
Mgr. Ing. Jean Rosemond Dora

Autoreferát dizertačnej práce

ONTOLOGY FOR CROSS-SITE-SCRIPTING (XSS) IN CYBERSECURITY

na získanie akademického titulu philosophiae doctor
v odbore doktorandského štúdia:

9.1.9 Aplikovaná matematika

Bratislava, 2022

2 Contents

Dizertačná práca bola vypracovaná:
v dennej forme doktorandského štúdia na Katedre aplikovanej matematiky a štatis-
tiky Fakulty matematiky, fyziky a informatiky Univerzity Komenského v Bratislave.

Predkladatel’: Mgr. Ing. Jean Rosemond Dora
.
.
.
.

Matematický ústav, v. v. i.
Slovenská Akadémia Vied
Štefanikova 49
Bratislava

Školitel’:.

.

.

.

doc. RNDr. Karol Nemoga, CSc.
Matematický ústav, v. v. i.
Slovenská Akadémia Vied
Štefánikova 49
Bratislava

Obhajoba dizertačnej práce sa koná 25. 8. 2022 o 8:30 hod pred komisiou pre obhajobu
dizertačnej práce odbore doktorandského štúdia vymenovanou predsedom odborovej
komisie dňa 14. 7. 2022 v študijnom odbore 9.1.9 Aplikovaná matematika v seminárnej
miestnosti č. 502, FEI STU, Ilkovičova 3. Bratislava, Blok C, Bratislava..
.
.
.
.
.
.

Predseda odborovej komisie:
prof. RNDr. D. Ševčovič, DrSc.
Katedra aplikovanej matematiky a štatistiky
81438 Bratislava

Oponenti:.

.

.

.

Prof. María Isabel González Vasco, PhD.
Catedrática de Universidad, Departamento de
Matemática Aplicada, Ciencia e
Ingeniería de los Materiales y Tecnología
Electrónica (MACIMTE), Universidad Rey
Juan Carlos, MADRID
SPAIN

Prof. Ing. Pavol Zajac, PhD.
FEI STU, Ilkovičova 3
812 19 Bratislava

Doc. RNDr. Karol Macák, CSc.
Ministerstvo obrany SR
Kutuzovova 8
832 47 Bratislava

Contents 3

Introduction
Using the semantic concept, we can use deductive inference rules to reason or de-
duce on a piece of HTTP well-structured scheme.
Firstly, let us briefly indicate to which class each of the following concepts belongs:

HTTP @ Protocol
GET @ Method
POST @ Method
XSS attacks @ Attack
Request Header u Response Header ⌘ ?
POST u GET⌘ ?
HTTP Request ⌘ User Request

In the diagram, all conceptually subsume (@) relations are irreflexive, transitive, and
asymmetric. The equivalence (⌘) relations are reflexive, symmetric and transitive. Like-
wise, no conceptually disjoint (u) relations infringe its characteristics of reflexive,
symmetric and transitive. We implmented these rules based on how we were able to
detect the XSS attacks using burpsuite tool, then apply it to our ontology.

Rule #1: Person(?P) u hasTools(?P, ?Q) ! Attacker(?P) (Transitivity)

Rule #2: SubClassOf(?P, ?Q) u typeOf(?n, ?P) ! typeOf(?n, ?Q) (Transitivity)

Rule #3: hasPartOf(?P, ?Q) u hasPartOf(?Q, ?n) ! hasPartOf(?P, ?n) (Transitivity)

Rule #4: contains(?P, ?Q) u contains(?Q, ?n) ! contains(?P, ?n) (Transitive)

Rule #5: hasPartOf(?P, ?Q) u contains(?Q, ?n) ! contains(?P, ?n) (Transitivity)

Rule #6: Attacker(?P) u hasInput(?P, ?Q) u hasPartOf(?R, ?S) u contains(?method, ?open-
TAG) u contains(?method, ?param) u 9Vulnerability(?R, ?v) u sentBy(?a, ?P) ! detect-
edBy(?a, ?v) (Drived)

Rule #7:
maliciousPayload(?i) u createdBy(?a, ?i) u HTTPmessage(?m, ?i) u hasPartOf(?R, ?S) u
9Vulnerability(?R, ?v) u
contains(?method, ?param) u isEscaped(?i, ?char) ! isFiltered(?R, ?char) (Drived)

Rule #8: if Rule 7 isFiltered(?R, ?ch) u 9Vulnerability(?R, ?v) u infectedBy(?param, ?a)
! exploitedBy(?v, ?a) (Drived)

Rule #9: maliciousPayload(?i) u createdBy(?a, ?i) u HTTPMessage(?m, ?request) u con-
tains(?m, ?param) u hasVulnerability(?webAP, ?v) u contains(?webAP, ?request) u is-
PartOf(?i, ?webAP) ! infectedBy(?m, ?i) (Drived)

Explanation
Rule 1 is a basic rule that states that if a person has some tools (kali, metasploit, ma-
liciousPayload,...), then that person is an attacker.

This rule 2, indicates that if class P is a sub-class of Q, then each instance of class

4 Contents

P also belongs to class Q. For example: if the "JavaScript" class is a subclass of "Tech-
nology", then every instance (tag, characters, payloads...) of the JavaScript class also
belongs to the Technology class.

Rule 3: Let us take another example to explain this rule: an attacker crafted his
payload and sends it to a victim via a link. So, HTTP Request has part Payload, and
Payload has part URL. Logically, the HTTP Request has a part URL as well.

This rule 4, basically indicates that if a URL contains a malicious string, and that
malicious string contains a parameter value, then the URL also contains that param-
eter value.

Rule 5: The HTTP Request has part URL, and the URL contains the payload, then
the HTTP Request contains the payload.

Rule 6: If URL has a malicious input, and a vulnerable HTML webpage reflects
an open tag and/or character or parameter included in the GET/POST method in
the burp suite, then by closing them and relaunch the JavaScript payload into the
vulnerable webpage, the system will trigger an alert.

Rule 7: Similarly, the malicious input (i) is created by the attacker, and is embed-
ded in the message. If the HTTP message from the evil link is reflected in the burp
while some or all its characters get escaped, then a filter (input validation) has been
applied in the victim’s environment web application.

Rule 8 indicates that, if there are some characters that are escaped in the Response
HTML-DOM in burp, and some not, then through the inference process the vulner-
ability will get exploited by the attacker using some attack vectors.

For rule 9: This rule indicates that the attacker uses some attack vectors and tech-
nology to build his malicious payload and injects it into a user-input field. "m" is an
HTTP message which contains a parameter value "param". So, the evil input "i" in-
fects the parameter "param”, and becomes a part of the web page. Thus, this implies
that the spiteful input "i" also infects the entire HTTP message "m".

0.0.1 Transformation of SWRL Rules to OWL Axioms

We present a theoretical notions employed in our ontology. Let A, B, C and D be
pairwise disjoint, infinite sets of classes, (included sub-classes), properties (Object and
Data), individuals and variables where >, ? 2 A; the universal property U 2 B i.e.,
owl:topObjectProperty. A class expression is an element of the following grammar F
::= (F u F | 9B.F | 9.Self | A | {a} where A 2 A, B 2 B and a 2 C. Now let us define
what an axiom is: it is a formula of the form A v J or B1 � ... � Bn v B with A, J 2 F
and B(i) 2 B. A rule is a first-order logic formula usually of the form 8p(b(x) ! h(q))
with b and h conjunctions of atoms; and p, q are non-empty sets of terms where
p ✓ q. Rules and Axioms are very important in building an ontology using Protégé,
they are also referred to as logical formulas. Axioms correspond to OWL 2 EL axioms
whereas rules correspond to SWRL. Consider some terms m and n and a conjunction
of atoms b. We say these two terms m and n are directly linked in b if both terms
occur in the same atom in b. We say m and n are linked in b if there is some sequence

Contents 5

of terms m1...,mk with m1 = m, mk = n, and mi�1 and mi are directly linked in b for
every i = 2,...,k. Let us say again for rules rules of the form b ! h that there is exist
an interpretation I which entails rules. Thus, for every substitution subst, we have
that I, subst |= b implies I, rules |= h. That is to say, the semantics of rules follows
similarly the standard semantics of the first-order predicate logic. Moreover, we say
that two groupings of logical formulas G and G0 are equivalent if and only if each
interpretation I that entails G and G0 are equivalent (G ⌘ G0) and vice-versa. G0 is a
conservative extension of G if and only if:
Every interpretation that entails G0 also entails G.
Each interpretation that entails G0 is only defined for the symbols in G can be stretched
out to an interpretation entailing G0 by appending appropriate interpretations for
further signature symbols. Usually, all the variables in the body of a rule are linked
together. If two variables for example (v,w) are not in connection in the body of a
rule, we could simply add the atom U(v,w) to the body of the rule resulting in a se-
mantically ⌘ rule.

Let us take an example to explain the transformation of rules into a axiom:

Example.- Consider the rule G = Person(x) ^ hasChild(x, y) ^ Female(y) ! Daugh-
ter(y). The following sequence of rules can be produced as follows:
(9hasChild.Person)(y) ^ Female(y) ! Daughter(y)
(9hasChild.Person u Female)(y) ! Daughter(y)
Rule DG from the preceding example can be straight transformed into an axiom as
stated in the following lemma.

Lemma 1. Consider some rule G. If DG is of the form A(x) ! B(x), then G is equiva-
lent to the axiom A v B.
Since the equivalence relation is transitive, the rule G is equivalent to the axiom
9hasTools.PersonuAttacks vAttacker.
Proof.- Let a and a’ be some rules such that a’ results by applying some of the trans-
formations (as in the previous example) to a. By definition, we can conclude equiv-
alency between a and a’ and we can show via induction that G is equivalent to DG.
Additionally, if d (a ! g) is of the form A(x) ! B(x), then by the definition of the
"semantics of rules and axioms", A v B is ⌘ to d(a ! g). Therefore, since the equiv-
alence (⌘) relation is transitive, then g is ⌘ to A v B.

Lemna 2. Consider some rule G. If DG is of the form
Vm

i=2(Ai(xi�1)) ^ Ri(xi�1, xi)
^ An(xn) ! G(x1, xn), then the group of axioms Ai v 9 RAi .Sel f | i = 1, ...,m} [
{ RAi �R1 �...� RAm�1 �Rm � RAm v G} where all RAi are the properties unique for
each class Ai is conservative extension of the rule G. (See 1 to better understand the
meaning of the symbols.)
Proof. As shown in proof of Lemma 1, rules G and DG are in fact equivalent. There-
fore, the lemma follows the set of rules presented in the statement of the lemma is a
conservative extension of G. See the following figure to see the preprocessing axiom
implemented in Protégé in the ROWLTAB plugin.

6 Contents

FIGURE 1: Rule is being converted to OWL axiom.

FIGURE 2: The ROWLTab interface with integrated axioms.

Before applying the rules, we had to create instances, object properties, data prop-
erties, individuals to co-operate with the classes, sub-classes in the ontology. The
following below listed the main classes and sub-classes. However, there are a lot of
sub-classes that are not listed in the figure.

Contents 7

FIGURE 3: Classes and main sub-classes in the ontology develop-
ment.

The following figure are the sub-classes that can be added to the attackPattern ontol-
ogy.

FIGURE 4: Main sub-classes in the ontology attackPatern class.

The following figure can be represented the object properties of the ontology. Note:
If we want to enlarge the ontology in the future, it can be done here in the "Object
properties, data properties, individuals" entities.

8 Contents

FIGURE 5: Object properties.

The next figure is the data properties which can be built in datatypes (Ranges), for ex-
ample: xsd:decimal, xsd:double, xsd:float, rdfs:Literal, xsd:dateTime, xsd:hexBinary,
etc.

FIGURE 6: Data properties.

Contents 9

The following is the individuals by class, where we can add "data properties asser-
tion, object properties assertion, types, etc".

FIGURE 7: Individuals by class.

For rational numbers xsd:decimal is a good choice when using SWRL rules because it
is the default for SWRL. When SWRL sees a literal such as 2.0 it assumes the datatype
is xsd:decimal. For other datatypes, you need to explicitly specify the datatype in the
literal. The property is functional because a Process can only have one value for its
slack.

Now, using the Drools rule engine, we can apply the rules on the previous page
() to our ontology. If the rules are matched the properties you have established in
the software protégé, then running the program using Pellet or HermiT plugins will
generate the inferred classes along with their characteristics. We also use ROWLTab,
and sub-tabs "ROWL" and "SWRL" to build the rules.
- Pressing the "OWL+SWRL -> Drools" button will transfer SWRL rules and rele-
vant OWL knowledge to the rule engine.
- Pressing the "Run Drools" button will run the rule engine.
- Pressing the "Drools->OWL" button will transfer the inferred rule engine knowl-
edge to OWL knowledge.
The SWRLAPI supports an OWL profile called OWL 2 RL and uses an OWL 2 RL-
based reasoner to perform reasoning. An example is given in the following figure.

10 Contents

FIGURE 8: Running Reasoner to establish rules.

0.0.2 Ontology Design

In this chapter, we describe the formalization of the main ontology concepts for
Cross-site-scripting attacks. First, we introduce the set of terms:
- Term extraction or elicitation consists of assembling a list of terms that are relevant
for a specific domain of knowledge. This can be done by defining and identifying
a set of concepts. The relationship, properties, and meaning of concepts should be
evaluated before building the class hierarchy. The list of some terms used in our
Ontology is as follows:
Cross-site-scripting, attacks, vulnerability, attacker, web application, security layer,
tools, technology, payloads, weakness, victim, exploitation, Stored XSS, Blind XSS,
Reflected XSS, Reflected XSS.
- Modules identification consists of describing the set of individuals that will comply
with the ontology system.
- The hierarchy, data properties, object properties, entities, individuals of the ontol-
ogy modules are designed using the Description Logics notation.
The Attacker is a class in our ontology that generates the malicious input using some
technologies such as MetaSploit, JavaScript, etc to launch an attack against a target
victim. This class is further subdivided into several classes.

Contents 11

FIGURE 9: Subclasses of the Attacker ontology.

The formal definition of the class Attacker scheme is described in description logic
(DL) as follows:

8
>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>;

.
The OntologyForCross-Site-Scripting ontology in the following figure is intended to
represent the full range of instances such as (vulnerability, security layers, web browsers,
web applications, technology language, types of XSS attacks, objects properties, data
properties, etc.) that can be involved in an XSS attack scenario. Every parenting class
(Attacker, Attacks, Technology, Victim’s environment, Vulnerability, Consequences,
attack pattern) is further subdivided into several sub-classes that are interconnected
based on their intended functionalities. Figure 11 shows the class hierarchy of the
ontology, and figure ?? elaborates more on the functionalities of the ontology.

12 Contents

FIGURE 10: Ontology construction: more detail about the Attacker
class in Protégé.

- The attacker uses technology such as HTML, JavaScript, Burpsuite, PHP, Apache
server, and MetaSploit to build a malicious payload from his machine.
- His purpose is to launch an XSS attack against a target, hence the victim’s environ-
ment.
- After the Reconnaissance phase, the attacker decides to manipulate the victim, while
the last is exploring a target vulnerable website.

Contents 13

FIGURE 11: Description of the ontology, generated from OWLViz plu-
gin.

Our ontology though describes briefly the security layers, we did not focus too much
on the mitigation of the XSS attacks. The approach is more related to detection.
However, to encompass all the important concepts of the attack scenario, we also
addressed some mitigation techniques that can be used to reduce these types of at-
tacks.
- Therefore, during the testing assessment if the malicious payload does not trigger
any alert, does not reflect in the response tab, and/or does not resides in the web ap-
plication; then, the ontology assumes that some filters, a sanitization were applied
from both the client and the server-side of the web application.

14 Contents

FIGURE 12: Class security layers description

The sub-class Firewalls helps the administrator of the website blocks any malicious-
looking activity in the website in real-time such as, XSS attacks, SQL injections, etc.
The sub-classes Filters, Sanitization are meant to be implemented most of the time by
the web application developer during the coding process. The other sub-classes can
be setup by the administrator of the web program. The class securityLayers assumes
that a maximum of security measures are met in the web application environment.

hasInput(?P, ?Q) u hasPart(?R, ?HTML) u contains(?method, ?openTAG) u contains(?me
thod, ?param) u 9securityLayers(?R, sec) u sentBy(?attack, ?P) ! isDetected(?sec, ?at-
tack)

- The class furtherAttacks is a sub-class of each of the four (4) types of XSS attacks
which predicts that if the attacks are exploited, then the attacker may decide to per-
form additional attacks. The ontology classifies this activity as consequences that
may result after an attack is successful.
The class Attacks and Victim’s_environment are not subclasses of the class Attacker.
Thus, for the attacker to launch his tools against the victim’s system, he first needs
to embed his malicious payload in a link and has the victim click on it. Or, he needs
first to store the malicious payload into the vulnerable web application and wait for
a victim to visit that web application. As a result, as soon as the victim performs the
attacker’s intention (with or without knowing), then a connection will be created
between the attacker’s server and the victim’s environment.

0.1 Objectives

The dissertation thesis focuses on three (3) main topics, namely "Cross-site-scripting
(XSS) attacks and vulnerabilities", "Penetration Testing" and "Ontology for the de-
tection of XSS".
1. The chapter that elaborates on the XSS attacks and vulnerabilities focuses on the
various types of the attacks, the definition of XSS vulnerability and XSS attack, tech-
niques used to detect the vulnerability and the attack, strategies to use to prevent
the attacks from occuring, some statistics of how cyber attacks affected industries in
the past.
2. The chapter that deals with the penetration testing concept explains different
types of the testing, its importance in real world. It also shows the occurrence of the

0.1. Objectives 15

attacks with a few examples for demonstration purposes. It deals with the discovery
of the vulnerability, and exploitation of the vulnerability.
3. The chapter that covers the topic of ontology clearly proves that the ontology it-
self cannot mitigate, detect any attacks. But, in order to be significant, it has to be
properly used with some rules defined and works on a cyclic basis. It explains how
the establishment of rules are crucial building an ontology.

0.1.1 Techniques to Detect XSS Vulnerability in a Web Application

We should be aware that the XSS attack is an intense and convoluted topic. Iden-
tifying XSS vulnerability in a website requires several penetration tests, based on
the difficulty that one may find on each page of that site. The difficulty depends
for the most part on how the specific web application is utilizing proper measures
to resist the attack. Consequently, examination of reflected codes and payloads in
a Document Object Model (DOM) is vital. Utilizing the following steps (fig 13) for
checking if a web application is defenseless against XSS attack, (as per the author
Gupta), could be an awesome method to start.
- Open up your browser and access a specific web application for the test. On that
site, search for parts that require input, similar to search fields, comments, registra-
tion, etc.
- Now, enter any string into these spaces and press "enter" to submit that string to
the website server.
- Now, we can peruse cautiously to check if the first condition holds. The first condi-
tion states that "test the HTTP reaction (or response) website page of the server for
the specific string which was submitted by the guest". Thus, if that HTTP response
incorporates a similar string, then the website can be exploited by XSS attacks. Else,
assuming that the HTTP response does not contain any user-input string, check for
the following condition.
This condition states that: "simply enter any JavaScript string, and submit it to the
server by pressing ’enter’". E.g. <script>alert(123)</script>
- After sending that string to the server, if the server responds with a similar string,
at that point the site is exposed to XSS attacks. If there is no such response, go for
the next condition.
- The last condition states that: after pressing "enter" in the previous step, check
the source code of that site and search if something seems to be like the JavaScript
payload entered. If any element of that string is discovered, then the web-page is
vulnerable to XSS attacks.

16 Contents

FIGURE 13: Steps to discover XSS attack Jean R. Dora, 2021

There also exists a "Blind XSS". It is a subset of the Persistent-XSS, where an attacker
blindly deploys malignant payloads in web application pages that are stored con-
stantly on the target server. Moreover, the stored malicious payload is reflected in
various other applications which are connected. Note that, this type of attack only
triggers when the adversary’s payload is stored by the webserver in a database and
runs as an evil script in another part of the application or completely another web
application.
The majority of the XSS methods used to identify this vulnerability are not adequate
to recognize this type of XSS. A machine learning-based technique can be completely
used to identify or detect the blind XSS. Testing results help to identify pernicious
payloads that are likely to lay in the database through web applications.

0.1.1.1 Analysis Techniques used for the Detection of XSS on the Client-Side and
the Server-Side

The discovery approaches can be: a) Static Analysis, b) Dynamic Analysis, c) Hybrid
Analysis, and d) Data-driven Analysis. The settlement of a defense technique on the
client-side can be set up either on the user’s browser (the client) as filters or plug-ins
or even on a proxy server.

0.1. Objectives 17

a) Static Analysis
As per Chess and McGraw, the static analysis technique mostly centers around the
web application’s source codes. It examines carefully the codes for potential discov-
ery vulnerabilities.
It is clear that code analysis is an absolute necessity, since XSS attacks happen in web
applications, and the whole work is about cybersecurity. In any case, what we need
to separate is that the static analysis does not plan for penetration testing, to inject
payloads.
XSS filters are a case of a static tool. The idea behind the scene is that in the Re-
flected XSS attack, the script resides in both HTTP Request and Response which are
exchanged between the client and the server. Giorgio Maone presents another XSS
filter known as (NoScript, 2020), it works as an add-on. They are broadly avail-
able for Firefox and Seamonkey browsers. It facilitates the execution of Java, Flash,
JavaScript, and other plug-ins only if they are coming from the acceptable, trusted
source chosen by the user. For more information about static XSS detector, please
see Li, 2020; Abdalla, 2020.
Rao et al. 2016 proposes a filter known as the XBuster filter, which was used as an
extension to the Firefox browser. It fundamentally employs a substring matching
algorithm. The primary task of the XBuster filter is to survey the JavaScript and the
HTML contents which are in HTTP Request separately.
However, the work of Nguyen et al. Nguyen, Maleehuan, Aoki, et al. (2019) Malee-
huan, 2019 demonstrates that static tools have also their downside since they pro-
duce false-positive alerts (vulnerabilities detected that do not exist) and false neg-
atives, which means that real vulnerabilities not found. As a consequence, a final
audit of a Security Analysis Static Tool (SAST) tool report is required to confirm
each security vulnerability.
For more knowledge about benchmarking static analysis tools, please see page 1558
from the book Higueral, 2020.
b) Dynamic Analysis
This technique generally focuses on penetration testing. It tries various payloads on
the web application’s possible injection points, and also makes some extra analysis
based on responses.
c) Hybrid Analysis
This category is a combination of the two analyses listed above. It increases the se-
curity against XSS efficiently. According to Upasana, 2018; computationally static
methods are more expensive and suffer from the ineffectiveness to make decisions.
Pan and Mao made the update their framework, in 2017, aiming to propose solu-
tions to DOM-based XSS attacks in the browser extension. That new one is called
the DOM-sourced XSS attack, and it proposes to use hybrid analysis.
d) Data-driven Analysis
Besides static, dynamic, and hybrid methods, there exist "data-driven" analysis; it
is a new and popular technique developed mainly for cybersecurity analysis. Data-
driven analysis is used to scrutinize the XSS payloads instead of analyzing website
vulnerabilities.
Apart from DOM-based XSS attacks, the Reflected and Stored occur mostly due to
a low-security level on the server side. Again, as described above, it involves the
same techniques as for the client-side. Gupta, 2016, introduces XSS-Secure detection
for XSS worm propagation. It is a service provided for Online Social Networking
(OSN-based) multimedia websites on a cloud platform.

18 Contents

0.2 Brief Methods to Prevent XSS Attacks

Forestalling XSS is banal or trivial in some cases, and again however can be a lot
harder relying upon the intricacy of the web application and the manners in which
it handles user-controllable information.
Usually, efficiently preventing cross-site-scripting vulnerabilities is likely to involve
a combination of the following measures:

1. Filter any user-input on arrival. At the point where input is injected and re-
ceived, the mechanism filter should be applied as soon as possible.

2. Validation.It is the comparison of input against white list.

3. Sanitization. It is the combination of escaping, filtering and validation mech-
anisms that assures malicious code cannot be injected into your website.

4. Encode information on output. At the point where any possible response is to
be given from the server, the data should be encoded first to stop it from being
interpreted as an active substance (active content). Contingent upon the yield
setting, this may require applying mixes of HTML, URL, JavaScript, and CSS
encoding.

5. Use relevant, suitable response headers.To prevent XSS in HTTP responses
that are not planned to contain any HTML or JavaScript, you can employ the
Content-Type and X-Content-Type-Options headers to guarantee that browsers
interpret or decipher the responses in the way you plan.

6. Content Security Policy (CSP). As a last line of the guard, you can utilize CSP
to lessen the seriousness and the severity of any XSS vulnerabilities that hap-
pen. For more information, please see PortSwigger, 2021.

0.2.1 Reflected XSS into a Template Literal with Angle Brackets, Single,
Double Quotes, Backslash and Backticks Unicode escaped

In this example, we inject any random characters in the "Search" area into the web-
site and press "enter". We use this payload for example:
<script>alert(’1 "${}Yes"/ ’)</script>
NOTE: We use this payload above just in order to try all the intended characters.
You could have used something like this <anything!@#$%(){/}>’;/
We then catch its behavior through BurpSuite. After catching it, we send the capture
to the "Repeater" to see how it appears in the HTML code DOM-display. In both
tabs (Proxy, Repeater), we see that the payload which we have injected does not
come into our burp suite that same way. Instead, we observe that the random string
is reflected into a JavaScript template block. Some characters are automatically en-
coded, hence indicating the existence of some filters.
To verify, you can use your burpsuite decoder/encoder to try the incoming text or
any online tool made for this purpose. For this specific type of encoded-text online-
toolz, we use the online tool to encode the text/payload above.

https://www.online-toolz.com/tools/text-unicode-entities-convertor.php
https://www.online-toolz.com/tools/text-unicode-entities-convertor.php

0.2. Brief Methods to Prevent XSS Attacks 19

FIGURE 14: Reflected XSS into a template literal with angle brackets

To bypass this filter security and try to exploit the vulnerability, we perform an XSS
attack using the non-encoded characters in the payload above ${} that calls an alert
function inside the JavaScript template string. Please see Hacktricks for more informa-
tion. Living your browser still connected with burp suite, when entering the payload
above into burp suite "Repeater" and clicking on "Go", the pop-up alert will trigger
on your browser when stopping the "intercept". Or simply, we can just right-click
on the blank area in the "Repeater" block and choose "Request in browser" –> "In
current browser session", then copy the link and paste it to your browser and press
"enter/return" to trigger an alert.

0.2.2 Capture Passwords by Exploiting XSS Vulnerabilities from a Web-
site

Once found the vulnerable website, the attacker can decide to exploit the users who
visit that site. This is where the importance of "How, where, on what to click" comes
into play. Just a single click can jeopardize the user, no further actions are needed.
Note that, a vulnerable website is a web application that contains weaknesses. If
those weaknesses are exploited, then the reputation of that web application can be
jeopardized, as well as the data privacy of users of that application.
The following figure shows a step-by-step process of how this situation can happen.

https://book.hacktricks.xyz/pentesting-web/xss-cross-site-scripting

20 Contents

FIGURE 15: Dangerous Stored XSS attack. Jean R. Dora, 2021

Description:
In a blog comment section for example. Assuming that the section is vulnerable to
XSS attacks. So the attacker creates a wicked payload, and injects it into that appro-
priate area of the web application, and posts it.
Step 1: The attacker opens his tool (Kali Linux and Burpsuite Pro), creates his code
which includes his server link; then, injects that code or stores that code into the
vulnerable section of the web application. The attacker leaves his malevolent server
opens all time to keep the connection up.
<input name=username id=username>
<input type=password name=password
onchange="if(this.value.length)fetch(’https://Jean-attackerforexample.com’,
method:’POST’,
mode: ’no-cors’,
body:username.value+’:’+this.value
);">
Step 2: Now the payload is sleeping onto the vulnerable website in a form of a click-
able string. Whenever a user visits that site and reads comments, nothing happens.
But, as soon as the user clicks on the particular clickable string to read more, then

0.2. Brief Methods to Prevent XSS Attacks 21

the attack gets executed without his/her consent.
Step 3: By clicking on the string, the victim’s web browser accepts the request com-
mand from the web application and divulges the user’s credentials to the website.
And since the injected malicious payload was considered as part of the website code,
(Step 4:) now the website naively responds to the attacker with the credentials of the
user who clicks on the clickable string. The attacker will get the response in an HTTP
interaction. Thus, the attacker can log in as the victim user by using the victim’s user-
name and password.

To detect XSS vulnerability, there should be a combination of different processes, and
steps to be undertaken by the attacker depending on the web application in ques-
tion.
A synthetic approach to XSS attacks is a comprehensive approach and the practical
approach to the attack into a single approach. It helps web developers, website ad-
ministrators, researchers, and any internet user know the cause of this attack and
the cause of this vulnerability, the impact it can have on an organization’s reputa-
tion, and from a business perspective. It also helps us know what an attacker can
do, how to minimize the possibility of being exploited as a normal user, and how to
minimize vulnerability as a web developer. Moreover, from an organizational point
of view, to explicitly inform employees of how this attack can happen.
From the previous chapters, we have seen one of the most popular strategies used
by attackers to exploit the XSS vulnerabilities is by crafting a malicious script into a
URL format and sending it to a target user. We have also seen how the attacker can
store his malicious payload onto a vulnerable website 0.2.2. An attacker searches
mainly for web applications that contain user-input (comment field, registration, lo-
gin, search, ...) to inject his payload to analyze the response he will obtain. A payload
can be a file that contains several malicious scripts. Generally, attackers do not in-
ject scripts onto a website one after one to launch the attack on a web application
to detect the vulnerability as it can be time-consuming. There are a lot of rigorous
tools that can help them in this manner, such as Burpsuite Professional. By reading
the previous chapters, now an internet user knows that some best practices can allow
him to reduce the possibility of being exploited such as avoiding opening suspicious
websites in the same browser with a bank account, avoiding clicking on suspicious
links, images, etc.

0.2.3 The Reasons of Using Ontological Approach

Ontology is an interesting proposition for converging the description of a data model
and the related rule base into a single application. Ontologies developed in Web On-
tology Language derive many benefits afforded by the semantic web stack. The
purpose of OWL is to represent complex knowledge of entities in a domain through
a logic-based language, via a computational, such that the knowledge encapsulated
can be verified for consistency or utilized as a basis for inferences on that peculiar
knowledge. Flexibility in defining any concept to the preplanned level of details is a
well-known feature of the ontological model. Many reasons can be highlighted, and
we listed a few below:
a) To share a customary understanding of the structure of data, information between
people or software agents.

22 Contents

To facilitate the reuse of domain knowledge (Domain, in this viewpoint, means the
most universal classes, the knowledge base. Classes are divided, subdivided further
into many branches of the hierarchy.).
b) To make domain assumptions explicit.
c) To divide domain knowledge from the functional knowledge.
d) To scrutinize domain knowledge.
A diversity of issues may spring out when a non-ontological approach is used.
_ It is ordinarily a good practice to implement or use proactive detection tools. Many
web-based detection tools are reactive, that is to say, they are operated according to
the specific rules set by the administrator. The attack can only be stopped if the ex-
act signature of the attack is not only recognized by the system scanning but also
present.
_ It is easy for an attacker to launch an attack by a slight modification of the signa-
ture, since the majority of the existing methods are signature-based, which hold the
syntax of the attack.
_ Statistical mechanisms used in Intrusion Detection Systems largely provide a fea-
sible solution for the network layer. However, this solution is not effective at the
application layer because it emphasizes the character distribution of the input and
does not take into account its contextual nature.

23

1 Summary

Depending on the project in question, an ontology may be very sizeable, but still
understandable. Building a new ontology from scratch can be enigmatic. Fortu-
nately, thanks to the feature of "re-usability", there will be simply, a need of altering
an existing ontology to satisfy your goals in the reconstruction. It is obvious that an
ontology in cyberspace necessitates the separation of duties; besides, the supervision
of the system is of great importance (it can be achieved by the administrator or any
trusted individuals) for the process to provide better results in terms of preventing
incidents or attacks and enhancing the security.

This thesis presents the structure of the ontology-based semantic web to address the
topic of XSS vulnerabilities and attacks. We have implemented some rules that en-
able the ontology to better address the detection of vulnerabilities and the detection
of the attacks through audit logs. The ontology also proposes a technique that re-
quires the set up of security layers to be done correctly if the mitigation of the attack
takes into consideration. For instance, the feature of "audit and alert" to the admin-
istrative department is used whenever (if in case) a skeptical, suspicious payload
penetrates all the other security layers which were set by the security engineers.
In Cross-site-scripting attacks, the analysis is normally done on the input fields in
a web application. For example, on a web page where the user is asked to enter
his password, the user can inject a JavaScript payload in an encoded format like the
following 1. Therefore, when the input field passes through the analysis engine, it
is looked over for encoding characters. In case it is encoded, then it would be first
decoded and then would be scrutinized for an anomaly. After that, the request is
passed on to the validation mechanism and analyzer module. There, semantic rules
are being used for checking malicious content. However, the ontology in itself can-
not enhance the security of a network institution, thus it has to take into account all
the security mechanisms, and be properly used. That is to say, a proper validation
mechanism has to be put in place for any user-supplied input, installed software on
the server-side has to be up-to-date, and data resources and human resources for the
separation of duties have to be well established.

There exist two very critical factors that can impede the security performance, they
are "browser" and "user". Which browsers are used (Tor, Brave, Opera, Internet Ex-
plorer, Firefox, etc.), and most importantly if they are outdated. The sound judgment
of the user is also of great importance when it comes to clicking on links. Therefore,
in our future work, the factor of using outdated browsers, and the type of browsers
will also be addressed, to efficaciously mitigate the attacks.

The proposed ontology is a modern approach for application of semantic technolo-
gies particularly in web application security for XSS attacks. The inference capability
facilitates, enables our reference scheme to attain more stamps of approval to such
an extent that, it gives ability of detecting complex web attacks. Additionally, by
employing semantic rules, the scheme becomes more reliable and more flexible.

24 Chapter 1. Summary

Additional Information

%3Cscript%3E%20alert(123)%20%3C%2Fscript%3E

<script>alert(123)</script>

FIGURE 1.1: OWL DL axioms and facts Baader, 2010

25

Bibliography

Abdalla, W. (2020). “Web Application Security: An Investigation on Static Analysis
with other Algorithms to Detect Cross Site Scripting.” In: MDPI, Applied Sciences.

Baader, Franz (2010). “THE DESCRIPTION LOGIC HANDBOOK”. In: United King-
dom at the University Press, Cambridge. URL: www.cambridge.org/9780521876254.

Gupta, Shashank (2016). “XSS-secure as a service for the platforms of online social
network-based multimedia web applications in cloud.” In: URL: https://doi.
org/10.1007/s11042-016-3735-1.

Higueral, Juan Bermejo (2020). “Benchmarking Approach to Compare Web Appli-
cations Static Analysis Tools Detecting OWASP Top Ten Security Vulnerabilities”.
In: 64, pp. 1555–1577.

Jean R. Dora, Karol Nemoga (May 2021). “Ontology for Cross-Site-Scripting (XSS)
attack in Cybersecurity”. In: URL: https://www.mdpi.com/2624-800X/1/2/18.

Li, Chenghao (July 2020). “Cross-Site Scripting Guardian: A Static XSS Detector Based
on Data Stream Input-Output Association Mining”. In: MDPI, applied sciences. URL:
https://www.mdpi.com/2076-3417/10/14/4740/htm.

Maleehuan (2019). “Reducing false positives of static analysis for sei cert C coding
standard.” In: IEEE Computer Society, Montreal, Canada.

NoScript (2020). In: URL: https://noscript.net/.
PortSwigger (2021). “How to prevent XSS attacks”. In: PortSwigger Web Security Academy.

URL: https://portswigger.net/web-security/cross-site-scripting.
Upasana (Sept. 2018). In: URL: https://www.sciencedirect.com/science/article/
pii/S1084804518302042.

www.cambridge.org/9780521876254
https://doi.org/10.1007/s11042-016-3735-1
https://doi.org/10.1007/s11042-016-3735-1
https://www.mdpi.com/2624-800X/1/2/18
https://www.mdpi.com/2076-3417/10/14/4740/htm
https://noscript.net/
https://portswigger.net/web-security/cross-site-scripting
https://www.sciencedirect.com/science/article/pii/S1084804518302042
https://www.sciencedirect.com/science/article/pii/S1084804518302042

Zoznam publikácií a ohlasov

• Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity, by Jean R, Dora., Karol, N.
J. Cybersecur. Priv. 2021, 1(2), 319-339; https://doi.org/10.3390/jcp1020018
Received: 4 April 2021 / Revised: 3 May 2021 / Accepted: 18 May 2021 / Published: 25 May
2021

• Clone Node Detection Attacks and Mitigation Mechanisms in Static Wireless Sensor
Networks, by Jean R, Dora., Karol, N.

J. Cybersecur. Priv. 2021, 1(4), 553-579; https://doi.org/10.3390/jcp1040028
Received: 5 July 2021 / Revised: 26 August 2021 / Accepted: 15 September 2021 / Published: 24
September 2021

Účasť na konferenciách

• Smolenice June 2018
• Hack In Paris June, 2019, Maison De La Chimie, Paris (France)
• October 2019, Vienna (Austria) “Conference about Ontology”
• February 2022, Paris (France) - International Conference on Cybersecurity and Threats (ICCT

2022: XVI.). Certificate of Best Presentation Award Received by Jean Rosemond Dora
• Smolenice June 2022

Granty

• This “Ontology for Cross-Site-Scripting (XSS) Attack in Cybersecurity” research was funded
by the Institute of Mathematics, Slovak Academy of Sciences (MUSAV), Grant VEGA
2/0109/18 and APVV-19-0220.

• This research “Clone Node Detection Attacks and Mitigation Mechanisms in Static Wireless
Sensor Networks” was funded by the Institute of Mathematics, Slovak Academy of Sciences
(MUSAV), Grant VEGA 2/0109/18 and APVV-19-0220.

	Declaration of Authorship
	Acknowledgements
	Abstract
	Transformation of SWRL Rules to OWL Axioms
	Ontology Design

	Objectives
	Techniques to Detect XSS Vulnerability in a Web Application
	Analysis Techniques used for the Detection of XSS on the Client-Side and the Server-Side

	Brief Methods to Prevent XSS Attacks
	Reflected XSS into a Template Literal with Angle Brackets, Single, Double Quotes, Backslash and Backticks Unicode escaped
	Capture Passwords by Exploiting XSS Vulnerabilities from a Website
	The Reasons of Using Ontological Approach

	Summary
	Bibliography

