y)dy, h1(y) + h′1(y)dy)
=h1(y) + h′2(y)dy
since for (x, y) in the curve x+ h2(y)− x2 = h1(y) we have
dx
dy

+ h′2(y) = h′1(y) and
dx
dy
< 0.

(iv) g(x + dx, y) = max(x + dx + h2(y) − x2, h1(y)) = max(h1(y) +
dx, h1(y)) = h1(y) since dx < 0. Thus by (659) we have

dxdyg(x, y) = h1(y) + (h1(y) + h′2(y)dy)− h1(y)− h′1(y)− h1(y)dy
= (h′2(y)− h′1(y))dy (660)

In the case x ∈ (x2, 1)
we have x = x2 − h2(y) + y and g(x, y) = min(x− x2 + h2(y), y) and we use
Fig. 1 and the differential (732). In this case in vertices of Fig. 1 we have

(i) g(x, y) = min(x− x2 + h2(y), y) = x− x2 + h2(y) = y;
(ii) g(x+ dx, y + dy) = min(x+ dx− x2 + h2(y + dy), y + dy)
= min(x+ dx− x2 + h2(y) + h′2(y)dy, y + dy)
= min(y + dx+ h′2(y)dy, y + dy) = y + dy

since for (x, y) in the curve x− x2 + h2(y) = y we have dx+ h′2(y)dy = dy.
(iii) g(x, y + dy) = min(x− x2 + h2(y + dy), y + dy)
= min(x− x2 + h2(y) + h′2(y)dy, y + dy) = min(y + h′2(y)dy, y + dy)
= y + h′2(y)dy

since h′2(y) ≤ 1, a proof follows.
(iv) g(x+ dx, y) = min(x+ dx− x2 + h2(y), y) = min(y + dx, y) = y

since dx > 0. By (732) we have

dxdyg(x, y) = g(x, y) + g(x+ dx, y + dy)− g(x, y + dy)− g(x+ dx)

= y + y + dy − (y + h′2(y)dy)− y = (1− h′2(y))dy. (661)

9.2 Summarization

[14]: Let

F (x, y) =


F1(x, y) if x ∈ (0, x1),

∂2F1(x,y)
∂x∂y

> 0

F2(x, y) if x ∈ (x1, x2),
∂2F2(x,y)
∂x∂y

< 0

F3(x, y) if x ∈ (x2, 1),
∂2F3(x,y)
∂x∂y

> 0.

(662)
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By (653), (654) and (655) the copulas which maximize
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y)

has the form

g(x, y) =


min(x, h1(y)) if x ∈ [0, x1],

max(x+ h2(y)− x2, h1(y)) if x ∈ [x1, x2],

min(x− x2 + h2(y), y) if x ∈ [x2, 1]

(663)

where y ∈ [0, 1] and h1(y) and h2(y) are variable functions which we need to
calculate. By (658), (660) and (661) for nonzero differential dxdyg(x, y) we
have

dxdyg(x, y) =


h′1(y)dy if x ∈ [0, x1], x = h1(y),

(h′2(y)− h′1(y))dy if x ∈ [x1, x2], x = x2 − h2(y) + h1(y),

(1− h′2(y))dy if x ∈ [x2, 1], x = x2 − h2(y) + y.

(664)
Now, we return to the integral (437).

Theorem 221. Denote

G(y, h1, h2, h
′
1, h

′
2)

= F1(h1(y), y)h
′
1(y) + F2(x2 − h2(y) + h1(y), y)(h

′
2(y)− h′1(y))

+ F3(x2 − h2(y) + y, y)(1− h′2(y)). (665)

Then

max
g(x,y)− copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) = max
h1,h2

∫ 1

0

G(y, h1, h2, h
′
1, h

′
2)dy,

(666)
where h1, h2 give a copula in (663). If the solutions (h1, h2) of (666) not give
a copula in (663), then we have an upper bound

max
g(x,y)−copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) ≤
∫ 1

0

G(y, h1, h2, h
′
1, h

′
2)dy. (667)

Proof. The two-dimensional Stieltjes integral
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) over

F (x, y) in (662) and over g(x, y) defined by (663) with differential (664) and
dxdyg(x, y) = 0 others, is calculated as the following one-dimensional integral∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =

∫ 1

0

F1(h1(y), y)h
′
1(y)dy (668)
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+

∫ 1

0

F2(x2 − h2(y) + h1(y), y)(h
′
2(y)− h′1(y))dy (669)

+

∫ 1

0

F3(x2 − h2(y) + y, y)(1− h′2(y))dy. (670)

To compute extremes in
∫ 1

0
G(y, h1, h2, h

′
1, h

′
2)dy we can apply calculus of

variation (cf [191, p. 33]): If (h1, h2) extremize the integral
∫ 1

0
G(y, h1, h2, h

′
1, h

′
2)dy

then (h1, h2) must be satisfied the following system of Euler-Lagrange differ-
ential equations

∂G

∂h1
− d

dy

∂G

∂h′1
= 0, (671)

∂G

∂h2
− d

dy

∂G

∂h′2
= 0. (672)

The solution (h1, h2) maximize
∫ 1

0
G(y, h1, h2, h

′
1, h

′
2)dy if

∂2G

∂h′1∂h
′
1

≤ 0,

∣∣∣∣∣ ∂2G
∂h′1∂h

′
1

∂2G
∂h′1∂h

′
2

∂2G
∂h′2∂h

′
1

∂2G
∂h′2∂h

′
2

∣∣∣∣∣ ≤ 0. (673)

Theorem 222. The function g(x, y) defined by (663) is a copula if and only
if

(i) h1(y) and h2(y) are increasing;
(ii) h1(0) = 0, h2(0) = 0;
(iii) h1(1) = x1, h2(1) = x2;
(iv) 0 ≤ h1(y) ≤ h2(y) ≤ y;
(v) 0 ≤ h′1(y) ≤ h′2(y) ≤ 1;

Proof. 10. Necessary. Let g(x, y) be a copula and h1(y) = g(x1, y) and
h2(y) = g(x2, y). The properties (i)-(iii) are clear.

Now we prove (v).
For an arbitrary copula g(x, y) the differential g(x, y) on the rectangle
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(x, y1)

(x, y2) (1, y2)

(1, y1)

is

g(x, y1)+g(1, y2)−g(x, y2)−g(1, y1) = g(x, y1)+y2−g(x, y2)−y1 ≥ 0 (674)

which gives
y2 − y1 ≥ g(x, y2)− g(x, y1), which gives
g′(x, y) ≤ 1 a.e. and which implies
h′(y) ≤ 1 a.e. for h(y) = g(x, y) (see also [114, p. 11, Th. 2.2.7.] ).

Furthermore
h′1(y) ≤ h′2(y) because for (x, y) on the curve x + h2(y) − x2 = h1(y),

x ∈ [x1, x2] we have
dx
dy

+ h′2(y) = h′1(y) and
dx
dy
< 0. This is the end of proof (v).

Proof of (iv).
The differential of g(x, y) on the rectangle in Fig.

(x, 0)

(x, y1) (1, y1)

(1, 0)

is

g(x, 0) + g(1, y1)− g(x, y1)− g(1, 0) = 0 + y1 − g(x, y1)− 0 ≥ 0, (675)

thus y1 ≥ g(x, y1). This is the end of proof (iv).
20. Sufficiency. From (v) and (664) follows that the differential dxdyg(x, y)

of (663) is nonnegative for every (x, y) ∈ [0, 1]2. Also by (663) g(x, 0) =
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g(0, y) = 0. Thus g(x, y) is a distribution function. Now, for copula we need
to show g(x, 1) = x and g(1, y) = y for every (x, y) ∈ [0, 1]2. Indeed we have

g(x, 1) =


min(x, h1(1)) = min(x, x1) = x if x ∈ [0, x1],

max(x+ h2(1)− x2, h1(1)) = max(x, x1) = x if x ∈ [x1, x2],

min(x− x2 + h2(1), 1) = min(x, 1) = x if x ∈ [x2, 1].

For x = 1 we need

g(1, y) = min(1− x2 + h2(y), y) = y. (676)

Since h2(1) = x2, then (676) is equivalent

1− y ≥ h2(1)− h2(y). (677)

It holds, since h2(1) − h2(y) = (1 − y)h′2(y
∗) and the derivative satisfies

(v).

Theorem 222 implies the following boundaries

x1

x1

1− x1

h1(y)

h1(y)

h1(y) h2(y)

h2(y)

h2(y)

x1 x2

x2

1− x2

�
�
�

�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

h1(y) =

{
y if y ∈ [0, x1],

x1 if y ∈ [x1, 1],
h1(y) =

{
0 if y ∈ [0, 1− x1],
y − (1− x1) if y ∈ [1− x1, 1],

h2(y) =

{
y if y ∈ [0, x2],

x1 if y ∈ [x2, 1],
h2(y) =

{
0 if y ∈ [0, 1− x2],
y − (1− x1) if y ∈ [1− x2, 1],

where
h1(y) ≤ h1(y) ≤ h1(y), h2(y) ≤ h2(y) ≤ h2(y). (678)
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Example 98. In (662) define F (x, y) = f(x).y, where f(x) is given by Fig.

0 1x1 x2

x
x1

x2−x
x2−x1

x−x2
1−x2

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

and denote
F1(x, y) =

x
x1
y, and the integrand in (668) has the form

F1(h1(y), y)h
′
1(y) =

h1
x1
yh′1.

F2(x, y) =
x2−x
x2−x1y, and the integrand in (669) has the form

F2(x2 − h2(y) + h1(y), y)(h
′
2(y)− h′1(y)) = h2−h1

x2−x1 y(h
′
2 − h′1).

F3(x, y) =
x−x2
1−x2 y, and the integrand in (670) has the form

F3(x2 − h2(y) + y, y)(1− h′2(y)) =
y−h2
1−x2 y(1− h

′
2).

Summing up this, then G in (665) has the form

G =
h1
x1
yh′1 +

h2 − h1
x2 − x1

y(h′2 − h′1) +
y − h2
1− x2

y(1− h′2), (679)

∂G

∂h1
− d

dy

∂G

∂h′1
=
h′1
x1
y − h′2 − h′1

x2 − x1
y − h1

x1
+
h2 − h1
x2 − x1

= 0, (680)

∂G

∂h2
− d

dy

∂G

∂h′2
=
h′2 − h′1
x2 − x1

y − 1− h′2
1− x2

y − h2 − h1
x2 − x1

+
y − h2
1− x2

+
y

1− x2
= 0.

(681)

Now, ((680) + (681)).(1−x2
y

) gives

h′1

(
1− x2
x1

)
+ h′2 =

h1
y

(
1− x2
x1

)
+
h2
y
− 1, (682)

and (680).(x2−x1
y

) gives

h′1

(
x2 − x1
x1

+ 1

)
− h′2 =

h1
y

(
x2 − x1
x1

+ 1

)
− h2

y
, (683)
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Summing up (682) and (683) and by some simple operation we find

h′1 =
h1
y
− x1. (684)

Insert (684) to (683) we find

h′2 =
h2
y
− x2. (685)

The general solution h(y) of the differential equation

h′ =
h

y
− x (686)

has the form
h(y) = c.y − xy. log y. (687)

Assuming boundary assumptions h(1) = x and h(0) = 0, then h(y) = xy(1−
log y) and h′(y) = x(− log y). Thus

h1(y) = x1y(1− log y), h2(y) = x2y(1− log y) (688)

not satisfy the condition (v) in Theorem 222. Here G in (679) imputing (688)
has the form

G = y2 log y

(
x2

1− x2

)
+ y2(log y)2

(
x2

1− x2

)
+ y2

which gives ∫ 1

0

Gdy =
x2

1− x2

(
− 1

27

)
+

1

3
. (689)

In other case imputing h1(y) = x1y and h2(y) = x2y in G in (679) gives

G = y2 and
∫ 1

0
Gdy = 1

3
. Thus (688) not maximize

∫ 1

0
Gdy.

Note that for F (x, y) = f(x).y, where f(x) is uniformly distributed pre-
serving map (u.d.p.) 58 we have

max
xn,yn are u.d.

lim
N→∞

1

N

N∑
n=1

f(xn)yn = max
g(x,y)−copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y),

(690)

58Definition: For every u.d sequence xn the mapping sequence f(xn) is also u.d., see
Section 12.3.
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max
xn−u.d,Φ−u.d.p.

lim
N→∞

1

N

N∑
n=1

f(xn)Φ(xn) = max
Φ−u.d.p.

∫ 1

0

∫ 1

0

f(x)Φ(x)dx (691)

Then (691) is small that (690). By [53, p. 123, Corollary 3] for u.d.p. f(x)
we have

max
Φ−u.d.p.

∫ 1

0

∫ 1

0

f(x)Φ(x)dx =
1

3
.

Then
∫ 1

0

∫ 1

0
F (x, y)dxdyg(x, y) ≥ 1

3
.

9.3 Extremes of
∫ 1

0

∫ 1

0 F (x, y)dxdyg(x, y) attained at shuf-
fles of M

Definition 14. Let Ii, i = 1, 2, . . . , n be a decomposition of the unit interval
[0, 1], let π be a permutation of (1, 2, . . . , n), and let T : [0, 1]→ [0, 1] be an
one-to-one map whose graph T is formed by diagonals or anti-diagonals of
squares Ii × Iπ(i), i = 1, 2, . . . , n. Then the copula C(x, y) defined by

C(x, y) = |Projectx(([0, x)× [0, y)) ∩ T )| (692)

is called the shuffle of M .
Note that if xn, n = 1, 2, . . . , is an u.d. sequence, then two-dimensional

sequence (xn, T (xn)) has a.d.f C(x, y) and thus for every continuous F (x, y)
we have ∫ 1

0

∫ 1

0

F (x, y)dC(x, y) =

∫ 1

0

F (x, T (x)dx. (693)

For example (594), (604), (558) are shuffles of M .

M. Hofer and M.R. Iacò [75] was proved:

Theorem 223. Let (ai,j), i, j = 1, 2, . . . , n be a real-valued n × n matrix.
Let Ii,j =

[
i−1
n
, i
n

]
×
[
j−1
n
, j
n

]
, i, j = 1, 2, . . . , n and let the piecewise constant

function F (x, y) be defined as

F (x, y) = ai,j if (x, y) ∈ Ii,j, i, j = 1, 2, . . . , n.

Then

max
g(x,y)-copula

∫ 1

0

∫ 1

0

F (x, y)dxdyg(x, y) =
1

n

n∑
i=1

ai,π∗(i). (694)
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Here π∗(i) maximize
∑n

i=1 ai,π(i), where π is a permutation of (1, 2, . . . , n).
The maximum in (694) is attained at g(x, y) = C(x, y), where C(x, y) is
the shuffle of M whose graph T is formed by diagonals or anti-diagonals in
Ii,π∗(i), i = 1, 2, . . . , n.

Proof. a) Let Ck(x, y), k = 1, 2, . . . , n! = N be all copulas defined by shuffles
of M and tk ≥ 0,

∑N
k=1 tk = 1. Then C(x, y) =

∑N
k=1 tkCk(x, y) is a copula

and satisfies
∫
[0,1]2

f(x, y)dC(x, y) ≤ 1
n

∑n
i=1 ai,π∗(i).

b) To every copula C(x, y) we add the matrix
C(i, j) = n

∫
Ii,j

1.dC(x, y). Then C(i, j) is a doubly-stochastic and Ck(i, j)

is a permutation matrix. By Birkhoff theorem [22] (see [104]) the set of
doubly-stochastic matrices is identical with the convex hull of the set of of
permutation matrices. Thus there exists tk ≥ 0,

∑N
k=1 tk = 1 such that

C(i, j) =
∑N

k=1 tkCk(i, j) for every i, j,
1
n
ai,jC(i, j) =

∑N
k=1 tk

1
n
ai,jCk(i, j), and thus∫

[0,1]2
f(x, y)dC(x, y) =

∑N
k=1 tk

∫
[0,1]2

f(x, y)dCk(x, y) ≤ 1
n

∑n
i=1 ai,π∗(i).

Applying Theorem 223 M. Hofer and M.R. Iacò [75] approximate extremes

of
∫ 1

0

∫ 1

0
F (x, y)dg(x, y) which respect to copulas g(x, y) by the following.

Theorem 224. For continuous F (x, y) on [0, 1]2 define piecewise constant
functions F1(x, y), F2(x, y) as

F1(x, y) = min
(u,v)∈Ii,j

F (u, v) if (x, y) ∈ Ii,j, i, j = 1, 2, . . . , n,

F2(x, y) = max
(u,v)∈Ii,j

F (u, v) if (x, y) ∈ Ii,j, i, j = 1, 2, . . . , n, where

Ii,j =

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
.

Let C0(x, y), C1(x, y), C2(x, y) be copulas such that

C1(x, y) maximize
∫ 1

0

∫ 1

0
F1(x, y)dg(x, y),

C2(x, y) maximize
∫ 1

0

∫ 1

0
F2(x, y)dg(x, y) and

C0(x, y) maximize
∫ 1

0

∫ 1

0
F (x, y)dg(x, y)

over all copulas g(x, y). Then∫ 1

0

∫ 1

0

F (x, y)dC0(x, y)
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= lim
n→∞

∫ 1

0

∫ 1

0

F1(x, y)dC1(x, y) = lim
n→∞

∫ 1

0

∫ 1

0

F2(x, y)dC2(x, y).

Proof. Directly from definition we have∫ 1

0

∫ 1

0

F1(x, y)dC1(x, y) ≤
∫ 1

0

∫ 1

0

F (x, y)dC0(x, y)

≤
∫ 1

0

∫ 1

0

F2(x, y)dC2(x, y).

From continuity of F (x, y) follows that

F2(x, y) ≤ F1(x, y) + ε

for all sufficiently large n, for every (x, y) ∈ [0, 1]2. Then∫ 1

0

∫ 1

0

F2(x, y)dC2(x, y) ≤
∫ 1

0

∫ 1

0

(F1(x, y) + ε)dC2(x, y)

≤
∫ 1

0

∫ 1

0

F1(x, y)dC2(x, y) + ε ≤
∫ 1

0

∫ 1

0

F1(x, y)dC1(x, y) + ε.

9.4 Extremes of
∫ 1

0

∫ 1

0 F (x, y)dxdyg(x, y) for F (x, y) of the
form F (x, y) = Φ(x+ y)

Uckelmann (1997) [182] was proved: Let
F (x, y) = Φ(x+ y) for (x, y) ∈ [0, 1]2;
For 0 < k1 < k2 < 2 let Φ(x) be a twice differentiable function such that

Φ(x) is strictly convex on [0, k1] ∪ [k2, 2] and concave on [k1, k2], i.e.
Φ′′(x) > 0 for x ∈ [0, k1) ∪ (k2, 2],
Φ′′(x) > 0 for x ∈ [0, k1) ∪ (k2, 2].

If α and β are the solutions of

Φ(2α)− Φ(α + β) + (β − α)Φ′(α + β) = 0,

Φ(2β)− Φ(α + β) + (α− β)Φ′(α + β) = 0

such that 0 < α < β < 1, then the optimal copula C(x, y) is the shuffle of M
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with the support

Γ(x) =

{
x for x ∈ [0, α] ∪ [β, 1],

α + β − x for x ∈ (α, β).

Then

max

∫ 1

0

∫ 1

0

F (x, y)dC(x, y) =

∫ α

0

Φ(2x)dx+ (β − α)Φ(0) +
∫ 1

β

Φ(2x)dx.

9.5 Extremes of
∫ 1

0 f1(Φ(x))f2(Ψ(x))dx

The problem of this part was introduced by S. Steinerberger [151]. Moti-
vation is a study of extremes of (565) for F (x, y) = f1(x)f2(x) and for u.d.
sequences xn = Φ(zn) and yn = Ψ(zn), where Φ(x) and Ψ(x) are u.d.p.
functions and zn is a u.d. sequence. His solution is given in the following
Theorem 225, where given proof does not contain a theory of d.f.s.

Definition 15. Let f : [0, 1] → R be a Lebesgue measurable function, we
see it as a random variable, and g(x) = |f−1([0, x))| be its d.f. Put

f ∗(x) = g−1(x).
Here, if g(x) is constantly equal to c on interval (α, β) (maximal with respect
to inclusion) then we put g−1(c) = β In the following we shall write such
g(x) as Gf (x).

59

Notes 46. In Example 36 we have notion g(x) = xf (x) and in the following Theorems
226, 227, 229 and 232 we used

Gf (x) = |f−1([0, x))| (695)

59the same value as in the end of the proof of Theorem 215.
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Theorem 225. Let f1, f2 be the Riemann integrable functions on [0, 1]. Let
Φ(x),Ψ(x) be arbitrary u.d.p. transformations. Then∫ 1

0

f ∗
1 (x)f

∗
2 (1− x)dx ≤

∫ 1

0

f1(Φ(x))f2(Ψ(x))dx ≤
∫ 1

0

f ∗
1 (x)f

∗
2 (x)dx (696)

and these bounds are the best possible. Also, every number within the bounds
is attained by some u.d.p. Φ(x),Ψ(x).

In his proof Steinerberger used the Hardy-Littlewood inequality [Hardy,
Littlewood and Pólya [1934, Th. 378]:∫ 1

0

f1(x)f2(x)dx ≤
∫ 1

0

f ∗
1 (x)f

∗
2 (x)dx. (697)

9.6 Extremes of
∫ 1

0 f(x)Φ(x)dx

Now, we consider F (x, y) in the form F (x, y) = f(x) · y and study the limit
points of 1

N

∑N
n=1 f(xn) · yn, where xn is u.d. sequence and u.d. sequence yn

is given by yn = Φ(xn), where Φ(x) is a u.d.p. This problem is equivalent to
calculate

max
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx, min
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx. (698)

Theorem 225 implies

Theorem 226. For every Riemann integrable f(x) we have

max
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

f(x)Gf (f(x))dx, (699)

min
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

f(x)(1−Gf (f(x))dx. (700)

Proof.

max
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

f ∗(x)xdx =

∫ 1

0

G−1
f (x)xdx

=

∫ 1

0

G−1
f (Gf (f(x)))Gf (f(x))dx =

∫ 1

0

f(x)Ψ(x)dx.

(701)
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Analogously,

min
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

f ∗(x)(1− x)dx =

∫ 1

0

G−1
f (x)(1− x)dx

=

∫ 1

0

f(x)(1−Ψ(x))dx. (702)

Here Ψ(x) = Gf (f(x)) is an u.d.p. map. It follows from that Gf (f(xn) is
u.d. for an arbitrary u.d. sequence xn, n = 1, 2, . . . , see [171, 2.3.7, pp.
2–28].

In the following part we will find an explicit form of u.d.p. Ψ(x) =
Gf (f(x)) for piecewise linear function f : [0, 1]→ [0, 1].

9.6.1 Piecewise linear f(x)

Definition 16. A function f : [0, 1]→ [0, 1] is piecewise linear (p.l.) if there
exists a system of ordinate intervals Jj, j = 1, 2, . . . , k which are disjoint and
fulfil the unit interval [0, 1]. For every Jj there exists a related system of
abscissa intervals Ij,i, i = 1, 2, . . . , lj, such that f(x)/Ij,i is the increasing or
decreasing diagonal of Ij,i × Jj.

So every p.l. function can be defined by the sets Jj and Ij,i and a sign of
derivative on each Ij,i × Jj. For example

0 1

J1

J2

J3

J4
1

I1,1 I2,1 I3,1 I4,1 I1,2 I3,2I2,2
Figure: A piecewise linear function.
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In J. Fialová [51] is proved:

Theorem 227. Let f : [0, 1]→ [0, 1] be a p.l. function with ordinate decom-
position Jj, j = 1, 2, . . . , k, and abscissa decomposition Ij,i, i = 1, 2, . . . , lj.
Define a p.l. function Ψ(x) in the same abscissa decomposition Ij,i but in a
new ordinate decomposition J ′

j, with the lengths

|J ′
j| =

lj∑
i=1

|Ij,i|, j = 1, 2, . . . , k, (703)

and with the same ordering as Jj, j = 1, 2, . . . , k. Put the graph of Ψ(x)/Ij,i
on Ij,i × J ′

j as the increasing diagonal ↗ or decreasing ↘ if and only if
f(x)/Ij,i is the ↗ or ↘ diagonal. Note that if f(x) is a constant on the in-
terval Ij,i, then Ji is a point, and the graph Ψ(x)/Ij,i can be defined arbitrary,
either increasing or decreasing in Ij,i × J ′

j.
Then Ψ(x) is the u.d.p. map and∫ 1

0

f(x)Ψ(x)dx = max
Φ(x)-u.d.p.

∫ 1

0

f(x)Φ(x)dx.

For example

0 1
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J2

J3

J4

1
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0 1

J ′
1

J ′
2

J ′
3

J ′
4

1

�
�

��
�
�

f(x) Ψ(x)

Figure: The best u.d.p. approximation.

Proof. By Theorem 226 it is sufficed to prove that Ψ(x) defined in Theorem
227 is equal to Ψ(x) = Gf (f(x)). Without loos of generality, we transform
the p.l. function f(x) in the following way: the intervals Ij,i are rearranged
such that, for the same j the intervals Ij,i are fused into Ij and these are
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ordered according to j from the left to the right. This can be done also
backwards, so the following picture shows that the function Gf (f(x)) is the
same as the function Ψ(x). Note that for such reorganized f(x) the function
Gf (x) is still the same one.
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B
B
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B

f(x) Gf (x) Gf (f(x))

Figure: The equality between Ψ(x) and Gf (f(x)).

In the originally proof of Theorem 227 presented in the Strobl UDT2010
conference, J. Fialová uses the following basic property of an extreme.

Theorem 228. For an arbitrary Riemann integrable f : [0, 1]→ R we have∫ 1

0

f(x)Ψ(x)dx = max
Φ(x)-u.d.p.

∫ 1

0

f(x)Φ(x)dx

if and only if∫ 1

0

(f(x)−Ψ(x))2dx = min
Φ(x)-u.d.p.

∫ 1

0

(f(x)− Φ(x))2dx.

We will call such u.d.p. Ψ(x) as the best u.d.p. approximation of f(x).

Proof. Let Ψ1(x),Ψ2(x) be two u.d.p. functions, and f(x) is given. Then∫ 1

0

(f(x)−Ψ1(x))
2dx <

∫ 1

0

(f(x)−Ψ2(x))
2dx⇔∫ 1

0

f(x)Ψ1(x)dx >

∫ 1

0

f(x)Ψ2(x)dx.
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Here the following property of u.d.p. functions is used∫ 1

0

Ψ2
1(x)dx =

∫ 1

0

Ψ2
2(x)dx =

∫ 1

0

x2dx =
1

3
.

By using Theorem 228, for some special cases, it can be proved that Ψ(x)
is the best approximation of p.l. function f(x). But the proof of Theorem 123
via Steinerberger’s Theorem 225 is to simple. Here we add some consequences
of Theorem 228, 227 and 226:

Theorem 229. If f(x) is u.d.p. function, then

max
Φ(x)-u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

f 2(x)dx. (704)

Theorem 230 ([51]). The best u.d.p. approximation of the function f(x) is
independent of the lengths of the ordinate intervals Jj. Thus, for the given
u.d.p. function Ψ(x) there are infinity many functions f(x) for which Ψ(x)
is the best u.d.p. approximation, e.g.
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Ψ(x) f(x)
Theorem 231 ([51]). For u.d.p. function Ψ(x) in Theorem 227, Ψ(x)/Ij,i
can be expressed as

Ψ(x) =
|J ′
j|
|Jj|

f(x) + t′j−1 − tj−1

|J ′
j|
|Jj|

,

where |J ′
j| =

∑lj
i=1 |Ij,i|, and t′j is given recurrently as t′0 = 0 and t′j =

t′j−1 + |J ′
j|. So the integral

∫ 1

0
f(x)Ψ(x)dx can be calculated directly from

Jj = (tj−1, tj) and J
′
j = (t′j−1, t

′
j) as∫ 1

0

f(x)Ψ(x)dx =
k∑
j=1

|J ′
j|
(
tj−1t

′
j−1 +

1

2
tj−1|J ′

j|+
1

2
t′j−1|Jj|+

1

3
|Jj||J ′

j|
)
.

(705)
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Theorem 232. Let f : [0, 1] → [0, 1] be a Riemann-integrable function.
Then

max
Φ(x)−u.d.p.

∫ 1

0

f(x)Φ(x)dx =

∫ 1

0

xgf (x)dGf (x) =
1

2

(
1−

∫ 1

0

G2
f (x)dx

)
.

(706)

Proof. Here as in Definition 15, Gf (x) = |f−1[0, x)| for x ∈ [0, 1]. For every
u.d. sequence xn, n = 1, 2, . . . , the sequence f(xn) has a.d.f. Gf (x) and then
Gf (f(xn)) is u.d. sequence. By Helly theorem we have two alternatives

1

N

N∑
n=1

f(xn)Gf (f(xn))→
∫ 1

0

xGf (x)dGf (x) (707)

→
∫ 1

0

f(x)Gf (f(x))dx. (708)

In (707) we use integration by parts and (708) is in (699).

9.7 Computation of
∫ 1

0 f1(Φ(x))f2(Ψ(x))dx

Theorem 233. Let f1(x) and f2(x) be two functions defined on [0, 1] having
continuous derivatives f ′

1(x) and f
′
2(x). Let Φ(x) and Ψ(x) be two u.d.p maps

on [0, 1] and put for (x, y) ∈ [0, 1]2

g(x, y) = |Φ−1([0, x)) ∩Ψ−1([0, y))|, (709)

where |X| is the Lebesgue measure of the set X. Then∫ 1

0

f1(Φ(x))f2(Ψ(x))dx =f1(1)f2(1)− f(1)
∫ 1

0

yf ′
2(y)dy − f2(1)

∫ 1

0

xf ′
1(x)dx

+

∫ 1

0

∫ 1

0

g(x, y)f ′
1(x)f

′
2(y)dxdy. (710)

Proof. Let xn, n = 1, 2, . . . , be a u.d. sequence in [0, 1) and let g(x, y) be a
d.f. of the two dimensional sequence (Φ(xn),Ψ(xn)), n = 1, 2, . . . . Then by
Weyl and by Helly theorem the limit of the following arithmetic means can
be computed by two methods

1

N

N∑
n=1

f1(Φ(xn))f2(Ψ(xn))→
∫ 1

0

f1(Φ(x))f2(Ψ(x))dx, (711)
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→
∫ 1

0

∫ 1

0

f1(x)f2(x)dxdyg(x, y). (712)

Since

(Φ(xn) < x) ∧ (Ψ(xn) < y)⇔ (xn ∈ Φ−1([0, x))) ∧ (xn ∈ Ψ−1([0, y)))

and xn is u.d. then the sequence (Φ(xn),Ψ(xn)) has d.f

#{n ≤ N ;xn ∈ Φ−1([0, x)) ∩Ψ−1([0, y))}
N

→ |Φ−1([0, x)) ∩Ψ−1([0, y))|

which is furthermore a.d.f.
Now, to computing (712) we apply (573) for F (x, y) = f(x)g(y).

Notes 47. 10. Steinerberger [151] generalized (566) to extremes of∫ 1

0

f1(Φ1(x))f2(Φ2(x)) . . . fs(Φs(x))dx (713)

for Riemann integrable f1, . . . , fs and u.d.p. maps Φ1, . . . ,Φs. He proved, e.g., the follow-
ing partial results:

a) maxΦ1,...,Φs

∫ 1

0
f1(Φ1(x))f2(Φ2(x)) . . . fs(Φs(x))dx

≤
(∏n

i=1

∫ 1

0
|fi(x)|s dx

) 1
s

.

b) minΦ1,...,Φn

∫ 1

0
Φ1(x)Φ2(x) . . .Φs(x)dx ≥ 1

es .

c) minΦ1,...,Φs

∫ 1

0
Φ1(x)Φ2(x) . . .Φs(x)dx ≤ e

1
6s

s
s−2

4
π

1
es .

Using d.f.s theory, (713) can be reformulated: Let xn, n = 1, 2, . . . , be a u.d. sequence
in [0, 1) and g(t1, . . . , ts) be an a.d.f. of the s-dimensional sequence (Φ1(xn), . . . ,Φs(xn)),
n = 1, 2, . . . We have

g(t1, . . . , ts) = |Φ−1
1 ([0, t1)) ∩ · · · ∩ Φ−1

s ([0, ts))|,

g(1 . . . , ti, 1 . . . , 1) = ti for i = 1, . . . , s, i.e., it is a copula and∫ 1

0

f1(Φ1(x)) . . . fs(Φs(x))dx =

∫
[0,1]s

f1(t1) . . . fs(ts)dg(t1, . . . , ts).

Thus, we arrive to the open problem: Find extreme values of
∫
[0,1]s

F (x)dg(x), where

g(x) is a copula.
20. Steinerberger [152] generalized (563) to give bounds for the asymptotic behavior

of

1

N

N∑
n=1

||xn − yn||, (714)

where xn,yn are u.d. sequences in a bounded Jordan measurable domain Ω. E.g., for

s-dimensional ball he found the sharp inequality 1
N

∑N
n=1 ||xn − yn|| ≤ 2s

s+1 .
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9.8 Extremes of
∫ 1

0

∫ 1

0

∫ 1

0 F (x, y, z)dxdydzg(x, y, z)

The result (570) can be extend for s = 3 (cf. Theorem 204)

Theorem 234. Assume that F (x, y, z) is a continuous in [0, 1]3 and g(x, y, z)
is a d.f. Then∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z)dxdydzg(x, y, z)

= F (1, 1, 1, )−
∫ 1

0

g(1, 1, z)dzF (1, 1, z)−
∫ 1

0

g(1, y, 1)dyF (1, y, 1)

−
∫ 1

0

g(x, 1, 1)dxF (x, 1, 1) +

∫ 1

0

∫ 1

0

g(1, y, z)dydzF (1, y, z)

+

∫ 1

0

∫ 1

0

g(x, 1, z)dxdzF (x, 1, z) +

∫ 1

0

∫ 1

0

g(x, y, 1)dxdyF (x, y, 1)

−
∫ 1

0

∫ 1

0

∫ 1

0

g(x, y, z)dxdydzF (x, y, z). (715)

This gives the following generalization of Theorem 214:

Theorem 235. Let xn, yn, zn are u.d. sequences in [0, 1) such that (xn, yn),
(xn, zn), (yn, zn) are u.d. in [0, 1)2. If dxdydzF (x, y, z) < 0 in (0, 1)3, then

lim sup
N→∞

1

N

∑
n=1

F (xn, yn, zn) ≤
∫ 1

0

∫ 1

0

∫ 1

0

F (x, y, z)dxdydzmin(xy, xz, yz).

(716)

10 Solution of
∫ 1

0

∫ 1

0 F (x, y)dg(x)dg(y) = 0 in d.f.s

g(x)

These investigation is motivated by Theorem 126 and mostly published in
[164]. Also extend Section 4.4. Again, for a given continuous F : [0, 1]2 → R,
let G(F ) denote the set of all d.f.s g(x) which solve the moment problem∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0. (717)
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10.1 Examples of calculations of
∫ 1

0

∫ 1

0 F (x, y)dg(x)dg(y)

Example 99. Following [158, p. 618] let us denote

Fg̃(x, y) =

∫ 1

0

g̃2(t)dt−
∫ 1

x

g̃(t)dt−
∫ 1

y

g̃(t)dt+ 1−max(x, y), (718)

or alternatively

=

∫ 1

0

g̃2(t)dt+

∫ x

0

g̃(t)dt+

∫ y

0

g̃(t)dt− 2

∫ 1

0

g̃(t)dt

+ 1− x+ y + |x− y|
2

. (719)

From the relation (see (30))∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0

Fg̃(x, y)dg(x)dg(y), (720)

we see that the moment problem (717) with F (x, y) = Fg̃(x, y) has the unique
solution g(x) = g̃(x). Applying (720) to g(x) = (g1(x) + g2(x))/2 also holds∫ 1

0

∫ 1

0

Fg̃(x, y)dg1(x)dg2(y) =

∫ 1

0

(g1(x)− g̃(x))(g2(x)− g̃(x))dx,

The function Fg̃ for g̃(x) = x will be denoted by F0 and

F0(x, y) =
1

3
+
x2 + y2

2
−max(x, y)

=
1

3
+
x2 + y2

2
− x+ y

2
− |x− y|

2

=
1

4
+ xy − x+ y

2
+

1

2π2

∞∑
h=1

1

h2
cos 2πh(x− y)

=

(
x− 1

2

)(
y − 1

2

)
+

∫ 1

0

(
{x+ t} − 1

2

)(
{y + t} − 1

2

)
dt,

where the final equation can be found in [92, p. 144, Th. 5.2]. This function

F0(x, y) is inspired by the classical L2 discrepancy
∫ 1

0
(FN(x)− x)2dx since∫ 1

0

(FN(x)− x)2dx =
1

N2

N∑
m,n=1

F0(xm, xn).
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Example 100. In connection with a diaphony (cf. [158, p. 620]) we intro-
duce

F
(1)
g̃ (x, y) =

∫ 1

0

g̃2(t)dt−
(∫ 1

0

g̃(t)dt

)2

− (x+ y)

∫ 1

0

g̃(t)dt

+

∫ x

0

g̃(t)dt+

∫ y

0

g̃(t)dt+min(x, y)− xy.

Since∫ 1

0

∫ 1

0

F
(1)
g̃ (x, y)dg(x)dg(y) =

∫∫
0≤x≤y≤1

((g̃(y)− g̃(x))− (g(y)− g(x)))2dxdy

=

∫ 1

0

(g̃(x)− g(x))2dx−
(∫ 1

0

(g̃(x)− g(x))dx
)2

,

the moment problem (717) with F = F
(1)
g̃ is equivalent to g̃(x)−g(x) =constant

in every point x of continuity and thus has a unique solution g(x) = g̃(x) if,
e.g. g̃(x) is continuous at 0 and 1.

Example 101. For a continuous distribution function g̃, the moment prob-
lem ∫ 1

0

∫ 1

0

F0(g̃(x), g̃(y))dg(x)dg(y) = 0

has the unique solution g(x) = g̃(x). This is a consequence of [92, Exerc.
7.19, p. 68] which states that if g̃ is a continuous limit law of the sequence
xn in [0, 1], then the sequence g̃(xn) is u.d. in [0, 1].

Example 102. For a d.f. g(x) and a piecewise continuous f : [0, 1]→ [0, 1]
we denote by gf the d.f. (see Section 4.8.1)

gf (x) =

∫
f−1([0,x))

1.dg(x).

In [158, p. 628] we have proved, for two piecewise continuous f, g,∫ 1

0

(gf (x)− gh(x))2dx =

∫ 1

0

∫ 1

0

Ff,h(x, y)dg(x)dg(y)

where

Ff,h(x, y) = max(f(x), h(y)) + max(f(y), h(x))−max(f(x), f(y))
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−max(h(x), h(y)). (721)

Thus, the moment problem (717) with F = Ff,h is equivalent to the functional
equation gf (x) = gh(x) a.e. on [0, 1]. For f(x) = {1/x} and h(x) = x
and applying the Gauss-Kuzmin theorem (see Theorem 178), the functional
equation gf = g has unique solution g(x) = log(1 + x)/ log 2 on the set
G′ of all distribution functions having continuous first derivative. Thus, for
F = Ff,h, the moment problem (717) has a unique solution on G′. Here

Ff,h(x, y) = max({1/x}, y) + max({1/y}, x)−max(x, y)

−max({1/x}, {1/y})

=
1

2

(
|{1/x} − y|+ |{1/y} − x| − |x− y| − |{1/x} − {1/y}|

)
(722)

and

gf (x) =
∞∑
n=1

(
g

(
1

n

)
− g

(
1

n+ x

))
.

Example 103. Combining examples 100 and 101 we can define∫∫
0≤x≤y≤1

((
gf (y)− gf (x)

)
−
(
gh(y)− gh(x)

))2
dxdy

=

∫ 1

0

∫ 1

0

F
(1)
f,h(x, y)dg(x)dg(y),

where
F

(1)
f,h(x, y) = Ff,h(x, y)− (f(x)− h(x))(f(y)− h(y)).

Moment problems (717) with F = Ff,h and F = F
(1)
f,h have the same solutions

assuming some additional conditions on g, f and h.

Example 104. Since∫ 1

0

(g0(x)− gf (x))2dx =

∫ 1

0

∫ 1

0

Fg0(f(x), f(y))dg(x)dg(y)

the moment problem (717) with F (x, y) = Fg0(f(x), f(y)) is equivalent to
the functional equation g0(x) = gf (x) a.e.
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Example 105. Define F ∗
g1,g2

(x, y) as F1(x, y) in Theorem 63, i.e.∫ 1

0

∫ 1

0

F ∗
g1,g2

(x, y)dg(x)dg(y) =

∫ 1

0

(g(x)− g2(x))2dx
∫ 1

0

(g2(x)− g1(x))2dx

−
(∫ 1

0

(g(x)− g2(x))(g2(x)− g1(x))dx
)2

.

Then∫ 1

0

∫ 1

0

F ∗
g1,g2

(x, y)dg(x)dg(y) = 0⇐⇒ ∃(t ∈ R)g(x) = tg1(x)+(1−t)g2(x) a.e.

If we assume that given g1, g2 have derivatives g′1, g
′
2, then the parameter t

must satisfy

tg′1(x) + (1− t)g′2(x) ≥ 0⇐⇒ t(g′1(x)− g′2(x)) ≥ −g′2(x).

Putting

X1 = {x ∈ [0, 1]; g′1(x)− g′2(x) > 0}, X2 = {x ∈ [0, 1]; g′1(x)− g′2(x) < 0},
we can express

G(F ∗
g1,g2) =

{
tg1(x) + (1− t)g2(x); t ∈

[
sup
x∈X1

−g′2(x)
g′1(x)− g′2(x)

, inf
x∈X2

−g′2(x)
g′1(x)− g′2(x)

]}
.

Here we have the explicit form

F ∗
g1,g2

(x, y) = Fg2(x, y)

∫ 1

0

(g2(x)− g1(x))2dx− Fg1,g2(x)Fg1,g2(y),

where Fg2(x, y) is defined by Example 99 and

Fg1,g2(x) =

∫ x

0

(g2(t)− g1(t))dt−
∫ 1

0

(1− g2(x))(g2(x)− g1(x))dx.

Example 106. We repeat Theorem 23: For every polynomial ψ(y) = a(x)y2+

b(x)y+c(x) with continuous coefficients the one-dimensional integral
∫ 1

0
ψ(g(x))dx

can be express as the double integral∫ 1

0

ψ(g(x))dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

for every d.f. g, where

F (x, y) =

∫ 1

max(x,y)

a(t)dt+
1

2

∫ 1

x

b(t)dt+
1

2

∫ 1

y

b(t)dt+

∫ 1

0

c(t)dt.
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Notes 48. Assume that
F (x, y) =

∑k
i=1 Fi(x, y), and∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0 has a unique solution g(x) = g0(x).

Denote
∫ 1

0

∫ 1

0
Fi(x, y)dg0(x)dg0(y) = αi, i = 1, 2, . . . , k. Then the system of equations∫ 1

0

∫ 1

0

Fi(x, y)dg(x)dg(y) = αi, i = 1, 2, . . . , k.

has a unique solution g(x) = g0(x).

10.2 Theorems of calculations of
∫ 1

0

∫ 1

0 F (x, y)dg(x)dg(y)

Here we apply Riemann-Stieltjes integration and as usually

dxF (x, y) = F (x+ dx, y)− F (x, y), dxF (x, 1) = [dxF (x, y)]y=1 ,

dxdyF (x, y) = F (x+ dx, y + dy)− F (x+ dx, y)− F (x, y + dy) + F (x, y)

and
dxF (x, y) = F ′

x(x, y)dx, dxdyF (x, y) = F ′′
xy(x, y)dxdy

provided that related partial derivatives F ′
x = ∂F (x,y)

∂x
and F ′′

xy =
∂2F (x,y)
∂x∂y

are
exist. For an introduction we mention the following simple properties.

Theorem 236. Assume that F (x, y) = 0 for (x, y) ∈ {(xi, xj); i, j = 1, 2, . . . ,m}.
Then any step d.f. g(x) having jumps only in xi, i = 1, 2, . . . ,m is a solution
of (717).

Theorem 237. If F (x, y) and H(x, y) are continuous symmetric and for
every d.f. g∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =

∫ 1

0

∫ 1

0

H(x, y)dg(x)dg(y),

then F (x, y) = H(x, y) for all (x, y) ∈ [0, 1]2.

Proof. Indeed, F (α, α) = H(α, α) follows from the assumed integral equation
with g(x) = cα(x) and F (α, β) = H(α, β) we find by using g(x) = tcα(x) +
(1− t)cβ(x).
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Theorem 238. Let F : [0, 1]2 → R be a continuous and symmetric function.
For every d.f.s g(x), g̃(x) we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0⇐⇒
∫ 1

0

∫ 1

0

F (x, y)dg̃(x)dg̃(y)

=

∫ 1

0

(g(x)− g̃(x))
(
2dxF (x, 1)−

∫ 1

0

(g(y) + g̃(y))dydxF (x, y)

)
.

Proof. Using integration by parts, for any two d.f.s g, g̃ we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)−
∫ 1

0

∫ 1

0

F (x, y)dg̃(x)dg̃(y)

=

∫ 1

0

∫ 1

0

F (x, y)d(g(x)− g̃(x))d(g(y) + g̃(y))

= −
∫ 1

0

(∫ 1

0

(g(x)− g̃(x))dxF (x, y)
)
d(g(y) + g̃(y))

= −
[∫ 1

0

(g(x)− g̃(x))dxF (x, y) · (g(y) + g̃(y))

]y=1

y=0

+

∫ 1

0

(g(y) + g̃(y))dy

(∫ 1

0

(g(x)− g̃(x))dxF (x, y)
)
.

This implies∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)−
∫ 1

0

∫ 1

0

F (x, y)dg̃(x)dg̃(y)

=

∫ 1

0

(g(x)− g̃(x))
(
−2dxF (x, 1) +

∫ 1

0

(g(y) + g̃(y))dydxF (x, y)

)
(723)

=

∫ 1

0

∫ 1

0

(g(x)− g̃(x))(g(y)− g̃(y))dydxF (x, y)

+ 2

∫ 1

0

(g(x)− g̃(x))
(
−dxF (x, 1) +

∫ 1

0

g̃(y)dydxF (x, y)

)
. (724)

and (723) implies theorem.

Example 107. Especially, putting g̃(x) = c0(x), we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0⇐⇒
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F (0, 0) =

∫ 1

0

(g(x)− 1)

(
2dxF (x, 1)−

∫ 1

0

(g(y) + 1)dydxF (x, y)

)
. (725)

For F (x, y) = F0(x, y), where F0(x, y) =
1
3
+ x2+y2

2
−max(x, y) is defined in

Example 99, we have (725) in the form

g(x) = x⇐⇒ 1

3
=

∫ 1

0

g(x)(2x− g(x))dx.

Here dydxF0(x, y) = 0 if x ̸= y and for x = y

dydxF0(x, y) = F0(x, y)+F0(x+dx, y+dy)−F0(x, y+dy)−F0(x+dx, y) = dx = dy.

Then∫ 1

0

∫ 1

0

(g(x)− 1)(g(y) + 1)dydxF0(x, y) =

∫ 1

0

(g(x)− 1)(g(x) + 1)dx.

A direct proof of (725) can be found by using theory [159] of the moment
problem 4.10.

Example 108. For control, if F (x, y) = xy, then (725) has the form∫ 1

0

∫ 1

0

xydg(x)dg(y) = 0⇐⇒

0 =

∫ 1

0

(g(x)− 1)

(
2dx−

∫ 1

0

(g(y) + 1)dydx

)
=

∫ 1

0

(g(x)− 1)

(
2−

∫ 1

0

(g(y) + 1)dy

)
dx

=

∫ 1

0

(g(x)− 1)dx

(
1−

∫ 1

0

g(y)dy

)
= −

(∫ 1

0

(g(x)− 1)dx

)2

Thus
∫ 1

0
xdg(x) = 0⇐⇒

∫ 1

0
g(x)dx = 1 which is trivial.

Example 109. For F (x, y) = x+ y, g(x), g̃(x) the (723) gives∫ 1

0

∫ 1

0

(x+ y)dx2dy2 −
∫ 1

0

∫ 1

0

(x+ y)dxdy = −2
∫ 1

0

(x2 − x)dx.

This holds since 8(1/3)(1/2)− 2(1/2) = 1/3.
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Theorem 239. Assume that continuous f : [0, 1]→ [0, 1] has finitely many
inverse functions f−1

1 , . . . , f−1
m such that, for every i = 1, 2, . . . ,m we have

f−1
i : [0, 1]→ [αi, βi]. Then∫ 1

0

(gf (x)− g1f (x))2dx =

∫ 1

0

(g(x)− g1(x))f ′(x)(gf (f(x))− g1f (f(x)))dx

(726)

Proof. We give a simple proof for the special f(x) = 2x mod 1. Firstly split

the integral (726) on two parts
∫ 1/2

0
and

∫ 1

1/2
. Substitute

y = f(x)
y
2
= f−1

1 (y) = x

into
∫ 1/2

0
we find∫ 1/2

0

(g(x)− g1(x))f ′(x)(gf (f(x))− g1f (f(x)))dx

=

∫ 1

0

(g(f−1
1 (y))− g1(f−1

1 (y)))2(gf (y)− g1f (y))
dy

2
. (727)

Substitute
y = f(x)
y+1
2

= f−1
2 (y) = x

into
∫ 1

1/2
we find∫ 1

1/2

(g(x)− g1(x))f ′(x)(gf (f(x))− g1f (f(x)))dx

=

∫ 1

0

(g(f−1
2 (y))− g1(f−1

2 (y)))2(gf (y)− g1f (y))
dy

2
. (728)

Summing up (727) and (728) then we find (726).

Example 110. Once again (726): Put
g1(x) = x, and g(x) is an arbitrary d.f.,

f(x) =

{
2x, x ∈ [0, 1/2];

2− 2x, x ∈ [1/2, 1];

f−1
1 (x) = x/2 and f−1

2 (x) = 1− (x/2);
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gf (x) = g(f−1
1 (x)) + 1− g(f−1

2 (x));
g1f (x) = x;

f ′(x) =

{
2, x ∈ [0, 1/2];

−2, x ∈ [1/2, 1];

f−1
1 (f(x)) =

{
x, x ∈ [0, 1/2];

1− x, x ∈ [1/2, 1];

f−1
2 (f(x)) =

{
1− x, x ∈ [0, 1/2];

x, x ∈ [1/2, 1];

Then we have

gf ((f(x)) =

{
g(x) + 1− g(1− x), x ∈ [0, 1/2];

g(1− x) + 1− g(x), x ∈ [1/2, 1];

g1f ((f(x)) =

{
2x, x ∈ [0, 1/2];

2− 2x, x ∈ [1/2, 1];

The (726) has the form∫ 1

0

(g(x/2) + 1− g(1− x/2)− x)2dx

=

∫ 1/2

0

(g(x)− x)2(g(x) + 1− g(1− x)− 2x)dx

+

∫ 1

1/2

(g(x)− x)(−2)(g(1− x) + 1− g(x)− (2− 2x))dx

which holds for every d.f. g(x).

• In the following we denote the set of jumps of F ′
x(x, y) as

H(F ) = {(x, y) ∈ [0, 1]2; dyF
′
x(x, y) ̸= 0 as dy → 0}. (729)

Furthermore assume that H(F ) can be expressed as

H(F ) = {(x, ui(x)); i = 1, 2, . . . , k, x ∈ [0, 1]}, (730)

and we denote a jump of partial derivative F ′
x at the point (x, ui(x)) as vi(x),

i.e.
vi(x) = F ′

x(x, ui(x) + 0)− F ′
x(x, ui(x)− 0). (731)
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Theorem 240. Let F (x, y) be a continuous, symmetric and F ′′
xy = 0 a.e.

and such that the set H(F ) of jumps of F ′
x(x, y) satisfies (730) and (731).

Furthermore assume that ui(x) and vi(x), for i = 1, 2, . . . , k, are continuous.
Then for every solution g1 of the moment problem (717) we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

=

∫ 1

0

(g(x)− g1(x))

(
−2F ′

x(x, 1) +
k∑
i=1

(
g(ui(x)) + g1(ui(x))

)
vi(x)

)
dx.

(732)

for any d.f. g.

Proof. Directly from (723) and by using Riemann-Stieltjes integration.

Theorem 241. From assumption of Theorem 240 follows∫ 1

0

g1(x)

( k∑
i=1

g(ui(x))vi(x)

)
dx =

∫ 1

0

g(x)

( k∑
i=1

g1(ui(x))vi(x)

)
dx (733)

for every d.f. g(x).

Proof. From symmetry of F we see that partial derivative F ′
y(x, y) has jumps

in (y, ui(y)) of size vi(y). Thus∫ 1

0

∫ 1

0

(g(x)− g1(x))(g(y) + g1(y))dydxF (x, y)

=

∫ 1

0

(g(x)− g1(x))

(
k∑
i=1

(
g(ui(x)) + g1(ui(x))

)
vi(x)

)
dx

=

∫ 1

0

(g(x) + g1(x))

(
k∑
i=1

(
g(ui(x))− g1(ui(x))

)
vi(x)

)
dx.

10.3 Copositive F (x, y)

A symmetric matrixA is called copositive if the quadratic form xAxT is non-
negative for all nonnegative values of the variables (x1, x2, . . . , xn) = x. This
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generalization of positive definiteness was first discussed by T. S. Motzkin
[108]. All criteria for copositivity of real symmetric matrices A of order n
are inductive, e.g. (cf. K. P. Hadeler [67, Th. 2]): A real symmetric matrix
A of order n is copositive if and only if

(i) every principal submatrix of order n− 1 is copositive,
(ii) det A ≥ 0 or the matrix of signed cofactors adj A contains a negative

element.
In the following we give an extension of copositivity to F (x, y) for which

the moment problem (717) can be transformed to some simple integral equa-
tion.

Definition 17. A symmetric continuous F (x, y) defined on [0, 1]2 is called
copositive if ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) ≥ 0

for all d.f.s g : [0, 1]→ [0, 1].

Theorem 242. (I) A copositive F (x, y) need not have F (x, y) ≥ 0 for every
(x, y) ∈ [0, 1]2 but for every (x, y) ∈ [0, 1]2 it must be F (x, x) ≥ 0, F (y, y) ≥ 0
and F (x, x)F (y, y) ≥ F 2(x, y) or F (x, y) ≥ 0.

(II) A real continuous symmetric F (x, y) is copositive if and only if for
every finite sequence x1, . . . , xN in [0, 1] the matrix A = (F (xm, xn))1≤m,n≤N
is copositive.

(III) If F1(x, y) is copositive and F (x, y) ≥ F1(x, y) on [0, 1]2, then F (x, y)
is copositive. If F1(x, y) and F2(x, y) are copositive, then F1(x, y) + F2(x, y)
and max(F1(x, y), F2(x, y)) are also copositive.

(IV) Copositivity of F (x, y) implies copositivity of F (f(x), f(y)) for every
continuous f : [0, 1]→ [0, 1].

Proof. (I) The known criterion of copositivity for symmetric matrixA = (aij)
of rank 2 states: The matrix A is copositive if and only if a11 ≥ 0, a22 ≥ 0
and a11a22 − a212 ≥ 0 or a12 ≥ 0.

(II) Sufficiency follows from the Helly theorem.
(III) Clearly.
(IV) It follows from∫ 1

0

∫ 1

0
F (f(x), f(y))dg(x)dg(y) =

∫ 1

0

∫ 1

0
F (x, y)dgf (x)dgf (y).
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Theorem 243. (I) If F (x, y) ≥ max
(
Fg1(x, y), Fg2(x, y)

)
, for some two dif-

ferent distribution functions g1, g2, then the moment problem (717) has no
solution.

(II) If continuous symmetric F (x, y) is not copositive together with −F (x, y),
then the moment problem (717) has infinitely many solutions g.

Proof. (I) G(F ) ⊂ G(Fg1) ∩G(Fg2) = ∅.
(II) Assume that, for given distribution functions g1 and g2, we have∫ 1

0

∫ 1

0

F (x, y)dg1(x)dg1(y) > 0 and

∫ 1

0

∫ 1

0

F (x, y)dg2(x)dg2(y) < 0.

For these g1, g2 we can find (in the interval [0, 1]) finite sequences xn and yn,
n = 1, 2, . . . , N with step d.f.s.

F
(1)
N (x) =

1

N

N∑
n=1

c[0,x)(xn), F
(2)
N (x) =

1

N

N∑
n=1

c[0,x)(yn),

such that∫ 1

0

∫ 1

0

F (x, y)dF
(1)
N (x)dF

(1)
N (y) =

1

N2

N∑
m,n=1

F (xm, xn) > 0,

∫ 1

0

∫ 1

0

F (x, y)dF
(2)
N (x)dF

(2)
N (y) =

1

N2

N∑
m,n=1

F (ym, yn) < 0.

From continuity of F (x, y) it follows the existence of a sequence zn, n =
1, 2, . . . , N in [0, 1] for which its step distribution function

F
(3)
N (x) =

1

N

N∑
n=1

c[0,x)(zn)

solves (717). This can be realized for every sufficiently large N . Moreover,
for any given t1, t2, . . . , tk in [0, 1] and for sufficiently large N ≥ N(k) we
can find such zn with the initial k-terms segment t1, t2, . . . , tk. Furthermore,
if F

(3)
N1

(x) = F
(3)
N2

(x), then either (N1, N2) = d > 1, or F
(3)
N1

(x) = F
(3)
N2

(x) =
cα(x). Then the infinitely many solutions of (717) can be realized by using
t1 ̸= t2 and an infinite sequenceN1 < N2 < . . . of pairwise coprime terms.
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Theorem 244. Let F (x, y) be a copositive function having continuous F ′
x(x, 1)

a.e. and let g1(x) be a strictly increasing solution of the moment problem
(717). Then for every strictly increasing d.f. g(x) we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0⇐⇒ F ′
x(x, 1) =

∫ 1

0

g(y)dyF
′
x(x, y) a.e. on [0, 1],

(734)

Proof. Let g1(x) be a solution of (717). Assume that x0 is a common point of
continuity of g1(x) and F

′
x(x, 1). Furthermore, assume that g1(x) is strictly

increasing on the interval Iε = [x0− ε, x0+ ε]. Then there exists z(x) defined
on [0, 1] such that

(i) z(x) = 0 for x ∈ [0, 1]− Iε,
(ii) z(x) ̸= 0 for x ∈ Iε,
(iii) g(x) = g1(x) + z(x) is nondecreasing.

Then by (724) we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =

∫∫
I2ε

z(x)z(y)dxdyF (x, y)

+ 2

∫
Iε

z(x)

(
−dxF (x, 1) +

∫ 1

0

g1(y)dydxF (x, y)

)
. (735)

Assuming (−dxF (x, 1) +
∫ 1

0
g1(y)dydxF (x, y)) ̸= 0, the sign of the double

integral
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) is dependent on sign of z(x) which is a con-

tradiction and thus we have the(
−dxF (x, 1) +

∫ 1

0
g1(y)dydxF (x, y)

)
= 0 a.e. and thus we have(

−dxF (x, 1) +
∫ 1

0
g(y)dydxF (x, y)

)
= 0 a.e. for every strictly increasing

solution g(x) of
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0.

Thus we have ⇒ implication in (734). Opposite implication ⇐ in (734)
follows from (736).

Theorem 245. The equation (723) can be reduced as∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

=

∫ 1

0

(g(x)− g1(x))
(
−F ′

x(x, 1) +

∫ 1

0

g(y)dyF
′
x(x, y)

)
dx (736)
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=

∫ 1

0

(g(x)− g1(x))

(
−F ′

x(x, 1) +
k∑
i=1

g(ui(x))vi(x)

)
dx (737)

=

∫ 1

0

∫ 1

0

(g(x)− g1(x))(g(y)− g1(y))dxdyF (x, y) (738)

where F (x, y) is copositive, symmetric and continuous and g1(x) is a strictly
increasing solution of the moment problem (717).

Proof. The equation (736) follows from (723) and (734). The (738) follows
from (724) and (734).

Difference of (738) for two increasing solutions g1(x) and g2(x) of (717)
gives

0 =

∫ 1

0

(g2(x)− g1(x))

(
−F ′

x(x, 1) +
k∑
i=1

g(ui(x))vi(x)

)
dx. (739)

Since (739) holds for arbitrary d.f. g(x) then

0 =

∫ 1

0

(g2(x)− g1(x))F ′
x(x, 1)dx (740)

0 =

∫ 1

0

(g2(x)− g1(x))
( k∑

i=1

g(ui(x))vi(x)

)
dx, (741)

for arbitrary d.f. g(x).

Theorem 246. Let g1(x) be a strictly increasing solution of (717) with
copositive F (x, y). Then

0 =

∫ 1

0

F (x, y)dg1(y) (742)

for every x ∈ [0, 1].

Proof. Instead of g(x) with (g(x) + g1(x))/2 in the formula (738):∫ 1

0

∫ 1

0

F (x, y)d

(
g(x) + g1(x)

2

)
d

(
g(y) + g1(y)

2

)
∫ 1

0

(
g(x) + g1(x)

2
− g0(x) + g0(x)

2

)
×

437



×
(
− F ′

x(x, 1) +
1

2

k∑
i=1

g(ui(x))vi(x) +
1

2

k∑
i=1

g1(ui(x))vi(x)

)
dx.

Then ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg1(y)

=
1

2

∫ 1

0

(g(x)− g0(x))

(
−F ′

x(x, 1) +
k∑
i=1

g1(ui(x))vi(x)

)
dx

+
1

2

∫ 1

0

(g1(x)− g0(x))

(
−F ′

x(x, 1) +
k∑
i=1

g1(ui(x))vi(x)

)
dx.

Assuming that g1(x) is an increasing solution of (717), then bearing in mind
(734) and (739)

0 = −F ′
x(x, 1) +

k∑
i=1

g1(ui(x))vi(x),

0 =

∫ 1

0

(g1(x)− g0(x))

(
−F ′

x(x, 1) +
k∑
i=1

g1(ui(x))vi(x)

)
dx

and we find ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg1(y) = 0 (743)

for any d.f. g(x). Putting g(x) = cα(x) we have 0 =
∫ 1

0
F (α, y)dg1(y) then∫ 1

0

F (x, y)dg1(y) = 0 (744)

for a.e. x ∈ [0, 1] and for every increasing solution g1(x) of (717), i.e.∫ 1

0

∫ 1

0
F (x, y)dg1(x)dg1(y) = 0.

Example 111. We have∫ 1

0

(
1

3
+
x2 + y2

2
−max(x, y)

)
dy = 0

and ∫ 1

0

(
1

3
+
x2 + y2

2
−max(x, y)

)
dxdy =

∫ 1

0

(g(x)− x)2dx.

In this case g1(x) = x.
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Theorem 247. (I) If g1(x) and g2(x) are two strictly increasing solutions of
the moment problem (717) with copositive F (x, y), then their convex linear
combination tg1(x) + (1− t)g2(x), t ∈ [0, 1] also solved (717).

(II) Let g1(x) be a strictly increasing solution of (717). with continuous

symmetric and copositive F (x, y). Then F (1, 1) =
∫ 1

0
g1(x)F

′
x(x, 1)dx.

(III) If (717) with copositive F (x, y) has a strictly increasing solution
g1(x), then F ′′

xy(x, x) ≥ 0 for any common point x ∈ [0, 1] of continuity of
F ′′
xy(x, x) and g1(x).

Proof. (I) It follows directly from (734)).
(II) Putting g(x) = c1(x) in (736) we find the desired result.
(III) Directly from (735).

For some copositive F (x, y) the moment problem can be transform to
functional equation

10.4 Copositive F (x, y) having F ′′xy = 0

Theorem 248. Let F (x, y) be copositive and F ′′
xy = 0 a.e. such that the

set H(F ) of jumps of F ′
x(x, y) satisfies (730) and (731) and moreover ui(x)

and vi(x), for i = 1, 2, . . . , k, are continuous. Finally, let g1(x) be a strictly
increasing solution of (717). Then for every strictly increasing d.f. g(x) we
have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) = 0⇐⇒ F ′
x(x, 1) =

k∑
i=1

g(ui(x))vi(x) a.e. on [0, 1].

(745)

Proof. Immediately follows from Theorem 244.

To Theorem 248 we can add that for any distribution function g(x) we
have ∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

=

∫ 1

0

(g(x)− g1(x))

(
k∑
i=1

(g(ui(x))− g1(ui(x)))vi(x)

)
dx (746)

=

∫ 1

0

(g(x)− g1(x))

(
−F ′

x(x, 1) +
k∑
i=1

g(ui(x))vi(x)

)
dx. (747)
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Let g1(x) and g2(x) be two strictly increasing solutions of (437). Then for
every two distribution functions g(x) and g̃(x) we have

0 =

∫ 1

0

(g2(x)− g1(x))

(
k∑
i=1

(g̃(ui(x))− g(ui(x)))vi(x)

)
dx. (748)

10.5 The matrix form of
∫ 1

0

∫ 1

0 F (x, y)dg(x)dg(y)

In the following we shall transform the moment problem (717) to a matrix
form. To do this we cover H(F ),

H(F ) ⊂
M∪
i,j=1

{(xi(t), xj(t)); t ∈ [α, β)} (749)

where the sets

{x1(t); t ∈ [α, β)}, . . . , {xM(t); t ∈ [α, β)} (750)

are pairwise disjoint. For this F and xi(t) we define an associated matrix
A(t) as follows,(

A(t)
)
i,j

=
1

2

(
dyF

′
x(xi(t), xj(t))|x′i(t)|+ dyF

′
x(xj(t), xi(t))|x′j(t)|

)
. (751)

Finally we denote by

g(t) = (g(x1(t)), g(x2(t)), . . . , g(xM(t)))

the vector associated with g : [0, 1]→ [0, 1].

Theorem 249. Let F (x, y) be continuous, symmetric, copositive and F ′′
xy = 0

a.e. such that the set H(F ) of jumps of F ′
x(x, y) is covered by (749) with pair-

wise disjoint sets (750). Assume that the derivatives x′i(t), i = 1, 2, . . . ,M ,
are continuous and let A(t) denote the associated matrix defined by (751).
Finally, let g1 be a strictly increasing solution of the moment problem (717).
Then we have∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =

∫ β

α

(g(t)− g1(t))A(t)(g(t)− g1(t))
Tdt (752)

for all distribution functions g : [0, 1]→ [0, 1]. If detA(t) ̸= 0 a.e., then the
moment problem (717) has the unique solution g1.
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Proof. Let g1 be a strictly increasing solution of (717). Suppose that the set
of points (xi(t), xj(t)), t ∈ [α, β), covers (with disjoint sets (750)) H(F ) and
denote {xi(t); t ∈ [α, β)} = [αi, βi). Then∫ βi

αi

(g(x)− g1(x))(g(us(x)− g1(us(x))vs(x)dx

=

∫ β

α

(
g(xi(t))− g1(xi(t))

)(
g(xj(t))− g1(xj(t))

)
vs(xi(t))|x′i(t)|dt,

where us(xi(t)) = xj(t) and vs(xi(t)) = dyF
′
x(xi(t), xj(t)). If we sum the last

integral over i and j, and according to (738), we obtain∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y) =∫ β

α

M∑
i,j=1

(
g(xi(t))−g1(xi(t))

)(
g(xj(t))−g1(xj(t))

)
dyF

′
x(xi(t), xj(t))|x′i(t)|dt,

and the desired formula (752)) follows immediately.

10.6 Examples of the matrix forms

Example 112. For continuous f(x) the function F (x, y) = Fg0(f(x), f(y))
described in example (345) is continuous, symmetric and copositive on the
unit square [0, 1]2. The first partial derivative of F (x, y) use

∂

∂x
(−max(f(x), f(y))) =

{
−f ′(x), if f(x) > f(y),
0, if f(x) < f(y)

(753)

is piecewise independent of the variable y and the set H(F ) of points (x, y)
in which F ′

x(x, y) has a jump has a form

H(F ) = {(x, y) ∈ [0, 1]2; f(x) = f(y)}. (754)

In all cases the absolute value of a jump in (x, y) ∈ H(F ) is |vi(x)| = |f ′(x)|.
Assuming that g0(x) = g1f (x) for some strictly increasing d.f. g1(x) and
applying (746) we find∫ 1

0

(g0(x)−gf (x))2dx =

∫ 1

0

(g(x)−g1(x))

(
k∑
i=1

(g(ui(x))− g1(ui(x)))vi(x)

)
dx
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for every distribution function g(x). In the following, for special f , we shall
find this formula and also matrix formula directly.

Assume that continuous f : [0, 1]→ [0, 1] has finitely many inverse func-
tions f−1

1 , . . . , f−1
m such that, for every i = 1, 2, . . . ,m we have f−1

i : [0, 1]→
[αi, βi], f

−1
i (f(x)) = x for x ∈ [αi, βi], [0, 1] = ∪mi=1[αi, βi] and βi ≤ αi+1.

Furthermore, denote f−1
i (f(t)) = xi(t) for t ∈ [α1, β1]. In this case

gf (x) =
m∑
i=1

εig(f
−1
i (x)) + ε

where εi = sign(f−1
i (x))′ and ε = (1 − sign(f−1

m (x))′(−1)m)/2. Finally, as-
sume that g0(x) = g1f (x) a.e. for some (not necessarily strictly increasing)
distribution function g1(x).

Integration by change of variables gives∫ 1

0

(gf (x)− g1f (x))2dx =

∫ 1

0

(g(x)− g1(x))f ′(x)(gf (f(x))− g1f (f(x)))dx

=
m∑
i=1

∫ βi

αi

(g(x)− g1(x))f ′(x)

(
m∑
j=1

(g(f−1
j (f(x)))− g1(f−1

j (f(x))))εj

)
dx

=
m∑

i,j=1

∫ β1

α1

(g(xi(t))− g1(xi(t)))f ′(xi(t))εj|x′i(t)|(g(xj(t))− g1(xj(t)))dt,

where in the final step we substitute x = xi(t) and apply

f−1
j f(xi(t)) = f−1

j ff−1
i f(t) = xj(t).

Directly, the associated m×m matrix A(t) = (aij(t)) has the terms

aij(t) =
f ′(xi(t))εj|x′i(t)|+ f ′(xj(t))εi|x′j(t)|

2

and for every distribution functions g(x) and g1(x) we have∫ 1

0

(gf (x)− g1f (x))2dx =

∫ β1

α1

(g(t)− g1(t))A(t)(g(t)− g1(t))
Tdt

where g(t) = (g(x1(t)), . . . , g(xm(t))) and similarly g1(t) = (g1(x1(t)), . . . , g1(xm(t)))
for t ∈ [α1, β1].
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Example 113. Now denote

f(x) =

{
2x, x ∈ [0, 1/2];

2− 2x, x ∈ [1/2, 1],

h(x) =


3x, x ∈ [0, 1/3];

2− 3x, x ∈ [1/3, 2/3];

3x− 2, x ∈ [2/3, 1].

and define F (x, y) by∫ 1

0

(x− gf (x))2dx+
∫ 1

0

(x− gh(x))2dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y).

Using definition of F0(x, y) in Example 99 we have F (x, y) = F0(f(x), f(y))+
F0(h(x), h(y)). Thus

F (x, y) =
1

3
+
f 2(x) + f 2(y)

2
−max(f(x), f(y))+

1

3
+
h2(x) + h2(y)

2
−max(h(x), h(y)).

The set H(F ) is equal to

H(F ) = {(x, y) ∈ [0, 1]2; f(x) = f(y)} ∪ {(x, y) ∈ [0, 1]2;h(x) = h(y)}

and has the form

������������������������� ??
??

??
??

??
??

??
??

??
??

??
??

? ���������

??
??

??
??

??
??

??
??

?

��
��
��
��
�

?????????????????
0 1

H(F )

Fig. 3.

It can be covered by (xi(t), xj(t)), where

x1(t) = t, x2(t) = 2/6− t, x3(t) = 2/6 + t,
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x4(t) = 4/6− t, x5(t) = 4/6 + t, x6(t) = 1− t pre t ∈ [0, 1/6].

This gives

A =

 5 0 0 −3 3 −2
0 5 −3 0 −2 3
0 −3 5 −2 0 −3
−3 0 −2 5 −3 0
3 −2 0 −3 5 0
−2 3 −3 0 0 5

 ,

The matrix A can be decomposed as A = BTDB, where

B =


1 0 0 −3/5 3/5 −2/5
0 1 −3/5 0 −2/5 3/5
0 0 1 0 0 −1
0 0 −1/10 1/10 0 0
0 0 −1/10 −1/10 1/5 1/5
0 0 0 0 0 1

 , D =

( 5 0 0 0 0 0
0 5 0 0 0 0
0 0 0 0 0 0
0 0 0 260 0 0
0 0 0 0 60 0
0 0 0 0 0 0

)
,

and applying Theorem 249 to g1(x) = x we have∫ 1

0

(x− gf (x))2dx+
∫ 1

0

(x− gh(x))2dx =

∫ 1/6

0

[
5
(
(g(x1)− x1)− 3/5(g(x4)− x4) + 3/5(g(x5)− x5)− 2/5(g(x6)− x6)

)2
+ 5
(
(g(x2)− x2)− 3/5(g(x3)− x3)− 2/5(g(x5)− x5) + 3/5(g(x6)− x6)

)2
+ 260

(
−1/10(g(x3)− x3) + 1/10(g(x4)− x4)

)2
+ 60

(
−1/10(g(x3)− x3)− 1/10(g(x4)− x4) + 1/5(g(x5)− x5)

+ 1/5(g(x6)− x6)
)2]

dt (755)

for every d.f. g : [0, 1]→ [0, 1].

Example 114. To testing (755) we putt g(x) and compute gf (x) and gh(x)
by the following Fig.

g(x) gf (x) gh(x)

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
�
�

�
�

1/2 1/2

2/3
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Then ∫ 1

0

(x− gf (x))2dx+
∫ 1

0

(x− gh(x))2dx =
1

22.33

which is the same as (755). Note that
∫ 1

0
(x− gf (x))2dx = 0.

Example 115. In the following we consider three functions

g0(x) =
2

π
arcsin(

√
x), f(x) = 4x(1− x), h(x) = 9x− 24x2 + 16x3,

on the unit interval [0, 1]. Let us study the function F (x, y) defined by∫ 1

0

(g0(x)− gf (x))2dx+
∫ 1

0

(g0(x)− gh(x))2dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y).

Here we have
gf (x) = g(f−1

1 (x)) + 1− g(f−1
2 (x)),

gh(x) = g(h−1
1 (x)) + g(h−1

3 (x))− g(h−1
2 (x)),

where f−1
1 (x) = (1−

√
1− x)/2 and f−1

2 (x) = (1+
√
1− x)/2 are the inverse

functions to f , and h−1
1 (x), h−1

2 (x) and h−1
3 (x) denote the inverse functions

to h (these functions do not admit simple explicit forms). The explicit ex-
pression for F (x, y) can be determined according to

F (x, y) = Fg0(f(x), f(y)) + Fg0(h(x), h(y)),

where Fg(x, y) is defined in Example 99 as (718) or (719). It is readily seen
that

dyF
′
x(x, y) = dy

(
− ∂

∂x
max(f(x), f(y))

)
+ dy

(
− ∂

∂x
max(h(x), h(y))

)
,

and

H(F ) = {(x, y) ∈ [0, 1]2; f(x) = f(y)} ∪ {(x, y) ∈ [0, 1]2;h(x) = h(y)}

Let us consider two roots

y1(x) =
3− 2x

4
−
√

3x(1− x)
2

,

y2(x) =
3− 2x

4
+

√
3x(1− x)

2
,
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of the equation h(x) = h(y). The set H(F ) can be covered by the set of
points (xi(t), xj(t)), i, j = 1, . . . , 6, where

x1(t) = t,

x2(t) = 1− y2(t),
x3(t) = 1− y1(t),
x4(t) = y1(t),

x5(t) = y2(t),

x6(t) = 1− t,

and t ∈ [0, (2−
√
3)/4].

The matrix
(
dyF

′
x(xi, xj)

)6
i,j=1

has the form



f ′(x1) + h′(x1) 0 0 h′(x4) h′(x5) f ′(x6)
0 f ′(x2) + h′(x2) h′(x3) 0 f ′(x5) h′(x6)
0 −h′(x2) f ′(x3) − h′(x3) f ′(x4) 0 −h′(x6)

−h′(x1) 0 −f ′(x3) −f ′(x4) − h′(x4) −h′(x5) 0
h′(x1) −f ′(x2) 0 h′(x4) −f ′(x5) + h′(x5) 0
−f ′(x1) h′(x2) h′(x3) 0 0 −f ′(x6) + h′(x6)

 ,

For our further aims we need the diagonal matrix

diag (|x′1(t)|, . . . , |x′6(t)|) =

diag (1, a(t)− 1/2, a(t) + 1/2, a(t) + 1/2, a(t)− 1/2, 1),

where

a(t) =
3(1− 2t)

4
√

3t(1− t)
.

Putting

C(t) =
(
dyF

′
x(xi, xj)

)6
i,j=1
· diag (|x′1(t)|, . . . , |x′6(t)|),

then we have

A(t) =
1

2

(
C(t) +CT (t)

)
Computing the determinant of A(t) we find detA(t) = 0 which does not give
uniqueness for solutions of (717). For the expression (752)∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)
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=

∫ 1

0

(g0(x)− gf (x))2dx+
∫ 1

0

(g0(x)− gh(x))2dx

=

∫ (2−
√
3)/4

0

(g(t)− g0(t))A(t)(g(t)− g0(t))
Tdt

we need to prove that g0(x) is a solution of gf (x) = gh(x).

Proof. Denote f1(x) = 2x mod 1 and h1(x) = 3x mod 1 and s(x) = sin2 2πx.
Clearly f ◦ s = s ◦ f1, h ◦ s = s ◦ h1. Thus for every distribution function g
we have

(gs)f = gf◦s = gs◦f1 = (gf1)s

(gs)h = gh◦s = gs◦h1 = (gh1)s.

For g(x) = x we have g0 = gs and gf1 = gh1 which gives the proof.

Discrete solutions of gf = gh are

c0(x), c 5−
√
5

8

(x), c 5+
√

5
8

(x).

Other solutions can be found by using solutions of gf1 = gh1 in Section 6.1.10
or [162].

Notes 49. Note that the above example is motivated by the fact that any distribution
function g(x) of the sequence

sin2(2π(3/2)n), n = 1, 2, . . .

satisfies gf = gh, since all distribution functions of (3/2)n mod 1 satisfy gf1 = gh1
, cf.

Section 3.8 (XV) or [162].

11 Miscellaneous examples of d.f.s

In [171] the following sequences involving trigonometric and logarithmic func-
tions can be found:
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11.1 Trigonometric sequences

Example 116. [171, 3.12.1., p. 3–49]. Let 1, ω1, ω2 be linearly independent
over the rational numbers. Then the sequence

(cos 2πnω1, cos 2πnω2)

has the a.d.f.

g(x, y) =4

(
1

4
− g1(x)

)(
1

4
− g1(y)

)
+ 2

(
1

4
− g1(x)

)(
1− 2g2(y)

)
+ 2
(
1− 2g2(x)

)(1

4
− g1(y)

)
+
(
1− 2g2(x)

)(
1− 2g2(y)

)
,

where

g1(x) =
1

2π
arccosx and g2(x) =

1

2π
arccos(x− 1).

This was proved by R.F. Tichy [178].

Example 117. Denote
xn is u.d. sequence in [0, 1),
yn = sin 2πxn,
zn = cos 2πxn.

For a.d.f.s we have:
(i) yn has a.d.f. g1(x) =

1
2π
(π + 2arcsin x) in [−1, 1].

(ii) zn has a.d.f. g2(x) =
1
2π
(2π − 2 arccos x) in [−1, 1].

(iii) (yn, zn) is u.d. on the unit circle and has a.d.f. g(x, y) in [−1, 1]2 by
the Fig.

−1 1
→ x

↑
y

(g1(x) + g2(y))/2− 1/4

g1(x)

0 g2(y)

g1(x) + g2(y)− 1
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Now, put
(iv) xn = log(3

2
)n mod 1 = n log(3

2
) mod 1.

Then from
2
(
3
2

)n+1
= 3
(
3
2

)n
we have

log 2 + (n+ 1) log(3
2
) = log 3 + n log(3

2
). Applying sin 2πx we find

sin(2π log 2).zn+1 + cos(2π log 2)yn+1 = sin(2π log 3).zn + cos(2π log 3)yn.

Thus the sequences w
(1)
n+1 and w

(2)
n of inner product

w
(1)
n+1 = sin(2π log 2).zn+1 + cos(2π log 2)yn+1 = e(1) · (yn+1, zn+1),

w
(2)
n = sin(2π log 3).zn + cos(2π log 3)yn = e(2) · (yn+1, zn+1)

have the same a.d.f.

g(x) = lim
N→∞

1

N
#{n ≤ N ;w(1)

n < x} = lim
N→∞

1

N
#{n ≤ N ;w(2)

n < x}. (756)

By the following Fig. we see that (756) is not only property of xn =
log(3

2
)n mod 1 but for arbitrary u.d. xn, for arbitrary unit vector e, and

(yn, zn) = (sin 2πxn, cos πxn) we have the same
g(x) = limN→∞

1
N
#{n ≤ N ; e · (yn, zn) < x},

@
@

@
@

@@

@
@
@
@
@@

�
�
�
�

���

−1 1
→ x

↑
y

x

(yn, zn) e

because for a fixed x the length of the family of arcs is constant, independent
on x.
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11.2 Logarithmic sequences

Example 118. Let g(x, y) be a d.f. of the sequence ({log n}, {log(n+ 1)}),
n = 1, 2, . . . . All such d.f.s. can be computed by following:

We have {log n} ∈ [0, x)⇔ n ∈ ∪∞
k=0(e

k, ek+x) and put N = eK+u. Then

FN(x, y) =
{n ≤ N ; ({log n}, {log(n+ 1)}) ∈ [0, x)× [0, y)}

N

=

∑K−1
k=0

(
ek+min(x,y) − ek +O(1)

)
N

+
eK+min(x,y,u) − eK

N
.

Now, if N letting the sequence of integers such that {logN} → u, then
FN(x, y)→ gu(x, y), where

gu(x, y) =
emin(x,y) − 1

e− 1
.
1

eu
+
emin(x,y,u) − 1

eu
(757)

By the formula (578) we compute∫ 1

0

∫ 1

0

|x− y|dxdygu(x, y) =
∫ 1

0

(
emin(x,1) − 1

e− 1
· 1
eu

+
emin(x,1,u) − 1

eu

)
dx

+

∫ 1

0

(
emin(1,y) − 1

e− 1
· 1
eu

+
emin(1,y,u) − 1

eu

)
dx

− 2

∫ 1

0

(
ex − 1

e− 1
· 1
eu

+
emin(x,u) − 1

eu

)
dx = 0

which implies

lim
N→∞

1

N

N∑
n=1

|{log(n+ 1)} − {log n}| = 0. (758)

This result also follows direct from the fact, that for almost all n we have
[log n] = [log(n+ 1)] and so |{log(n+ 1)}− {log n}| = | log(n+ 1)− log n| =
log(n+ 1)− log n. From this follows

1

N

N∑
n=1

|{log(n+ 1)} − {log n}| = 1

N

N∑
n=1

(log(n+ 1)− log n) + o(N)

=
1

N
log(N + 1) + o(N)→ 0.
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11.3 Sequence involving nα mod 1

Example 119. (J. Fialová [51].) Let α be an irrational number smaller than
1
2
and

xn = α, α, 2α, 2α, {3α}, {3α}, {4α}, ...
yn = α, 2α, {3α}, {4α}, {5α}, {6α}, ...

Both sequences are u.d. mod1 and of the two dimensional sequence
(xn, yn) we can take out two subsequences with different a.d.f.s. First is
the subsequence ({nα}, {2nα}) and the second is ({nα}, {(2n− 1)α}):

g1(x, y) =

{
min

(
x, y

2

)
if x ≤ 1

2
,

y
2
+min

(
x− 1

2
, y
2

)
if x > 1

2

0 1

1

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure: Straight lines containing ({nα}, {2nα})

g2(x, y) =



0 if (x, y) ∈ A,
x if (x, y) ∈ B1,
y−(1−α)

2
if (x, y) ∈ B2,

x− α
2

if (x, y) ∈ C1,
y
2

if (x, y) ∈ C2,
y
2
+ x− 1

2
if (x, y) ∈ D,

x− 1+α
2

if (x, y) ∈ E1,

y if (x, y) ∈ E2,

x+ y − 1 if (x, y) ∈ F

where
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0 1

1

1− α

α
2

1+α
2

A

B1

B2

C2C1

D

E1

E2

F

�
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�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

Figure: Straight lines containing ({nα}, {(2n− 1)α})

Then the sequence (xn, yn), n = 1, 2, . . . , has the a.d.f.

g(x, y) =
1

2
g1(x, y) +

1

2
g2(x, y).

In the following example we shall find d.f.s of the given two-dimensional
sequences ({2xn}, {3xn}).

Example 120 ([51]). Let xn, n = 1, 2, . . . be u.d. sequence in [0, 1) and
consider two u.d.p. maps Φ(x) = 2x mod 1 and Ψ(x) = 3x mod 1. 60 Then
we can compute a.d.f. g(x, y) of the sequence ({2xn}, {3xn}) applying the
formula (115) g(x, y) = |Φ−1([0, x))∩Ψ−1([0, y))| and by the following graphs

0 1 0 1

Φ(x)

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

Ψ(x)

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
��

x

x
2

x+1
2

y

y
3

y+1
3

y+2
3

Figure 9: Intervals Φ−1([0, x)) and Ψ−1([0, y)).

60Before referred to as f(x) and h(x).
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g(x, y) =



min
(
x
2
, y
3

)
, if x ∈ A,

x−1
2

+min
(
x+1
2
, y+1

3

)
, if x ∈ B,

y−2
3

+min
(
x+1
2
, y+2

3

)
, if x ∈ C,

x
2
+ y−1

3
+min

(
x
2
, y
3

)
, if x ∈ D,

2y−1
3

+min
(
x
2
, y+1

3

)
, if x ∈ E,

x−1
2

+ 2y−2
3

+min
(
x+1
2
, y+2

3

)
, if x ∈ F,

where

0 1
3

2
3

1
2

1

1

A

B

C

D

E

F

Figure 10: Areas A, . . . , E of (x, y).

11.4 Sequence ({nα}, {(n+ 1)α}, {(n+ 2)α})
Example 121. Let α be irrational and 1/3 < α < 1/2. Then the points

({nα}, {(n+ 1)α}, {(n+ 2)α}), n = 0, 1, 2, . . . (759)

lie on diagonals
I = [0, 1− 2α]× [α, 1− α]× [2α, 1] = (IX , IY , YZ),
J = [1− α, 1]× [0, α]× [α, 2α] = (JX , JY , JZ),
K = [1− 2α, 1− α]× [1, 1− α]× [0, α] = (KX , KY , KZ)

Let T be a sum of diagonals I, J,K and let g(x, y, z) be a.d.f. of the sequence
(759). Then

g(x, y, z) = Proj X
(
[0, x]× [0, y]× [0, z] ∩ T

)
=min

(
[0, x] ∩ IX , [0, y] ∩ IY , [0, z] ∩ IZ

)
+min

(
[0, x] ∩ JX , [0, y] ∩ JY , [0, z] ∩ JZ

)
+min

(
[0, x] ∩KX , [0, y] ∩KY , [0, z] ∩KZ

)
To calculate minimums we can use the following Fig.:
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| |
0 1
X IX KX JX

1− 2α
|

1− α
|

| |
0 1
Y JY IY KY

α
|

1− α
|

| |
0 1
Z KZ JZ IZ

α
|

2α
|

For example

g(x, x, x) =


0 if x ∈ [0, 1− α],
2(x− (1− α)) if x ∈ [1− α, 2α],
2(x− (1− α)) + x− 2α if x ∈ [2α, 1].

(760)

11.5 Sequences of the type f(xn)

In the next example we shall listed some simple d.f. of a sequence (xn, yn),
n = 1, 2, . . . , xn, yn ∈ [0, 1).

Example 122. (i) If (xn, yn) has a.d.f. g(x, y) then the sequence (xn, 1−yn),
n = 1, 2, . . . , has a.d.f g̃(x, y) = g(x, 1)− g(x, 1− y) because

xn < x ∧ 1− yn < y ⇐⇒ xn < x ∧ 1− y < yn.

(ii) For u.d. sequence xn ∈ [0, 1), the sequence (xn, xn) has a.d.f. g(x, y) =
min(x, y) and the sequence (xn, 1− xn) has a.d.f. g̃(x, y) = g(x, 1)− g(x, 1−
y) = x −min(x, 1 − y) = max(x + y − 1, 0). Thus we find upper and lower
copulas.

(iii) Let xn be u.d. sequence in [0, 1) and Ψ : [0, 1] → [0, 1] be u.d.p.
Then the sequence (xn,Ψ(xn)) has as an a.d.f. the following copula

g(x, y) = |[0, x) ∩Ψ−1([0, y))|,

because

xn < x ∧Ψ(xn) < y ⇐⇒ xn ∈ [0, x) ∧ xn ∈ Ψ−1([0, y)).

(iv) The a.d.f. in (iii) (see (709)) can also be extend to non-u.d.p. func-
tions: If xn ∈ [0, 1) is u.d. sequence and fi : [0, 1]→ [0, 1], i = 1, 2, . . . , s are
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Riemann’s integrable, then the s-dimensional sequence (f1(xn), f2(xn), . . . , fs(xn))
has a.d.f.

g(y1, y2, . . . , ys) = |f−1
1 ([0, y1)) ∩ f−1

2 ([0, y2)) ∩ · · · ∩ f−1
s ([0, ys))|.

(iv) ([51]) For u.d. sequence xn ∈ (0, 1) the sequence (xn, {log xn}) has
a.d.f

g(x, y) =



ey−1
e−1

if x ∈ (ey−1, 1),
ey−1
e(e−1)

+ x− 1
e

if x ∈ (1
e
, ey−1),

ey−1
e(e−1)

, if x ∈ (ey−2, 1
e
),

ey−1
e2(e−1)

+ x− 1
e2

if x ∈ ( 1
e2
, ey−2),

...

(761)

It follows from intervals f−1
i ([0, x)), i = 0, 1, 2, . . .

0 1

− logb x mod 1

1
b

1
b2

1
b3

1
b4

x

1
bx

1
b1+x

(v) Every u.d. sequence xn ∈ [0, 1), n = 1, 2, . . . , is statistically indepen-
dent with the sequence {log n}, n = 1, 2, . . . . Then every d.f. g(x, y) of the
two-dimensional sequence (xn, {log n}) has the form g(x, y) = xgu(y), where

gu(y) =
ey − 1

e− 1

1

eu
+
emin(y,u) − 1

eu
, (762)
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u ∈ [0, 1] all d.f. of {log n}, n = 1, 2, . . . . For a proof see Theorem 91.
(vi) For u.d. sequence xn in [0, 1) the sequence (xn, {2xn}) has a.d.f

g(x, y) =

{
min

(
x, y

2

)
if x ≤ 1

2
,

y
2
+min

(
x− 1

2
, y
2

)
if x > 1

2

(763)

Example 123. Let xn, n = 1, 2, . . . , be u.d. sequence in [0, 1).
For f : [0, 1]→ [0, 1] denote g(x) = |f−1([0, x))|.
Then the sequence f(xn) has a.d.f. g(x).
Assume that the sequence (xn, f(xn)) has a.d.f. g(x, y).

By Helly theorem

lim
N→∞

1

N

N∑
n=1

f(xn)f(xn) =



∫ 1

0
x2dg(x),∫ 1

0
f 2(x)dx,∫ 1

0

∫ 1

0
f(x)ydxdyg(x, y),

f(1)−
∫ 1

0
xf ′(x)dx−

∫ 1

0
g(y)f(1)dy

+
∫ 1

0

∫ 1

0
g(x, y)f ′(x)dxdy.

11.6 Sequence of a scalar product

Example 124. See [165]:
Define

gs(t) = |{(b,x) ∈ [0, 1]2s;b · x < t}|, t ∈ [0, s].

For s = 1 we have
g1(t) = t− t log t, t ∈ [0, 1]

with the density g′1(t) = − log t. The gs(t) is an a.d.f. of the sequence

bn · xn =
s∑
i=1

bi,nxi,n, n = 1, 2, . . . ,

where bn = (b1,n, . . . , bs,n) and xn = (x1,n, . . . , xs,n) are statistically indepen-
dent and u.d. in [0, 1]s. Since the s-dimensional sequence

(b1,nx1,n, . . . , bs,nxs,n)

also has statistically independent coordinates, it has a.d.f. g(t), t = (t1, . . . , ts),
of the form

g(t) = (t1 − t1 log t1) . . . (ts − ts log ts)
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which gives

gs(t) = (−1)s
∫

t1+···+ts<t
0≤t1≤1,...,0≤ts≤1

1. log t1 . . . log tsdt1 . . . dts.

In particular, for any decomposition S1 ∪ S2 = {1, . . . , s}, the coordinates of
the sequence (∑

i∈S1

bi,nxi,n,
∑
i∈S2

bi,nxi,n

)
are also statistically independent. Thus

gs(t) =

∫
x+y<t

1.dgj(x)dgs−j(y)

and the Fig. 1

//
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??

??
??

??
??

??
??

??
??

??
??

?

??
??
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??

??
??

??
??

??
??

??
??

?

??
??

??
??

??
??

?

??
??

??
??

??
??

??
??

??
??

??
??

?

??
??

??
??

??
??

?

j

j

x

y

s− j

s− 2j

t− s+ j

x+ y = t

x+ y = t

x+ y = t

Fig. 1

implies that

gs(t) =


∫ t
0
dgj(x)

∫ t−x
0

dgs−j(y) for t ∈ [0, j],∫ j
0
dgj(x)

∫ t−x
0

dgs−j(y) for t ∈ [j, s− j],∫ t−s+j
0

dgj(x) +
∫ j
t−s+j dgj(x)

∫ t−x
0

dgs−j(y) for t ∈ [s− j, s],

for j ≤ s− j. Its densities are

g′s(t) =


∫ t
0
g′j(x)g

′
s−j(t− x)dx for t ∈ [0, j],∫ j

0
g′j(x)g

′
s−j(t− x)dx for t ∈ [j, s− j],∫ j

t−s+j g
′
j(x)g

′
s−j(t− x)dx for t ∈ [s− j, s].

(764)
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Applying (764) we find

Theorem 250. For t ∈ [0, 1],

1. g2(t) =
t2

2

(
(log t)2 − 3 log t+ 7

2
− 1

6
π2
)
,

2. g3(t) =
t3

27

(
− 9

2
(log t)3 + 99

4
(log t)2 +

(
−255

4
+ 9

4
π2
)
log t+ 575

8
− 33

8
π2 −

9ζ(3)

)
,

where ζ(s) is the classical Riemann’s zeta function.

Applying substitution xi =
ti
t
, i = 1, 2, . . . , s, for t ∈ (0, 1), L. Habsieger

(Bordeaux) found (personal communication) that

gs(t) = (−1)sts
∫

x1+···+xs<1
0≤x1<1,...,0≤xs<1

(log t+ log x1) . . . (log t+ log xs)dx1 . . . dxs

= (−1)sts
s∑
j=0

(
s

j

)
(log t)s−j g̃j,

and then using substitution x1 + · · ·+ xj = 1− y1 . . . yj, he found

g̃j =

∫
x1+···+xs<1

0≤x1<1,...,0≤xs<1

log x1 . . . log xjdx1 . . . dxj

=
1

(s− j)!

∫
[0,1]j

j∏
i=1

(log y1 + · · ·+ log yj−1 + log(1− yj))ys−1
1 . . . ys−jj dy1 . . . dyj.

He also observed that g̃j is a composition of integrals∫ 1

0

(log x)mxndx =
(−1)mm!

(n+ 1)m+1
,∫ 1

0

(log x)mxn log(1− x)dx = (−1)m+1m!
∞∑
k=1

1

k(k + n+ 1)m+1

= a0 + a1ζ(2) + · · ·+ amζ(m+ 1) for some ai ∈ Q.

Notes 50. The explicit form of gs(t), for t ∈ [1, s], is open even for s = 2, 3.
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11.7 β-van der Corput sequence

In [98] is proved: Let
• β be a PV-number;
• ϕβ(n) be the Monna map, and ϕβ(n), n = 0, 1, 2, . . . is β-van der Corput
sequence; 61

• T : [0, 1) → [0, 1) be von Neumann-Kakutani map defined by ϕβ(n), i.e.
T n(0) = ϕβ(n);
• n1, . . . , ns be non-negative integers.
• kn, n = 1, 2, . . . be Hartman uniformly distributed and Lp-good universal
for a p ∈ [1,∞].

Then the sequence

(ϕβ(kn + n1), . . . , ϕβ(kn + ns)), n = 1, 2, . . . (765)

has an a.d.f in [0, 1)s. Moreover,
• ([0, 1], T ) is uniquely ergodic and

lim
N→∞

1

N

N−1∑
n=0

f(T knx) =

∫ 1

0

f(y)dµ(y)

for all x ∈ [0, 1] and all continuous f : [0, 1]→ [0, 1].
• Using γ(t) = (T n1(t), . . . ), T ns(t)) and Γ = {γ(t); t ∈ [0, 1]},

then the a.d.f µ of (765) as a measure µ of Jordan measurable B ⊂ [0, 1]s

has the form
µ(B) = µ(proj1(B ∩ Γ)). (766)

11.8 Jager’s example

Example 125. H. Jager [78] proved: Let (xn, yn), n = 1, 2, . . . , be a two-
dimensional sequence in [0, 1)2 having a.d.f.

g(x, y) =

∫ x

0

∫ y

0

f(u, v)dudv,

with density

f(u, v) =

{
1

log 2
1√

1−4uv
if u+ v < 1

0 others.

61β-adic van der Corput sequence was introduced by G. Barat and P.J. Grabner (1996)
[15].
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Then the sequences

1. (xn + yn) mod 1 has a.d.f.

g1(x) =
1

2 log 2
((1 + x) log(1 + x) + (1− x) log(1− x)) if x ∈ [0, 1].

2. |xn − yn| has a.d.f.

g2(x) =
1

log 2

(
1
2
xπ − 2x arctanx+ log(1 + x2)

)
if x ∈ [0, 1].

3. xnyn has a.d.f.

g3(x) =


0 if 1/4 < x ≤ 1,√
1− 4x− 1

log 2

√
1− 4x log(1 +

√
1− 4x)

− 1
2 log 2

(1−
√
1− 4x) log x if 0 ≤ x ≤ 1/4.

4. xn has a.d.f.

g4(x) =

{
x

log 2
if 0 ≤ x ≤ 1/2,

1
2
(1− x+ log 2x) if 1/2 ≤ x ≤ 1.

12 Different themes

12.1 The mean square worst-case error

Example 126. In [8] we have defined:
• x = x0

b
+ x1

b2
+ . . . is a b-adic representation of x ∈ [0, 1), and

• x = x0
b
+ x1

b2
+ . . . is a b-adic representation of x ∈ [0, 1), and

• σ = σ0
b
+ σ1

b2
+ . . . , then

• x⊕ σ = x0+σ0 (mod b)
b

+ x1+σ1 (mod b)
b2

+ . . .
• σi, i = 0, 1, . . . , is a u.d. sequence in [0, 1),
• gm,n(x, y) is the asymptotic distribution function (a.d.f.) of the sequence
(xm ⊕ σi, xn ⊕ σi), i = 0, 1, 2, . . . ,
• H is Hilbert space with reproducing kernel K(x, y),
• Let K(x, y) = max(x, y).
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The one-dimensional tent map Φ(x) = 1 − |2x − 1| we extend to the map
Φ(x): Putting Ii =

[
i−1
b
, i
b

)
, i = 1, 2, . . . , b, we define

Φ(x) =

{
Φi(x) = bx− (i− 1) if x ∈ Ii, 2|i,
Ψi(x) = −bx+ i if x ∈ Ii, 2 - i,

(767)

with a graph in the following Fig.
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In [8] we express the mean square worst-case error as∫ 1

0

sup
f∈H

||f ||≤1

∣∣∣∣∣ 1N
N−1∑
n=0

f
(
Φ(xn ⊕ σ)

)
−
∫ 1

0

f(x)dx

∣∣∣∣∣
2

dσ =

=

∫ 1

0

∫ 1

0

(
1

N2

N−1∑
m,n=0

gm,n(x, y)− xy
)
dxdyK

(
Φ(x),Φ(y)

)
. (768)

Putting K
(
Φ(x),Φ(y)

)
= F (x, y) and gm,n(x, y) = g(x, y) to compute (768)

we need computed the Riemann-Stiltjes integral∫ 1

0

∫ 1

0

g(x, y)dxdyF (x, y) =
b∑

i,j=1

∫∫
Ii×Ij

g(x, y)dxdyF (x, y). (769)

In the following we describe a method of expression of (769). We distinguish
four cases:

10. i, j-are even.
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Φ(x)-tent function

j−1
b

j
bIi Ij

Ψi(x) Ψj(y)

Ψi(x) = Ψj(y)⇔ b

(
i

b
− x
)

= b

(
j − 1

b
− y
)
⇔ y = x+

j − i
b

and Ψi(x) = Ψj(y) > Ψj(y + dy) we have F (x, y) on Ii × Ij by the following
figure
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−bdxB

−bdxA0

0C

0(
i−1
b
, j−1

b

)

(
i
b
, j
b

)
Ψi(x)

Ψj(y)

Ψj

(
j−1
b

)
= 1

Ψi

(
i−1
b

)
= 1

where the differential �F (x, y) on the squares A,B,C can be computed by
definition:

AF (x, y) = (Ψi(xk) = Ψj(yl)) + (Ψi(xk+1) = Ψj(yl+1))−Ψi(xk)−Ψj(yl)

= Ψi(xk+1)−Ψi(xk) = −b(xk+1 − xk),
BF (x, y) = (Ψi(xk) = Ψj(yl)) + (Ψi(xk+1) = Ψj(yl+1) = 0)−Ψi(xk)−Ψj(yl) =
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= Ψi(xk+1)−Ψi(xk) = −b(xk+1 − xk),
CF (x, y) = Ψj(yl) + Ψj(yl+1)−Ψj(yl)−Ψj(yl+1) = 0.

From it∫∫
Ii×Ij

g(x, y)dxdyF (x, y) =

∫ i
b

i−1
b

g

(
x, x+

j − i
b

)
(−b)dx (770)

Similarly
20. i, j-are odd.
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Φ(x) = tent u.d.p. map
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(
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b

)
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(
y − j − 1
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⇔ y = x+

j − i
b

and Φi(x) = Φj(y) < Φj(y + dy) we have F (x, y) on Ii × Ij by the following
figure
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b
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Φi(x)

Φj

(
j
b

)
= 1

Φi

(
i
b

)
= 1
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where the differential �F (x, y) on the squares A,B,C can be computed by
definition:

AF (x, y) = (Φi(xk) = Φj(yl)) + (Φi(xk+1) = Φj(yl+1))− Φj(yl+1)− Φi(xk+1)

= Φi(xk)− Φi(xk+1) = −b(xk+1 − xk),
BF (x, y) = (Φi(xk) = Φj(yl)) + 1− 1− 1 = Φ(xk)− Φ(1) = −b(1− xk),
CF (x, y) = Φi(xk) + Φi(xk+1)− Φi(xk)− Φi(xk+1) = 0.

Similarly for others squares in Ii × Ij. Then for Riemann-Stiltjes integral∫∫
Ii×Ij

g(x, y)dxdyF (x, y) =

∫ i
b

i−1
b

g

(
x, x+

j − i
b

)
(−b)dx (771)

30. i-even and j-odd.
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Φ(x)-tent function

j−1
b

j
bIi Ij

Ψi(x) Φj(y)

Ψ(x) = Ψ(y)⇔ x− i− 1

b
=
j

b
− y ⇔ y = −x+ i+ j − 1

b

and Ψi(x) = Φj(y) < Φj(y + dy) we have F (x, y) on Ii × Ij by the following
figure
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where the differential �F (x, y) on the squares A,B,C can be computed by
definition:

AF (x, y) = Ψi(xk) + Φj(yl+1)− (Ψi(xk) = Φj(yl+1))− (Ψi(xk+1) = Φj(yl))

= Ψi(xk)−Ψi(xk+1) = b(xk+1 − xk),
BF (x, y) = Φj(yl) + 1− 1− Φj(yl) = 0,

CF (x, y) = Ψi(xk) + Ψi(xk+1)−Ψi(xk)−Ψi(xk+1) = 0.

From it∫∫
Ii×Ij

g(x, y)dxdyF (x, y) =

∫ i
b

i−1
b

g

(
x,−x+ i+ j − 1

b

)
bdx. (772)

Similarly
40. i-odd and j-even.∫∫

Ii×Ij
g(x, y)dxdyF (x, y) =

∫ i
b

i−1
b

g

(
x,−x+ i+ j − 1

b

)
bdx. (773)

12.2 Infinite set of equations

U.d. of q-adic van der Corput sequence xn, n = 0, 1, 2, . . . , can be proved by
using shift transformation (see also Section 8.10.4) 62 xn+1 = T (xn). In the
base q ≥ 2 we put γi =

1
qi+1 , i = 0, 1, 2, . . . and

n = n0 + n1q + · · ·+ nkq
k,

xn = n0γ0 + n1γ1 + · · ·+ nkγk.

62called von Neumann-Kakutani transformation
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If i is the first index 63 such that ni+1 < q − 1, then

n = (q − 1) + (q − 1)q + · · ·+ (q − 1)qi + ni+1q
i+1 + · · ·+ nkq

k,

n+ 1 = 0 + 0q + · · ·+ 0qi + (ni+1 + 1)qi+1 + · · ·+ nkq
k,

xn = (q − 1)(γ0 + γ1 + · · ·+ γi) + γi+1ni+1 + · · ·+ γknk,

xn+1 = 0(γ0 + γ1 + · · ·+ γi) + γi+1(ni+1 + 1) + · · ·+ γknk.

From it
xn+1 = xn − (q − 1)(γ0 + γ1 + · · ·+ γi) + γi+1

and thus every point (xn, xn+1) mod 1 lies on the straight lines

Y = X−(q−1)(γ0+γ1+· · ·+γi)+γi+1, i = 0, 1, 2, . . . and Y = X+γ0. (774)

Using above expression of xn and xn+1 for i = 0, 1, 2, . . . we have

(q − 1)(γ0 + γ1 + · · ·+ γi) ≤ X < (q − 1)(γ0 + γ1 + γ2 + . . . )− γi+1, (775)

γi+1 ≤ Y < (q − 1)(γi+1 + γi+2 + γi+3 + . . . ). (776)

If i do not exists 64, then

0 ≤ X < (q − 1)(γ0 + γ1 + γ2 + . . . ) (777)

γ0 ≤ Y < γ0 + (q − 1)(γ0 + γ1 + γ2 + . . . ). (778)

Again putting γi =
1

qi+1 , then the graph of T : [0, 1]→ [0, 1] is

63If for n such index i do not exists, then n0 < q − 1, xn = n0γ0 + n1γ1 + · · · + nkγk,
xn+1 = (n0 + 1)γ0 + n1γ1 + · · ·+ nkγk, and then xn+1 = xn + γ0.

64If q = 2 and i do tot exists, then n0 = 0 and thus 0 ≤ X < (γ1 + γ2 + γ3 + . . . ) and
γ0 ≤ Y < (γ0 + γ1 + γ2 + γ3 + . . . )
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Figure 1: Graph of von Neumann-Kakutani T

Assume that xn, n = 0, 1, 2, . . . , has a d.f. g(x). We compute |T−1([0, x))|.
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From Fig. 1 we see

g(x) =



g

(
x− 1

q

)
+ 1− g

(
1− 1

q

)
if x ∈

(
1
q
, 1

]
,

g

(
x+ 1− 1

q
− 1

q2

)
− g
(
1− 1

q

)
+ 1− g

(
1− 1

q2

)
if x ∈

(
1
q2
, 1
q

]
,

g

(
x+ 1− 1

q2
− 1

q3

)
− g
(
1− 1

q2

)
+ 1− g

(
1− 1

q3

)
if x ∈

(
1
q3
, 1
q2

]
,

g

(
x+ 1− 1

q3
− 1

q4

)
− g
(
1− 1

q3

)
+ 1− g

(
1− 1

q4

)
if x ∈

(
1
q4
, 1
q3

]
,

. . .

g

(
x+ 1− 1

qi+1 − 1
qi

)
− g
(
1− 1

qi

)
+ 1− g

(
1− 1

qi+1

)
if x ∈

(
1

qi+1 ,
1
qi

]
,

. . .

(779)
The u.d. of xn can be proved that only g(x) = x satisfies the functional
equations (779).

Proof. Let I1, I2, |I1| = |I2| be intervals in [0, 1] and call the graph g(x)/I1
similar to the graph g(x)/I2 if it we can identify with sliding, i.e. if

g(x)/I1 = g(x)/I2 + constant. (780)

We denote this I1 ←→ I2. The equations (779) imply that the graphs of g(x)
are similar on the pairs [

1

q
, 1

]
←→

[
0, 1− 1

q

]
; (781)[

1

q2
,
1

q

]
←→

[
1− 1

q
, 1− 1

q2

]
; (782)[

1

q3
,
1

q2

]
←→

[
1− 1

q2
, 1− 1

q3

]
; (783)[

1

q4
,
1

q3

]
←→

[
1− 1

q3
, 1− 1

q4

]
; (784)

. . .[
1

qi+1
,
1

qi

]
←→

[
1− 1

qi
, 1− 1

qi+1

]
; (785)

For simplification we shall writing an increasing graph of g(x) as linear.
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Figure 3: Similar graphs in Step 1.

Step 1. We starting with (781)[
1
q
, 1
]
←→

[
0, 1− 1

q

]
.

Shifted the graph g(x) from
[
1
q
, 1
]
to
[
0, 1 − 1

q

]
by Fig. 3 we see that the

graph of g(x) is also similar on[
0,

1

q

]
←→

[
1

q
,
2

q

]
←→, . . . ,←→

[
q − 1

q
,
q

q

]
. (786)

Then g
(
k
q

)
= kg

(
1
q

)
and qg

(
1
q

)
= 1. Thus

g

(
k

q

)
=
k

q
, for k = 0, 1, . . . , q. (787)

Step 2. We starting with (782)
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[
1
q2
, 1
q

]
←→

[
1− 1

q
, 1− 1

q2

]
.

Since by (786) we have[
0, 1

q

]
←→

[
1− 1

q
, 1
]
then we can shift

[
1− 1

q
, 1− 1

q2

]
to 0 and we have[

1− 1
q
, 1− 1

q2

]
←→

[
0, 1

q
− 1

q2

]
.

0 1
q2

2
q2

3
q2

1
q −

1
q2

= (q − 1) 1
q2

1
q = q 1

q2

1
q

��������������������

��������������������

Figure 4: Similar graphs in Step 2.

By Fig. 4 we see that the graph of g(x) is also similar on[
0,

1

q2

]
←→

[
1

q2
,
2

q2

]
←→, . . . ,←→

[
(q − 1)

1

q2
, q

1

q2

]
. (788)

Then g
(
k
q2

)
= kg

(
1
q2

)
and qg

(
1
q2

)
= g( q

q2
) = g(1

q
) = 1

q
. Thus

g

(
k

q2

)
=

k

q2
, for k = 0, 1, . . . , q. (789)
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Step 3. We starting with (783)[
1
q3
, 1
q2

]
←→

[
1− 1

q2
, 1− 1

q3

]
; Since[

0, 1
q

]
←→

[
1− 1

q
, 1
]
and[

1
q2
, 1
q

]
←→

[
1− 1

q
, 1− 1

q2

]
, then[

0, 1
q2

]
←→ [1− 1

q2
, 1] and then we can shift

[
1− 1

q2
, 1− 1

q3

]
to 0 and we

have[
1− 1

q2
, 1− 1

q3

]
←→

[
0, 1

q2
− 1

q3

]
.

0 1
q3

2
q3

3
q3

1
q2
− 1

q3

= (q − 1) 1
q3

1
q2

= q 1
q3

1
q2

��������������������

��������������������

Figure 5: Similar graphs in Step 3.

By Fig. 5 we see that the graph of g(x) is also similar on[
0,

1

q3

]
←→

[
1

q3
,
2

q3

]
←→, . . . ,←→

[
(q − 1)

1

q3
, q

1

q3

]
. (790)
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Then g
(
k
q3

)
= kg

(
1
q3

)
and qg

(
1
q3

)
= g( q

q3
) = g( 1

q2
) = 1

q2
. Thus

g

(
k

q3

)
=

k

q3
, for k = 0, 1, . . . , q. (791)

Summary, for every i = 1, 2, . . . and every k = 0, 1, . . . , qi we have

g

(
k

qi

)
=
k

qi
, for k = 0, 1, . . . , qi. (792)

This gives g(x) = x for x ∈ [0, 1].

12.3 Uniform distribution preserving map

The map u : [0, 1] → [0, 1] is called uniform distribution preserving (abbre-
viated u.d.p.) if for any u.d. sequence xn, n = 1, 2, . . . , in [0, 1] the sequence
u(xn) is also u.d. In this u.d.p. theory we register the following properties:

A Riemann integrable function u : [0, 1]→ [0, 1] is a u.d.p. transformation
if and only if one of the following conditions is satisfied:

(i)
∫ 1

0
h(x)dx =

∫ 1

0
h(u(x))dx for every continuous h : [0, 1]→ R.

(ii)
∫ 1

0
(u(x))kdx = 1

k+1
for every k = 1, 2, . . . .

(iii)
∫ 1

0
e2πiku(x)dx = 0 for every k = ±1,±2, . . . .

(iv) There exists an increasing sequence of positive integers Nk and an Nk–
almost u.d. sequence xn for which the sequence u(xn) is also Nk–almost
u.d.

(v) There exists an almost u.d. sequence xn in [0, 1) such that the sequence
u(xn)− xn converges to a finite limit.

(vi) There exists at least one x ∈ [0, 1] of which orbit x, u(x), u(u(x)), . . .
is almost u.d.

(vii) u is measurable in the Jordan sense and |u−1(I)| = |I| for every subin-
terval I ⊂ [0, 1].
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(viii)
∫ 1

0
u(x)dx =

∫ 1

0
xdx = 1

2
,∫ 1

0
(u(x))2dx =

∫ 1

0
x2dx = 1

3
,∫ 1

0

∫ 1

0
|u(x)− u(y)|dxdy =

∫ 1

0

∫ 1

0
|x− y|dxdy = 1

3
.

From the other properties of u.d.p. transformations let us mention:

(ix) Let u1, u2 be u.d.p. transformations and α a real number. Then
u1(u2(x)), 1 − u1(x) and u1(x) + α mod 1 are again u.d.p. transfor-
mations.

(x) Let un be a sequence of u.d.p. transformations uniformly converging
to u. Then u is u.d.p.

(xi) Let u : [0, 1] → [0, 1] be piecewise differentiable. Then u is u.d.p. if
and only if

∑
x∈u−1(y)

1
|u′(x)| = 1 for all but a finite number of points

y ∈ [0, 1].

(xii) A piecewise linear transformation u : [0, 1] → [0, 1] is u.d.p. if and
only if |Jj| = |Ij,1| + · · · + |Jj,nj

| for every Jj = (yj−1, yj), where 0 =
y0 < y1 < · · · < ym = 1 is the sequence of ordinates of the ends of line
segment components of the graph of f and u−1(Jj) = Ij,1 ∪ · · · ∪ Jj,nj

.

(xiii) U.d.p. function f : [0, 1] → [0, 1] is equal f(x) = x or f(x) = 1− x, if
hold some of the following properties:

f is monotone;

f has a derivative in every point of the interval (0, 1);

f has a Darboux property;

f is continuous and either f(x) ≤ x for every x ∈ [0, 1], or f(x) ≥ 1−x
for every x ∈ [0, 1].

The problem to find all continuous u.d.p. is formulated in Ja.-I. Rivkid
(1973) [138]. The results (i)-(vii), (ix)-(xiii) are proved in Š. Porubský, T.
Šalát and O. Strauch (1988) [130]. The criterion (viii) and (xiii) are given in
O. Strauch (1999, p. 116, 67) [163]. R.F. Tichy and R. Winkler (1991) [180]
gave a generalization for compact metric spaces. Some related results can
be found in: M. Paštéka (1987) [125], Y. Sun (1993) [175], and (1995) [176],
P. Schatte (1993) [141], S.H. Molnár (1994) [107] and J. Schmeling and R.
Winkler (1995) [144].

473



12.3.1 Multidimensional u.d.p. map

Φ : [0, 1]s → [0, 1]s is called uniformly distribution preserving (u.d.p.) map if
for every uniformly distributed (u.d.) sequence xn, n = 1, 2, . . . , the image
Φ(xn) is again u.d. For one-dimensional case basic properties of u.d.p. maps
can be found in [166] and [171, 2.5.1].

For example, if Φ(x), Ψ(x) are u.d.p. transformation and α a real number,
then Ψ(Φ(x)), 1− Φ(x), Φ(x) + α mod 1 are also u.d.p

For multi-dimensional case we have only known:

(i) Φ(x) = x⊕ σ;

(ii) Φ(x) = (Φ1(x1), . . . ,Φs(xs)), where Φn(x) are one-dimensional u.d.p.
maps, especially

(iii) Φ(x) = bαx mod 1 = (bα1
1 x1, . . . , b

αs
s xs) mod 1;

(iv) Φ(x) = x+ σ mod 1 = (x1 + σ1, . . . , xs + σs) mod 1;

(v) Φ(x) = (Ax)T mod 1, where A is an s× s nonsingular integer matrix,
cf. S. Steinerberger [151, Th.2];

(vi) Φ(x) = π(x), where π(x) = (xπ(1), . . . , xπ(n)) is a permutation.

We have the following main criterion

Theorem 251. A map Φ(x) is u.d.p. if and only if for every continuous
f : [0, 1]s → R we have∫

[0,1]s
f(Φ(x))dx =

∫
[0,1]s

f(x)dx. (793)

In V. Baláž, J. Fialová, V. Grozdanov, S. Stoilova and O. Strauch [9] is
used a map Ψ(x,σ) : [0, 1]2s → [0, 1]s which is u.d.p. which respect to x
and σ, simultaneously. We know such maps only in the form Φ(x⊕ σ) and
Φ(x+ σ mod 1), where Φ : [0, 1]s → [0, 1]s is an arbitrary u.d.p. map.

Between u.d.p. maps and copulas we have

Theorem 252. Let fi : [0, 1]→ [0, 1], i = 1, 2, . . . s are u.d.p. maps, then

g(y1, y2, . . . , ys) = |f−1
1 ([0, y1)) ∩ f−1

2 ([0, y2)) ∩ · · · ∩ f−1
s ([0, ys))|. (794)

is s-dimensional copula.
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12.4 Discrepancies of |xm − xn|
In [156] for a quantitatively version of Theorem 104 is proved

12(D
(2)
N (xn))

2 ≤ D
(2)

N2(|xm − xn|) ≤ 12D
(2)
N (xn), (795)

where in the left hand side of (795) we assume that x1, x2, . . . , xN is the same

as 1−x1, 1−x2, . . . , 1−xN . Also is proved D
(2)

N2(|xm−xn|) ≥ 1
12
(D∗

N)
6. Here

we prove, for the star discrepancy D∗
N2(|xm−xn|), that ND∗

N2(|xm−xn|) 9 0
for every u.d. xn in [0, 1), i.e., the sequence |xm − xn|, m,n = 1, 2, . . . has
no good distribution.

Proof. Let g(x) = 2x − x2 and D∗
N2 = supx∈[0,1]

∣∣A([0,x);N2;|xm−xn|)
N2 − g(x)

∣∣,
where

A([0, x);N2; |xm − xn|) = #{1 ≤ m,n ≤ N ; |xm − xn| ∈ [0, x)}.

Then
#{1 ≤ m,n ≤ N ; |xm − xn| ∈ [0, x)}

N2
= g(x) +O(D∗

N2)

and

0 ≤ #{1 ≤ m ̸= n ≤ N ; |xm − xn| ∈ [0, x)}
N

= N(g(x)− 1) +O(ND∗
N2).

Replace x by x
N

we have

0 ≤ Ng

(
x

N

)
−N +O(ND∗

N2) = 2x− x2

N
−N +O(ND∗

N2)

which implies ND∗
N2 9 0.

Notes 51. In [170] is given a method for computing discrepancy of |xj − yj |.

Theorem 253. For an arbitrary N = 1, 2, . . . and for any two finite sequences x1, . . . , xN
and y1, . . . , yN in [0, 1],

D∗
N (|xj − yj |) ≤ 4

√
D∗

N ((xj , yj)), (796)

where D∗
N (|xj − yj |) is the star discrepancy of |x1 − y1|, . . . , |xN − yN | with respect to d.f.

g(x) = 2x− x2, i.e.

D∗
N (|xj − yj |) = sup

x∈[0,1]

∣∣∣∣#{j ≤ N ; |xj − yj | ∈ [0, x)}
N

− g(x)
∣∣∣∣ .

and the classical star discrepancy is

D∗
N ((xj , yj)) = sup

x,y∈[0,1]

∣∣∣∣#{j ≤ N ; (xj , yj) ∈ [0, x× [0, y)}
N

− xy
∣∣∣∣.
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Proof. Put zj = |xj − yj |, let cI(x) be the indicator function of the interval I, g(x) =
2x− x2, and define the following auxiliary functions: For any ε > 0 and x0 ∈ (0, 1), let

f1(x) =

 1 for x ∈ [0, x0),
1− (x− x0) 1ε for x ∈ [x0,min(1, x0 + ε)),
0 for x ∈ [min(1, x0 + ε), 1];

f2(x) =

 1 for x ∈ [0,max(0, x0 − ε)),
1− (x− (x0 − ε)) 1ε for x ∈ [max(0, x0 − ε), x0),
0 for x ∈ [x0, 1].

If 1
N

∑N
j=1 c[0,x0)(zj) ≥

∫ x0

0
1.dg(x), then

1

N

N∑
j=1

c[0,x0)(zj)−
∫ x0

0

1.dg(x) ≤

∣∣∣∣∣∣ 1N
N∑
j=1

f1(zj)−
∫ 1

0

f1(x)dg(x)

∣∣∣∣∣∣+
+

∫ min(1,x0+ε)

x0

f1(x)dg(x).

If 1
N

∑N
j=1 c[0,x0)(zj) ≤

∫ x0

0
1.dg(x), then

∫ x0

0

1.dg(x)− 1

N

N∑
j=1

c[0,x0)(zj) ≤

∣∣∣∣∣∣ 1N
N∑
j=1

f2(zj)−
∫ 1

0

f2(x)dg(x)

∣∣∣∣∣∣+
+

∫ x0

max(0,x0−ε)

(1− f2(x))dg(x).

Clearly, ∫ min(1,x0+ε)

x0

f1(x)dg(x) ≤ ε and

∫ x0

max(0,x0−ε)

(1− f2(x))dg(x) ≤ ε.

Putting Fi(x, y) = fi(|x− y|), i = 1, 2, and since

1

N

N∑
j=1

fi(zj)−
∫ 1

0

fi(x)dg(x) =
1

N

N∑
j=1

Fi(xj , yj)−
∫ 1

0

∫ 1

0

Fi(x, y)dxdy,

applying the Koksma-Hlawka inequality (see [92, p. 1–63]), we find∣∣∣∣∣∣ 1N
N∑
j=1

c[0,x0)(zj)−
∫ x0

0

1.dg(x)

∣∣∣∣∣∣ ≤ max(V (F1(x, y)), V (F2(x, y))).D
∗
N ((xj , yj)) + ε,

for any N = 1, 2, . . . , x0 ∈ [0, 1] and ε > 0. Now, we compute the Hardy-Krause variation
of Fi(x, y), i = 1, 2. Directly from graphs of Fi(x, 1) we find the one-dimensional Vitali’s
variations

V (1)(F1(x, 1)) =

{
1 for x0 + ε ≤ 1,
1−x0

ε for x0 + ε > 1;
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V (1)(F2(x, 1)) =

{
1 for x0 − ε ≥ 0,
1− ε−x0

ε for x0 − ε < 0;

and the same hold for Fi(1, y). For two-dimensional Vitali’s variation of Fi(x, y), let P0

be a partition of [0, 1]2 defined by a cartesian product of the one-dimensional partition

0 = x′0 < x′1 < · · · < x′s = 1 (797)

of [0, 1]. We consider the following refinement: Let t > 0 be a sufficiently small real number
and assume that x0

t and x0+ε
t are integers. Thus x0

ε must be rational. To the partitions
(797) we added all points

t < 2t < · · · < t

[
1

t

]
and we call P the cartesian product of the resulting partition of [0, 1]. Thus, almost all
rectangles (except at most s2 terms) [x′i, x

′
i+1] × [y′j , y

′
j+1] in P can be divided into the

following subsets:

P1 contains rectangles lying above the line y = x+ x0 + ε;
P2 contains rectangles having diagonals on the line y = x+ x0 + ε;
P3 contains rectangles lying between lines y = x+ x0 + ε and y = x+ x0;
P4 contains rectangles having diagonals on the line y = x+ x0;
P5 contains rectangles lying between lines y = x+ x0 and y = x;
P6 contains rectangles having diagonals on the line y = x;
P7 contains rectangles lying between lines y = x and y = x− x0;
P8 contains rectangles having diagonals on the line y = x− x0;
P9 contains rectangles lying between lines y = x− x0 and y = x− x0 − ε;
P10 contains rectangles having diagonals on the line y = x− x0 − ε;
P11 contains rectangles lying under the line y = x− x0 − ε.

We denote by V
(2)
l (Fk) the supremum of the sum of∣∣Fk(x

′
i+1, y

′
j+1)− Fk(x

′
i, y

′
j+1)− Fk(x

′
i+1, y

′
j) + Fk(x

′
i, y

′
j)
∣∣

as t→ 0 and over the rectangles in Pl. Directly by computation it follows:

(I) For x0 + ε ≤ 1 we have nonzero V
(2)
l (F1) only for l = 2, 4, 8, 10 and

V
(2)
2 = V

(2)
10 = 1−x0−ε

ε , V
(2)
4 = V

(2)
8 = 1−x0

ε .

(II) For x0 + ε > 1 we have nonzero V
(2)
l (F1) only for l = 4, 8 and

V
(2)
4 = V

(2)
8 = 1−x0

ε .

(III) For x0 − ε ≥ 0 and V
(2)
l (F2) we put x0 := x0 − ε in (I).

(IV) For x0 − ε < 0 we have nonzero V
(2)
l (F2) only for l = 4, 6, 8 and

V
(2)
4 = V

(2)
8 = 1−x0

ε , V
(2)
6 = 2

ε .
Thus for the Hardy-Krause variation

V (Fk(x, y)) = V (1)(Fk(x, y)) + V (1)(Fk(x, y)) + V (2)(Fk(x, y))

we have

V (F1(x, y)) =

{
2 + 2 1−x0−ε

ε + 2 1−x0

ε = 4 1−x0

ε for x0 + ε ≤ 1,
2 1−x0

ε + 2 1−x0

ε = 4 1−x0

ε for x0 + ε > 1,
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V (F2(x, y)) =

{
2 + 2 1−(x0−ε)−ε

ε + 2 1−(x0−ε)
ε = 4 1−(x0−ε)

ε for x0 − ε ≥ 0,
2
(
1− ε−x0

ε

)
+ 2 1−x0

ε + 2
ε = 4

ε for x0 − ε < 0.

This implies

D∗
N (|xj − yj |) ≤

4

ε
D∗

N ((xj , yj)) + ε

for any ε > 0, since the rationality of x0

ε can be omitted. To find (796) we put

ε = 2
√
D∗

N ((xj , yj)).

In [170] is also proved

Theorem 254. Let (x1, y1), . . . , (xN , yN ) be a sequence in [0, 1)2 invariant to (x, y) →
(y, x) and (x, y) → (1 − x, 1 − y), i.e. for any i ≤ N there exists j1, j2 ≤ N such that
(xj1 , yj1) = (yi, xi) and (xj2 , yj2) = (1− xi, 1− yi). Then

D∗
N (|xj − yj |) ≤ 3DN ((xj , {yj − xj})) +DN ((xj , yj)).

13 Integral formulas

Here we repeat the following list of integral formulas used in this book,
previously appeared from [163, pp. 132–135], and [155], [156], [159], [158],
[161], [164].

13.1 Integral over |x− y|
(I) For every d.f. g, g̃, g1, g2, g3, and g4 we have:

1. ∫ 1

0

∫ 1

0

−|x− y|
2

d (g1(x)− g2(x))d (g3(y)− g4(y)) =

=

∫ 1

0

(g1(x)− g2(x))(g3(x)− g4(x))dx,

2. consequently (cf. [155, p. 130] 65∫ 1

0

∫ 1

0

−|x− y|
2

d (g(x)− g̃(x))d (g(y)− g̃(y)) =
∫ 1

0

(g(x)− g̃(x))2dx

and thus (see (33))

65The multidimensional integrals of the type
∫ ∫
|x−y|αdg(x)dg(y) were studied many

authors, see R. Alexander and K.B. Stolarsky [3] and R. Alexander[2] and others.
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3. ∫ 1

0

(g(x)−g̃(x))2dx =

∫ 1

0

∫ 1

0

|x− y|dg(x)dg̃(y)

− 1

2

∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y)− 1

2

∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg̃(y).

Similarly

4. ∫ 1

0

∫ 1

0

|x−y|dg(x)dg̃(y) =
∫ 1

0

g(x)dx+

∫ 1

0

g̃(x)dx−2

∫ 1

0

g(x)g̃(x)dx,

or in a special case (cf. [159, p. 178])

5. ∫ 1

0

∫ 1

0

|x− y|dg(x)dg(y) = 2

(∫ 1

0

g(x)dx−
∫ 1

0

g2(x)dx

)
= 2

∫ 1

0

(∫ x

0

g(t)dt

)
dg(x). (798)

From (798) we have

6.
N∑

m,n=1

|xm − xn| = 2N2

(∫ 1

0

(FN(x)− F 2
N(x))dx

)
.

In other words

7. ∫ 1

0

∫ 1

0

(1−max(x, y))dg(x)dg(y) =

∫ 1

0

g2(x)dx,∫ 1

0

∫ 1

0

(1−max(x, y))dg(x)dg̃(y) =

∫ 1

0

g(x)g̃(x)dx.

The multidimensional case (524)
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8. ∫ 1

0

(g1(x)− g2(x))2dx

=

∫ 1

0

∫ 1

0

(1−max(x,y))d(g1(x)− g2(x))d(g1(y)− g2(y)).

In the case of restricted integral range (0 ≤ α ≤ 1) we have

9. ∫ α

0

∫ α

0

|x− y|dg(x)dg(y) = 2

(
g(α)

∫ α

0

g(x)dx−
∫ α

0

g2(x)dx

)
.

For 0 ≤ α ≤ β ≤ 1 we have

10. ∫ 1

0

∫ 1

0

|xα− yβ|dg(x)dg(y) =

= 2β

∫ α/β

0

g(x)dx+ (β − α)
(
1−

∫ 1

0

g(x)dx

)
−

− 2α

∫ 1

0

g(x)g

(
xα

β

)
dx− αβ

(∫ 1

0

g(x)dx

)2

+

+ αβ

∫ 1

0

g(x)dx

∫ α/β

0

g(x)dx.

In [156, p. 251] is proved that

11. ∫ 1

0

∫ 1

0

|x− y|kd (g(x)− x)d (g(y)− y)

=


0, if k = 0,

−2
∫ 1

0
(g(x)− x)2dx, if k = 1,

−k(k − 1)
∫ 1

0

∫ 1

0
(g(x)− x)(g(y)− y)|x− y|k−2dxdy, if k ≥ 2,

and that∫ 1

0

∫ 1

0

|x− y|kd (g(x)− x)dy = −
∫ 1

0

(g(x)− x)(xk − (1− x)k)dx.
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(II) If f : [0, 1]→ [0, 1] and H : [0, 1]2 → R are continuous functions then for

gf (x) =

∫
f−1([0,x))

1.dg(u),

we have the following integral transforms∫ 1

0

∫ 1

0

H(x, y)dgf (x)dgf (y) =

∫ 1

0

∫ 1

0

H(f(x), f(y))dg(x)dg(y).

If f : [0, 1]2 → [0, 1] is continuous and gf (x) =
∫
f−1([0,x))

1dg(u)dg(v) then 66

∫ 1

0

∫ 1

0

H(x, y)dgf (x)dgf (y) =

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

H(f(x, y), f(u, v))dg(x)dg(y)dg(u)dg(v)

and in the special case∫ 1

0

h(f(x))dg(x) =

∫ 1

0

h(x)dgf (x).

13.2 Generalized L2 discrepancies

(III) If

Fg̃(x, y) =

∫ 1

0

g̃2(t)dt−
∫ 1

x

g̃(t)dt−
∫ 1

y

g̃(t)dt+ 1−max(x, y),

then (cf. [158, 618] and Example 99)∫ 1

0

(g(x)− g̃(x))2dx =

∫ 1

0

∫ 1

0

Fg̃(x, y)dg(x)dg(y)

or more generally∫ 1

0

(g1(x)− g̃(x))(g2(x)− g̃(x))dx =

∫ 1

0

∫ 1

0

Fg̃(x, y)dg1(x)dg2(y).

66In the probability it is called transmission of integrals.
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(For the proof compute
∫ 1

0

∫ 1

0
Fg̃(x, y)d (g1(x) + g2(y))d (g1(y) + g2(y)).)∫ 1

0

(gf (x)− g̃f (x))2dx =

∫ 1

0

∫ 1

0

Fg̃f (f(x), f(y))dg(x)dg(y).

(IV) If

Ff,h(x, y) =

= max(f(x), h(y))+max(f(y), h(x))−max(f(x), f(y))−max(h(x), h(y)) =

=
1

2
(|f(x)− h(y)|+ |f(y)− h(x)| − |f(x)− f(y)| − |h(x)− h(y)|) ,

then (cf. [158, 628] for application see Theorem 111 and Example 102)∫ 1

0

(gf (x)− gh(x))2dx =

∫ 1

0

∫ 1

0

Ff,h(x, y)dg(x)dg(y).

There follows from the above that∫ 1

0

∫ 1

0

Ff,h(x, y)dg(x)dg̃(y) =

∫ 1

0

(
gf (x)− gh(x)

)(
g̃f (x)− g̃h(x)

)
dx

and ∫ 1

0

g2f (x)dx =

∫ 1

0

∫ 1

0

(
1−max(f(x), f(y))

)
dg(x)dg(y).

In [164, 427] is proved that (see also Example 103)∫∫
0≤x≤y≤1

((
gf (y)− gf (x)

)
−
(
gh(y)− gh(x)

))2
dxdy =

=

∫ 1

0

∫ 1

0

F
(1)
f,h(x, y)dg(x)dg(y),

where
F

(1)
f,h(x, y) = Ff,h(x, y)−

(
f(x)− h(x)

)(
f(y)− h(y)

)
.

This follows from the fact that the integral on the right-hand side is equal to∫ 1

0

(
gf (x)− gh(x)

)2
dx−

(∫ 1

0

(
gf (x)− gh(x)

)
dx

)2

and
∫ 1

0
gf (x)dx = 1−

∫ 1

0
f(x)dg(x) gives(∫ 1

0

(
gf (x)− gh(x)

)
dx

)2

=

∫ 1

0

∫ 1

0

(
f(x)− h(x)

)(
f(y)− h(y)

)
dg(x)dg(y).

(V)
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1. If g1 is a strictly increasing solution of g = gf , then∫ 1

0

(
g(x)− gf (x)

)2
dx =

=

∫ 1

0

(
g(x)− g1(x)

)(
g(x)− gf (x) + f ′(x)

(
gf (f(x))− g(f(x))

))
dx,

and it is also true that

2. ∫ 1

0

(
g(x)− gf (x)

)2
dx =

∫ 1

0

∫ 1

0

Fgf (x, y)dg(x)dg(y).

(VI) Let ψ(y) = a(x)y2 + b(x)y + c(x) be a polynomial in the variable y,
where a(x), b(x) and c(x) are integrable functions in [0, 1] and put

F (x, y) =

∫ 1

max(x,y)

a(t)dt+
1

2

∫ 1

x

b(t)dt+
1

2

∫ 1

y

b(t)dt+

∫ 1

0

c(t)dt.

Then (cf. [161, (1997) p. 219, Lemma 5] see also Theorem 23 in this book)∫ 1

0

ψ(g(x))dx =

∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)

for every d.f. g(x).
(VII) Given a finite sequence x1, x2, . . . , xN in [0, 1), a d.f. g(x), and a con-

tinuous f : [0, 1]→ R, let FN(x) = A([0,x);N ;xn)
N

. Then

1

N

N∑
n=1

f(xn)−
∫ 1

0

f(x)dg(x) = −
∫ 1

0

(FN(x)− g(x)df(x)

which implies

N∑
n=1

f(xn) = N

(∫ 1

0

f(x)dg(x)−
∫ 1

0

(FN(x)− g(x))df(x)
)
.

(VIII) If F (x, y) defined on [0, 1]2 is continuous and symmetric, then we have

1

N2

N∑
m,n=1

F (xm, xn)−
∫ 1

0

∫ 1

0

F (x, y)dg(x)dg(y)
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=− 2

∫ 1

0

(FN(x)− g(x))dxF (x, 1)

+

∫ 1

0

∫ 1

0

(FN(x)− g(x))(FN(y) + g(y))dydxF (x, y).

(IX) Define

g̃(x) =

∫
g−1([0,x))

1.dx = xg.

Then ∫ 1

0

xdg̃(x) =

∫ 1

0

g(x)dx,

∫ 1

0

x2dg̃(x) =

∫ 1

0

g2(x)dx,∫ 1

0

∫ 1

0

|x− y|dg̃(x)dg̃(y) =
∫ 1

0

∫ 1

0

|g(x)− g(y)|dxdy =

= 4

∫ 1

0

xg(x)dx− 2

∫ 1

0

g(x)dx.

13.3 Euclidean L2 discrepancies

(X) In Section 7.6 we have used multidimensional integration by parts in:

1.
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, u, v)dxdyg(x, y)dudvg(u, v) (Theorem 203);

2.
∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, z)dxdydzg(x, y, z) (Theorem 204);

3.
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
F (x, y, z, u)dxdydzdug(x, y, z, u) (Theorem 205).

(XI) In Section 7.3 we have computed the following L2 discrepancies:

1.
∫ 1

0
(F

(1)
N (x)− x)2dx - the L2-discrepancy of x1, . . . , xN ;

2.
∫ 1

0

∫ 1

0
(FN(x, y)−xy)2dxdy - the L2 discrepancy of (x1, y1),. . . , (xN , yN);

3.
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)−xyz)2dxdydz - the L2 discrepancy of (x1, y1, z1),. . .

,(xN , yN , zN);

4.
∫ 1

0

∫ 1

0
(FN(x, y)−F (1)

N (x)F
(2)
N (y))2dxdy - the L2 discrepancy of statistical

independence of x1, . . . , xN and y1, . . . , yN .
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5.
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)− F (1)

N (x)F
(2)
N (y)F

(3)
N (z))2dxdydz - the L2 discrep-

ancy of statistical independence of x1, . . . , xN , y1, . . . , yN , and z1, . . . , zN .

6.
∫ 1

0

∫ 1

0

∫ 1

0
(FN(x, y, z)−FN(x, y)F (3)

N (z))2dxdydz - the L2 discrepancy of
statistical independence of (x1, y1) . . . , (xN , yN) and z1, . . . , zN .

(XII) In Section 10 we have used:

1. Assume that continuous f : [0, 1] → [0, 1] has finitely many inverse
functions f−1

1 , . . . , f−1
m such that, for every i = 1, 2, . . . ,m we have

f−1
i : [0, 1] → [αi, βi]. If g1 is a strictly increasing and f ′(x) pairwise
exists, then (cf. [164, p. 437, Th. 4])∫ 1

0

(
gf (x)−g1f (x)

)2
dx =

∫ 1

0

(
g(x)−g1(x)

)
f ′(x)

(
gf (f(x)−g1f (f(x))

)
dx.

In the following we listed only integral results without conditions:

2. (see (723))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y)−

∫ 1

0

∫ 1

0
F (x, y)dg̃(x)dg̃(y)

=
∫ 1

0
(g(x)− g̃(x))

(
−2dxF (x, 1) +

∫ 1

0
(g(y) + g̃(y))dydxF (x, y)

)
.

3. (see (732))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) =

∫ 1

0
(g(x)− g1(x))(

−2F ′
x(x, 1) +

∑k
i=1

(
g(ui(x)) + g1(ui(x))

)
vi(x)

)
dx.

4. (see (733))∫ 1

0
g1(x)

(∑k
i=1 g(ui(x))vi(x)

)
dx =

∫ 1

0
g(x)

(∑k
i=1 g1(ui(x))vi(x)

)
dx.

5. (see (734))∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0⇐⇒ F ′

x(x, 1) =
∫ 1

0
g(y)dyF

′
x(x, y).

6. (see (736))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y)

=
∫ 1

0
(g(x)− g1(x))

(
−F ′

x(x, 1) +
∫ 1

0
g(y)dyF

′
x(x, y)

)
dx.

7. (see (737))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y)
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=
∫ 1

0
(g(x)− g1(x))

(
−F ′

x(x, 1) +
∑k

i=1 g(ui(x))vi(x)
)
dx.

8. (see (738))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y)

=
∫ 1

0

∫ 1

0
(g(x)− g1(x))(g(y)− g1(y))dxdyF (x, y).

9. (see (740))
∫ 1

0
(g2(x)− g1(x))F ′

x(x, 1)dx = 0.

10. (see (741))
∫ 1

0
(g2(x)− g1(x))

(∑k
i=1 g(ui(x))vi(x)

)
dx = 0.

11. (see (742))
∫ 1

0
F (x, y)dg1(y) = 0.

12. (see (752))
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y)

=
∫ β
α
(g(t)− g1(t))A(t)(g(t)− g1(t))

Tdt.

(XIII) Put RN(x) = (FN(x)− x). Then

1

N4

∑
m,n,r,s

f(xm, xn, xr, xs)−
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dxdydudv

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dRN(x)dRN(y)dRN(u)dRN(v)

+ 4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dRN(x)dRN(y)dRN(u)dv

+ 2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dRN(x)dRN(y)dudv

+ 4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dRN(x)dydRN(u)dv

+ 4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(x, u, u, v)dRN(x)dydudv,

(XIV) Suppose we are given a sequence q1, q2, . . . of positive integers. Con-
sider the sequence xn = {qnα} and set

RN(x, y, α) = A([x, y);N ;xn)−N(y − x).
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Then [160]∫ 1

0

∫ 1

0

R2
N(0, y, α)dydα =

1

12

N∑
m,n=1

(qm, qn)
2

qmqn
+

1

12

N∑
m,n=1
qm=qn

1.

For positive integers a and b we also have∫ 1

0

(
min

(
{ay}, {by}

)
− {ay}{by}

)
dy =

{
1
12
, for a ̸= b,

1
6
, for a = b,

and by J. Franel (1924)∫ 1

0

(
{ax} − 1

2

)(
{bx} − 1

2

)
=

1

12

(a, b)2

ab
.

14 Name index

A

Aczél, J.
Alexander, R.
Ambrosio, L.
Athanassoulis, G.A.

B

Balakrishnan, N.
Baláž, V.
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Birkhoff, G.
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Brown, J.L. (Jr)

C

Cantor, D.G.
Chauvineau, J.
Chin-Diew Lai
Choquet, G.
Cigler, J.
Coquet, J.
Crstici, B.

D

Davenport, H.
De La Rue, T.
Delenge, H.
Diaconis, P.
Drmota, M.
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Duncan, R.L.
Durante, F.

E

Eliahou, S.
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Erdős, P.

F
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G
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H
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I
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J
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K

Kanemistu, S.
Karlin, S.
Kennedy, P.B.
Keperman, J.H.B.
Kolesnik, G.
Koksma, J.F.
Kostyrko, P.
Kontorovich, A.V.
Kuipers,L.
Kunoff, S.
Kuzmin, R.O.

L
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M
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Tóth, J.T.

U

Uckelmann, L.

V

van der Corput, J.G. p. 17
Venkov, B.A.
Vijayaraghavan, T.
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F

functions
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φ(n)
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f(x) = 2x mod 1 p. 160
h(x) = 3x mod 1 p. 160
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f(x) = x+ α mod 1 p. 111

I
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normal order p. 51

S
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statistically independent p. 41
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statistically convergent p. 49
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log log . . . log n mod 1 p. 48
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log n mod 1 p. 12
c log n mod 1 p. 41
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van der Corput γq(n) p. 373
φ(n)
n

p. 257
log pn mod 1 p. 83
log(pn/ log pn) mod 1 p. 83
logb p

r
n p. 285

pnθ + log pn mod 1 p. 151
pnθ +

pn
n

p. 151
ratio block sequences p. 73
ξ(3/2)n mod 1 pp. 57, 158
An = (ε1x1+ε2x2+ · · ·+εnxn; εi =
±1) mod 1 p. 152
|xm − xn| p. 154
xn+1 = xn − x2n p. 112
1
xn

mod 1 p. 152
g({xn}) p. 153
Xn =

(
x1
xn
, x2
xn
, . . . , xn

xn

)
p. 202

Xn =
(

2
pn
, 3
pn
, . . . , pn

pn

)
p. 242

An =
(

1
qn
, a2
qn
, . . . ,

aφ(qn)

qn

)
p. 255
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1
qn
, 2
qn
, . . . , qn

qn

)
p. 255

uniformly maldistributed p. 56
n!α mod 1 p. 20
xn = n cos(n cosnα) mod 1 p. 48

xn = 1+(−1)[log logn]

2
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statistically convergent p. 49
statistical limit points p. 45
statistically independent p. 42
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1 + (−1)
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[
√

log2n]
] {√[√

log2 n
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f(n) mod 1 p. 75
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p. 51

xn = log 2 h(n)
logn

p. 51
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p. 51

xn = αnβ logγ n logδ(log n) mod 1
p. 39

logFn mod 1 p. 39
log n! mod 1 p. 39
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xγ(n) mod 1 p. 40
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(γq(n), γq(n+ 1), γq(n+ 2)) p. 380
(un, vn, {un − vn}) p. 353
({nα}, {(n + 1)α}, {(n + 2)α}) p.

453
(xn, {2xn}) p. 456
({2xn}, {3xn}) p. 452
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scalar product p. 456
β-van der Corput p. 459
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(cos 2πnω1, cos 2πnω2) p. 448

T

theorems:
Barone p. 16
Benford’s law p. 63
Benford’s law for primes p. 285
General scheme of B.L. p. 67
S. Newcomb p. 63
Gauss-Kuzmin p. 312
Helly, first p. 13
Helly, second p. 13
Lebesgue decomposition theorem
p. 14

Lebesgue’s dominated convergence
theorem p. 14

van der Corput Satz 10, Satz 5 p.
17

van der Corput difference theorem
(generalization) p. 22

van der Corput inequality p. 23

Weyl limit relation, p. 10

Wiener-Schoenberg p. 21

P. Lévy p. 312

A.E. Wirsing p. 312

Two-dimensional Benford’s law p.
308

M. Sklar p. 351

Euler-Lagrange differential equa-
tion p. 400

Hardy-Littlewood p. 416

Koksma p. 74

G. Pólya and G. Segő p. 41

Fejér’s difference theorem p. 36

Erdős and Turán p. 36

Weyl’s criterion p. 37
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16 Symbols and abbreviations

N0 = Z+
0 the set of non–negative integers

N = Z+ the set of positive integers
Z the set of integers
Q the set of rational numbers
R the set of real numbers
C the set of complex numbers
|X| Lebesgue’s measure of the set X
{x} fractional part of x
[x] integer part of x
x mod 1 = {x}
||x|| = min({x}, 1− {x}) norm of x
xn sequence in n = 1, 2, . . . or n-th term
a.d.f. asymptotic distribution function
d.f. distribution function
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gf (x)
∫
f−1([0,x))

1.dg(x)

Gf (x) |f−1([0, x))|, p. 415
u.d. uniformly distributed, p. 35
u.m. uniformly maldistributed, p. 56
u.m.s. u.m. in the strict sense
u.q. uniformly quick
B.L. Benford’s Law

g0(x) d.f. of φ(n)
n

, p. 257
cα(x) one-step d.f. with the step 1 in α
hβ(x) constant d.f. hβ(x) = β for x ∈ (0, 1)
cX(x) characteristic function of X
FN(x) the step d.f. of x1, x2, . . . , xN , p. 9
G(xn) the set of all d.f.s of the sequence xn, p. 16
G(F ) the set of all d.f.s g(x) satisfying∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y) = 0, p. 16

Ω(xn) see p. 11
Graph g see p. 11
Projectx(A) project A to x-axes

A(t) matrix associated to
∫ 1

0

∫ 1

0
F (x, y)dg(x)dg(y), p. 440

g(x) and g(x) lower and upper d.f.s of xn, p. 11
g
H
(x) and gH(x) lower and upper d.f.s of H, p. 11

d(A) and d(A) lower and upper asymptotic density of A, p. 11
d(A) asymptotic density of A, p. 11
R(A) {a/b; a, b,∈ A}
R(A)l the set of all limit points of R(A)
R(A)d the set of all accumulation points of R(A)
A([0, x);N ; xn) counting function, p. 9

DN , D
∗
N , and D

(2)
N extremal, star and L2 discrepancies of xn, p. 36

D
(2)
N (xn, H) L2 discrepancy of xn with respect to H, p. 84

d(g1, g2) metric in G(xn), p. 16
φ(n) Euler function
π(n) number of all primes ≤ n
Ω(n) the total number of prime factors of n
pn the nth prime
p|n p divided n
µ(n) Möbius function
ordp(n) = α maximal α such that pα|n
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γq(n) van der Corput sequence
h(n) = min(α1, . . . , αk) where n = p1

α1 . . . pk
αk p. 51

H(n) = max(α1, . . . , αk) p. 51
(a, b) greatest common divisor of integer a and b
α = [a0; a1, a2, . . . ] continued fraction expansion of α

with partial quotients a0, a1, . . . ,
pn
qn

= [a0; a1, a2, . . . , an] the nth convergent of a continued fraction of α

||x||∞ = max1≤i≤s |xi| norm of the vector x = (x1, . . . , xs)
x · y =

∑s
i=1 xiyi the inner product of x = (x1, . . . , xs) and y = (y1, . . . , ys)

ϱ(n) = β(n) + ıγ(n) root of dzeta function p. 19
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[45] P. Erdős: On the smoothness of the asymptotic distribution of additive
arithmetical functions, Amer. Journ. Math. 61 (1939), 722–725.
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Inst. Statis. Univ. Paris 8 (1959), 229–231 (MR 23# A2899).
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