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Introduction

The fundamental physical phenomenon concerning sound is a vibration. Every heard sound
is a vibration of an instrument. The vibration is transmitted into a human ear through a
medium, mostly air. Then the sound is processed in the human ear. The result is an electric
impulse going into a brain, and the brain evaluates the impulses and creates such a sensation
of the heard sound.

This sensation may not always be related to physical process. The sensation is a subjective
phenomenon and is also dependent on a particular person and even on his momentary mental
status, while physical process is an objective phenomenon dependent only on physical laws.

One of the psycho-acoustical phenomenon is a deformation of audible spectrum. Due to
the Weber-Fechner law, one can consider that audible range is linear in a logarithmic scale.
The deformation means that the pitch perception of a pure tone is approximately linear in the
middle of hearing range and is deformed near by boundary (threshold of hearing, threshold of
pain). We hear nothing outside this range. Of course, these limits are different for different
people. The Section 1 is devoted to this effect. In Section 1, we extend Einstein operation
to more dimensions such that the operation remains associative and commutative. Hence we
obtain an operation of addition of two (and thus an arbitrary finite number) tones.

If one considers a complex tone composed of two or more pure tones, the situation is more
complicated. We investigate linear (one-dimensional) musical instruments, i.e. strings and
pipes. Their frequency spectrum is linear, which means that their harmonics are f, 2f, 3f, 4f,

.., where f is a fundamental frequency. This does not apply in the case of two-dimensional
instruments like drums or bells. Their spectrum can consist of irrational multiples of the
fundamental frequency.

The process of sound analysis in human ear is very similar to Fourier transformation.
Linear input, which is a mixture of simple tones, coming into ear is decomposed on individual
frequencies. A complex tone produced by a string or pipe is a sum of sine and cosine functions.
Each such function corresponds to a pure tone, which is specified by frequency and amplitude.
A significant property of complex tones is a timbre. It is a psycho-acoustical impression of
heard sound. Roughly speaking, timbre enables to distinguish two different tones of the same
loudness and of the same pitch. For example, if we hear middle C playing on piano and violin,
we can perceive a difference, but it is unable to say which of those tones is “better” or “nicer”.
Therefore the timbre is considered as a multi-dimensional attribute. The timbre is also referred
as color of sound.

1 Frontiers of sound perception: relativistic effects

Let us consider Einstein operation @ defined as follows

U+ v
1+

uBv= : (1.1)

S

where u € (—c¢,c¢), v € (—¢,c).

The generalization of Einstein addition that is used in relativity theory is defined in the
three-dimensional Fuclidean space via addition, scalar multiplication, both scalar and vector
products. The resulting operation is non-associative and non-commutative. The generalization



to other dimensions is based strongly on the Lagrange vector identity in the three-dimensional
Euclidean space. There is an extension from three-dimensional Euclidean spaces to every
Hilbert space (including finite-dimensional spaces) [24]. Obviously, this generalization of Ein-
stein numbers is only a possibility (not discussing about physics) since the Lagrange identity
does not hold for other dimension that three. We suggest a generalization theory which saves
commutativity and associativity of the additivity of the original Einstein operation passing to
all finite space dimensions. It is applicable for every space dimension and this space dimension
can be enlarged (added) or reduced. As an application of our theory, we bring also as an
example of a semi-field of dimension 2 equipped with the generalized hyperbolic addition.

The following lemma is an useful helpful tool in various situations. We use it to transform
bijectively the problem on the real line: (1) to prove associativity of an unknown operation,
(2) to introduce a multiplication when the addition is given.

Lemma 1.1 Let A, B be sets and the binary operation x on A be associative (commutative,
have identity element, etc.). If F': A — B is a bijective function, then the binary operation
® on B defined by x ® y = F(F~'(x) x F~(y)), =,y € B, is associative (commutative, have
identity element, etc.)

The system E(_..) = ((—¢, ¢), ®) is a group isomorphic to real numbers with usual addition
(R,4). If ¢ = oo, then the c¢-ball expands to infinity and Einstein addition reduces to the
"normal" addition, i.e. Einstein addition is reduced to the Newtonian addition.

1.1 Case of mutually independent generalized dimensions

Let V be a vector space over the field of real numbers equipped with a norm || - || and an
operation of addition +. Let us denote the c¢-ball in V

Ve={veV||v|]<c}
Let us define the function ¢ : V — V., as follows

ctanh ||u|| .
————u if u#0,
sw)=<{ " ] 7 (1.2)
0 if u=0.
The function ¢ defined above is a bijection between V and V. and its inverse is
HHH) u
_ atanh| — | — if u # 0,
o (w) = ( AT (13)

0 ifu=0.

We use this isomorphism to extend the operation of the hyperbolic tangent addition from
the real line to every linear normed vector space over real numbers. Define the binary operation
@v. in the set V. as follows

A(u,v
[ A, V)|

~—

u @y, v = ctanh(||A(u, v)||) (1.4)

where

A(u,v) = atanh (M) | atanh (M> Y

¢/ ul ¢ /vl
It is clear that (V,., @y,) is a commutative group.

4



1.2 Spaces with added dimensions and generalized addition depen-
dent on the former dimensions

We claim the following theorem to find another possibilities of extending of isomorphism
p:R—=Rtop,: DCR*— R"” and to define new operations by this isomorphism.

Theorem 1.2 Let D1, D,,..., D, C R, Hy,Hy,...,H, CR. Let the function fo: D1 — Hj
and for all indexes i = 1,2,...,n f; : D; — H; are bijective functions, where f;(x) # 0 for all
reD;,i=1,2,...,n—1.

Define F': D =Dy X Dy x ... x D, — F(D) by

fo(w2) f(w3) fn(2n) )
filzn) folza)” 7 fuca(zna)

F(x17$27"'7xn) = (fO(xl)a

and put a = f, (fo_l(ml)) )
If avoxs-...-x; € H;,i=2,3,...,n,
F @y, 20, wp) = (fo ' (1), [ Haxa), f3 (azaxs), ..., [ (azaws ... xp))

for xy,zo,. ..z, € F(D),

Example 1.3 Let us consider bijective function F,, : D,, — H,, given by

( tanh(xs) tanh(zs) tanh(x,,) ,
tanh e Y >0,
(an (1) tanh(z1)’ tanh(ze)’ ~ tanh(z,_ ) i >
Fu(x) =
(tanh(ml), 0,... ,0) if t, =0,
\
forx = (x1,29,...,2,) € D,, where

D, ={(z1,29,...,2,) ER" | 0< 2, <21 < ... <27} U ([0,00) « {O}n—l)

and
H, = (0,1) x (0,1]" " U ([0,1) x {0}"").
By Theorem 1.2,

<atanh(x1), atanh(zq2,), ..., atanh(z xs . . xn)>, if x, >0,

F(x) =
(atanh(xl),o, L o), if 2, = 0,
for x = (x1,29,...,2,) € Hy,. Let us define the operation @ on H, by Lemma 1.1, thus
x@y _ (I1 Sy, 122 D ylyz7 12973 D ?/13/2?/37 L T1T2. . Tn DY1Y2 .- YUn ) (L5)
1 Dy T1T2 D Y1Y2 T1T2 .. Tp—1 DY1Y2 - - Yn—1

if ©, > 0,y, > 0, otherwise
x@y: (z1 ®11,0,...,0),

where @& is FEinstein addition defined by (1.1) with ¢ = 1. By Lemma 1.1, the operation
P is associative, commutative, identity element is (0,0,...,0), since the set D, with usual
coordinate-wise addition has these properties. Thus (H,, D) is a commutative monoid.
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1.3 Mean-like Einstein generalized numbers

Another and different generalizations of Einstein numbers can be constructed due to the fol-
lowing assertion, for more details cf. [11]. This construction can be easily extended to arbitrary
finite number of coordinates.

Theorem 1.4 Let ¢ : B — B be a bijective function, (A, ®,®) be a field, and B : Bx B — B,
[ : A x B — B be such operations that there holds p@ (xBy) = (pBx) B (p@y) for all
peEAxr,ye BandpE (¢qBx) = (pOq)Dx for all p,q € A,x € B. Define an operation
P :(AxB)x (Ax B)— Ax B as follows

(a1, b) @(G2, by) = (al D az,
(Mar ©{a1 @ az} ' @ C(b) Bay © {ag @ as}y' & C(bz)Da

where 0;11 means an inverse element to the element c in the set A with respect to ©. We put

(a1,01) Plaz,bs) = (0,b) for some b € B, if ay ®ay = 0. If ay ®ag # 0, ay  az # 0 and
a; B as @ az # 0, then

(a1, b1) (a2, b2) | a3, bs) = (a1, 01) €D [ (a2, b2) Poas, )|

If moreover B is a commutative operation, then (ay,by), (az,bs) commute with respect to the
operation €P.

Example 1.5 Now let us take operations &, H as Einstein one-dimensional addition and ©, =
as multiplication defined by hyperbolic tangent isomorphism, with A = [0,¢), B = (—¢,c¢).
There are satisfied assumptions of Lemma 1.4. If  : (—c,c) — (—c,c) is a bijective function,
then there exists only function n: R — R such that

((z) = ctanh [77 <atanh%)}

for all x € (—c,c). After some manipulations

+
(a1,b1) @(32, by) = (16“_’_ ({;7
tanh ( _1[77(atanhb?1) (atanh‘%) + n(atanhbf) (atanh”—f)]) >
ctanh | n .

atanh%l + atanh%2

If ay = ay = 0 we put (a1, b1) P(az, be) = (0,0).
(a) If n(x) =z for all x € R we have

a +a
(CLl, bl) @A(a2’ b2) = (1 :_ ai—gi?
tanh ((atanhb?l) (atanh‘%) + (atanhbf) (atanh‘%)) >
ctan .

ataunh“—c1 + atanh“??



(b) If n(z) = 1/z for all x € R\ {0}, n(0) =0, then

a a

(ar.b )@ (a2, by) = a; + as ctanh atanh®t + atanh<
1,41 H 2,%2) = 1 4 @ae2’ atanh 2L atanh %2
+ 2 c | c
atanhb(—:1 atanh%2

The second coordinate resembles the weighted arithmetic mean in the first case and the
weighted harmonic mean in the second case for by, by. Hence the name “mean-like” Einstein
numbers. Both operations form a commutative monoid on the set [0,c¢) x (—c,c).

2 Multi-polar structure of sound

One of the first who studied timbre was Helmholtz in the second half of the 19th century, cf.
[13]. He referred the timbre as quality of a tone. He proposed that the timbre is dependent
only on ratios of amplitudes of partial tones. In 1982, Pollard and Janssen [19] introduced the
timbre as a tri-stimulus (three-valued quantity). They studied a truncated Fourier series

N
Z ay sin(27 frit — i),
k=1

where a; are amplitudes related to frequencies fi, i is a phase difference, and N > 4. The
harmonics are aggregated into three groups. There are defined three quantities

N
Zak N
ay az +as + ay k=5
S = — S = S = S: .
1 Sy 2 g ; 3 g ) ;ak

Obviously, there holds
S14+ 5+ 55=1.

Hence, the timbre is determined by only two quantities. The space of timbres is very similar
to the gamut in the RGB model of colors. This correspondence is remarkable in [18, 23]. In
the figure 1, there is a projection of tri-stimulus to two dimensions with axes S; and Sy. There
is also an approximately location of timbre for trumpet, viola, piano and flute, which is given
by experimental measurements, cf. [14]. In the figure 2, there is a space of human color vision.
The gamut is a section of the space, it usually is a triangle.

The theory of multi-polarity is a useful tool for investigating multi-dimensional quantities.
Multi-polarity provides a uniform frame to deal with usual colors and also sound colors. The
idea of multi-polarity (sets equipped with arithmetic operations with arbitrary number of
“poles”) is relatively new and comes from physics, cf. [17]. However, there was no explanation
of the multi-polarity idea in the mathematical literature, i.e., a description of a vector-space-like
structure with a chosen number K € N of poles. There are many applications of K-polar vector
spaces to electricity and magnetism, e.g. we know the 3-phase, K-phase electric streams, K-
polar oscillators, receivers, magnets, microscopes, telescopes, etc., [16]. The principle of multi-
polarity can be easily observed in the case of K-phase electric current, K € N. Particularly,
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Figure 1: Timbre space, [14]

Figure 2: Color space with a triangular gamut, [4]

if K = 3 we say about three-phase current. The sum of all three phases of equal amplitude in



three-phase current is zero at each moment. We call this fact to be the cancellation law. We
introduce a mathematical description of multi-polarity, cf. [9]. There is presented the complex
plane as a three-polar space.

The notion of semi-field is closely related to multi-polarity. In the last part 2.5, there is
investigated four-dimensional semi-field of hyperbolic commutative quaternions. We apply this
semi-field to construct a three-polar space based on the first six harmonics in Fourier series.
Those six harmonics are usual enough to model musical tones. The seventh harmonics is often
regarded as inharmonious. For example, the seventh harmonics on the piano is suppressed by
striking the seventh of the string.

2.1 Three-polar space

Semi-fields play a crucial role in the theory of multi-polarity. The set X with two binary
operations + and - is called to be a semi-field, X = (X,+,-), if (X,+) is a commutative
semi-group (i.e. + is a commutative associative operation), (X, -) is a commutative group, and
multiplication - distributes over addition +. If the semi-group (X, +) has a neutral element 0,
then we request to be (X \ {0},-) a commutative group, and the system (X, +,-) is called to
be a semi-field with zero 0. We denote 1 the neutral element with respect to multiplication -.

Let us consider three poles A, B,C from a semi-field X to a set Y and an operation ®
given by the Latin square

®|A B C
AlA B C
BlB Cc A (2.1)
c|C A B

The mappings A, B, C are called polar operators or poles. There is a neutral element A with
respect to the operation ®. Next, we assume that A(X), B(X), C(X) are isomorphic copies
of X and

A(0) = B(0) = C(0), (2.2)
where 0 is a neutral element in the semi-group (X, ®). The isomorphic images A(X), B(X)
and C(X) are called polar azes. The condition (2.2) shows that all polar axes intersect in a

single point which can be viewed as an “origin” of the multi-polar space.
Now let us consider the element (a,b,c) € X3. It can be very formally written as a sum

(a,b,c) = Aa+ Bb+ Ce.

The important function has the cancellation law. We will say that a triple (u,v, w) € X
is equal to the triple (z,y,z) € X® in the sense of cancellation law (“null of addition”), we
write (u,v,w) = (z,vy,2), if there exists d € X such that (v + d,v + d,w + d) = (x,y, 2)

or (u,v,w) = (x+d,y +d,z+ d). The relation = is an equivalence relation and (a,b,c) =
(0,0,0) <= a = b = c. Formally, for all a € X

Aa+ Ba+ Ca = (0,0,0).

2.2 Operations in the three-polar space

We introduce operations analogical to the classical operations of addition, subtraction, conju-
gation, multiplication and division. All these operations are defined on X3.



Addition For (u,v,w), (z,y,2) € X3,
(u,v,w) B (x,y,2) == (u+ 2,0+ y,w+ 2). (2.3)

Clearly, the operation H is associative, commutative.

Subtraction For all z,y,z € X and due to the cancellation law, we define the operation of
subtraction as follows

(u,v,w)B (z,y,2) = (w,v,w)B(y+z,2+z,24+y) = (u+y+z,0+x+z,w+x+y). (2.4)

It is obvious that B(x,y,2) = (0,0,0) B (z,y, z) is just an inverse element to (x,y,z) with
respect to H because

(x,y,2)B(z,y,2) = (z+y+z,x+y+z,2+y+2) =(0,0,0).

Multiplication We define the operation of multiplication polynomial-like (“each one with
each one”) using the table (2.1) for operation ®,

(u,v,w)E (x,y,2) =(u-x+v-z+w-yu-y+v-z+w-zu-z4+v-y+w-z). (2.5)

It is easy to see that this operation is associative and commutative, its neutral element is
(1,0,0)), and distributes over addition H.
The special case of this operation is multiplication by scalar,

kE(u,v,w) = (k,0,0) & (u,v,w) = (k- u, k- v, k- w),

where k € X.

Conjugation This operation is expressed in terms of three-polar space in the following way
(u,v,w)* = (u,w,v). (2.6)
The operation of conjugation has the following natural properties.
Lemma 2.1 Let be (u,v,w) € X3, (x,y,2) € X3. Then there holds
1. ((u,v,w)*)* = (u,v,w),
2. ((u,v,w) B (z,y,2))" = (u,v,w)* B (z,y, 2)*,
3

- ((uyv,w) B (2,9, 2)" = (u,0,w)* @ (z,y, 2)*
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Division The element (u,v,w) € X3 is called to be invertible if (u,v,w) & (u,v,w)* belongs
to X \ {0}. We denote the set of all invertible element by X?. For an invertible element
(u,v,w) € X2, an inverse element with respect to multiplication [ is given as follows:

(u,v,w)™ = ((w,v,w) & (u,v,w)*) " (w,v,w)* = (u-dw-dv-d), (2.7)

where
d=2/[(u—v)*+ v —w)+ (w—u)?].

Now we define an operation of division in the following way:
(u7 U? w) Z (x7 y? Z) = (u7 U7w> lz‘ (‘1.7 y7 2)71 (2'8)
for (u,v,w) € X? and (z,y,2) € X}.

Lemma 2.2 All operations of addition, subtraction, multiplication and division are indepen-
dent on the choice of representatives of the classes equivalences given by the cancellation law.

2.3 The case of the semi-field of non-negative real numbers

If one considers a semi-field of non-negative real numbers R, there holds (u, v, w)&E (u, v, w)* €
Ry for all (u,v,w) € Ry, (u,v,w) % (0,0,0). Due to this fact, we obtain a field which is
isomorphic to usual complex numbers. From this point of view, the three-polar space over the
semi-field of non-negative real numbers is only another expression of complex numbers.

Theorem 2.3 Let be C3 a three-polar space over the non-negative real numbers with usual
addition and multiplication. The operations of the standard complex field C and operations in
Cs are isomorphic.

2.4 The case of the semi-field of hyperbolic complex numbers

In this section, we deal with the system of hyperbolic complex numbers. It is an extension of
the system of non-negative real numbers with usual operations. It has some better properties
than the field of complex numbers, e.g. there is a non-trivial sub-semi-field.

If we go from one-dimensional real numbers to two-dimensional generalized complex num-
bers, the situation is more complicated. We will represent generalized complex numbers as
follows

z = (a,b) = a+ b,

where a,b € R and + € R. If we consider usual coordinate-wise addition, there are three
possible multiplication operations which reflect how we define the element 2 [1, 12, 15]. If we
put 12 = —1 we speak about elliptic complex numbers C, or only complex numbers, if 12 = +1
then we have hyperbolic complex numbers Cy,, and if +2 = 0 then the system is called parabolic
complex numbers C,. We can general write

(a,b) ® (¢,d) = (a+c¢,b+d),

(a,b) ® (¢,d) = (ac +1*bd, ad + bc).
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The system C, is a field, while C,, C, are neither fields nor semi-fields, they are only commuta-
tive rings with unit. Clearly, non-negative real numbers are sub-semi-fields in all three system.
But one can find subsets of hyperbolic and parabolic complex numbers which are semi-fields
not contained in real numbers. We have semi-field {(a,b) € R* a > |b| ora = b = 0} for
hyperbolic complex numbers, and semi-field {(a,b) € R?*;a > 0 or a = b = 0} for parabolic
complex numbers. These sets are the only connected (in usual Euclidean topology) non-real
semi-fields in Cj;, and C, respectively. In usual complex numbers, there does not exist a
connected sub-semi-field besides real numbers and whole complex numbers.

Now, we will consider the system of hyperbolic complex numbers, which we will denote by
D due to the other names double numbers (there is no standard terminology for hyperbolic
complex numbers; we can find the following terms in literature: double numbers, hyperbolic
numbers, semi-complex numbers, split-complex numbers, perplex numbers). We will use the
shorter name “double numbers” instead of the more concise name “hyperbolic complex num-
bers”.

Arithmetic operations of two double (hyperbolic complex) numbers (ay, as), (b1, b2) € D are

as follows
(a1,a2) ® (by,b2) = (a1 + by, as +b2),

(Gh az) © (b1, be) = (al —by,as — b)),
(a1,a2) © (b1,b2) = (a1by + azbs, arbs + asby),
and if b3 = b3 then

arby — agby asb; — arby
(a1, a2) @ (b, bo) = ( , )
B2 b2

All operations on the right sides are usual operations of real numbers. In the sequel, for
convenience, we will denote these operations &, &, ®, @ in double numbers in the same way
as those in real numbers +, —, -, /, respectively. If appropriate we return to the “o-notation”.

It is easy to check that double numbers form a commutative ring with unit but not a
semi-field. If we take the set {(x1,22) € R* | 21 > 0,79 = 0}, then double numbers are
reduced on the semi-field of non-negative real numbers. There exist also a non-trivial subset
of double numbers which is closed under addition, multiplication and division. It is a set
DY = {(z1,22) € R? | &1 > |za] or 33 = x5, = 0}. Obviously the system (D%, ®,0) is a
semi-field.

We introduce the following definition for the lemma of “existence of the square of the
difference”.

Definition 2.4 Let be a = (a1, a2) € DY and b = (by,be) € DY. We will say that a,b are in
the relation ~ (~), a L (a ~b),if a; + as = by + by (a3 — ag = by — by).

Lemma 2.5 Let be a = (a1,a2) € DY and b= (b1,by) € DY.. Then
1. (a=b)-(a—b) e D% =DY U{(21,22) € R?2q = |22|},
2. (a—b)-(a—b) €Dy =D\ {(0,0)} if and only ifa b anda @ b.

We construct the three-polar space using the semi-field X = DY. The necessary and
sufficient condition for divisibility is given by the following lemma.
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Lemma 2.6 Let be (u,v,w) € X3, (x,y,2) € X3. Then there holds
(u,v,w) & (u,v,w)* = (d,0,0)

for some d € X if and only if there does not hold true that u Lovlworu~v~uw.

2.4.1 Cancellation law in split-quaternions

Let us suppose the operators A, B, C' in the form
B,:R*>5 R i=1,23,

where By 23 = A, B, C are square matrices 4 x 4 with real coefficients.
According to (2.1), we request the following equations

B\B, = ByBs3 = BsB, = Dy,
BBy, = BsB, = ByB; = B, (2.9)
B1B; = DByBy = DB3B, = DBs,

where multiplication of matrices is understood in the usual sense. We assume that A = B is
an identity matrix. This way, the system (2.9) is reduced to the following four equations

ByBy = By, B3By=DB), B3Bs=DBy, DByBy=Ds. (2.10)

These equations lead to a system of 48 non-linear equations with 32 unknown. We do
not have a complete solution of this equation system. We considered only a special cases
of the so-called split-quaternions. The operation of multiplication of two split-quaternions
(21,29, 23, 14) € R* and (y1, yo,y3,74) € R can be expressed in the “matrix-vector” notation
as follows

Ty —T2 T3 T4 n

o Ty X1 —T4 T3 Y2

(21, T2, T3, 24) * (Y1, Y2, Y3, Ya) = T3 —T4 T To s
Ty T3 —T2 I1 Ya

According to this, the operators Ay, A3 can be represented by quadruples of real numbers
(b1, b, b3,bs) and (cy, ¢, c3,¢4), respectively. The operator A; is represented in this way as
(1,0,0,0).

In this case, the system (2.10) has only 8 unknown and is easy solvable. It was solved by
Mathematica. All solutions are of two kinds. The first one is a trivial solution Ay, = Az =
(1,0,0,0) which is not interesting. The second type is parametrizable as follows

1
Ay(r,s,t) = (—— i\/3—|—482—F47§2,s,t),

272
X (2.11)
As(r,s,t) = (—5,—2\/3+4s2+4t2,—s,—t>,

where r € {1,—1}, se R, t € R.

If s =t = 0, then operators As, A3 correspond to rotation in the complex plane by angle
27/3 and 47 /3, respectively.

We observe that for all z € R*,

Az + Ay(ry s, t)x + As(r, s, t)x = (0,0,0,0) (2.12)

for all admissible r, s,¢t. Thus Equation (2.12) can play the role of the cancellation law.
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2.4.2 Commutative rings on the set R*

Using operators Ay, As(r, s,t), As(r, s,t), we construct a class of commutative rings of three-
polar spaces over the semi-field of double numbers.

Let be m : M = X3 = R*, (a,b,¢) — Aja+ As(r,s,t)b + Asz(r, s, t)c, where a = (ay,as),
b= (by,b2), c = (c1,c2) € X. The mapping m is independent on the choice of representatives
of equivalence classes M = M\~. Thus it can be considered as a mapping Ml — R* that is
injective. If s2 + 2 > 0, then the mapping m is onto. Moreover, m is linear, i.e.

m((u,v,w) B (z,y,2)) = m(u,v,w)+ m(z,y,2),
m(k @ (u,v,w)) = km(u,v,w),
for all (u,v,w), (z,y,2) € X3, k € X.
If s2+t2 > 0, then m is a bijection, thus there is an inverse mapping, denote it n : R* — M.

Also this mapping is linear. Through these two mapping we can introduce new operations,
say addition and multiplication, on R* as follows

p@q = m(n(p) Bn(q)), (2.13)
pOq = m(n(p) Bnlq)),

p,q € R
Immediately, by linearity of both mappings,

r@Pa=pr+a (2.14)

where + is usual coordinate-wise addition in R*.
More interesting situation arises from the operation of multiplication. Let us denote four
base elements in R* as eq, e5, e3, e, and let be

4 4
P:Zpiei, QZZQJGJ-
i=1 j=1

By properties of operations H, @ and mappings m, n,
4
p@Q = Z pig;i(ei B e;),
ij=1

and thus it suffices to find elements e; (D e; = m(n(e;) @ n(e;)).

The system (R*, @, () is a commutative ring with unit (1,0,0,0) regardless of the pa-
rameters 1, s,t, except for the condition s? 4 ¢> > 0 because if s = ¢t = 0 then the mapping
m : X3 — R* is not surjective and thus the mapping n is not well defined.

2.5 Three-polar space over the semi-field of hyperbolic commutative
quaternions

2.5.1 Hyperbolic quaternions

The system of usual real numbers and usual (elliptic) complex numbers are significant, their
multiplication have four important properties: 1. associativity; 2. distributivity over addition;
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3. commutativity; 4. no zero divisors (i.e. ab = 0 implies a = 0 or b = 0). It can be
proved that in more than two dimensions a system with these four properties can not exist,
cf. [21]. If such a system satisfies the two first conditions, then it can satisfy just one of the
two last conditions. It is clear that associative system can be non-commutative, e.g. classical
Hamilton quaternions, but on the other hand commutative systems with unit are associative,
cf. [5]. Hamilton quaternions are without zero divisors, what allows to divide arbitrary non-
zero numbers, but they are not commutative.

In functional analysis, the greatest attention is paid for commutative systems due to the
Scheffers theorem |20]: for a distributive system with the unity the differential and integral
calculus exists only if the system is commutative. In the sequel, we will deal with four-
dimensional system like classical Hamilton quaternions. Due to the commutativity, we will
call such system commutative (Segre) quaternions, cf. [22, 2|. Scheffers theorem allows to
introduce differential and integral calculus in commutative quaternions and also functions of
commutative quaternion variable. It has interesting applications in the relativity theory, cf.
[6, 3|, or in Maxwell equations, cf. [2]. The multiplication operation of basis elements 1, 41, 1,
13 1s given by the table
1 1y 1w g
111 o 29 13
uluy o 13 oy, (2.15)
12 | 19 13 1 1
73 | 13 Q1o 11 «

where a € {—1,0,4+1}. According to whether « is equal to —1, 0, or +1 we say about elliptic
Qe, parabolic Q,, and hyperbolic Q;, (commutative) quaternions, respectively. This system can
be equivalently viewed as pairs of generalized complex numbers as follows

Z =al + by + cio + diz = u + 190,

where a,b,c,d € R, u,v are generalized complex numbers related to a (elliptic if & = —1,
parabolic if a = 0, hyperbolic if « = +1), and +3 = 1. Thus, the system is the direct sum of
generalized complex numbers

Qs = Cp @ Cg,

where 3 € {e,p, h}.

Due to the fact that these three types types of commutative quaternions can be constructed
as a composition of generalized complex numbers, they are called also decomposable quater-
nions or bi-compler numbers. Two generalized complex numbers are joined together through
a hyperbolic unit 23 = +1. The construction is very similar to Cayley-Dickson construction
of dimensions doubling. Our aim is to preserve properties of multiplication, i.e. associativity,
commutativity and existence of inverse elements, with increasing dimensions. If there is an
inverse element to every element expect zero, then we have also an operation of division. But,
similarly to Cayley-Dickson construction, it fails something. In our case, it will be restriction
of domain and only partially defined subtraction operation.

2.5.2 Semi-field of hyperbolic quaternions

In this section, we will concern the system of hyperbolic quaternions, i.e. we assume o = 1 in
(2.15). We denote the system of hyperbolic quaternions as H.
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Let us consider the set of quadruples of real numbers
H = {al 4+ by + ¢j2 + dy3;a,b,c,d € R},

where 1 is a real unit and j;, jo, 73 are all imaginary hyperbolic units. Equivalently, we can
write
al + by + ¢jo + dyz = (a,b,¢,d).

Define the operation of addition coordinate-wisely, i.e.
(a,b,c,d) ® (z,y,z,w) = (a+z,b+y,c+ z,d+ w), (2.16)

where a, b, c,d, x,y, z,w are all real numbers.
Similarly, there is also an operation of subtraction given as follows

(a,b,c,d) © (x,y,z,w) = (a —x,b—y,c— z,d — w). (2.17)
Remark 2.7 The system (H, @) is a commutative group with zero 0 = (0, 0,0, 0).

According to the multiplication table (2.15) with a = 1, the operation of multiplication on
H possesses the form

(a,b,c,d) ® (z,y,z,w) = (ax + by + cz + dw, ay + bx + cw + dz,
az + bw + cx + dy, aw + bz + cy + dz).

Remark 2.8 The system (H, ®,®) is a commutative ring with unit 1 = (1,0, 0,0).

The operation of division is not defined in general. There is a necessary and sufficient
condition for existence of an inverse element with respect multiplication and also its expression
in the following lemma.

Lemma 2.9 Let be (a,b,c,d) € H. If
(a+b+c+d)a+b—c—d)(a—b+c—d)(a—b—c+d)#0, (2.18)

then there exists an inverse element of (a,b,c,d) with respect to multiplication and it is as
follows

1o (a,b,c,d)=(k+l+m+nk+l—m-nk—1l+m—nk—1—m+n), (2.19)
where
k = L [ = L
4a+b+c+d)’ 4la+b—c—d)
B 1 B 1
o= 4la—b+c—d) "= dla—b—c+d)

If the condition (2.18) is not satisfied, then there exists (x,y,z,w) € H\ {0} such that
(a,b,c,d) ® (z,y,z,w) = (0,0,0,0).
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The elements not satisfying condition (2.18) are zero divisors. If we would like to preserve
the division operation, we have to exclude zero divisors. Let us denote

H" = {(a,b,c,d) e H;a+b+c+d>0,a+b>c+d,a+c>b+d,a+d>b+c}, (2.20)

and
Hf = H* U {0}. (2.21)

Lemma 2.10 The set H' is closed under operations ®, ®, Q.
Corollary 2.11 The system (H(T, D, @) s a semi-field with zero 0.

The set HT can be understood as the set of positive hyperbolic quaternions, the set H{ as
the set of non-negative hyperbolic quaternions. In fact, it is a extension of positive real numbers
R, and non-negative real numbers Ry, respectively. Non-negative hyperbolic quaternions are
closed under operations of addition, multiplication and division (excluding the point 0). The
subtraction operation is defined only partially in the set H,

(a,b,¢,d) & (x,y,z,w) = (a —x,b—y,c — z,d —w), (2.22)

provided this element belongs to H{, where (a,b,c,d), (z,y, z,w) € Hy .
Similarly as R{, also H can be equipped by natural partial order, however the order is
not total.

Definition 2.12 Let be (a,b,c,d), (z,y, z,w) € Hi. Define a binary relation < as follows
(a,b,c,d) < (z,y,z,w)
if and only if there exists (p,q,r,s) € Hg such that
(a,b,c,d) ® (p,q,r,8) = (x,y,z,w).
The binary relation < is a partial order with the least element 0 and has similar properties
as usual order in non-negative real numbers.

2.5.3 Applications

There does not exist any four-dimensional field. But there is a subset of four-dimensional
number system of hyperbolic quaternions which is a semi-field. The semi-field can be used to
create a three-polar space which is considered as space of timbres.

Let us consider the first six harmonics in a Fourier series

6
> aysin(2rk ft) + by cos(2mk ft), (2.23)
k=1

where ag, by are real coefficients and f is the fundamental frequency. We have twelve coefficients
which we merge into three groups

r = (alvbl’a67b6)7
Y = <a27b27a57b5)7 (224)
z = <a37b37a47b4)-
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In each group is a significant harmonic: the unison (aq,b;), the fifth (ag,bs), and the third
(as,bs). The rest three harmonics are less significant. They are octaves from another harmon-
ics: (ag, by) is the octave from the unison, (a4, by) is the octave from the octave, (ag, bg) is the
octave from the fifth. According to the grouping of harmonics, polar operators correspond to
the unison, the fifth, and the third. We define triples

(x,y,2) = Ax + By + Cz € M, (2.25)

where x,y, z belong to the semi-field of hyperbolic quaternions (Har , D, @).

The cancellation law can be understood as a “grey color” in music. It is due to the fact that
the cancellation law in the color theory defines various shades of grey, cf. [10]. By factorizing
by greys, we obtain “pure colors”.

The division operation is a bit complicated, because there are zero divisors. The set of zero
divisors describes the following lemma.

Lemma 2.13 Let be (a,b,c) € Ms. The element (a,b,c) is a zero divisor if and only if
a = (a1, as,as,a4), b = (by,ba,b3,bs) , ¢ = (c1,02,¢3,¢4) € H concurrently satisfies at least
one of the following conditions

(a) 14+ 2+ -3+-4=0,
(b) 14+2—3—14=0,
(¢) 1—2+3—1=0,
(d) 1—2—3+4=0,

where -; means a;, b;, and c;, respectively, for all i =1,2,3,4. We will call the elements in My
which are not zero divisors invertible elements.

The operations of addition, subtraction, multiplication and division defined operation with
truncated Fourier series of the first six harmonics. Especially, the multiplication (and also
division) operation is new and requires further investigation.

Conclusion

The aim of the dissertation thesis is to study structure of sound whose source is linear (one-
dimensional), i.e. a string or a pipe. The spectrum of it is linear and consists of only natural
multiples of the fundamental frequency. The complex tone is a composition of pure tones with
only one frequency, i.e. a Fourier series whose components are sine and cosine functions.
This work elaborates two fields concerning sound. The first one is deformation of audible
spectrum in the near of its boundaries. We assume that the sound perception is approximately
linear in the middle range due to the Weber-Fechner law. We considered a hyperbolic tangent
function to model this. It is also defined Einstein operation by this function. We found some
extensions of one-dimensional Einstein operation to more dimensions. In the first coordinate,
there is Einstein operation and other coordinates depend only on the preceding coordinates.
All dimensions are independent on the following ones. The important property of our exten-
sions is associativity and commutativity. In physics, it is used another type of extension of
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Einstein operation that works in arbitrary inner product space but it is neither commutative
nor associative.

The second field of the study is multi-polarity theory. The theory of multi-polarity is
relatively new. The mathematical formalization of multi-polarity is introduced in Section 2.1.
We investigated three types of semi-fields to construct three-polar spaces: non-negative real
numbers with usual addition and multiplication, cf. [9], hyperbolic complex numbers, cf. [§],
and hyperbolic commutative quaternions. In the paper [10], there is studied a three-polar over
the semi-field of parabolic complex numbers in the frame of RGB color model. In this case,
the author obtains a field.

Semi-fields themselves are interesting from the point of view that they permit to divide
by arbitrary non-zero element. But, on the other side, there is not subtraction operation in
general. A semi-field in a four-dimensional case is found in Section 2.5, cf. [7]. It is inter-
esting because there is no four-dimensional field. We investigated the system of hyperbolic
commutative quaternions. This number system is studied also in physics, e.g. Maxwell equa-
tions, relativity theory, because its multiplication is commutative unlike usual Hamiltonian
quaternions that are not commutative.

We defined a three-polar space using the semi-field of hyperbolic commutative quaternions.
Every element of the semi-field represents a pair of harmonics of a tone (i.e. coefficients of
Fourier series). We consider the first six harmonics, thus we model the timbre space as a three-
polar space. Polar operators represents the unison, the third and the fifth. The octaves are less
significant due to the octave equivalence. There are also operation of addition, subtraction,
multiplication and division. These operations define new operations with tones.
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Resumé

Cielom tejto prace je popisat Struktiuru zvuku, ktorého zdroj je linearny (jednorozmerny),
t.j. pistala alebo struna. Spektrum takéhoto zdroja je linedrne a obsahuje iba prirodzené
nasobky zakladného ténu. Stc¢asnym znenim viacerych ténov vznika komplexny ton, ktory sa
da vyjadrit ako Fourierov rad, kde vyznamnu tlohu hraji amplitudy a frekvencie jednotlivych
bazovych funkcii (sinus a kosinus).

V prvej casti, kapitola 1, sa venujeme deformacii vnimania zvuku. Weberov-Fechnerov
zakon previdza exponencidlny narast nejakého podnetu na linearny narast vnemu. Ak sa pod-
net blizi k hranici vnimania, napr. prah pocutelnosti, prah bolesti, tato linearita sa straca.
Predpokladame, Ze v strede oblasti je vnimanie lieArne a pri hraniciach sa deformuje. Na mo-
delovanie tohto javu vyuzivame Einsteinovu operéciu, ktoré je pouzivana v réznych oblastiach
matematiky a fyziky. Einsteinova operacia je odvodena od funkcie hyperbolicky tangens. Ein-
steinova operacia je jednorozmerné. Jej zovSeobecnenie do viacrozmernych priestorov (dokonca
Hilbertovych priestov) pouzivané vo fyzike nie je vhodné, pretoze nezachovava komutativnost
ani asociativnost, pozri napr. [24]. Nasli sme niekol'ko typov zovSeobecneni do viacrozmernych
priestorov, ktoré zachovavaju obidve tieto vlastnosti. Kazdé stradnica zavisi iba od pred-
chadzajicich suradnic a nezavisi od nasledujicich siradnic. ReStrikciou na jednorozmerny
pripad dostaneme povodnt Einsteinovu operaciu.

V druhej ¢asti rozpracivame teériu multipolarity, ktord je pomerne nova. V casti 2.1 za-
vadzame formalnu definiciu multipoldrneho priestoru. Zakladna myslienka multipolarity je
predstavena na priklade multipolarnych komplexnych ¢isel. Komplexné ¢isla su vyjadrené
v trojpolarnom tvare, pri¢om v8etky operacie (s¢itanie, od¢itanie, nasobenie, delenie) sa
izomorfné, takze trojpolarny priestor je pole. Indukciou sa da tento postup aplikovat na K-
polarny priestor, kde K > 2. Vsetky tieto K-polarne priestory su definované nad polopolom
nezapornych realnych cisel.

V casti 2.4 skimame trojpolarny priestor, ktory je definovany nad polopolom hyperbolic-
kych komplexnych ¢isel, ktoré st rozsirenim polopola nezapornych realnych ¢isel. V ¢lanku
[10] sa skima trojpolarny priestor nad polopolom parabolickych komplexnych ¢isel v ramei
RGB modelu farieb. V tomto pripade sa dostava pole.

Polopolia umoziuji delenie Tubovolnym nenulovym prvkom. No na druhej strane, nie je
v nich vo v8eobecnosti definované odé¢itanie. V Casti 2.5 hfadame polopolia definované v stvor-
rozmernom priestore hyperbolickych komutativnych kvaterniénov. Hyperbolické komutativne
kvaterniony maja aplikacie najma vo fyzike, napr. Maxwellove rovnice, teoria relativity. Stvor-
rozmerné polopolia si zaujimavé i z toho pohladu, Ze neexistuje Stvorrozmerné pole.

Polopole hyperbolickych komutativnych kvaterniénov vyuzijeme na konstrukciu trojpolér-
neho priestoru. Prvky polopola reprezentuju dvojicu harmonik Fourierovho radu. Kazda
harmonika ma dva koeficienty (sinus, kosinus). Uvazujeme prvych Sest harmonik Fourierovho
radu. Sest harmonik zvycajne staci na aproximaciu komplexného tonu. Siedma harmonika sa
povazuje za neharmonickd. Vyssie harmoniky su zvycajne bud slabé (maji malt amplitidu)
alebo st vysoko (maja vysoki frekvenciu mimo rozsahu pocutia). Pély reprezentuju tri zak-
ladné intervaly - unisono, kvinta, tercia. V trojpolarnom priestore si zavedené aritmetickeé
operécie, ktoré definuji nové operacie s tonmi.
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