
COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

FINITE AUTOMATA AND OPERATIONAL
COMPLEXITY

dissertation thesis

2020 Mgr. Ivana Krajňáková

COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

FINITE AUTOMATA AND OPERATIONAL
COMPLEXITY

dissertation thesis

Study programme: Applied mathematics
Field of study: 9.1.9 Applied mathematics
Supervising institution: Mathematical Institute, Slovak Academy of Sciences
Supervisor: RNDr. Galina Jirásková, CSc.

Bratislava, 2020 Mgr. Ivana Krajňáková

UNIVERZITA KOMENSKÉHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

KONEČNÉ AUTOMATY A OPERAČNÁ
ZLOŽITOSŤ
dizertačná práca

Študijný program: Aplikovaná matematika
Študijný odbor: 9.1.9 Aplikovaná matematika
Školiace pracovisko: Matematický ústav Slovenskej akadémie vied
Školiteľ: RNDr. Galina Jirásková, CSc.

Bratislava, 2020 Mgr. Ivana Krajňáková

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Mgr. Ivana Krajňáková
Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg.,

full time form)
Field of Study: Mathematics
Type of Thesis: Dissertation thesis
Language of Thesis: English
Secondary language: Slovak

Title: Finite automata and operational complexity

Annotation: We study the state complexity of the square operation on languages represented
by deterministic finite automata with more than one final states. As a result,
we get the exact complexity of this operation on Boolean and alternating finite
automata. Using a known result concerning the relation between the size of
a Boolean automaton for a given language and a deterministic automaton for
its reversal, we get the complexity of complementation, difference, symmetric
difference, concatenation, star, reversal, and left and right quotients on Boolean
and alternating finite automata. We also obtain the complexity of these
operations assuming that the operands are given by nondeterministic automata
while the result is required to be represented by a deterministic finite automaton.

Aim: 1) Provide the state-of-the-art concerning the complexity of operations on
languages represented by different models of finite automata

2) Study in detail the state complexity of the square operation on languages
represented by deterministic finite automata with more than one final states and
use these results to get the tightness of known upper bounds on the complexity
of the square operation on Boolean and alternating finite automata

3) Find the complexity of all basic regular operations on languages represented
by Boolean and alternating finite automata.

4) Examine the NFA-to-DFA trade-offs for basic regular operations; here we
assume that the operands of an operation are represented by nondeterministic
finite automaton while the result of the operation is represented by a
deterministic automaton.

5) To get all lower bounds, describe witness languages over an optimal, or at
least over as small as possible, input alphabet.

Keywords: regular languages, regular operation, finite automata, state complexity

Tutor: RNDr. Galina Jirásková, CSc.
Department: FMFI.KAMŠ - Department of Applied Mathematics and Statistics
Head of
department:

prof. RNDr. Marek Fila, DrSc.

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

Assigned: 10.08.2016

Approved: 10.08.2016 prof. RNDr. Anatolij Dvurečenskij, DrSc.
Guarantor of Study Programme

Student Tutor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Mgr. Ivana Krajňáková
Študijný program: aplikovaná matematika (Jednoodborové štúdium,

doktorandské III. st., denná forma)
Študijný odbor: matematika
Typ záverečnej práce: dizertačná
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Finite automata and operational complexity
Konečné automaty a operačná zložitosť

Anotácia: Študujeme stavovú zložitosť operácie štvorec na jazykoch reprezentovaných
deterministickými konečnými automatmi s viacerými koncovými stavmi.
Ako dôsledok dostávame presnú zložitost tejto operácie na Boleovských
a alternujúcich konečných automatoch. Využitím známeho výsledku
popisujúceho vzťah medzi veľkosťou Booleovského automatu pre daný jazyk
a deterministického automatu pre jeho zrkadlový obraz, dostávame zložitosť
operácií doplnok, rozdiel, symetrický rozdiel, zreťazenie, uzáver, zrkadlový
obraz, lavý a pravý kvocient na Booleovských a alternujúcich automatoch.
Pre tieto operácie zistíme aj ich zložitosť za predpokladu že operandy sú
reprezentované nedeterministickými automatmi a výsledok deterministickým
automatom.

Cieľ: 1) Zhrnúť súčasný stav problematiky v oblasti zložitosti operácií na jazykoch
reprezentovaných rôznymi modelmi konečných automatov.

2) Detailne preskúmať zložitosť operácie štvorec na jazykoch reprezentovaných
deterministickými automatmi s viacerými koncovými stavmi a tieto výsledky
využiť na získanie presnej zložitosti tejto operácie na Booleovských
a alternujúcich automatoch.

3) Zistiť zložitosť všetkých základných regulárnych operácií na Booleovských
a alternujúcich automatoch.

4) Študovať zložitosť regulárnych operácií za predpokladu ze operandy sú dané
nedeterministickým automatom, avšak požadujeme aby výsledok bol popísaný
deterministickým automatom.

5)
Pri všetkých dolných odhadoch sa snažiť o použitie
optimálnej, alebo aspoň čo najmenšej, vstupnej abecedy.

Kľúčové
slová: regulárne jazyky, regulárne operácie, konečné automaty, stavová zložitosť

Školiteľ: RNDr. Galina Jirásková, CSc.

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Katedra: FMFI.KAMŠ - Katedra aplikovanej matematiky a štatistiky
Vedúci katedry: prof. RNDr. Marek Fila, DrSc.

Dátum zadania: 10.08.2016

Dátum schválenia: 10.08.2016 prof. RNDr. Anatolij Dvurečenskij, DrSc.
garant študijného programu

študent školiteľ

Declaration
I hereby attest that I have written this dissertation thesis without any prohibited

assistance of third parties. I have acknowledged and cited all the sources which have been
used in the thesis.

Bratislava, 2020 .
Mgr. Ivana Krajňáková

Acknowledgments
I would like to thank my tutor Galina Jirásková for all the time and knowledge she

gave me. I want to thank my friends and my colleagues from Mathematical Institute
of Slovak Academy of Sciences for valuable advice and supervision. And I thank all the
people that are dear to me for their support.

Abstract
We determine how the state complexity of the square operation depends on the number
of final states in a deterministic finite automata for a given language. We use this result
to describe a binary witness for the square operation on alternating finite automaton that
meets the known upper bound 2n + n + 1. We also show that our witnesses can be used
to prove the tightness of the upper bound 2m + n + 1 for concatenation on alternating
automata which provides an alternative solution of an open problem stated by Fellah,
Jürgensen, Yu [1990, Constructions for alternating finite automata, Internat. J. Comput.
Math. 35, 117–132].

Then we consider the state complexity of some other regular operations on languages
represented by Boolean and alternating finite automata. We get the tight upper bounds
for complementation (n in both models), union, intersection, and difference (m + n and
m + n + 1), symmetric difference (m + n in both models), star and reversal (2n in both
models), right quotient (2m and 2m + 1), and left quotient (m and m + 1). To describe
witness languages, we use a binary alphabet for star, reversal, and quotients, and the
unary alphabet otherwise. We also show that the binary alphabet is always optimal in
the sense that the corresponding upper bounds cannot be met in the unary case.

Finally, we consider the complexity of regular operations assuming that the inputs of
an operation are represented by nondeterministic finite automata while its result has to be
given as a deterministic finite automaton. We obtain the tight upper bounds for star (2n),
complementation (2n), reversal (2n), left quotient (2m), right quotient (2m), union (2m+n),
symmetric difference (2m+n), intersection (2m+n−2m−2n +2), difference (2m+n−2n +1),
and concatenation (3

4
2m+n). To prove tightness, we use a ternary alphabet for binary

Boolean operations and concatenation, and we get an asymptotically tight upper bound
2m+n for these operations in the binary case. Our witnesses for the remaining operations
are binary, and we show that the binary alphabet is always optimal.

Keywords: regular languages, deterministic and nondeterministic finite automata,
descriptional complexity, regular operations, square, Boolean and alternating finite au-
tomata

Abstrakt
Ukážeme ako závisí stavová zložitosť operácie štvorec od počtu koncových stavov v

deterministickom konečnom automate pre daný jazyk. Tento výsledok použijeme na
popísanie binárneho jazyka ťažkého pre operáciu štvorec na alternujúcich automatoch,
ktorý dosahuje známy horný odhad 2n+n+1. Tiež ukážeme, že naše dosvedčujúce jazyky
sa dajú použiť v dôkaze tesnosti horného odhadu 2m+n+1 pre zreťazenie na alternujúcich
automatoch, čo je vlastne alternatívnym riešením otvoreného problému, ktorý formulovali
Fellah, Jürgensen, Yu [1990, Constructions for alternating finite automata, Internat. J.
Comput. Math. 35, 117–132].

Potom uvažujeme stavovú zložitosť niektorých ďalších regulárnych operácií na jazykoch
reprezentovaných Booleovskými a alternujúcimi konečnými automatmi. Dostávame tesné
horné odhady pre doplnok (n pre oba modely), zjednotenie, prienik, a rozdiel (m + n

a m + n + 1), symetrický rozdiel (m + n pre oba modely), star a zrkadlový obraz
(2n pre oba modely), pravý kvocient (2m a 2m + 1) a ľavý kvocient (m a m + 1). Na
popísanie dosvedčujúcich jazykov pre star, zrkadlový obraz, ľavý a pravý kvocient použi-
vame binárnu abecedu, o ktorej ukážeme, že je optimálna, keďže horné odhady sú ne-
dosiahnuteľné v unárnom prípade. Pre ostatné operácie použijeme unárnu abecedu na
dosvedčujúce jazyky.

Nakoniec sa zaoberáme zložitosťou regulárnych operácií za predpokladu, že vstupné
jazyky su dané ako nedeterministické konečné automaty, kým výsledok má byť popísaný
ako deterministický konečný automat. Dostávame tak tesné horné odhady pre operácie
star (2n), doplnok (2n), zreťazenie (2n), zrkadlový obraz (2n), ľavý kvocient (2m), pravý
kvocient (2m), zjednotenie (2m+n), symetrický rozdiel (2m+n), prienik (2m+n−2m−2n+ 2),
rozdiel (2m+n−2n+1), a zreťazenie (3

4
2m+n). Pre binárne Booleovské operácie a zreťazenie

sme použili ternárnu abecedu pre dosvedčujúce jazyky. Na binárnej abecede však v tomto
prípade dostávame asymptoticky tesný horný odhad 2m+n. Všetky ostatné dosvedčujúce
jazyky pre zvyšné operácie sú binárne a v týchto prípadoch je aj binárna abeceda opti-
málna.

Kľúčové slová: regulárne jazyky, deterministické a nedeterministické konečné automaty,
popisná zložitosť, regulárne operácie, štvorec, Booleovské a alternujúce automaty

Contents

Introduction 1

1 Preliminaries 5

2 Known Results 9
2.1 Combined Operations, Self-verifying and Unambiguous Automata 12
2.2 Boolean and Alternating Automata . 13

3 Square on Deterministic, Alternating, and Boolean Finite Automata 16
3.1 Corollary for Concatenation . 18

4 Operations on Boolean and Alternating Finite Automata 23

5 NFA-to-DFA Trade-Off 30
5.1 Star . 32
5.2 Boolean Operations . 35
5.3 Reversal, Left and Right Quotient . 44
5.4 Concatenation . 46
5.5 Conclusions . 48

6 Summary and Future Works 50

v

Introduction

Finite automata represent a simple computational model. Nevertheless, some questions
concerning finite automata remain open. For example, it is not known how many states are
sufficient and necessary in the worst case for a two-way deterministic finite automaton to
simulate a given two-way nondeterministic finite automaton. This problem is interesting
per se, and it is also important due to its connection with a well-known open problem
whether or not DLOGSPACE equals NLOGSPACE [2].

In the recent years, finite automata, regular languages and regular operations have
been intensively investigated from the descriptional complexity point of view. Descrip-
tional complexity measures the cost of description of languages or language operations by
using various formal systems such as deterministic, nondeterministic or Boolean automata,
regular expressions or grammars. For example, the state complexity of a regular language
is the smallest number of states in any deterministic finite automaton (DFA) recognizing
this language. By the state complexity of a regular operation we understand the function
that assigns the number of states that are sufficient and necessary in the worst case for
a DFA recognizing the resulting language to the number of states in DFAs for inputs.

The upper bounds on the complexity of several regular operations can be obtained
using constructions described by Rabin and Scott [46]. They also presented the subset
construction that provides an upper bound 2n for determinization of an n-state deter-
ministic finite automaton. This upper bound was shown to be tight by describing binary
witness languages in [37, 39, 42, 53]. Binary witnesses for union, concatenation and star
were given by Maslov [38], while the unary case was considered by Chrobak [9].

The paper by Yu, Zhuang and Salomaa [55] accelerated thorough study of descriptional
complexity of language operations. Basic regular operations on unary languages were ex-
amined by Pighizzini and Shalit [45] and those on finite languages by Câmpeanu et al. [5].
Some less common operation were considered in the literature, like shuffle [6], proportional
removals [11], square [47], cyclic shift [27], power [12].

1

Holzer and Kutrib [14] introduced and investigated nondeterministic state complexity
to measure the cost of description when using nondeterministic finite automata (with
a unique initial state). They determined the nondeterministic state complexity of several
regular operations. Their results for reversal and complementation were improved in [24];
here the fooling-set lower bound method described by Birget [3, Lemma 1] was used to
get tight upper bounds and describe binary witnesses.

In a Boolean finite automaton, the result of the transition function is a Boolean func-
tion with the states as variables. This is a generalization of nondeterminism since the set
of states can be viewed as a disjunction of these states. If a Boolean automaton starts in
a single state, that is, in a Boolean function equal to a projection, it is called an alter-
nating finite automaton [8, 13, 25, 54]. It is known that every Boolean automaton with n
states can be simulated by a deterministic automaton with 22n states [4], and by a non-
deterministic automaton with 2n + 1 states [25]. Fellah et al. [13] described alternating
automata for complementation, union, intersection, star and concatenation on languages
represented by alternating automata. This provided upper bounds on the complexity of
these operations. Those for union, intersection and concatenation were shown to be tight
in [17, 25], where also operational complexity for Boolean automata was considered.

The study of the complexity of combined operations began with the paper by Salomaa
et al. [49]. The upper bound for a combined operation is given by the composition of
complexities of involved operations and is tight in some of the cases, e. g. the case of star
of intersection [28]. However, usually the resulting complexity is much smaller [10, 36].

The state set of a self-verifying finite automaton consists of three disjoint set of ac-
cepting, rejecting and neutral states, and it is required that every input word has at lest
one accepting or rejecting computation, but not both. Assent and Seibert [1] obtained
an upper bound O(2n/

√
n) for the conversion to a deterministic automaton. This upper

bound was later improved to a function g(n) ≈ 3
n
3 [29] by using the known result by

Moon and Moser [41] on the maximal number of maximal cliques in graphs. The paper
[29] also presented a binary witness meeting the improved upper bound.

Jirásek et al. [21] described so called sv-fooling set bound method providing a lower
bound on the number of states in a self-verifying automaton. They used this method
to get the precise self-verifying state complexity of all basic regular operations. They
described witnesses for reversal and Boolean operations over a binary alphabet. For star,
concatenation, and quotients they used a growing alphabet of an exponential size, however
they also proved that the self-verifying state complexity of these operations is almost the
same in the case of a fixed alphabet.

2

A nondeterministic finite automaton is called unambiguous if it has at most one ac-
cepting computation on every input word. Ambiguity in finite automata was first studied
by Schmidt in his PhD thesis [50] where a lower bound method based on the rank of cer-
tain matrices was described. It is known that the tight upper bound for the conversion to
a DFA is 2n, and those from an NFA is 2n−1 with binary witnesses in both cases [34, 35].

The lower bound method from [50] was elaborated by Jirásek et al. [23, 22]. They
showed that a lower bound on the number of states in an unambiguous automaton equiva-
lent to an NFA is given by the rank of the matrix whose rows are indexed by its reachable
sets of and columns by its co-reachable sets, and its entry is 0 if the corresponding sets are
disjoint and it is 1 otherwise. Using this lower bound method, the authors obtained the
precise unambiguous state complexity of intersection, star, concatenation, and quotients.
They also decreased the trivial upper bound 2n for complementation to O(20.79n). Re-
cently, Raskin [48] presented the lower bound nlog log logn for this operation on unambiguous
automata. This shows that the unambiguous state complexity of complementation is not
polynomial, as it was thought before. The large gap between lower and upper bound on
the complexity for complementation on unambiguous automata remains.

We continue the research on operational complexity in this thesis. Motivated by
an open problem from [13] concerning the tightness of an upper bound 2m + n + 1 for
concatenation, we first study the square operation. Since a language is recognized by an
n-state AFA if and only if its reversal is recognized by a 2n-state DFA with half of its
states final, and, moreover, reversal and square commute, to get a language that is hard
for square on AFAs it is enough to take the reversal of a language that is hard for square
on DFAs with half of their states final. Therefore, we first study in detail the square
operation on DFAs that have more than one final state. We prove that the upper bound
n2n − k2n−1 from [55] is tight already in the binary case if the number k of final states
is at most n− 2. The case of just one non-final state is different; here we get the results
depending on the finality of the initial state. The witnesses, as well as the upper bounds
for one non-final state case have been found as a result of brute-force search using a simple
application that we programmed for this purpose.

We next obtain the precise complexity of Boolean operations, complementation, star,
reversal, and quotients on both Boolean and alternating finite automata. To get upper
bounds we use the above mentioned relation between the size of a Boolean or alternating
automaton for a language and the size of a DFA for its reversal. To get lower bounds
we either use known results on the state complexity of the corresponding operation on
languages represented by DFA with half of their states final, or we describe such DFAs

3

that are hard for the considered operation on DFAs. Then we take the reversal of these
languages, and, using the fact that reversal commutes with any of considered operations,
we show that they meet the corresponding upper bound for Boolean or alternating au-
tomata. All our witness languages are defined over a binary or unary alphabet. We
also show that whenever we use a binary alphabet, it is always optimal in the sense the
complexity of the corresponding operation is smaller in the unary case.

Finally, we study operational complexity under the assumption that the input lan-
guages a given as NFAs while the resulting language has to be represented as a DFA,
that is, we investigate so called NFA-to-DFA trade-off for regular operations. Here our
motivation comes from two streams of research. The first one concerns the complexity
of combined operations that do not contain complementation. In such a case we can
perform all involved operations on NFAs and use the subset construction as the last step.
It follows that the NFA-to-DFA trade-off for the outermost operation provides an upper
bound on the complexity of a given combined operation. Our second motivation comes
from the operational complexity on self-verifying and unambiguous finite automata that
are just special cases of NFAs. Since every DFA is an unambiguous automaton and it can
be viewed as a self-verifying automaton (with the empty set of neutral states), the NFA-
to-DFA trade-off for a regular operation provides an upper bound on its self-verifying or
unambiguous state complexity. It turns out that these upper bounds are almost tight in
some cases, so sometimes we cannot do anything better by using the special properties of
self-verifying or unambiguous automata. We provide the precise NFA-to-DFA trade-off
for complementation, union, intersection, difference, symmetric difference, concatenation,
star, reversal, and left and right quotients. We use a ternary alphabet to describe the
witnesses for concatenation and binary Boolean operations, and we get an asymptotically
tight upper bounds for these operations in the binary case. Our witnesses for complemen-
tation, star, reversal and quotients are described over a binary alphabet which is always
optimal. For star, we are able to get the precise complexity also in the unary case, while
for the other operations on unary languages, we get asymptotically tight upper bounds.

The thesis is organized as follows. In Chapters 1 and 2 we provide an introduction to
basic notions and notations that we use. The main result starts with Chapter 3, where
we examine the state complexity of the square operation on languages accepted by DFAs
with k final states, BFAs and AFAs as well. In Chapter 4 we continue the research on
AFA and BFA operational state complexity. Chapter 5 provides tight upper bounds on
the NFA-to-DFA trade-off for all basic regular operations. In Chapter 6 we summarize
our results and give open problems we clashed into.

4

Chapter 1

Preliminaries

In this section we give basic notions and preliminary results. Details and all unexplained
notions can be found here [15, 51, 54]. Let Σ be a finite non-empty alphabet of symbols.
Then Σ∗ denotes the set of all words over Σ including the empty word ε. A language over
an alphabet Σ is any subset of Σ∗. Fo a finite set S the symbol |S| denotes the size of
S and 2S denotes the power set of S. Let K and L be languages over Σ. Then we can
consider several regular operations:

• complement of L is Lc = Σ∗ \ L,

• intersection K ∩ L = {w ∈ Σ∗ | w ∈ K and w ∈ L},

• union K ∪ L = {w ∈ Σ∗ | w ∈ K or w ∈ L},

• difference K \ L = {w ∈ Σ∗ | w ∈ K and w /∈ L},

• symmetric difference K⊕L = {w ∈ Σ∗ | (w ∈ K and w /∈ L) or (w /∈ K and w ∈ L) },

• concatenation of K and L is KL = {uv | u ∈ K and v ∈ L},

• star L∗ =
⋃

i≥0 L
i where L0 = {ε} and Li+1 = LiL,

• reversal LR = {wR | w ∈ L}, where wR denotes the mirror image of w,

• shuffle of K and L is K � L = {u1v1u2v2 · · ·ukvk | ui, vi ∈ Σ∗, u1u2 · · ·uk ∈
K, v1v2 · · · vk ∈ L},

• right quotient ofK by L is the languageKL−1 = {x ∈ Σ∗ | xy ∈ K for some y ∈ L},

• left quotient of K by L is the language L−1K = {x ∈ Σ∗ | yx ∈ K for some y ∈ L}.

5

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ·, s, F) where Q
is a finite non-empty set of states, Σ is a finite non-empty input alphabet, · : Q×Σ→ 2Q

is the transition function, s ∈ Q is the initial state, F ⊆ Q is the set of final states. The
transition function can be extended to the domain 2Q×Σ∗ in the natural way. For states
p, q and a symbol a we sometimes write (p, a, q) whenever q ∈ p ·a. The language accepted
by A is the set of words L(A) = {w ∈ Σ∗ | s · w ∩ F 6= ∅}.

Sometimes nondeterministic automata are allowed to have a set of initial states, then
we speak about NFAs with multiple initial states (MNFAs). The reverse of an MNFA
A = (Q,Σ, ·, I, F) is the MNFA AR = (Q,Σ, ·R, F, I) where q ·R a = {p | q ∈ p · a}, that
is, AR is obtained from A by reversing all its transitions and swapping the roles of the
initial and final states.

We say that a subset S of Q is reachable in MNFA A if there exists a word w such that
S = I ·w. A subset S is co-reachable in A if it is reachable in the reversed automaton AR.

A nondeterministic automaton is a deterministic finite automaton (DFA) if |q · a| = 1

for each state q and each input symbol a. We usually write p ·a = q instead of p ·a = {q},
we use p a−→ q to denote that p · a = q. A state of a DFA is called dead if no word is
accepted from it.

The state complexity of a regular language L, sc(L), is the smallest number of states
in any DFA recognizing L. The state complexity of a k-ary regular operation ◦ is the
function from Nk to N defined as follows

(n1, n2, . . . , nk) 7→ max{sc(◦(L1, L2, . . . , Lk)) | sc(L1) ≤ n1, sc(L2) ≤ n2, . . . , sc(Lk) ≤ nk}.

Let ◦ ∈ {∩,∪,⊕, \} and languagesK and L are recognized by DFAsA = (QA,Σ, ·A, sA, FA)

and B = (QB,Σ, ·B, sB, FB). Then the language K ◦ L is recognized by the product au-
tomaton

M◦ = (QA ×QB,Σ, ·, (sA, sB), F◦)

where (p, q) · a = (p ·A a, q ·B a) for all p ∈ QA, q ∈ QB, and a ∈ Σ, and

F◦ =

FA × FB, if ◦ = ∩;

(FA ×QB) ∪ (QA × FB), if ◦ = ∪;

FA × (QB \ FB), if ◦ = \;
(FA × (QB \ FB)) ∪ ((QA \ FA)× FB), if ◦ = ⊕.

Every MNFA A = (Q,Σ, ·, I, F) can be converted to an equivalent DFA

D(A) = (2Q,Σ, ·, I, {S ∈ 2Q | S ∩ F 6= ∅}).

6

The DFA D(A) is called the subset automaton of A and it may not be minimal, since it
can contain unreachable or equivalent states.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, ·, gs, F), where Q is a
finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet, · is the transition
function that maps Q×Σ into the set Bn of Boolean functions with variables {q1, . . . , qn},
gs ∈ Bn is the initial Boolean function, and F ⊆ Q is the set of final states. The transition
function · can be extended to the domain Bn×Σ∗ as follows: For all g in Bn, a in Σ, and
w in Σ∗, we have

g · w =

g, if w = ε;

g(q1 · a, . . . , qn · a), if g = g(q1, . . . , qn) and w = a;

(g · v) · a, if w = va.

Let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The language accepted
by the BFA A is the set L(A) = {w ∈ Σ∗ | (gs ·w)(f) = 1}. A Boolean finite automaton
is called alternating (AFA) if the initial function is a projection gs(q1, . . . , qn) = qi.

The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the smallest num-
ber of states in any BFA (AFA) for L. The reader may refer to [4, 13, 25, 33, 51] for
details. We illustrate these notions in the following example.

Example 1.1. Let A be binary alternating automaton with two states defined as A =

({q1, q2}, {a, b}, ·, q1, {q2}) with the transition function defined in the following table:

· a b

q1 q1 ∨ q2 q1

q2 q2 q1 ∧ ¬q2

Let us compute whether the word w = abb is accepted. We start the computation from
the initial state s = q1, s · w = q1 · abb. According to the table q1 · a is q1 ∨ q2, so we get
q1 · abb = (q1 ∨ q2) · bb. And we continue as follows:

(q1 ∨ q2) · bb = (q1 ∨ (q1 ∧ ¬q2)) · b = q1 ∨ (q1 ∧ ¬(q1 ∧ q2)).

Now we evaluate the resulting expression in the finality vector f = (0, 1) replacing the final
states with 1s and non-final states with 0s: q1 ∨ (q1 ∧¬(q1 ∧ q2)) = 0∨ (0∧¬(0∧ 1)) = 0.
The result is 0 so the word w = abb is not accepted by A.

A language, or a finite automaton, defined over an alphabet containing exactly one
(two, three, respectively) symbols is called unary (binary, ternary).

7

For unary DFAs we use the Nicaud’s notation [43]. For two integers ` and n such
that 0 ≤ ` ≤ n − 1 and a subset F of {0, 1, . . . , n − 1}, A = (n, `, F) is the unary
automaton whose set of states is Q = {0, 1, . . . , n−1} and the transition function is given
by q · a = q + 1 if 0 ≤ q ≤ n− 2 and (n− 1) · a = `. The initial state of this automaton
is 0 and its set of final states is F (cf. Appendix [B, Preliminaries]).

For states p, q and a symbol a, we say that (p, a, q) is a transition in MNFA N =

(Q,Σ, ·, I, F) if q ∈ p · a. A sequence of transitions (q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn)

on an input word a1 · · · an is called computation of N on a1 · · · an. The computation is
accepting if q0 ∈ I and qn ∈ F . An MNFA N = (Q,Σ, ·, I, F) is unambiguous (UFA) if it
has at most one accepting computation on every input word,

Finally, we define the model of self-verifying finite automata in the following definition
taken from [29].

Definition 1.2 ([29, Definition 1]). A self-verifying finite automaton (SVFA) is a 6-tuple
A = (Q,Σ, ·, q0, F a, F r), where Q,Σ, ·, q0 are defined as for standard nondeterministic
automata, and F a, F r ⊆ Q are the sets of accepting and rejecting states, respectively. The
remaining states, namely the states belonging to Q\(F a∪F r), are called neutral states. It
is required that for each input word w in Σ∗, there exists at least one computation ending
in an accepting or in a rejecting state, that is, (q0 · w) ∩ (F a ∪ F r) 6= ∅, and there are no
words w such that both q0 · w ∩ F a and q0 · w ∩ F r are nonempty. The language accepted
by A, denoted as La(A), is the set of all input words having a computation ending in an
accepting state, while the language rejected by A, denoted as Lr(A), is the set of all input
words having a computation ending in a rejecting state.

8

Chapter 2

Known Results

The upper bounds on the state complexity of basic regular operations can be derived from
the automata constructions given by Rabin and Scott [46] already in 1959. The product
automaton for intersection, described in [46, Theorem 6], provides an upper bound mn

for this operation. For union, difference, and symmetric difference, it is enough to change
the set of final states in this product automaton. This gives the same upper bound for
these three Boolean operations. In [46, Definition 11 and Theorem 11] the construction
of the subset automaton D(N) corresponding to a given NFA N was described. This
construction resulted in the upper bound 2n for NFA-to-DFA conversion since the states
of D(N) are subsets of the state set of N . Following [46, Definition 12 and Theorem 12]
described the reverse of an NFA and provided an upper bound 2n for the reversal operation
as a result. Finally, [46, Theorem 13] provided the construction of NFAs for concatenation
and star. To get an upper bound for the concatenation, we need to slightly modify Rabin
and Scott’s construction: instead of adding the transitions from final states of A to the
corresponding states of B, we add the transitions from states with out transition to
a final state of A to the initial state of B. This provides an upper bound m2n − 2n−1 for
concatenation. A similar modification of an NFA for star gives an upper bound 3

4
2n.

The tightness of the upper bound 2n for NFA-to-DFA conversion was proved almost
immediately in 1962 by Yershov [53] who described a binary witness NFA, shown in
Fig. 2.1. Its equivalent DFA requires at least 2n states. Similar binary NFAs were later
described by Lupanov [37], Moore [42], and Meyer and Fisher [39]; see Fig.2.2.

In 1966 Mirkin [40] pointed out that the Lupanov’s ternary NFA-to-DFA witness, see
Fig. 2.3, is in fact the reverse of a DFA. This proves the tightness of the upper bound 2n

for reversal. Binary witnesses for this operation were given by Leiss [33] and Šebej [52].
Binary witness languages for union, concatenation and star were described by Maslov

9

0 1 2 . . . n− 2 n− 1

a

a

b

a

b

a a

b

a

b

a

Figure 2.1: Yershov 1962.

0 1 2 . . . n− 2 n− 1a a

b

b
a

b

b
a

b

b

a

a

b

Figure 2.2: Meyer, Fisher 1971.

in 1970 [38]. The unary case was considered in 1986 by Chrobak [9] who showed that the
determinization of a unary NFA is in Θ(F (n)) where F (n) is Landau function defined by
F (n) = max{lcm(x1, . . . , xk) | x1 + · · · + xk ≤ n} and we have F (n) ≈ 2

√
n lnn. In 1992

Birget [3] obtained tight upper bounds on the state complexity of the intersection of k
regular languages.

The systematic study of the state complexity of regular languages and regular op-
erations began with the 1994 paper by Yu, Zhuang and Salomaa [55]. They obtained
upper bounds m2n − k2n−1 and 2n−1 + 2n−k−1 for concatenation and star of languages
recognized by DFAs with k final states, the tightness of which was later shown by Jirásek,
Jirásková and Szabari [20] and Palmovský [44]. They also provided the state complexity
of left quotient (2m − 1) and right quotient (m), as well as the state complexity of basic
operations on unary languages. Table 2.1 summarizes the results by Maslov and Yu et al.

More precise results in the unary case were obtained by Pighizzini and Shallit [45].
Operations on finite languages were investigated by Câmpeanu [5]. The state complexity

0 1 2 . . . n− 2 n− 1a
b, c

a

b, c

a a

b, c

a

b, c

a

Figure 2.3: Lupanov 1963.

10

DFA |Σ| |Σ| = 1

complementation n 1 n

union mn 2 mn if gcd(m,n) = 1

intersection mn 2 mn if gcd(m,n) = 1

concatenation m2n − 2n−1 2 mn if gcd(m,n) = 1

reversal 2n 2 n

star 3
4
· 2n 2 (n− 1)2 + 1

left quotient 2m − 1 2 m

right quotient m 1 m

Table 2.1: Operational complexity for deterministic finite automata [38, 55].

of some less common regular operations can be found in the literature: square by Ram-
persad [47], shuffle by Câmpeanu [6], proportional removals by Domaratzki [11], cyclic
shift by Jirasková and Okhotin [27], and power by Domaratzki and Okhotin [12].

In 2003 Holzer and Kutrib introduced and examined the nondeterministic state com-
plexity [14]. Their model of NFAs considered the single initial state while Rabin and Scott
[46] allowed more states to be initial. This results in the complexity m+ n+ 1 and n+ 1

for union and reversal, while in model of Rabin and Scott it would be m+ n and n. The
results from Holzer and Kutrib and from the completion by Jirásková [24] on operational
complexity on NFAs are summarized in Table 2.2.

NFA |Σ| |Σ| = 1

complementation 2n 2 Θ(F (n))

reversal n+ 1 2 n

star n+ 1 1 n+ 1

concatenation m+ n 2 m+ n− 1 ≤ · ≤ m+ n

union m+ n+ 1 2 m+ n+ 1 if m 6= kn and n 6= km

intersection mn 2 mn if gcd(m,n) = 1

Table 2.2: Operational complexity for nondeterministic finite automata [14, 24].

11

2.1 Combined Operations, Self-verifying and Unambigu-
ous Automata

The investigation of combined operations was started in 2007 by the paper by Salomaa,
Salomaa and Yu [49]. An upper bound can be simply obtained by the composition of
particular complexities. Such an upper bound is tight in several cases (for example for
star of intersection, [28]). However, the resulting complexity is much smaller in the most
cases. A number of combined operations was studied in the literature. The reverse of the
union, intersection or concatenation of two languages was studied by Liu et al. in 2008
[36]. The state complexity for (L1∪L2)

R was showed to be 2m+n−2m−2n+2, for (L1∩L2)
R

it is 2m+n−2m−2n +2, and for (L1L2)
R it is 3 ·2m+n−2−2n +1. The concatenation of one

language with the union or intersection of other two was studied by Cui et al. [10] in 2011.
So state complexity of L1(L2 ∪L3) was shown to be (m− 1)(2n+p− 2n− 2p + 2) + 2n+p−2

and for L1(L2 ∩ L3) it is m2np − 2np−1.
A self-verifying finite automaton (SVFA) has three disjoint groups of states: accepting,

rejecting and neutral. Every input word has to have at least one accepting or rejecting
computation, but not both. The SVFA-to-DFA conversion was examined in 2011 by
Jirásková and Pighizzini [29]. They used known result by Moon and Moser [41] on the
maximal number of maximal cliques in graphs to show that every n-state SVFA can be
simulated by a DFA that has at most g(n) states where

g(n) =

n, if 1 ≤ n ≤ 2;

1 + 2 · 3n−3
3 , if n ≥ 3 and n mod 3 = 0;

1 + 3
n−1
3 , if n ≥ 4 and n mod 3 = 1;

1 + 4 · 3n−5
3 , if n ≥ 5 and n mod 3 = 2.

The operational complexity on SVFAs was examined by Jirásek, Jirásková and Szabari [21].
Table 2.3 summarizes their results.

A nondeterministic finite automaton is unambiguous (UFA) if it has at most one
accepting computation on every input word. A lower bound method for UFAs based on
the range of certain matrices has been developed in 1978 by Schmidt [50]. Using this
method, Leung [34, 35] showed that a tight upper bound on UFA-to-DFA conversion is
2n while those for NFA-to-UFA is 2n− 1. The method was further elaborated by Jirásek,
Jirásková and Šebej [23], where operational complexity on UFAs was examined. Their
results are summarized in Table 2.4; here the lower bound for complementation is from
Raskin [48].

12

SVFA |Σ| small alphabets
complementation n 1 -
intersection mn 2 -
union mn 2 -
difference mn 2 -
symmetric difference mn 2 -
reversal 2n+ 1 2 n if |Σ| = 1

star 3
4
· 2n 3

4
· 2n + 1 ≤ 2n−1 if |Σ| ≥ 4

left quotient 2n − 1 2n + 1 ≤ 2n−1 if |Σ| ≥ 4

right quotient g(n) g(n) + 2 Ω(2
n
3) if |Σ| ≥ 4

concatenation Θ(3
m
3 2n) g(m) + 2n + 4 Ω(2

m
3 2n) if |Σ| ≥ 8

Table 2.3: Operational complexity for self-verifying automata [21].

UFA |Σ|
complementation nlog log logn ≤ · ≤ 20.79n+logn 1

reversal n 1

star 3
4
· 2n 3

concatenation 3
4
· 2m+n − 1 7

union mn+m+ n ≤ · ≤ m+ n20.79n+logn 4

intersection mn 2

left quotient 2m − 1 2

right quotient 2m − 1 2

Table 2.4: Operational complexity for unambiguous automata [23, 48].

2.2 Boolean and Alternating Automata

In a Boolean finite automaton (BFA) the transition function maps every pair of a state
and a letter into a Boolean function with the states as variables. This approach is a
generalization from NFAs where the result of the transition function may be viewed as
a disjunction of states. It is known that Boolean automata recognize regular languages
[4, 8]. Moreover, the BFA-to-DFA trade-off is 22n with a binary witness [4] and the
BFA-to-NFA trade-off is 2n + 1 also with a binary witness [25]. If the initial function
of a Boolean automaton is a projection, that is, if it starts in a single state, it is called

13

an alternating finite automaton (AFA); cf. [8, 13, 54, 25]. In 1990 Fellah, Jurgensen
and Yu [13] described the constructions of alternating finite automata for basic regular
operations on languages represented by AFAs. As a result they get upper bounds for
complementation, union, intersection, concatenation and star, see Table 2.5. Their upper
bounds for union and intersection were shown to be tight in 2012 [25]. For star and
concatenation, the lower bound from [25] and the upper bound from [13] differ by one,
see Table 2.6. The open problem from [13] concerning the tightness of the upper bound
for concatenation was definitely solved in 2018 [17].

upper bound for AFAs

complementation ≤ n+ 1

union ≤ m+ n+ 1

intersection ≤ m+ n+ 1

star ≤ 2n + 1

concatenation ≤ 2m + n+ 1

Table 2.5: Upper bounds for AFAs from Fellah, Jürgensen, Yu [13].

AFA state complexity BFA state complexity

union m+ n+ 1 m+ n

intersection m+ n+ 1 m+ n

concatenation 2m + n <= . <= 2m + n+ 1 2m + n

reversal 2n <= . <= 2n + 1 2n

star 2n <= . <= 2n + 1 2n <= . <= 2n + 1

Table 2.6: Results from [25].

The following two observations, concerning the relation between the size of a BFA (an
AFA) for a language and the size of a DFA for its reversal, play a crucial role in the next
two chapters. We use them to get the state complexity of all basic regular operations on
languages represented by BFAs and AFAs.

Lemma 2.1 (cf. [13, Theorem 4.1, Corollary 4.2] and [25, Lemma 1]). If a languages L
is recognized by an n-state BFA (n-state AFA), then the language LR is recognized by a
DFA with 2n states (by a DFA with 2n states of which 2n−1 are final, respectively).

14

Proof Idea. Let A = ({q1, q2, . . . , qn},Σ, ·, gs, F) be BFA for L. Construct a 2n-state
MNFA N = (Q,Σ, ◦, I, {f}), where

• Q = {0, 1}n

• I = {j ∈ Q | gs(j) = 1};

• f = (f1, f2, . . . , fn) ∈ Q with fi = 1 if qi ∈ F and fi = 0 otherwise;

• the transition function ◦ : Q× Σ→ 2Q is defined as follows:
for each j = (j1, j2, . . . , jn) ∈ Q and each a ∈ Σ,
j ◦ a = {` ∈ Q | (qi · a)(`) = ji for i = 1, 2, . . . , n}.

Then L(A) = L(N). Moreover, automaton NR is deterministic, so LR is recognized
by a DFA with 2n states. If A is an AFA, then the MNFA N has 2n−1 initial states,
and therefore the language LR is recognized by a DFA with 2n states of which 2n−1 are
final.

Lemma 2.2 (cf. [25, Lemma 2]). If a language L is recognized by a DFA A with 2n states
(a DFA with 2n states of which 2n−1 are final), then the language LR is recognized by an
n-state BFA (an n-state AFA).

Proof Idea. Let A = (Q,Σ, ·, s, F) be a 2n-state DFA for L. Without loss of generality,
let Q = {0, 1, . . . , 2n−1}. Consider 2n-state MNFA AR = (Q,Σ, ·R, F, {s}) for LR. It has
exactly one final state s and the set of initial states F . Moreover, for every a ∈ Σ and for
every i ∈ Q, there is exactly one state j such that i ∈ j ·R a since A is a DFA. For a state
i ∈ Q, let bin(i) = (i1, i2, . . . , in) be the binary n-tuple such that i1i2 · · · in is the binary
notation of i on n digits with leading zeros if necessary.

Let us define an n-state BFA B = (QB,Σ, ◦, gs, FB), where:

• QB = {q1, . . . , qn};

• FB = {q` | bin(s)` = 1};

• gs(bin(i)) = 1 iff i ∈ F ;

• (q1 ◦ a, q2 ◦ a, . . . , qn ◦ a)(bin(i)) = bin(j) where i ∈ j ·R a for each i ∈ Q and a ∈ Σ.

Then L(B) = L(AR) = LR, so LR is accepted by an n-state BFA. If |F | = 2n−1, we may
denote the states of A in such a way that F = {2n−1, 2n−1 + 1, . . . , 2n − 1}. Then we get
gs = q1, and therefore B is an n-state AFA for LR.

15

Chapter 3

Square on Deterministic, Alternating,
and Boolean Finite Automata

The square operation is one of the basic unary operations on formal languages defined
as L2 = {uv | u ∈ L and v ∈ L}. The upper bound on its state complexity has been
long known, since the square is only a sub-case of a more general concatenation. In [38]
Maslov gives us an upper bound m2n − 2n−1 on the state complexity of concatenation of
languages accepted by m and n-state DFAs respectively. This upper bound cannot be
met if the first language is accepted by a DFA with k ≥ 2 final states [55]. In this case
Yu et al. [55] proved that the upper bound is m2n − k2n−1. Jiraskova et al. [20] showed
the tightness of this upper bound by binary witnesses for every k with 1 ≤ k ≤ n− 1.

Tight upper bound for square comes in 2006 by Rampersad [47] where the tightness
of the upper bound n2n − 2n−1 is shown using binary alphabet. The state complexity
of square on languages accepted by DFAs with k final states was finally considered in
[7]. The upper bound (n− k)2n + k2n−1 was shown to be tight on ternary alphabet, but
only for k < n − 1. The problem of finding binary witness language and the problem
of finding a tight upper bound for square of languages accepted by DFAs with n − 1

final states were left open. Finding witness language accepted by a DFA with k final
states has a meaningful application for the square operation on Boolean or alternating
finite automata (BFAs, AFAs). An upper bound was shown to be 2n + n + 1 by Fellah,
Jürgensen, Yu in 1990 [13]. It is known that language is accepted by an n-state AFA if and
only if its reverse is accepted by a 2n-state DFA with half of the states final [13]. Therefore
a language whose square on DFA requires (n − k)2n + k2n−1 states and is accepted by
a DFA with n/2 final states is needed to show the tightness of this upper bound. We
discuss these open problems in this chapter. The solutions are based on published paper

16

that can be found in Appendix [A] at the end of the thesis:

Jirásková, G., Krajňáková, I.: Square on deterministic, alternating, and Boolean finite
automata. International Journal of Foundations of Computer Science 30(6-7), 1117–
1134 (2019).

In [A, Theorem 7] we present binary witness with k < n − 1 final states meeting the
upper bound n2n − k2n−1. This improves the ternary witness for this upper bound from
[7, Lemma 2]. Then we inspect the case of k = n − 1 by discussion in two sub-cases by
the finality of the initial state. If the initial state is final then we show the tightness of the
upper bound (n+ 2)2n−2 with binary witness in [A, Theorem 8]. Otherwise if the initial
state is the only non-final state then we show in [A, Lemma 9] that the upper bound is
(n + 3)2n−2 and it is tight on ternary alphabet. For binary languages the upper bound
(n+ 3)2n−2− 1 is met [A, Theorem 11]. All these results are summarized in Table 3.1. In
the case of unary languages we provide a simplified proof from Pighizzini and Shallit [45]
in [A, Theorem 12] to show that the exponentially smaller upper bound 2n− 1 is tight.

We use the presented binary witness language for square on DFAs with 2n states,
2n−1 of them final, to show that upper bound 2n + n + 1 for square on AFAs is tight
in [A, Theorem 13]. Then in [A, Theorem 14], we extend the application of presented
witness language to show that the upper bound 2n + n is tight for square operation on
BFAs as well. For unary languages the corresponding upper bound is n + 1 as shown in
[A, Theorem 15]. This means that the binary alphabet is optimal for meeting the upper
bound 2n + n+ 1.

The study of state complexity of square started by the Master thesis in 2016. The re-
sults in Slovak language were gradually improved and reworked and served as a foundation
for future research done later during this PhD study. All of the results were translated,
concised and refined in details. The results for Boolean and alternating automata served
as motivation for another paper presented on CSR 2019 in Moscow. The results given by
[A, Theorems 1,7,14] and [A, Lemmas 8,9] were obtained in Master thesis [31] (in Slovak)
and presented at the DCFS 2017 conference. Their proofs that appeared in IJFSC 2019
were changed to be easier to follow. We used · instead δ to simplify the notation. To
have [A, Fig. 2] more transparent, it is drawn for specific values of m,n, k, l instead of a
general case in Master thesis. The proof of [A, Theorem 7 on p. 1122] uses α := m−k−1

to simplify the exposition. It is divided into 3 cases instead of 9 as was in Master the-
sis. The proof of [A, Lemma 8 on p. 1125-1126] provides a detailed explanation that a
corresponding word is accepted only from a particular state. The former cases (4)-(7) in
Master thesis are now covered by one case (3b). We also give a different proof of distin-

17

guishability here. In the proof of [A, Lemma 9 on p. 1127] we use a different formatting
to simplify the readability of the proof. The result in [A, Theorem 11] concerning the
tightness of the corresponding upper bound in the binary case and its proof on p.1128-
1131 is completely new and did not appear in Master thesis. The same is true for the
square on unary DFAs on p.1131. The upper bound n+ 1 given by [A, Theorem 15 on p.
1133] shows the optimality of binary alphabet used to describe AFA witnesses.

k sc |Σ| reference

k = 1 n2n − 2n−1 |Σ| ≥ 2 Rampersad [47]

2 ≤ k ≤ n− 2 n2n − k2n−1 |Σ| ≥ 2 [32]

k = n− 1 and q0 ∈ F (n+ 2)2n−2 |Σ| ≥ 2 [32]

k = n− 1 and q0 /∈ F (n+ 3)2n−2 |Σ| ≥ 3 [32]

k = n− 1 and q0 /∈ F (n+ 3)2n−2 − 1 |Σ| = 2 [26]

Table 3.1: State complexities of square varying by number of final states.

The next section presents an accidental benefit of our results on square. It uses the
witnesses for square on DFAs with more that one final states from [A Theorem 7] to prove
the tightness of the corresponding upper bounds on the complexity of concatenation on
DFAs and AFAs.

3.1 Corollary for Concatenation

Here we show that the witness from [A, Theorem 7] on square can be useful as a witness for
concatenation as well. Take two such automata withm states, k of them final and n states
with l of them final. Then by the following theorem the upper bound (m− k)2n + k2n−1

given by [55] is tight on the binary alphabet.

Theorem 3.1. Let m,n ≥ 4,1 ≤ k ≤ m−2 and 1 ≤ ` ≤ n−1. Let K and L be languages
over Σ recognized by an m-state DFA with k final states and an n-state DFA with l final
states, respectively. Then sc(KL) ≤ (m− k)2n + k2n−1 and this bound is tight if |Σ| ≥ 2.

Proof. The upper bound (m − k)2n + k2n−1 follows from [55, Theorem 2.3]. To prove
tightness, let K be accepted by a DFA Am,k = (QA = {q0, . . . , qm−1},Σ, ·A, q0, FA) from
Fig. 3.1 and L accepted by a DFA Bn,l = (QB = {0, . . . , n− 1},Σ, ·B, 0, FB) from Fig.3.2
which have the same structure but different sizes m and n with k and l final states
respectively.

18

q0 q1 q2 . . . qm−k−1 qm−k . . . qm−1
a

b

a
b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 3.1: DFA Am,k with m states and k of them final.

0 1 2 . . . n−l−1 n−l . . . n−1
a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Figure 3.2: DFA Bn,l with n states and l of them final.

q0 q1 q2 q3 q4 q5

0 1 2 3 4

a

b

a
b

a

b

a

b

a

b

a
b

a

b

a
b

a

b

a

b

a
b

a, b
a, b

Figure 3.3: NFA N for of L(A6,2)L(B5,3).

Construct NFA N from DFAs Am,k and Bn,l to accept the language KL by adding
the transition (q, a, 0) whenever q ·A a ∈ FA and (q, b, 0) whenever q ·A b ∈ FA. The
initial state of N is the state q0 and the set of final states is FB. An example with
m = 6, k = 2, n = 5, l = 3 is shown in Fig. 3.3. In the corresponding subset automaton
D(N), each reachable state is in the form {q}∪S where q ∈ QA and S ⊆ QB. We denote
such a state by the pair (q, S). Let

R = {(qi, S) | 0 ≤ i ≤ m− k − 1 and S ⊆ QB} ∪

{(qi, S) | m− k ≤ i ≤ m− 1, S ⊆ QB and 0 ∈ S}.

The family R has (m−k)2n +k2n−1 states. We prove by induction on |S| that every state

19

(qi, S) in R is reachable in the subset automaton D(N). The basis, |S| = 0 and |S| = 1

holds true since:

−→ (q0, ∅) a−→ (q1, ∅) a−→ (q2, ∅) a−→ · · · a−→ (qm−k−1, ∅) a−→ (qm−k, {0}),

(qm−k, {0}) b−→ (qm−k+1, {0}) b−→ · · · b−→ (qm−2, {0}) b−→ (qm−1, {0}),
(qm−1, {0}) a−→ (q0, {1}) b−→ (q0, {0}),

(q0, {1}) a−→ (q1, {2}) b−→ (q0, {3}) b−→ (q0, {4}) b−→ · · · b−→ (q0, {n− 1}) b−→ (q0, {2}),

(q0, {(j − i) mod n}) ai−→ (qi, {j}) for i = 0, 1, . . . ,m− k − 1 and j = 0, 1, . . . , n− 1.

Assume that every state (qi, S) inR with |S| = t−1 and i = 0, 1, . . . ,m−1 is reachable.
We show that the state (qi, S = {s1, s2, . . . , st}) in R with |S| = t, where qi ∈ QA and
0 ≤ s1 < s2 < · · · < st ≤ n− 1 is reachable as well. We do this in three steps:

(1) We reach states (qi, S) satisfying the condition qi ∈ FA, so 0 ∈ S, in other words
let s1 = 0 and m− k ≤ i ≤ m− 1.

Let s2 = 1. Take the state (qi−1, S ′ = {0, s3− 1, . . . , st− 1}) ∈ R. It is reachable since
S ′ has t− 1 elements and we have

(qi−1, {0, s3 − 1, . . . , st − 1}) a−→ (qi, {0, 1, s3, . . . , st}) = (qi, S).

Let s2 ≥ 2. Remind that there is a cycle (q2, q3, . . . , qm−1) formed by the transitions
on b in A. Then S \{0} ⊆ {2, 3, . . . , n−1} and for each s ∈ S \{0} and r ≥ 0 there exists
exactly one element s′ ∈ S \ {0} such that s′ · br = S. Denote this element b−r(s). Let
r = i− (m−k−1). Then (qm−k−1, S ′ = {b−r(s2), b−r(s3), . . . , b−r(st)}) is reachable by the
induction hypothesis since |S ′| = t− 1 and (qm−k−1, S ′)

br−→ (qi, {0, s2, . . . , st}) = (qi, S).

(2) Now we reach the states (q0, S). Our approach varies according to value of s1.
Let s1 = 0. If s2 = 1 we take the state reached in (1) and we have

(qm−1, {0, s3 − 1, . . . , st − 1, n− 1}) a−→ (q0, {0, 1, s3, . . . , st}) = (q0, S).

For s2 ≥ 2 we continue using state we reached above, when s2 = 1, and

(q0, {0, 1, s3 − s2 + 1, . . . , st − s2 + 1}) a−→ (q1, {1, 2, s3 − s2 + 2, . . . , st − s2 + 2})
bn−2

−−→ (q0, {0, 2, s3 − s2 + 2, . . . , st − s2 + 2}) bs2−2

−−−→ (q0, {0, s2, . . . , st}) = (q0, S).

Let s1 ≥ 1. Then the state (qm−1, S ′ = {0, s2 − s1, . . . , st − s1}) is reached in (1). For
s1 = 1 we have (qm−1, S ′)

a−→ (q0, S). For s1 ≥ 2 we have

(qm−1, {0, s2 − s1, . . . , st − s1}) aa−→ (q1, {2, s2 − s1 + 2, . . . , st − s1 + 2}) bn−2

−−→

20

(q0, {2, s2 − s1 + 2, . . . , st − s1 + 2}) bs1−2

−−−→ (q0, {s1, s2, . . . , st}) = (q0, S).

(3) Let 1 ≤ i ≤ m − k − 1. We use states reached in (2) to achieve the remaining
states (q0, {(s1 − i) mod n, . . . , (st − i) mod n}) ai−→ (qi, {s1, . . . , st}) = (qi, S).

Now we continue with distinguishability. Similarly as in the proof of distinguishability
for witness language for square [A, Theorem 7], there is a word w = b(abn−2)n−3 which is
accepted only from the state n− 1 in N . The word an−1−tw is accepted only from state
t ∈ {1, 2, . . . , n − 1} since t has only one in-transition on a from state t − 1. Hence the
states (qi, S) and (qj, T) from R are distinguishable if S 6= T .

Consider now two distinct states (qi, S) and (qj, S) in R. Without loss of generality
let 0 ≤ i < j ≤ m− 1. We deal with several cases.

(1) Let i = 0 and j = m− 2.
(1a) First assume that n− 1 /∈ S. Then

(q0, S)
a−→ (q1, S

′),

(qm−2, S)
a−→ (qm−1, {0} ∪ S ′).

We can distinguish these states since S ′ \ {0} = ∅.
(1b) Now let n − 1 ∈ S. We use word the abm−3 to send n − 1 to 0. Moreover if

0 ∈ S then after reading abm−3 it remains in 0. Any other element from S is sent to the
corresponding element in {2, 3, . . . , n− 1}. So we get

(q0, S)
abm−3

−−−→ (q0, {0} ∪ S1),

(qm−2, S)
abm−3

−−−→ (qm−2, {0} ∪ S1).

for some S1 ⊆ {2, 3, . . . , n − 1}. If n − 1 /∈ S1 we get case (1a). Otherwise we use again
word abm−3 to get (q0, {0}∪S2) and (qm−2, {0}∪S2) for some S2 ⊆ {2, 3, . . . , n− 1} such
that |S2| < |S1|. If after each abm−3 the element n− 1 is in the resulting set then we end
with (q0, {0}) and (qm−2, {0}) which are distinguishable by a. Otherwise we have (1a).

(2) Let i = 0 and 2 ≤ j ≤ m− 3. We use bm−2−j to get case (1) or case S 6= T .
(3) Let i = 0 and j = m− 1. We use b to get case (2) or case S 6= T .
(4) Let i = 0 and j = 1. We use ab to get case (2) or case S 6= T .
(5) Let i ≥ 1. Then

(qi, S)
am−j

−−−→ (qi+(m−j), S1),

(qj, S)
am−j

−−−→ (q0, S
′
1).

Similarly as in previous cases, if S1 and S ′1 are the same we continue as in (1)–(4), otherwise
we continue as in case S 6= T .

21

Now we show an application of witness languages L(Am,k) and L(Bn,l) for concatena-
tion on AFAs. Fellah et al. showed in [13, Theorem 9.3] that if a language K is accepted
by an m-state AFA and a language L is accepted by an n-state AFA then the language
KL is accepted by AFA with 2m + n+ 1 states. The next theorem shows that this upper
bound is tight using the binary witness languages provided in Theorem 3.1.

Theorem 3.2. Let m,n ≥ 2. There exist binary languages K and L recognized by an m-
state and an n-state AFA, respectively, such that every AFA for KL has at least 2m+n+1

states.

Proof. Let
K = L(B2m,2m−1)R and L = L(A2n,2n−1)R.

Since L(B2m,2m−1) is recognized by a 2m-state DFA with half of the states final, its re-
versal, the language K, is recognized by an m-state AFA. Analogously, the language L is
recognized by an n-state AFA. Next, as shown in Theorem 3.1 for DFAs, we have

sc((KL)R) = sc(LRKR) = sc(L(A2n,2n−1)L(B2m,2m−1)) =

= 2n−122m + 2n−122m−1 = 22m2n−1(1 + 1/2).

It follows the number of states in every AFA for KL is at least

dlog 22m2n−1(1 + 1/2)e = 2m + n.

Now we show that every AFA for KL has at least 2m + n + 1 states. Assume for a
contradiction that KL is recognized by an AFA with 2m +n states. Then by Lemma 2.1,
the language (KL)R is recognized by a DFA with 22m+n states, half of which are final. It
follows that a minimal DFA for (KL)R has at most 22m+n−1 final states. A state (q, S)

of the minimal DFA for KL is final if S contains a final state of B2m,2m−1 . Hence, the
number of final states in the minimal DFA for (KL)R is

2n−1(22m−1 − 1)22m−1

+ 2n−1(22m−1 − 1)(22m−1−1)

= 22m+n−1(1− 1

22m−1 +
1

2
− 1

22m−1+1
) > 22m+n−1

sincem ≥ 2. This is a contradiction, so every AFA forKL has at least 2m+n+1 states.

22

Chapter 4

Operations on Boolean and Alternating
Finite Automata

In this chapter we investigate the descriptional complexity of basic regular operations on
languages represented by Boolean and alternating finite automata (BFAs, AFAs). This
representation differs from nondeterministic finite automata (NFAs). In NFAs the result
of a transition function is the disjunction of states. In the Boolean automata we allow
any Boolean function, not only disjunction to be the result of the transition function. If
an NFA starts in a disjunction of states, we say that it has multiple initial states, but
a BFA can start in any Boolean function. A Boolean automaton that starts in a single
state, a Boolean function that is a projection, is called an alternating finite automaton
(AFA); cf. [8, 13, 54].

It is known that every n-state Boolean automaton can be simulated by a DFA with
22n states and by a NFA with 2n +1 states, and that both these upper bounds can be met
by binary languages [4, 25]. Fellah, Jürgensen and Yu [13] presented simple constructions
of AFAs for several basic regular operations on languages represented by AFAs. This
resulted in the following upper bounds on the AFA state complexity of corresponding
operations:
• complementation ≤ n+ 1,
• union ≤ m+ n+ 1,
• intersection ≤ m+ n+ 1,
• star ≤ 2n + 1,
• concatenation ≤ 2m + n+ 1.

Jirásková in [25] provided tight upper bounds on AFAs and BFAs for union, intersec-
tion. Lower bounds were showed for star, reversal, and concatenation:

23

AFA state complexity BFA state complexity
• union m+ n+ 1, m+ n,
• intersection m+ n+ 1, m+ n,
• concatenation 2m + n <= . <= 2m + n+ 1, 2m + n,
• reversal 2n <= . <= 2n + 1, 2n,
• star 2n <= . <= 2n + 1, 2n <= . <= 2n + 1.

In this chapter we continue this research with the aim to get the exact AFA and BFA
state complexity for all the above mentioned operations, as well as for operations of left
and right quotients, difference and symmetric difference. The solutions are based on paper
presented at CSR 2018 that can be found in Appendix [B] at the end of the thesis:

Michal Hospodár, Galina Jirásková, Ivana Krajňáková: Operations on Boolean and al-
ternating finite automata. In: Fedor V. Fomin, Vladimir V. Podolskii (eds.): Computer
Science – Theory and Applications – 13th International Computer Science Symposium
in Russia, CSR 2018, Moscow, Russia, June 6–10, 2018, Proceedings. Lecture Notes
in Computer Science, vol. 10846, pp. 181–193, Springer (2018).

We start with [B, Proposition 1] dealing with so called uniquely distinguishable states
and we use them to get the distinguishability of subsets in a subset automaton. In [B,
Lemmas 2,3] we give two observations from the literature showing that a language L
is recognized by an n-state BFA (an n-state AFA) if and only if the language LR is
recognized by a 2n-state DFA (a 2n-state DFA with half of its states final). This is a
crucial observation that is used throughout this chapter and paper [B] to get the exact
complexity of all considered operations on BFAs and AFAs. This observation follows from
Lemmas 2.1 and 2.2 given together with their proof ideas in Known results. Proposition
[B, Proposition 7] describes the reversal of quotients. Let us provide the omitted proof
here.

Proposition 4.1. Let K and L be languages over Σ. Then

(a) (KL−1)R = (LR)−1KR;

(b) (L−1K)R = KR(LR)−1.

Proof. (a) The equality (KL−1)R = (LR)−1KR follows from the fact that the following
claims are equivalent:

w ∈ (KL−1)R,

24

wR ∈ KL−1,

wR = x where xy ∈ K for some y ∈ L,

w = xR where yRxR ∈ KR for some yR ∈ LR,

w ∈ (LR)−1KR.

(b) The equality (L−1K)R = KR(LR)−1 follows from the fact that the following claims
are equivalent:

w ∈ (L−1K)R,

wR ∈ L−1K,

wR = x where yx ∈ K for some y ∈ L,

w = xR where xRyR ∈ KR for some yR ∈ LR,

w ∈ KR(LR)−1.

In [B,Proposition 8 and 9] we prove preliminary results on star and symmetric differ-
ence on DFA that are used later to get the complexity of star and symmetric difference
on BFAs and AFAs.

Now, with the aim to decrease the size of the alphabet in defining witnesses for Boolean
operation in [B], we consider the unary case here.

Lemma 4.2. Let A = (2m, 0, {i | 2m−1 ≤ i ≤ 2m− 1}) and B = (2n− 1, 0, {i | 2n−1 ≤ i ≤
2n−2}) unary DFAs, see Fig. 4.1 and Fig. 4.2, where m,n ≥ 2. Then sc(L(A)∪L(B)) =

sc(L(A)⊕ L(B)) = 2m(2n − 1).

Proof. Our aim is to show that all states in the product automata M∪ and M⊕ for
L(A) ∪ L(B) and L(A)⊕ L(B), respectively, are reachable and pairwise distinguishable.

The numbers 2m and 2n−1 are co-prime and greater than or equal to two. By Chinese
Remainder Theorem, for every i and j with 0 ≤ i ≤ 2m − 1 and 0 ≤ j ≤ 2n − 2 there
exists a number x(i, j) such that

x(i, j) mod 2m = i,

x(i, j) mod (2n − 1) = j.

It follows that in the product automaton M∪ or M⊕, every state (i, j) is reached from the
initial state (0, 0) by the word ax(i,j).

25

For distinguishability, we first consider union. Notice that it is enough to distinguish
the non-final state (0, 0) with any other non-final state: indeed, if p and q are two distinct
states of the product automaton M∪, then we can send the state p to (0, 0) by a word
in a∗, while q is sent to a state q′ with q′ 6= (0, 0) by this word. If q′ if final, then we are
done since (0, 0) is non-final. Otherwise, we have the above mentioned case.

Consider a non-final state (i, j) 6= (0, 0) in the product automaton M∪. Then 0 ≤ i ≤
2m−1 − 1 and 0 ≤ j ≤ 2n−1 − 1. Moreover i ≥ 1 or j ≥ 1.

If i ≥ 1, then

(0, 0)
ax(2

m−1−1,0)

−−−−−−−→ (2m−1 − 1, 0) /∈ F∪ while

(i, j)
ax(2

m−1−1,0)

−−−−−−−→ (2m−1 − 1 + i, j) ∈ F∪.

If j ≥ 1, then

(0, 0)
ax(0,2

n−1−1)

−−−−−−−→ (0, 2n−1 − 1) /∈ F∪ while

(i, j)
ax(0,2

n−1−1)

−−−−−−−→ (i, 2n−1 − 1 + j) ∈ F∪.

This proves distinguishability for union.
Now consider symmetric difference. Similarly as for union, it is enough to distinguish

the non-final state (0, 0) with any other non-final state. First, consider a non-final state
(i, j) with 0 ≤ i ≤ 2m−1 − 1 and 0 ≤ j ≤ 2n−1 − 1. Then we proceed as in the case of
union: the word ax(2m−1−1,0) distinguishes (0, 0) and (i, j) if i ≥ 1, otherwise, we use the
word ax(0,2n−1−1) to distinguish them.

Now consider a non-final state (2m−1 + i, 2n−1 + j) with 0 ≤ i ≤ 2m−1 − 1 and
0 ≤ j ≤ 2n−1 − 2.

If i = 0, then we have

(0, 0)
ax(2

m−1,2n−1−1)

−−−−−−−−−→ (2m−1, 2n−1 − 1) ∈ F⊕ while

(2m−1, 2n−1 + j)
ax(2

m−1,2n−1−1)

−−−−−−−−−→ (0, j) /∈ F⊕;

notice that in B we have 2n−1 + j
a2

n−1−2−j

−−−−−−→ 2n − 2
a−→ 0

aj−→ j.
If i ≥ 1, then

(0, 0)
ax(2

m−1−1,0)

−−−−−−−→ (2m−1 − 1, 0) /∈ F⊕ while

(2m−1 + i, 2n−1 + j)
ax(2

m−1−1,0)

−−−−−−−→ (i− 1, 2n−1 + j) ∈ F⊕.

This proves distinguishability for symmetric difference, and concludes the proof.

26

0
. . .

2m−1 − 1
2m−1

. . .
2m − 1

a a a a a

a

Figure 4.1: Unary DFA A = (2m, 0, {i | 2m−1 ≤ i ≤ 2m − 1}).

0
. . .

2n−1 − 1
2n−1

. . .
2n − 2

a a a a a

a

Figure 4.2: Unary DFA B = (2n − 1, 0, {i | 2n−1 ≤ i ≤ 2n − 2}).

Theorem 4.3. Let m,n ≥ 2 and ◦ ∈ {∪,⊕,∩, \}. Let K and L be unary languages
recognized by BFAs withm and n states, respectively. Then the language K◦L is recognized
by a BFA with m+ n states, and this upper bound is tight.

Proof. The upper bound is the same as in the case of a general alphabet. To prove
tightness for union and symmetric difference, let A and B be the DFAs from Lemma 4.2.
Let

K = L(A)R and L = L(B)R.

Since L(A) is recognized by an 2m-state DFA, the language K is recognized by an m-state
BFA by Lemma 1.3. Next, the language L(B) is recognized by an 2n-state DFA; here we
can add an unreachable state 2n−1 to the DFA B. Therefore, the language L is recognized
by an n-state BFA again by Lemma 1.3. We have (K ∪ L)R = KR ∪ LR = L(A) ∪ L(B).
By Lemma 4.2, every DFA for the language (K ∪ L)R has at least 2m(2n − 1) states. By
Lemma 1.2, the number of states in every BFA for K ∪ L is at least

dlog 2m(2n − 1)e = m+ n.

The proof for symmetric difference is exactly the same.
Notice that the languages Kc and Lc are witnesses for intersection since we have

(Kc∩Lc)c = K ∪L, and on BFAs, the state complexity of a language and its complement
is the same.

Similarly, the languages Kc and L are witnesses for difference since Kc \L = Kc ∩Lc.
Our proof is complete.

27

Theorem 4.4. Let m,n ≥ 3 and ◦ ∈ {∪,∩, \}. Let K and L be unary languages recog-
nized by AFAs with m and n states, respectively. Then the language K ◦ L is recognized
by an AFA with m + n + 1 states, and this upper bound is tight. The language K ⊕ L is
recognized by an AFA with m+ n states, and this upper bound is tight.

Proof. The upper bounds are the same as in the case of a general alphabet. For tightness
in the case of union, let A and B be DFAs from Lemma 4.2. Let

K = L(A)R and L = L(B)R.

Notice that L(A) is recognized by a DFA with 2m states of which 2m−1 are final. By
adding an unreachable final state 2n − 1 to the DFA B, we get a DFA for L(B) which
has 2n states of which 2n−1 are final. By Lemma 1.3, the language K is recognized by
an m-state AFA and the language L is recognized by an n-state AFA. From the previous
proof, we already know that every BFA, so also every AFA, for K ∪L has at least m+ n

states. Let us show that one more state is necessary for an AFA to accept K ∪ L.
Assume for a contradiction that there is an AFA for K ∪ L with m + n states. Then

by Lemma 1.2, the language (K ∪L)R is recognized by a DFA with 2m+n states of which
2m+n−1 are final. It follows that the minimal DFA for (K ∪L)R has at most 2m+n−1 final
states. However, we have (K ∪ L)R = KR ∪ LR = L(A) ∪ L(B), and it follows from the
proof of Lemma 4.2 that the number of final states in the minimal DFA for L(A)∪L(B) is

2m−1(2n−1 − 1) + 2m−1(2n − 1) = 2m+n−1(1 +
1

2
− 1

2n−1) > 2m+n−1

since n ≥ 3. This is a contradiction. Thus every AFA for K ∪ L has at least m + n + 1

states.
Since the AFA complexity of a language and its complement is the same, the languages

Kc and Lc are witnesses for intersection, while Kc and L are witnesses for difference.
Finally, the languages K and L meet the upper bound m+n for symmetric difference,

since we already know from the proof of Theorem 4.3 that every BFA, so also every AFA,
for K ⊕ L has at least m+ n states.

All our results are summarized in Table 4.1 and Table 4.2:

28

operation BFA |Σ| Theorem AFA |Σ| Theorem

complementation n 1 [B,Thm. 10] n 1 [B,Thm. 10]

union m+ n 1 Theorem 4.3 m+ n+ 1 1 Theorem 4.4

intersection m+ n 1 Theorem 4.3 m+ n+ 1 1 Theorem 4.4

difference m+ n 1 Theorem 4.3 m+ n+ 1 1 Theorem 4.4

sym. difference m+ n 1 Theorem 4.3 m+ n 1 Theorem 4.4

concatenation 2m + n 2 Theorem 3.2 2m + n+ 1 2 Theorem 3.2

star 2n 2 [B,Thm. 11] 2n 2 [B, Thm. 11]

reversal 2n 2 [B,Thm. 12(c)] 2n 2 [B,Thm. 13(c)]

right quotient 2m 2 [B,Thm. 12(d)] 2m + 1 2 [B,Thm. 13(d)]

left quotient m 1 [B,Thm. 12(e)] m+ 1 1 [B,Thm. 13(e)]

Table 4.1: State complexities of operations on Boolean and alternating automata.

operation BFA Theorem AFA Theorem

reversal n [B, Theorem 14(e)] n [B, Corollary 15(d)]

star 2n [B, Theorem 14(f)] ≤ 2n+ 1 [B, Corollary 15(e)]

left=right quotient m [B, Theorem 14(g)] ≤ m+ 1 [B, Corollary 15(f)]

Table 4.2: State complexities of operations on unary Boolean and alternating automata.

29

Chapter 5

NFA-to-DFA Trade-Off

This chapter discourses a different view on the state complexity trade-off for regular
operations. We investigate the NFA-to-DFA trade-off which assumes that the arguments
entering an operation are represented by NFAs while the result is required to be a DFA.

We are motivated by two research problems from the literature: the complexity of
the combined operations and the operational complexity on languages represented by
self-verifying and unambiguous automata. The study of combined operations began with
the paper by Salomaa et al. [49], and since then many different combined operations
have been studied. If a given combined operation does not contain complementation
then NFA-to-DFA trade-off for the outermost operation provides an upper bound on the
complexity of the combined operation since we can perform each included operation on
NFAs. Self-verifying and unambiguous automata are special forms of NFAs, while every
DFA is self-verifying and unambiguous automaton. Therefore the NFA-to-DFA trade-off
for a regular operation provides an upper bound on the complexity of the operation on
self-verifying or unambiguous automata.

We examine the NFA-to-DFA trade-off for star, complementation, intersection, union,
difference, symmetric difference, reversal, left and right quotient and concatenation. We
start with the star operation where we provide tight upper bound 2n with a binary witness
and resolve the unary case where the tight upper bound is (n − 1)2 + 2. Then we show
the tightness of the upper bound 2n for complementation operation with binary witness,
and asymptotically tight upper bound F (n) in the unary case. We continue with Boolean
operations where we provide upper bounds and show their tightness on ternary alphabet.
We show that upper bound 2m+n is asymptotically tight for binary alphabet for all four
Boolean operations. For unary alphabet we give an estimation Θ(F (m + n)); here F (n)

is Landaus function defined as F (n) = max{lcm(x1, . . . , xk) | x1 + · · · + xk ≤ n} and it

30

is known that F (n) ≈ 2
√
n lnn. We describe straight-forward solutions on NFA-to-DFA

trade-off for reversal, left and right quotient, on binary (or larger) and unary alphabets.
We conclude this chapter with the concatenation operation where we provide tight upper
bound 3

4
2m+n with a ternary witness. We show that this upper bound is asymptotically

tight in the binary case. In the unary case, we get an upper bound O(F (m + n)) and a
lower bound Ω(max{F (m), F (n)}).

The next three lemmas provide tools to guarantee reachability and distinguishability
of all states in the subset automaton of an NFA with appropriate structure. Languages
described by NFAs with similar or same transitions as in these lemmas are used as witness
languages in this chapter.

Lemma 5.1. Let A = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {n − 1}) be the NFA from Fig. 5.1
where i · a = {i + 1} if 0 ≤ i ≤ n − 2, and i · b = {0, i}. Then for each subset S of
{0, 1, . . . , n− 1}, there exists a word uS ∈ {a, b}∗ such that 0 · uS = S.

Proof. In the subset automaton D(A), each singleton set {i} is reached from the initial
subset {0} by ai and the empty set is reached from {n− 1} by a. Each set {i1, i2, . . . , ik}
of size k, where 2 ≤ k ≤ n and 0 ≤ i1 < i2 < · · · < ik ≤ n − 1, is reached from the set
{i2− i1, i3− i1, . . . , ik− i1} of size k−1 by bai1 . This proves the reachability of all subsets
of {0, 1, . . . , n − 1} by induction. Hence for each S ⊆ {0, 1, . . . , n − 1}, there is a word
uS ∈ {a, b}∗ such that 0 · uS = S.

0 1 2 . . . n− 2 n− 1a

b

a

b

b
a

b

b
a

b

b

a

b

b

Figure 5.1: An NFA with 2n reachable subsets.

Lemma 5.2. Let A = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {n − 1}) be the NFA from Fig. 5.2
where i · a = {(i + 1) mod n} and i · b = {0, i} if 1 ≤ i ≤ n− 1. Then for each subset S
of {0, 1, . . . , n− 1}, there exists a word uS ∈ {a, b}∗ such that 0 · uS = S.

Proof. The proof is the same as the proof of Lemma 5.1, but now the empty set is reached
from {0} by b.

31

0 1 2 . . . n− 2 n− 1a a

b

b
a

b

b
a

b

b

a
a, b

b

Figure 5.2: An NFA with 2n reachable subsets.

Lemma 5.3 (Distinguishability). Let A be an NFA such that for every state q of A
the singleton set {q} is co-reachable in A. Then every two distinct states of the subset
automaton D(A) are distinguishable.

Proof. Let us take two distinct subsets S and T of D(A). Without loss of generality,
let q ∈ S\T . Since the set {q} is co-reachable in A, there is a word wq that is accepted by A
from the state q and rejected from every other state. It follows that in D(A), the word wq

is accepted from S and rejected from T . Hence S and T are distinguishable in D(A).

5.1 Star

We start with the star operation. Its state complexity is 3
4
2n [38] and its nondeterministic

state complexity is n+ 1 [24]. We show that the NFA-to-DFA trade-off for star is 2n.

Theorem 5.4 (Star). Let n ≥ 2. Let L be a language over an alphabet Σ recognized by
an n-state NFA. Then sc(L∗) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Let L be recognized by an n-state NFA A = (Q,Σ, ·, s, F). Construct an MNFA N

recognizing L∗ from A as follows. First, for each transition (p, a, q) in A with q ∈ F , add
the transition (p, a, s). Next, if s /∈ F , then add a new initial and final state q0 to accept
the empty word. Consider the subset automaton D(N). The only reachable set in D(N)

containing the state q0 is the initial subset {s, q0}. All the remaining reachable sets are
subsets of Q. Moreover, if a reachable set contains a final state of A, then it also contains
the state s. If A has a final state different from s, then at least 2n−2 sets are unreachable
in D(N), so the upper bound is 1+(3/4)2n in this case. If F = {s}, then the construction
above results in the same automaton, so L∗ = L. In such a case, the upper bound is 2n.

To prove tightness, consider the binary language L recognized by the n-state NFA
A = ({0, 1, . . . , n − 1}, {a, b}, ·, 0, {0}) shown in Fig. 5.3 where for each state i, i · a =

{i + 1 mod n}, and i · b = {0, i} if i ≥ 1. Then L∗ = L. In the subset automaton D(A),
all subsets of {0, . . . , n − 1} are reachable by Lemma 5.2. Since every singleton set is

32

co-reachable in A via a word in a∗, all the states of D(A) are pairwise distinguishable by
Lemma 5.3.

0 1 2 . . . n− 2 n− 1a a

b

b
a

b

b
a a

b

b

a, b

b

Figure 5.3: A binary witness NFA for star meeting the upper bound 2n.

The witness from the previous proof is described over a binary alphabet. It is impos-
sible to meet the upper bound 2n in the unary case since every unary n-state NFA can be
simulated be a DFA with 2O(

√
n lnn) states [9]. The next theorem provides the tight upper

bound in the unary case.

Theorem 5.5. Let n ≥ 6. Let L be a unary language recognized by an n-state NFA. Then
sc(L∗) ≤ (n− 1)2 + 2, and this bound is tight.

Proof. To get lower bound consider the n-state NFA from Fig.5.4. This NFA recognizes
the language L = {ε} ∪ {acn+d(n−1) | c > 0, d ≥ 0} and L∗ = L since 0 is the unique final
state. We have gcd(n, n− 1) = 1. By [55, Lemma 5.1](b) the largest integer that cannot
be presented as cn + d(n − 1) with c > 0, d ≥ 0 is (n − 1)2. It follows that the minimal
DFA for L∗ = L has (n− 1)2 + 2 states.

Now we show that (n − 1)2 + 2 states are sufficient. Let A = (Q, {a}, ·, s, F) be an
arbitrary unary n-state NFA. First, assume that there is at least one final state f 6= s.
Construct an NFA N = (Q, {a}, ◦, s, F) for language L(A)+ from A by adding transition
(q, a, s) whenever q · a ∈ F . To get a DFA for L(A)∗ it is enough to make the initial state
{s} of the DFA D(N) final; notice that {s} has no in-transitions in D(N).

0 1 2 . . . n− 2 n− 1a a a a a

a
a

Figure 5.4: A unary witness for star meeting the upper bound (n− 1)2 + 2.

33

Let t be smallest number such that s ∈ s ◦ at in N . Define

Si,t = {s} ◦ ait.

Our aim is to show that Si−1,t ⊆ Si,t. For i = 1 this claim holds since S0,t = {s} and
S1,t = {s} ◦ at = {s} ∪ S ′ for some set S ′ ⊆ Q. If i > 1 then

Si,t = {s} ◦ ait =

({s} ∪ S ′) ◦ a(i−1)t = ({s} ◦ a(i−1)t) ∪ (S ′ ◦ a(i−1)t) = Si−1,t ∪ (S ′ ◦ a(i−1)t) ⊇ Si−1,t.

We have two cases:

(1) Si−1,t = Si,t, for some i ≤ n− 1;

(2) Sn−1,t = Q.

In both cases the number of states in the subset automaton D(N) is at most t(n− 1) + 1

which is at most (n− 1)2 + 1.
Now let F = {s}. Then L(A)∗ = L(A), which means that A is an NFA for L(A)∗. If

no transition in A goes to s, then L(A) = {ε} and DFA for such language needs only one
state. Otherwise, let t be the smallest number such that s ∈ s · at and Si,t be defined as
above. If t ≤ n − 1 then we get an upper (n − 1)2 + 1 in the same way as we did when
F 6= {s}.

Let t = n. This means that we can label the states in Q with numbers 0, 1, . . . , n− 1

such that 0 = s and NFA A has the transition (i, a, i + 1) for i = 0, 1, . . . , n− 2 and the
transition (n−1, a, 0) and does not have any transition (i, a, j) where j > i+1. If there is
no transition (i, a, j) with j ≤ i, then A is deterministic. Otherwise, each such transition
forms a loop (j, j+1, . . . , i) of length i− j+1. Assume that there exist k loops of distinct
lengths l1, . . . , lk in A.

First consider k ≥ 2. Then S1,n ⊆ {s, n − l1, n − l2, ..., n − lk}, so S1 has at least 3
elements. Moreover Si−1,n = Si,n for some i ≤ n− 2, or Sn−2,n = Q. So automaton D(A)

has at most 1 + (n− 2)n = (n− 1)2 reachable states, which is less than (n− 1)2 + 2.
Now let k = 1. Then A accepts words of length cn + dl1, where c > 0 and d ≥ 0. If

gcd(n, l1) = 1 then by [55, Lemma 5.1](b) the largest integer that cannot be presented as
cn + dl1 is (n − 1)l1. This means that D(A) has (n − 1)l1 + 2 states, which is at most
(n− 1)2 + 2.

But if, on the contrary, gcd(n, l1) = q, q ≥ 2, we can reduce A with q and construct
NFA A′ where every q transitions in A would be one in A′ and there would be n

q
states

34

instead of n. Since gcd(n
q
, l1
q

) = 1 we can use [55, Lemma 5.1](b), so the largest integer
that cannot be presented as cn

q
+ d l1

q
is (n

q
− 1) l1

q
. Thus the number of states needed for

D(A′) is (n
q
− 1) l1

q
+ 2 = nl1

q2
− l1

q
+ 2. Now we can expand D(A′) to D(A). The number

of states needed for D(A) is (nl1
q2
− l1

q
+ 2)q and we can estimate this number for n ≥ 6:(

nl1
q2
− l1

q
+ 2
)
q = nl1

q
−l1+2q < nl1

2
+2l1 = l1

(
n
2

+ 2
)
≤ (n− 1)

(
n
2

+ 2
)
< (n−1)2+2.

5.2 Boolean Operations

We continue with complementation, union, intersection, difference and symmetric differ-
ence. Let us first provide tight upper bound 2n for complementation which contrasts its
state complexity n and is the same as its non-deterministic state complexity 2n [24].

Theorem 5.6 (Complementation). Let L be a language over Σ recognized by an n-
state NFA. Then sc(Lc) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Let A be an n-state NFA recognizing L. We apply the subset construction to A
and get a 2n-state DFA recognizing L. Then we invert the finality of every state to get a
2n-state DFA recognizing Lc. For tightness, let L be the binary language recognized by
the NFA A shown in Fig. 5.1 on page 31. By Lemma 5.1, every subset of {0, 1, . . . , n− 1}
is reachable in the subset automaton D(A). Since every singleton set is co-reachable in A
via a word in a∗, all states of D(A) are pairwise distinguishable by Lemma 5.3. Thus the
minimal DFA for L has 2n states, and we get sc(Lc) = sc(L) = 2n.

The binary alphabet used in the previous theorem is optimal since every unary n-
state NFA can be simulated by a DFA of 2O(

√
n lnn) states [9]. The next theorem gives an

asymptotically tight upper bound on the NFA-to-DFA trade-off for complementation in
the unary case.

Theorem 5.7. Let L be a unary language recognized by an n-state NFA. Then sc(Lc) =

Θ(F (n)).

Proof. The upper bound is given by the complexity of determinization of n-state unary
NFA which is O(F (n)) by [9, Theorem 4.4]. To get tightness consider the partition n−1 =

x1 + · · ·+ xk such that F (n− 1) = lcm(x1, . . . , xk). Let L be the language recognized by
n-state NFA with a non-final initial state which has nondeterministic transitions to k non
final states that are in disjoint cycles of lengths x1, . . . , xk. All the remaining states in each
cycle are final. See Fig. 5.5 for an example with x1 = 2, x2 = 3, x3 = 5. Then DFA for L
has a tail of length 1 consisting of non-final states and a loop of length lcm(x1, . . . , xk).

35

Each state from the loop is final with the exception for the state that follows the tail.
This means that the loop is minimal, so sc(Lc) = sc(L) ≥ F (n− 1) = Ω(F (n)).

x1

x2

x3

Figure 5.5: Example with x1 = 2, x2 = 3, x3 = 5.

Now we continue NFA-to-DFA trade-off for four binary Boolean operations. First, we
recall some notions. We call a state q of a DFA A = (Q,Σ, ·, s, F) a sink state if q · a = q

for every letter a ∈ Σ. The state q is called dead if reading every word from the state q
results in a non-accepting state of A.

To get an automaton recognizing union, intersection, difference, or symmetric differ-
ence of two languages we use the product construction as described in Preliminaries. Let
us recall its construction here.

Let A = (QA,Σ, ·A, sA, FA) and B = (QB,Σ, ·B, sB, FB) be DFAs over an alphabet Σ.
Let ◦ ∈ {∩,∪, \,⊕}. Then the language L(A) ◦ L(B) is recognized by the product
automaton

M◦ = (QA ×QB,Σ, ·, (sA, sB), F◦)

where (p, q) · a = (p ·A a, q ·B a) for all p ∈ QA, q ∈ QB, and a ∈ Σ, and

F◦ =

FA × FB, if ◦ = ∩;

(FA ×QB) ∪ (QA × FB), if ◦ = ∪;

FA × (QB \ FB), if ◦ = \;
(FA × (QB \ FB)) ∪ ((QA \ FA)× FB), if ◦ = ⊕.

If the operation inputs are given by NFAs, we first apply the subset construction to get
DFAs for those inputs. Then we construct the corresponding product automaton. Notice
that every subset automaton has at least one rejecting sink state, namely, the empty set.
The following lemma provides upper bounds for Boolean operations on DFAs considering
the presence of the rejecting sink states.

36

Lemma 5.8. Let K and L be languages over Σ accepted by DFAs with m and n states
respectively. Assume that both DFAs have a rejecting sink state. Then sc(K ∪L) ≤ mn,
sc(K ⊕ L) ≤ mn, sc(K ∩ L) ≤ mn−m− n+ 2, and sc(K \ L) ≤ mn− n+ 1.

Proof. For each Boolean operation ◦ ∈ {∪,∩, \,⊕}, the language K ◦ L is recognized
by the product automaton M◦ which has mn states. This gives the upper bounds for
union and symmetric difference. Let dA and dB be the rejecting sink states of A and B,
respectively. Then in the product automaton M∩ recognizing K ∩ L, the states (dA, q)

with q ∈ QB and the states (p, dB) with p ∈ QA are dead and can be merged into one
sink state. This gives the upper bound (m − 1)(n − 1) + 1 = mn −m − n + 2. In the
product automaton M\ recognizing K \L, the states (dA, p) with p ∈ QB are dead, which
gives the upper bound (m− 1)n+ 1 = mn− n+ 1.

Now we are ready to get tight upper bounds on NFA-to-DFA trade-off for Boolean
operations.

Theorem 5.9 (Boolean operations). Let K and L be languages over Σ recognized by an
m-state and n-state NFA, respectively, where m,n ≥ 2. Then

(a) sc(K ∪ L) ≤ 2m+n,

(b) sc(K ⊕ L) ≤ 2m+n,

(c) sc(K ∩ L) ≤ 2m+n − 2m − 2n + 2,

(d) sc(K \ L) ≤ 2m+n − 2n + 1.

All these bounds are tight if |Σ| ≥ 3.

Proof. Let A be an m-state NFA recognizing K and B be an n-state NFA recognizing L.
Consider the corresponding subset automata D(A) and D(B) with 2m and 2n states,
respectively. Both of them have at least one rejecting sink state, namely, the empty set.
Then all upper bounds follow from Lemma 5.8.

For tightness, let K and L be the languages recognized by NFAs A and B from Fig.
5.6. Notice that transitions on b in A are the same in both automata, performing a loop
and a return to the initial state. The roles of the transitions on a and c are mutually
exchanged. It follows from Lemma 5.1 that for every S ⊆ {0, 1, . . . ,m− 1}, there is a
word uS ∈ {a, b}∗ such that 0 ·A uS = S, and for every T ⊆ {0, 1, . . . , n − 1}, there is a
word vT ∈ {b, c}∗ such that 0 ·B vT = T .

37

0A 1 2 . . . m− 2 m− 1

0B 1 2 . . . n− 2 n− 1

a

b, c

a

b, c

b
a

b, c

b
a

b, c

b

a

b

b, c

c

a, b

c

a, b

b
c

a, b

b
c

a, b

b

c

b

a, b

Figure 5.6: Ternary witnesses for Boolean operations.

Let ◦ ∈ {∪,⊕,∩, \}. Construct the product automatonM◦ from DFAsD(A) andD(B).
The initial state of M◦ is ({0}, {0}). Let S ⊆ {0, 1, . . . ,m− 1} and T ⊆ {0, 1, . . . , n− 1}.
If 0 ∈ S then the state (S, T) is reachable in M◦ from the initial state by the word
uSvT . Otherwise, to reach (S, T) with S = {s1, . . . , sk} we first reach (S ′, T), where
S ′ = {0, s2 − s1, . . . , sk − s1} by the word uS′vT . Then we read as1 to get (S, T). Hence
each state of M◦ is reachable.

To prove distinguishability first consider union. Then (S, T) is final inM∪ if m−1 ∈ S
or n−1 ∈ T . Let (S, T) and (S ′, T ′) be two distinct states ofM∪. Then S 6= S ′ or T 6= T ′.
In the first case, let without loss of generality s ∈ S \ S ′. Consider the word am−1−scn

and notice that

(S, T)
am−1−scn−−−−−−→ ({m− 1} ∪ S1, ∅) for some S1 ⊆ {0, 1, . . . ,m− 1};

(S ′, T ′)
am−1−scn−−−−−−→ (S ′1, ∅) where m− 1 /∈ S ′1.

It follows that am−1−scn is accepted by M∪ from (S, T) and rejected from (S ′, T ′). The
case of T 6= T ′ is symmetric. We can prove distinguishability for symmetric difference in
the exact same manner.

Now consider intersection. A state (S, T) is final in M∩ iff m− 1 ∈ S and n− 1 ∈ T .
All states (∅, T) with T ⊆ {0, 1, . . . , n − 1} and (S, ∅) with S ⊆ {0, 1, . . . ,m − 1} are
dead in M∩. If s ∈ S and t ∈ T , then the word am−1−scn−1−t is accepted by M∩

from (S, T), so (S, T) is not dead. Let S, T, S ′, T ′ be non-empty such that (S, T) 6= (S ′, T ′).
Then S 6= S ′ or T 6= T ′. In the first case, let s ∈ S \ S ′ and t ∈ T . Consider the

38

word am−1−scn−1−t. Notice that

(S, T)
am−1−scn−1−t

−−−−−−−−→ ({m− 1} ∪ S1, {n− 1} ∪ T1) for some S1, T1;

(S ′, T ′)
am−1−scn−1−t

−−−−−−−−→ (S ′1, T
′
1) for some S ′1, T

′
1 with m− 1 /∈ S ′1.

Thus am−1−scn−1−t is accepted by M∩ from (S, T) and rejected from (S ′, T ′). The case
of T 6= T ′ is symmetric.

Finally, consider the difference K \ L. A state (S, T) is final in M\ iff m − 1 ∈ S

and n − 1 /∈ T . All states (∅, T) with T ⊆ {0, 1, . . . , n − 1} are dead in M\. Let S 6= ∅.
If s ∈ S, then the word am−1−scn is accepted from (S, T), so (S, T) is not dead. Let S 6= ∅,
S ′ 6= ∅ , (S, T) 6= (S ′, T ′). If s ∈ S \ S ′, then

(S, T)
am−1−scn−−−−−−→ ({m− 1} ∪ S1, ∅) for some S1;

(S ′, T ′)
am−1−scn−−−−−−→ (S ′1, ∅) for some S ′1 with m− 1 /∈ S ′1.

Thus the word am−1−scn is accepted byM\ from (S, T) and rejected from (S ′, T ′). If S = S ′,
s ∈ S, and t ∈ T \ T ′, then take the word am−1−scn−1−t:

(S, T)
am−1−scn−1−t

−−−−−−−−→ ({m− 1} ∪ S1, {n− 1} ∪ T1) for some S1, T1;

(S ′, T ′)
am−1−scn−1−t

−−−−−−−−→ ({m− 1} ∪ S1, T
′
1) where n− 1 /∈ T ′1.

Thus am−1−scn−1−t is rejected by M\ from (S, T) and accepted from (S ′, T ′). This con-
cludes the proof.

Now we show that the upper bound 2m+n is asymptotically tight in the binary case.

0A 1 2 . . . m− 2 m− 1

0B 1 2 . . . n− 2 n− 1

a

b

a

b

b
a

b

b
a

b

b

a

b

b

b

a

b

a

a
b

a

a
b

a

a

b

a

a

Figure 5.7: Binary NFAs A and B with sc(L(A) ∪ L(B)) = 2m+n−1 +m+ n.

39

Theorem 5.10. Let m,n ≥ 2 and languages K and L be defined by binary NFAs A and
B with m and n states from Fig. 5.7. Then

• sc(K ∪ L) = sc(K ⊕ L) = 2m+n−1 +m+ n ≥ 1
2
2m+n,

• sc(K ∩ L) = 2m+n−1 +m+ n− 2m − 2n + 2 ≥ 1
4
2m+n,

• sc(K \ L) = 2m+n−1 +m+ n− 2n + 1 ≥ 1
4
2m+n.

Proof. Let ◦ ∈ {∪,⊕,∩, \}. Construct the product automaton M◦ for K ◦ L using the
subset automata D(A) and D(B). The initial state of M◦ is ({0}, {0}) and let S ⊆
{0, 1, . . . ,m− 1} and T ⊆ {0, 1, . . . , n− 1}. We denote S ⊕ 1 = {i+ 1 | i ∈ S \ {m− 1}}
and if s = minS we denote S 	 s = {i − s | i ∈ S}. The sets T ⊕ 1 and T 	minT are
defined analogously. Notice that if S and T are non-empty then by reading a from any
(S, T) we reach state (S ⊕ 1, T ∪ {0}) and by reading b we reach state (S ∪ {0}, T ⊕ 1)

which results in an observation that exactly one of S or T can contain the initial state of
the corresponding automaton, except for the initial state ({0}, {0}). This means that the
set of possible reachable states R consists of pairs (S, T) of three types:

(1) (S, ∅), (∅, T);

(2) ({0}, {j}), ({i}, {0}), where i ∈ QA and j ∈ QB;

(3) (S, T), where either 0A ∈ S and 0B /∈ T, T 6= ∅, or 0B ∈ T and 0A /∈ S, S 6= ∅.

So R contains (2m+n−1 − 2m − 2n + 2) + (2m + 2n − 1) + (m+ n− 1) = 2m+n−1 +m+ n

states. Let us show that all pairs in R are reachable. By Lemma 5.1, there exists a word
uS ∈ {a, b}∗ such that 0A · uS = S and uT ∈ {a, b}∗ such that 0B · uT = T

(1) Let S = ∅ or T = ∅. Then ({0}, {0}) am−→ ({∅}, {0}) uT−→ (∅, T), and the proof for
T = ∅ is symmetric.

(2) Let S = {0} and T = {j} or S = {i} and T = {0}. Then ({0}, {0}) bj−→ ({0}, {j}),
and ({0}, {0}) ai−→ ({i}, {0}).

(3) Let 0 ∈ S and T = {j} where j 6= 0 or 0 ∈ T and S = {i} where i 6= 0. We
prove this case by using induction on the size of S. The basis, |S| = 1, was shown
in (2). Let |S| ≥ 2. Denote s as minimal element of S \ {0}; s = min(S \ {0}) and
S ′ = (S \ {0}). Then (S ′, {n − 1}) is reachable by the induction hypothesis, and we
get (S ′, {n − 1}) as−→ (S \ {0}, {0, n − 1}) bj−→ (S, {j}). Symmetrically by swapping a
and b we prove the other case.

40

(4) Let 0 ∈ S, 0 /∈ T, T 6= ∅; or 0 ∈ T , 0 /∈ S, S 6= ∅. We prove the first sub-case by
induction on |S|. The basis, |S| = 1, is proved in cases (2)–(3). Assume that the
claim holds if |S| = k. Let |S| = k+ 1. Take (S \ {0}, T 	minT), with |S \ {0}| = k.
Then by (S \ {0}, T 	minT)

bminT

−−−→ (S, T) we obtain (S, T). The second sub-case is
proved in a symmetric way.

The proof for distinguishability for ◦ ∈ {∪,∩,⊕} is the same as in the proof of Theorem
5.9 but with one condition, we replace the letter c with b. For ◦ = \ we continue likewise,
we replace the letter c with b, but we deal with another situation when S = S ′. If T and
T ′ differ in a state t > 0 then we can continue as in the proof of Theorem 5.9. Otherwise
T = {0} ∪ T ′, which means 0 /∈ T ′ and therefore 0 ∈ S ′. Since S ′ = S we get 0 ∈ S. The
fact that 0 ∈ S and 0 ∈ T follows that T = {0} and S = S ′ = {0}. Thus T ′ = ∅. We
then distinguish such pairs in the following way:

({0}, {0}) am−1cn−1

−−−−−−→ ({m− 1}, {n− 1}) and reject;

({0}, ∅) am−1cn−1

−−−−−−→ ({m− 1}, ∅) and accept.

This concludes the proof.

We showed that the upper bound 2m+n for Boolean operations is asymptotically tight
in the binary case. The next theorem deals with the unary case.

Theorem 5.11. Let ◦ ∈ {∪,∩,⊕, \} and K and L be unary languages recognized by
NFAs with m and n states respectively. Then sc(K ◦ L) = O(F (m + n)). For infinitely
many pairs (m,n) there exist unary languages K and L recognized by m-state and n-state
NFA, respectively, such that sc(K ◦ L) = Ω(F (m+ n)).

Proof. Let A and B be unary m-state and n-state NFAs for K and L, respectively. We
can convert A and B into automata A′ and B′ in Chrobak normal form [9], Fig. 5.8. The
NFA A′ consists of a tail of length at most m2 that ends in exactly one nondeterministic
transition going to k disjoint cycles of length x1, . . . , xk, where x1 + x2 + · · · + xk ≤ m.
Similarly B′ has a tail of length at most n2 and disjoint cycles of length y1, y2, . . . , yl,
where y1 + y2 + · · · + yl ≤ n. Then K ◦ L is accepted by a DFA with a tail of length at
most max(m2, n2) and a cycle of size lcm(x1, . . . , xk, y1, . . . , yl) ≤ F (m+ n). In total this
DFA has O(F (m+ n)) states.

To get a lower bound let us take the partition m + n − 2 ≥ x1 + x2 + · · · + xk such
that F (m + n − 2) = lcm(x1, x2, . . . , xk). We may assume that xi and xj are pairwise
co-prime and 2 ≤ x1 < x2 < · · · < xk. Let m′ = 1 + x1 and n′ = 1 + x2 + · · · + xk. Let

41

A and B be NFAs from Fig. 5.9. Automaton A has m′ states and automaton B has n′

states. Let K = L(A) and L = L(B). Then K ◦ L is accepted by DFA D with a tail
of length 1 and a loop of length x1x2 · · ·xk; see Fig. 5.10 where x1 = 2, x2 = 3, x3 = 5

and ◦ = ∪. Each state from these x1x2 · · ·xk can be labeled by a tuple (v1, . . . , vk),
where vi is the remainder after dividing by xi and each such tuple is unique. The set
of final states differs for ◦ ∈ {∩,∪,⊕, \}. For ∩ the set of final states contains only the
state (0, . . . , 0). For ∪ the set of final states consists of the initial state s and the states
v = (v1, . . . , vk) where vi = 0 for an i = 1, . . . , k. For ⊕ take FD = {s} ∪ {(v1, . . . , vk) |
(v1 = 0 ∧ vi 6= 0 for each i ≥ 2) ∨ (v1 6= 0 ∧ vi = 0 for an i ≥ 2)}. Finally for \ we take
FD = {s} ∪ {(v1, . . . , vk) | (v1 = 0 ∧ vi 6= 0 for each i ≥ 2)}.

To prove distinguishability, our general approach is to take two distinct states u =

(u1, . . . , uk) and v = (v1, . . . , vk) that we would like to distinguish by a word aw. In our
notation with modxi the word aw is in fact a(w1,w2,...,wk). Then reading aw from state u
looks like this:

(u1, . . . , uk)
aw−→ ((u1 + w1) mod x1, . . . , (uk + wk) mod xk),

and for each operation we define a specific w = (w1, . . . , wk). Its existence follows from
Chinese remainder theorem since x1, . . . , xk are pairwise co-prime and greater than one.

∩: Since u and v are distinct, there is an i such that ui 6= vi. Take w = (w1, . . . , wk)

where wi = xi − ui for each i = 1, . . . , k. Then

(u1, . . . , uk)
a(w1,...,wk)

−−−−−−→ (0, . . . , 0)

while the ith component of v + w is different from zero. Hence w is accepted from
u and rejected from v.

N(A) = A′
≤m2

N(B) = B′
≤n2

x1

x2

xk

y1

y2

yl

Figure 5.8: The Chrobak normal form of NFAs A and B.

42

A B
...x1

x2

x3

xk

Figure 5.9: NFAs A and B with m′ = 1 + x1 and n′ = 1 + x2 + · · ·+ xk states.

(0, 0, 0)

(1, 1, 1)

(0, 2, 2)

(1, 0, 3)
(0, 1, 4)

(1, 2, 0)
(0, 0, 1)(1, 1, 2)(0, 2, 3)(1, 0, 4)

(0, 1, 0)
(1, 2, 1)

(0, 0, 2)

(1, 1, 3)

(0, 2, 4)

(1, 0, 0)

(0, 1, 1)

(1, 2, 2)

(0, 0, 3)
(1, 1, 4)

(0, 2, 0)
(1, 0, 1)(0, 1, 2)(1, 2, 3)(0, 0, 4)

(1, 1, 0)
(0, 2, 1)

(1, 0, 2)

(0, 1, 3)

(1, 2, 4)

Figure 5.10: DFA D for K ∪ L with x1 = 2, x2 = 3, x3 = 5.

∪: Let ui 6= vi. Take w = (w1, . . . , wk) where wi = xi−ui, and for each j 6= i, 1 ≤ j ≤ k

take wj = 1 iff vj = 0 and wj = 0 iff vj 6= 0. Then the ith component of u + w is
zero, while the each component of v+w is different from zero. Hence w is accepted
from u and rejected from v.

\: We consider two cases. Firstly, when u1 6= v1. We take w = (w1, . . . , wk) where
w1 = x1 − u1, and for 2 ≤ j ≤ k take wj = 1 iff uj = 0 and wj = 0 iff uj 6= 0.
Then the first component of u + w is zero and any other is non-zero, while each
component of v + w is non-zero. Hence w is accepted from u and rejected from v.
Now let u1 = v1. Then there is i ≥ 2 such that ui 6= vi. We take w = (w1, . . . , wk)

where w1 = x1 − u1, and for 2 ≤ j ≤ k take wj = 1 iff uj = 0 and wj = 0 iff uj 6= 0.
Then the first and ith component of u+ w are zeroes, while the first component of
v + w is zero and any other is non-zero. Hence w is accepted from v and rejected
from u.

43

⊕: We consider two cases. Firstly, when u1 6= v1, we set w1 = x1−u1 and for 2 ≤ i ≤ k,

wi =

0, if ui 6= 0 and vi 6= 0;

1, if (ui = 0 and 0 ≤ vi ≤ xi − 2) or (vi = 0 and 0 ≤ ui ≤ xi − 2);

2, if (ui = 0 and vi = xi − 1) or (vi = 0 and ui = xi − 1).

Then w is accepted from u since the first component of u+w is zero and any other
is non-zero, but w is rejected from v since every component of v + w is non-zero.
Secondly let u1 = v1. Then ui 6= vi for some 2 ≤ i ≤ k. Set w1 = x1 − u1 and
wi = xi − ui and for j /∈ {1, i} take wj = 1 iff vj = 0 and wj = 0 iff vj 6= 0. Then
w is accepted from v since the first component of v + w is zero and any other is
non-zero, but w is rejected from u the first and ith component of u+ w are zeroes.

It follows that sc(K ◦ L) ≥ x1x2 · · ·xk = lcm(x1, x2, . . . , xk) = F (m + n − 2) ≥
F (m′ + n′ − 2) = Ω(F (m′ + n′)). This concludes our proof.

5.3 Reversal, Left and Right Quotient

Let us continue with the reversal operation. Note that it is enough to take the reversal
of any DFA with one final state meeting the upper bound 2n on the state complexity of
reversal. Such a binary DFA was described by Šebej [30, 52]. Here we describe a different
witness with significantly simpler proof. Notice that the binary alphabet used for reversal
is optimal. Reverse of any unary language is the language itself, but in our case we have
a unary language recognized by n-state NFA, which can be simulated ba a DFA with
2O(
√
n lnn) states [9].

Theorem 5.12 (Reversal). Let L be a language over Σ recognized by an n-state NFA,
where n ≥ 2. Then sc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2.

Proof. Let L be accepted by an n-state NFA A = (Q,Σ, ·, s, F). By reversing all the
transitions in A and taking F as the set of starting states and {s} as set of final states
we obtain an n-state MNFA that accepts LR. It follows that LR is accepted by a DFA
with at most 2n states.

To prove tightness, consider the binary language L recognized by the n-state NFA N =

({0, 1, . . . , n−1}, {a, b}, ·, 0, {0, 1, . . . , n−1}) shown in Fig. 5.11 where i·a = {i+1 mod n},
i · b = {i} if i ≥ 1. By reversing NFA N we get an MNFA NR that recognizes LR.

The set of initial state of NR is {0, 1, . . . , n− 1} and its unique final state is 0. Notice
that each subset of the state set of NR can be shifted cyclically by one by reading a, and

44

0 1 2 . . . n− 2 n− 1a a

b

a

b

a

b

a

a

b

Figure 5.11: A binary witness NFA for reversal meeting the upper bound 2n.

the state 0 can be eliminated from every set containing 0 by reading b. It follows that
every subset of {0, 1, . . . , n − 1} can be reached from the initial subset {0, 1, . . . , n − 1}
in the subset automaton D(NR). Next, every set {i} is co-reachable in NR via a word
in a∗ and using Lemma 5.3 we get that every two distinct states of the D(NR) are
distinguishable.

We investigate NFA-to-DFA trade-off for left and right quotients in the next two
theorems. In the first one we show tight upper bounds with binary witnesses for both
operations. The optimality of the binary alphabet is shown by the second one, where the
asymptotically tight upper bound for unary case is provided.

Theorem 5.13 (Left and Right Quotient). Let K and L be languages over an alphabet Σ

recognized by an m-state and n-state NFA, respectively, where m,n ≥ 2. Then sc(L−1K),
sc(KL−1) ≤ 2m, and the bounds are tight if |Σ| ≥ 2.

Proof. Let A = (QA,Σ, sA, ·A, FA) be anm-state NFA recognizingK. The language L−1K
is recognized by them-state MNFA N obtained from A by changing the set of initial states
to {sA ·A w | w ∈ L}. The language KL−1 is recognized by the m-state NFA N obtained
from A by changing the set of final states to {q ∈ QA | q ·A w ∈ FA for some w ∈ L}.
Hence sc(L−1K), sc(KL−1) ≤ 2m.

For tightness, notice that {ε}−1K = K{ε}−1 = K. Therefore, the upper bound 2m

is met in both cases by L = {ε} and K equal to the binary m-state witness NFA for
determinization given by Lemma 5.1. For distinguishability, notice that each singleton
set is co-reachable in this NFA.

Theorem 5.14. Let K and L be recognized by m-state and n-state unary NFAs respec-
tively. Then sc(KL−1) = sc(L−1K) = Θ(F (m)).

Proof. LetK and L be accepted by NFAs A and B respectively. IfK and L are unary then
KL−1 = L−1K. The right quotient KL−1 is recognized by an NFA obtained from A by
making appropriate states final. This gives upper bound O(F (m)) by determinization of

45

resulting unary NFA. For tightness let K be a unary witness for determinization and L =

{ε}. Then KL−1 = K, and the lower bound Ω(F (m)) follows from [9, Theorem 4.5].

5.4 Concatenation

We conclude this chapter with the concatenation operation. Its the state complexity is
m2n − 2n−1 [38] and nondeterministic complexity is m+ n [14]. The next theorem shows
upper bound for NFA-to-DFA trade-off for concatenation, 3

4
2m+n, which is tight in the

ternary case. For binary case we show that upper bound 2m+n is asymptotically tight.

Theorem 5.15 (Concatenation). Let K and L be languages over Σ recognized by an
m-state and n-state NFA, respectively, where m,n ≥ 2. Then sc(KL) ≤ 3

4
2m+n and this

bound is tight if |Σ| ≥ 3.

Proof. Let A = (QA,Σ, ·A, sA, FA) and B = (QB,Σ, ·B, sB, FB) be NFAs recognizing K
and L, respectively, with |QA| = m, |QB| = n Construct an MNFA N for KL from
NFAs A and B as follows. For each transition (p, a, q) in NFA A with q ∈ FA, add
the transition (p, a, sB). The set of initial states of N is {sA} if sA /∈ FA, or {sA, sB}
if sA ∈ FA. The set of final states of N is FB. The following condition holds in the
subset automaton D(N): each reachable subset containing a state from FA must contain
the state sB. This means that at least 2m+n−2 subsets are unreachable in D(N), and the
upper bound follows.

For tightness, consider the languages K and L recognized by DFAs A and B from Fig.
5.12. Construct an NFA N for KL from A and B by adding the transitions (q0, c, 0),
(qm−1, a, 0), and (qi, b, 0) for i = 1, 2, . . . ,m− 1. The initial states of N are q0 and 0. The

q0A q1 q2 . . . qm−1

0B 1 2 . . . n− 1

a a a a

a, b

c c c c

c

b

b, c

b

b, c b, c

a, b

b

a, b

b

a, b

b

a, b

Figure 5.12: Ternary witnesses for concatenation meeting the upper bound 3
4
2n.

46

set of final states is {n− 1}. We first show that the subset automaton D(N) has 3
4
2m+n

reachable states. Each state of D(N) consists of a subset S of {q0, q1, . . . , qm−1} and a
subset T of {0, 1, . . . , n − 1}; we denote such state by (S, T). Moreover having q0 ∈ S

implies 0 ∈ T , so in total we have 3
4
2m+n such states. Let us show the reachability of

each such state (S, T). We remind Lemma 5.1 and Lemma 5.2, where we show that for
every S there is a word wS ∈ {a, b}∗ such that q0 ·A wS = S, and for every T there is a
word wT ∈ {b, c}∗ such that 0 ·B wT = T . Now consider several cases:

(1) Let S = ∅. The initial state ({q0}, {0}) is sent to (∅, {0}) by b, and then to (∅, T) by
wT .

(2) Let S 6= ∅ and 0 ∈ T .

(2a) Let S = {q0} and 0 ∈ T . By induction on |T | we show that ({q0}, T) with 0 ∈ T is
reachable. The base case, T = {0}, holds true since ({q0}, {0}) is the initial state of
D(N). Assume that the claim holds true for each set of size k and let |T | = k+1. Let
T = {0, i1, . . . , ik} where 0 < i1 < · · · < ik ≤ n− 1. Set T ′ = {0, i2 − i1, . . . , ik − i1}.
Then |T ′| = k, so the pair ({q0}, T ′) is reachable by induction. The pair ({q0}, T) is
reachable from ({q0}, T ′) by am−1ci1a.

(2b) Let q0 ∈ S, where |S| ≥ 2 and 0 ∈ T . The pair ({q0}, T) is reachable as shown in
case (2a) and is sent to (S, T) by wS since 0 ∈ T .

(2c) Let q0 /∈ S, where 0 ∈ T . Let S = {qi1 , qi2 , . . . , qik} where 1 ≤ i1 < · · · < ik ≤ m− 1.
Set S ′ = {q0, qi2−i1 , . . . , qik−i1}. Then (S ′, T) is reachable as shown in (2a) or (2b) and
it is sent to (S, T) by ai1 .

(3) Let S 6= ∅ and 0 /∈ T . This means that q0 /∈ S. The pair (S, ∅) is reached from
({q0}, {0}) by wSc

n. If T = {i1, . . . , ik} where 1 ≤ i1 < · · · < ik ≤ n − 1 we set
T ′ = {0, i2 − i1, . . . , ik − i1}. The pair (S, T ′) is reachable as shown in case (2) since
0 ∈ T ′ and it is sent to (S, T) by ci1 since q0 /∈ S.

To prove distinguishability notice that in N each singleton set {j} is co-reachable via
a word in c∗, the set {q0} is co-reachable by cn. For 1 ≤ i ≤ n − 1 the set {qi} is co-
reachable by cnan−i since transitions on a in automaton A form the cycle (q0, q1, . . . , qm−1).
By Lemma 5.3 all states of subset automaton D(N) are pairwise distinguishable.

Now we show that the upper bound 2m+n is asymptotically tight in the binary case.

47

q0A q1 q2 . . . qm−2 qm−1

0B 1 2 . . . n− 2 n− 1

a, b

a a, b a, b a, b a, b

a, b a, b a, b a, b a, b

Figure 5.13: Binary NFAs A and B with sc(L(A)L(B)) ≥ 1
4
2m+n.

Theorem 5.16. Let m,n ≥ 2 and languages K and L be defined by binary NFAs A and B
with m and n states from Fig. 5.13. Then sc(KL) ≥ 1

4
2m+n.

Proof. Construct an NFA forKL from NFAsA andB by adding the transitions (qm−2, a, 0)

and (qm−2, b, 0). This NFA recognizes the binary language (a+ b)∗a(a+ b)m+n−3. It is
well known that every DFA for this language has at least 2m+n−2 states.

Our next result provides a lower and upper bound on the NFA-to-DFA trade-off for
concatenation in the unary case.

Theorem 5.17. Let K and L be unary languages recognized by NFAs with m and n states
respectively. Then sc(KL) = O(F (m + n)). There exists languages K and L such that
sc(KL) = Ω(max{F (m), F (n)}).

Proof. The upper bound O(F (m+n)) is given by the determinization of an (m+n)-state
unary NFA. The lower bound Ω(max{F (m), F (n)}) is provided by the pairs of languages
({ε}, L) and (K, {ε}).

The previous shows that the resulting complexity is exponential either in m or in n.
This contrasts the situation for the star operation, where the resulting complexity was
polynomial in n.

5.5 Conclusions

We investigated the NFA-to-DFA trade-off for several regular operations. Our results are
summarized in Table 5.1. The table also displays the size of alphabet used to describe
our witnesses. Whenever we used a binary alphabet, it was is always optimal in the sense
that the corresponding upper bounds cannot be met by any unary languages.

48

We conjecture that the upper bounds on the state complexity of Boolean operations
and concatenation cannot be met by any pair of binary languages. For unary concatena-
tion we provided an upper bound O(F (m+n)) and a lower bound Ω(max{F (m), F (n)}).
We leave the problem of finding at least asymptotically tight upper bound for future
research.

NFA-to-DFA |Σ| |Σ| = 2 |Σ| = 1

star 2n 2 2n (n− 1)2 + 2

complementation 2n 2 2n Θ(F (n))

union 2m+n 3 Θ(2m+n) Θ(F (m+ n))

symmetric difference 2m+n 3 Θ(2m+n) Θ(F (m+ n))

intersection 2m+n − 2m − 2n + 2 3 Θ(2m+n) Θ(F (m+ n))

difference 2m+n − 2n + 1 3 Θ(2m+n) Θ(F (m+ n))

reversal 2n 2 2n Θ(F (n))

left quotient 2m 2 2m Θ(F (m))

right quotient 2m 2 2m Θ(F (m))

concatenation 3
4
2m+n 3 Θ(2m+n) Ω(max{F (m), F (n)})

≤ · ≤ O(F (m+ n))

Table 5.1: The results on NFA-to-DFA trade-off for regular operations;
F (n) = max{lcm(x1, . . . , xk) | x1 + · · ·+ xk ≤ n} ≈ 2

√
n lnn.

49

Chapter 6

Summary and Future Works

This thesis investigated operational complexity on languages represented by different mod-
els of finite automata. We started with the square operation on deterministic finite au-
tomata and we showed how its state complexity depends on the number of final states in
a DFA for a given language. The case of just one non-final state, in which the resulting
complexity is not given by the same expression as for any other case, appeared to be
very interesting. We did some computations and thanks to them we were able to get an
upper bound, which depends on whether or not the initial state is final, as well as to
describe the corresponding witness languages. We used our binary witnesses with half of
their states final to describe witness languages for the square operation on Boolean and
alternating automata. Moreover, we proved that our witnesses can be used also for the
concatenation operation: we simply take two automata with the same structure but dif-
ferent number of states. This provided an alternative solution of an open problem stated
by Fellah et al. [13].

Then we determined the precise complexity for Boolean operations, star, reversal
and quotients on Boolean and alternating finite automata. We used unary alphabet to
describe witnesses for Boolean operations, and a binary alphabet for the others. We also
proved that the binary alphabet is always optimal by proving that the complexity of the
corresponding operation on unary languages is smaller than that in the case of a general
alphabet.

Finally, we considered operational complexity providing that the inputs of an operation
are given as nondeterministic finite automata, while the resulting language has to be rep-
resented by a deterministic finite automaton. We obtained tight upper bounds for Boolean
operations, concatenation, star, reversal and quotients. To prove tightness, we used a bi-
nary alphabet for complementation, star, reversal and quotients, and a ternary alphabet

50

for union, intersection, difference, symmetric difference and concatenation. Whenever
we used a binary alphabet, it was always optimal, and we strongly conjecture that the
ternary alphabet is optimal as well. Our computations support this conjecture. On the
other hand, we proved that the corresponding complexities in the binary case are, up
to a multiplicative constant, the same as those for the general case. In the unary case,
we obtained the precise complexity for star, and asymptotically tight upper bounds for
Boolean operations, reversal and quotients.

Some problems remains open, and we leave them for future research. We list a couple
of them in what follows.

The magic number problem. When investigating the square operation on DFAs, we
only considered the worst-case complexity. Instead of this, the whole range of possible
complexities is sometimes studied in the literature. The problem is called the magic
number problem, and it was first stated by Iwama et al. [18, 19]. For the square operation
it reads as follows.

Open problem 1. Given a minimal DFA A with n states, how many states may the
minimal DFA for the square of L(A) have?

Formally, we ask how does the set {sc(L2) | sc(L) = n} look like? Is it a contiguous
range of complexities from one up to the known upper bound, or are there any gaps, called
magic numbers, in this range? Our computations show that no magic numbers exist up
to n = 9 already in the binary case.

Operations on unary languages. When proving the optimality of a binary alphabet
used to describe lower bound examples for the AFA complexity of some operations we
obtained only upper bounds on the complexity for corresponding operations in the unary
case. They differ from the lower bounds given by the BFA complexity of these operations
by one. We do not know whether or not this "plus one" is necessary.

Open problem 2. What is the complexity of concatenation, square, star and quotients
on languages represented by unary AFAs?

In the case of a general alphabet we were able to find languages recognized by DFAs
with half of their states final that were hard enough for an operation on DFAs, and then we
proved that the reversal of these languages are hard for the operation on AFAs. However,
in the unary case such languages are not known.

51

Open problem 3. What is the complexity of concatenation, square, star and quotients
on languages represented by unary DFAs with half of their states final?

Notice that the complexity of complementation and reversal in such a case is n, and
those of union, intersection, difference and symmetric difference is given by Lemma 4.2.
For NFA-to-DFA trade-off in the case of concatenation on unary languages we have an
upper bound O(F (m + n)) and a lower bound Ω(max{F (m), F (n)}). This is the only
case in which we were not able to get at least asymptotically tight upper bound.

Open problem 4: What is the NFA-to-DFA trade-off for concatenation in the unary
case?

We conjecture that our lower bound Ω(max{F (m), F (n)}) could be asymptotically
tight.

Optimality of a ternary alphabet. All witness languages in this thesis were described
over an optimal alphabet, except for those for the NFA-to-DFA trade-offs in the case of
Boolean operation and concatenation where we used a ternary alphabet.

Open problem 5. Is the ternary alphabet used to describe witnesses for NFA-to-DFA
trade-off in the case of concatenation and Boolean operations optimal?

Our computations show the that corresponding upper bounds cannot be met in the
binary case, and we strongly conjecture that the ternary alphabet is optimal here.

Nondeterministic finite automata with existential and universal states. Some-
times, in contrast to [8, 13, 54], alternating automata are defined as nondeterministic au-
tomata with existential and universal states. This means that the result of the transition
function is always a disjunction if the corresponding state is an existential state and it
is a conjunction otherwise. We can show that such an automaton can be simulated by
a DFA with at most M(n) + 2 states where M(n) is the Dedekind number that counts
the number of anti-chains of subsets of a set with n elements. However, we do not know
whether or not this upper bound is tight.

Open problem 6. How many states are sufficient and necessary in the worst case for
a DFA to simulate an n-state NFA with existential and universal states?

The operational complexity on such a model of alternating automata is of great interest
for us as well.

52

Bibliography

[1] Assent, I., Seibert, S.: An upper bound for transforming self-verifying automata
into deterministic ones. RAIRO - Theor. Inf. and Applic. 41(3), 261–265 (2007),
https://doi.org/10.1051/ita:2007017

[2] Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite
automata. Technical Report 304, Polish Academy of Sciences (1977)

[3] Birget, J.: Intersection and union of regular languages and state complexity. Inform.
Process. Lett. 43(4), 185–190 (1992), http://dx.doi.org/10.1016/0020-0190(92)
90198-5

[4] Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980), http://dx.doi.
org/10.1016/0304-3975(80)90069-9

[5] Câmpeanu, C., II, K.C., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999, LNCS. Lecture
Notes in Computer Science, vol. 2214, pp. 60–70. Springer (1999), https://doi.
org/10.1007/3-540-45526-4_6

[6] Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of
shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002)

[7] Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In:
Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer
(2014), http://dx.doi.org/10.1007/978-3-319-08846-4_10

[8] Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981), http://doi.acm.org/10.1145/322234.322243

53

https://doi.org/10.1051/ita:2007017
http://dx.doi.org/10.1016/0020-0190(92)90198-5
http://dx.doi.org/10.1016/0020-0190(92)90198-5
http://dx.doi.org/10.1016/0304-3975(80)90069-9
http://dx.doi.org/10.1016/0304-3975(80)90069-9
https://doi.org/10.1007/3-540-45526-4_6
https://doi.org/10.1007/3-540-45526-4_6
http://dx.doi.org/10.1007/978-3-319-08846-4_10
http://doi.acm.org/10.1145/322234.322243

[9] Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47(3),
149–158 (1986), https://doi.org/10.1016/0304-3975(86)90142-8

[10] Cui, B., Gao, Y., Kari, L., Yu, S.: State complexity of two combined operations:
Catenation-union and catenation-intersection. Int. J. Found. Comput. Sci. 22(8),
1797–1812 (2011), https://doi.org/10.1142/S0129054111009045

[11] Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang. Comb.
7(4), 455–468 (2002), https://doi.org/10.25596/jalc-2002-455

[12] Domaratzki, M., Okhotin, A.: State complexity of power. Theoret. Comput. Sci.
410(24-25), 2377–2392 (2009). https://doi.org/10.1016/j.tcs.2009.02.025

[13] Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
International journal of computer mathematics 35(1-4), 117–132 (1990), http://
dx.doi.org/10.1080/00207169008803893

[14] Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14(6), 1087–1102 (2003), http://dx.doi.
org/10.1142/S0129054103002199

[15] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

[16] Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating au-
tomata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016.
books@ocg.at, vol. 321, pp. 179–194. Österreichische Computer Gesellschaft (2016)

[17] Hospodár, M., Jirásková, G.: The complexity of concatenation on deterministic and
alternating finite automata. RAIRO - Theor. Inf. and Applic. 52(2-3-4), 153–168
(2018), https://doi.org/10.1051/ita/2018011

[18] Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237(1-2), 485–494
(2000), https://doi.org/10.1016/S0304-3975(00)00029-3

[19] Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α

deterministic states. Theoret. Comput. Sci. 301(1-3), 451–462 (2003), https://doi.
org/10.1016/S0304-3975(02)00891-5

54

https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1142/S0129054111009045
https://doi.org/10.25596/jalc-2002-455
http://dx.doi.org/10.1080/00207169008803893
http://dx.doi.org/10.1080/00207169008803893
http://dx.doi.org/10.1142/S0129054103002199
http://dx.doi.org/10.1142/S0129054103002199
https://doi.org/10.1051/ita/2018011
https://doi.org/10.1016/S0304-3975(00)00029-3
https://doi.org/10.1016/S0304-3975(02)00891-5
https://doi.org/10.1016/S0304-3975(02)00891-5

[20] Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and
complementation. Internat. J. Found. Comput. Sci. 16(3), 511–529 (2005), http:
//dx.doi.org/10.1142/S0129054105003133

[21] Jirásek, J.Š., Jirásková, G., Szabari, A.: Operations on self-verifying finite automata.
In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 231–
261. Springer (2015), https://doi.org/10.1007/978-3-319-20297-6_16

[22] Jirásek, J., Jr., Jirásková, G., Šebej, J.: Operations on unambiguous finite au-
tomata. In: Brlek, S., Reutenauer, C. (eds.) DLT 2016. LNCS, vol. 9840, pp. 243–255.
Springer (2016), https://doi.org/10.1007/978-3-662-53132-7_20

[23] Jirásek, J., Jr., Jirásková, G., Šebej, J.: Operations on unambiguous finite au-
tomata. Internat. J. Found. Comput. Sci. 29(5), 861–876 (2018), https://doi.org/
10.1142/S012905411842008X

[24] Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330(2), 287–298 (2005), http://dx.doi.org/10.1016/j.
tcs.2004.04.011

[25] Jirásková, G.: Descriptional complexity of operations on alternating and boolean
automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 196–204. Springer (2012), http://dx.doi.org/10.1007/
978-3-642-30642-6_19

[26] Jirásková, G., Krajnáková, I.: Square on deterministic, alternating, and boolean
finite automata. Internat. J. Found. Comput. Sci. 30(6-7), 1117–1134 (2019), https:
//doi.org/10.1142/S0129054119400318

[27] Jirásková, G., Okhotin, A.: State complexity of cyclic shift. RAIRO - Theor. Inf.
and Applic. 42(2), 335–360 (2008), https://doi.org/10.1051/ita:2007038

[28] Jirásková, G., Okhotin, A.: On the state complexity of star of union and star of
intersection. Fundam. Inform. 109(2), 161–178 (2011), https://doi.org/10.3233/
FI-2011-502

[29] Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by deter-
ministic automata. Inform. and Comput. 209(3), 528–535 (2011), http://dx.doi.
org/10.1016/j.ic.2010.11.017

55

http://dx.doi.org/10.1142/S0129054105003133
http://dx.doi.org/10.1142/S0129054105003133
https://doi.org/10.1007/978-3-319-20297-6_16
https://doi.org/10.1007/978-3-662-53132-7_20
https://doi.org/10.1142/S012905411842008X
https://doi.org/10.1142/S012905411842008X
http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1016/j.tcs.2004.04.011
http://dx.doi.org/10.1007/978-3-642-30642-6_19
http://dx.doi.org/10.1007/978-3-642-30642-6_19
https://doi.org/10.1142/S0129054119400318
https://doi.org/10.1142/S0129054119400318
https://doi.org/10.1051/ita:2007038
https://doi.org/10.3233/FI-2011-502
https://doi.org/10.3233/FI-2011-502
http://dx.doi.org/10.1016/j.ic.2010.11.017
http://dx.doi.org/10.1016/j.ic.2010.11.017

[30] Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput. Sci.
449, 85–92 (2012), https://doi.org/10.1016/j.tcs.2012.05.008

[31] Krajňáková, I.: Operácia štvorec na jazykoch reprezentovaných deterministickými,
alternujúcimi a Booleovskými automatmi. Master’s thesis, Univerzita Pavla Jozefa
Šafárika v Košiciah, Košice (2016), in Slovak

[32] Krajňáková, I., Jirásková, G.: Square on deterministic, alternating, and
boolean finite automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017.
LNCS, vol. 10316, pp. 214–225. Springer (2017), https://doi.org/10.1007/
978-3-319-60252-3_17

[33] Leiss, E.L.: Succint representation of regular languages by boolean automata. Theo-
ret. Comput. Sci. 13, 323–330 (1981), https://doi.org/10.1016/S0304-3975(81)
80005-9

[34] Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998), http://dx.
doi.org/10.1137/S0097539793252092

[35] Leung, H.: Descriptional complexity of NFA of different ambiguity. Internat.
J. Found. Comput. Sci. 16(5), 975–984 (2005), http://dx.doi.org/10.1142/
S0129054105003418

[36] Liu, G., Martín-Vide, C., Salomaa, A., Yu, S.: State complexity of basic language op-
erations combined with reversal. Inform. and Comput. 206(9-10), 1178–1186 (2008),
https://doi.org/10.1016/j.ic.2008.03.018

[37] Lupanov, O.B.: A comparison of two types of finite automata. Problemy Kibernetiki
9, Kibernetiki (1963), (in Russian) German translation: Über den Vergleich zweier
Typen endlicher Quellen. Probleme der Kybernetik 6, 328–335 (1966)

[38] Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11(5), 1373–1375 (1970)

[39] Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12th Annual Symposium on Switching and
Automata Theory. pp. 188–191. IEEE Computer Society Press (1971), https://
doi.org/10.1109/T-C.1971.223108

56

https://doi.org/10.1016/j.tcs.2012.05.008
https://doi.org/10.1007/978-3-319-60252-3_17
https://doi.org/10.1007/978-3-319-60252-3_17
https://doi.org/10.1016/S0304-3975(81)80005-9
https://doi.org/10.1016/S0304-3975(81)80005-9
http://dx.doi.org/10.1137/S0097539793252092
http://dx.doi.org/10.1137/S0097539793252092
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.1142/S0129054105003418
https://doi.org/10.1016/j.ic.2008.03.018
https://doi.org/10.1109/T-C.1971.223108
https://doi.org/10.1109/T-C.1971.223108

[40] Mirkin, B.G.: On dual automata. Kibernetika (Kiev) 2 (1966), pp. 7–10 (in Russian).
English translation: Cybernetics 2, pp. 6–9 (1966)

[41] Moon, J., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3, 23–28
(1965), http://dx.doi.org/10.1007/BF02760024

[42] Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Comput.
20(10), 1211–1214 (1971), https://doi.org/10.1109/T-C.1971.223108

[43] Nicaud, C.: Average state complexity of operations on unary automata. In: Kuty-
lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp.
231–240. Springer (1999), https://doi.org/10.1007/3-540-48340-3_21

[44] Palmovský, M.: Kleene closure and state complexity. RAIRO - Theor. Inf. and Appl.
50(3), 251–261 (2016), https://doi.org/10.1051/ita/2016024

[45] Pighizzini, G., Shallit, J.O.: Unary language operations, state complexity and ja-
cobsthal’s function. Internat. J. Found. Comput. Sci. 13(1), 145–159 (2002), https:
//doi.org/10.1142/S012905410200100X

[46] Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959), https://doi.org/10.1147/rd.32.0114

[47] Rampersad, N.: The state complexity of L2 and Lk. Inform. Process. Lett. 98(6),
231–234 (2006), http://dx.doi.org/10.1016/j.ipl.2005.06.011

[48] Raskin, M.A.: A superpolynomial lower bound for the size of non-deterministic
complement of an unambiguous automaton. In: Chatzigiannakis, I., Kaklamanis,
C., Marx, D., Sannella, D. (eds.) ICALP 2018. LIPIcs, vol. 107, pp. 138:1–138:11.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018), https://doi.org/10.
4230/LIPIcs.ICALP.2018.138

[49] Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theoret.
Comput. Sci. 383(2-3), 140–152 (2007), https://doi.org/10.1016/j.tcs.2007.
04.015

[50] Schmidt, E.M.: Succinctness of description of context-free, regular, and finite lan-
guages. Ph. D. thesis. Cornell University (1978)

57

http://dx.doi.org/10.1007/BF02760024
https://doi.org/10.1109/T-C.1971.223108
https://doi.org/10.1007/3-540-48340-3_21
https://doi.org/10.1051/ita/2016024
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1147/rd.32.0114
http://dx.doi.org/10.1016/j.ipl.2005.06.011
https://doi.org/10.4230/LIPIcs.ICALP.2018.138
https://doi.org/10.4230/LIPIcs.ICALP.2018.138
https://doi.org/10.1016/j.tcs.2007.04.015
https://doi.org/10.1016/j.tcs.2007.04.015

[51] Sipser, M.: Introduction to the theory of computation. PWS Publishing Company
(1997), http://dx.doi.org/10.1016/S0304-3975(81)80005-9

[52] Šebej, J.: Reversal of regular languages and state complexity. In: Pardubská, D.
(ed.) ITAT 2010. CEUR Workshop Proceedings, vol. 683, pp. 47–54. CEUR-WS.org
(2010), http://ceur-ws.org/Vol-683/paper8.pdf

[53] Yershov, Yu.L.: On a conjecture of V. A. Uspenskii. Algebra i logika 1, 45–48 (1962),
(in Russian)

[54] Yu, S.: Chapter 2: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Hand-
book of Formal Languages, Vol. 1, pp. 41–110. Springer (1997), https://doi.org/
10.1007/978-3-642-59136-5_2

[55] Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on
regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994), http://dx.doi.
org/10.1016/0304-3975(92)00011-F

58

http://dx.doi.org/10.1016/S0304-3975(81)80005-9
http://ceur-ws.org/Vol-683/paper8.pdf
https://doi.org/10.1007/978-3-642-59136-5_2
https://doi.org/10.1007/978-3-642-59136-5_2
http://dx.doi.org/10.1016/0304-3975(92)00011-F
http://dx.doi.org/10.1016/0304-3975(92)00011-F

Appendix

The list of published papers

Journal papers:

1. Galina Jirásková, Ivana Krajňáková: Square on deterministic, alternating, and
Boolean finite automata. International Journal of Foundations of Computer Science
30(6–7), pp. 1117–1134 (2019). ISSN: 0129-0541, DOI: 10.1142/S0129054119400318

Conference papers:

2. Kristína Čevorová, Galina Jirásková, Ivana Krajňáková: On the square of regular
languages In: Markus Holzer, Martin Kutrib (eds.): Implementation and Applica-
tion of Automata - 19th International Conference, CIAA 2014, Giessen, Germany,
July 30 - August 2, 2014. Proceedings. Lecture Notes in Computer Science, vol.
8587, pp. 136–147, Springer (2014). ISBN: 978-3-319-08845-7, DOI: 10.1007/978-3-
319-08846-4_10

3. Galina Jirásková, Ivana Krajňáková: Square on deterministic, alternating, and
Boolean finite automata. In: Giovanni Pighizzini, Cezar Câmpeanu (eds.): De-
scriptional Complexity of Formal Systems – 19th IFIP WG 1.02 International Con-
ference, DCFS 2017, Milano, Italy, July 3-5, 2017, Proceedings. Lecture Notes in
Computer Science, vol. 10316, pp. 214–225, Springer (2017). ISBN: 978-3-319-
60251-6, DOI: 10.1007/978-3-319-60252-3_17

4. Michal Hospodár, Galina Jirásková, Ivana Krajňáková: Operations on Boolean and
alternating automata. In: Fedor V. Fomin, Vladimir V. Podolskii (eds.): Com-
puter Science – Theory and Applications – 13th International Computer Science
Symposium in Russia, CSR 2018, Moscow, Russia, June 6–10, 2018, Proceedings.

59

Lecture Notes in Computer Science, vol. 10846, pp. 181–193, Springer (2018).
ISBN: 978-3-319-90529-7, DOI: 10.1007/978-3-319-90530-3_16

5. Galina Jirásková, Ivana Krajňáková: NFA-to-DFA trade-Off for regular operations.
In: Michal Hospodár, Galina Jirásková, Stavros Konstantinidis (eds.): Descrip-
tional Complexity of Formal Systems - 21st IFIP WG 1.02 International Confer-
ence, DCFS 2019, Košice, Slovakia, July 17-19, 2019, Proceedings. Lecture Notes
in Computer Science, vol. 11612, pp. 184–196, Springer (2019). ISBN: 978-3-030-
23246-7, DOI: 10.1007/978-3-030-23247-4_14

The list of given talks

1. Square on deterministic and alternating finite automata. The Second Workshop on
Černý’s Conjecture and Optimization Problems on Finite Automata. Opava, Czech
Republic, May 17, 2017.

2. Square on deterministic, alternating, and Boolean finite automata. 19th Interna-
tional Conference on Descriptional Complexity of Formal Systems, DCFS 2017.
Milano, Italy, July 3-5, 2017.

3. NFA-to-DFA trade-off for regular operations. 21th International Conference on
Descriptional Complexity of Formal Systems, DCFS 2019. Košice, Slovakia, July
17-19, 2019.

60

61

Appendix [A]

Galina Jirásková, Ivana Krajňáková:
Square on deterministic, alternating, and Boolean finite automata.

International Journal of Foundations of Computer Science, 30(6-7), 1117–1134 (2019).
ISSN: 0129-0541 DOI: 10.1142/S0129054119400318

62

September 7, 2019 10:47 112-IJFCS 1940031

International Journal of Foundations of Computer Science

Vol. 30, Nos. 6 & 7 (2019) 1117–1134
c© World Scientific Publishing Company

DOI: 10.1142/S0129054119400318

Square on Deterministic, Alternating,

and Boolean Finite Automata∗

Galina Jirásková† and Ivana Krajňáková‡

Mathematical Institute, Slovak Academy of Sciences

Grešákova 6, 040 01 Košice, Slovakia
†jiraskov@saske.sk
‡krajnakova@saske.sk

Received 9 November 2017

Accepted 5 June 2018
Communicated by C. Câmpeanu and G. Pighizzini

We investigate the state complexity of the square operation on languages represented by
deterministic, alternating, and Boolean automata. For each k such that 1 ≤ k ≤ n − 2,

we describe a binary language accepted by an n-state deterministic finite automaton

with k final states meeting the upper bound n2n − k2n−1 on the state complexity of its
square. We show that in the case of k = n − 1, the corresponding upper bound cannot

be met. Using the binary deterministic witness for square with 2n states where half of

them are final, we get the tight upper bounds 2n + n+ 1 and 2n + n on the complexity
of the square operation on alternating and Boolean automata, respectively.

1. Introduction

Square is a basic unary operation on formal languages which is defined as L2 =

{uv |u ∈ L and v ∈ L}. It is known that if a language L is accepted by a deter-

ministic finite automaton (DFA) of n states, then the language L2 is accepted by

a DFA of at most n2n − 2n−1 states [9]. This upper bound was proven to be tight

in the binary case by Rampersad [11]. If the minimal DFA for L has more than

one final state this upper bound cannot be met. In such a case the upper bound is

n2n − k2n−1, where k is the number of final states in the minimal DFA for L [14].

In this paper, we study the state complexity of the square of languages accepted

by DFAs with more final states. Our motivation comes from the paper by Fellah,

Jürgensen, and Yu [4] on alternating finite automata (AFAs). They provided an

upper bound 2n + n+ 1 on the complexity of the square of a language represented

∗This work was conducted as a part of PhD study of the first author at Comenius University
in Bratislava, and it was presented at the DCFS 2017 conference held in Milano, Italy on July

3–5, 2017 and its extended abstract appeared in the conference proceedings: G. Pighizzini, C.

Câmpeanu (Eds.) Descriptional Complexity of Formal Systems, LNCS 10316, pp. 214–225.

‡Corresponding author.

1117

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1118 G. Jirásková & I. Krajňáková

by an n-state AFA. A language is accepted by an n-state AFA if and only if its

reverse is accepted by a DFA with 2n states where 2n−1 of them are final [1, 4, 7].

It follows that to prove the tightness of the upper bound 2n + n + 1, we need to

find a language represented by a DFA with half of the states final which is hard for

the square operation on DFAs.

The problem seems to be interesting per se. Previously in Ref. [2], we tried to

use Rampersad’s binary witness for square [11] with k final states instead of the

original one. We were able to show the reachability of n2n − k2n−1 states in the

subset automaton of an NFA for its square. However, to prove distinguishability a

third letter was needed, so the binary case was left open. Surprisingly, in Ref. [2],

we were unable to prove the tightness of the upper bound in the case of n− 1 final

states.

Here we solve both these open problems. We describe a binary language accepted

by an n-state DFA with k final states meeting the upper bound n2n−k2n−1 on the

state complexity of its square provided that 1 ≤ k ≤ n− 2. In the case of k = n− 1

we prove that the corresponding upper bound (2n+2)2n−2 cannot be met. To show

it, we consider two cases. If the initial state is final, then we get the upper bound

(n + 2)2n−2, and we show that it is tight in the binary case. If the initial state

is not final the upper bound is (n + 3)2n−2 and is tight in the ternary case. The

tight bound for binary languages is (n + 3)2n−2 − 1 in this case. This solves the

complexity of square on DFAs completely. The binary alphabet is optimal sincein

the unary case the known tight upper bound is 2n− 1 [11].

Using these results we are able to describe a binary language accepted by an

n-state AFA such that every AFA for its square has at least 2n + n + 1 states.

This proves the tightness of the upper bound 2n + n+ 1 given in Ref. [4]. We also

consider Boolean finite automata (BFA) [1], and get the tight upper bound 2n + n

for the square on BFAs. To prove these results, we take the reversal of a language

accepted by a DFA with 2n states with half of them final meeting the corresponding

upper bound for square on DFAs. Then this language is accepted by an n-state

BFA, and we are able to prove that every BFA for its square has at least 2n + n

states. By more careful analysis of the number of final states in the DFA for its

square, we get the lower bound 2n + n+ 1 for the square operation on AFAs. Our

result can be extended for the concatenation operation just by concatenating two of

our automata with different numbers of states. This provides an alternative proof

of the tightness of the upper bound 2m + n+ 1 for the concatenation operation on

alternating automata with m and n states [6].

2. Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ

including the empty word ε. A language is any subset of Σ∗. The concatenation of

languages K and L is the language KL = {uv |u ∈K and v ∈L}. The square of a

language L is the language L2 = LL. The cardinality of a finite set A is denoted by

|A|, and its power-set by 2A. The reader may refer to [5, 12, 13] for details.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1119

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,Σ, ◦ , I, F),

where Q is a finite set of states, Σ is a finite non-empty alphabet, ◦ : Q×Σ→ 2Q is

the transition function which is naturally extended to the domain 2Q×Σ∗, I ⊆ Q is

the set of initial states, and F ⊆ Q is the set of final states. The language accepted

by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F 6= ∅}.
For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦ a, and

for a word w, we write p
w−→ q if q ∈ p ◦ w.

An NFA A is deterministic (DFA) (and complete) if |I| = 1 and |q ◦ a| = 1 for

each q in Q and each a in Σ. We write p · a = q instead of p ◦ a = {q} in such a

case. The state complexity of a regular language L, sc(L), is the smallest number of

states in any DFA for L.

Every NFA A = (Q,Σ, ◦, I, F) can be converted to an equivalent DFA

A′ = (2Q,Σ, · , I, F ′), where R · a = R ◦ a for each R in 2Q and a in Σ, and

F ′ = {R ∈ 2Q |R ∩ F 6= ∅}. We call the DFA A′ the subset automaton of the

NFA A. The subset automaton may not be minimal since some of its states may be

unreachable or equivalent to other states.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F), where

Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,

δ is the transition function that maps Q × Σ into the set Bn of Boolean functions

with variables {q1, . . . , qn}, gs ∈ Bn is the initial Boolean function, and F ⊆ Q is

the set of final states. The transition function δ can be extended to the domain

Bn × Σ∗ as follows: For allginBn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if g =

g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).

Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The language

accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.
A Boolean finite automaton is called alternating (AFA) if the initial function is

a projection g(q1, . . . , qn) = qi. For details, the reader may referto [1, 4, 7, 8, 12].

The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the smallest

number of states in any BFA (AFA) for L. It is known that a language L is accepted

by an n-state BFA (AFA) if and only if the language LR is accepted by an 2n-state

DFA (with 2n−1 final states). Since this is the crucial observation used later in the

paper, we state it in the next two lemmas and provide proof ideas here.

Lemma 1 (cf. [4] Theorem 4.1, Corollary 4.2 and [7], Lemma 1). Let L be

a language accepted by an n-stateBFA (AFA). Then the reversal LR is accepted by

a DFA of 2n states (of which 2n−1 are final).

Proof Idea. Let A = ({q1, q2, . . . , qn},Σ, δ, gs, F) be an n-state BFA for L. Con-

struct a 2n-state NFA A′ = ({0, 1}n,Σ, δ′, S, {f}), where

• for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,

δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi, a)(u′) = ui for i = 1, . . . , n};
• S = {(b1, . . . , bn) ∈ {0, 1}n | gs(b1, . . . , bn) = 1};
• f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1120 G. Jirásková & I. Krajňáková

Then L(A) = L(A′) and (A′)R is deterministic. Moreover if A is an AFA then A′

has 2n−1 initial states. It follows that LR is accepted by a DFA with 2n states, of

which 2n−1 are final if A is an AFA.

Corollary 2. If L is a regular language, then bsc(L) ≥ dlog(sc(LR))e and asc(L) ≥
dlog(sc(LR))e.

Lemma 3 (cf. [7], Lemma 2). Let LR be accepted bya DFA A of 2n states (of

which 2n−1 are final). Then L is accepted by an n-state BFA (AFA).

Proof Idea. Consider a 2n-state NFA AR for L which hasexactly one final state

and the set of initial states S (and |S| = 2n−1). Let the state set Q of AR be

{0, 1, . . . , 2n − 1} with final state k and the initial set S (S = {2n−1, . . . , 2n − 1}).
Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every

i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state

i ∈ Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 · · · bn is the

binary notation of i on n digits with leading zeros if necessary.

Let us define an n-state BFA A′ = (Q′,Σ, δ′, gs, F ′), where Q′ = {q1, . . . , qn},
F ′ = {q` |bin(k)` = 1}, and gs(bin(i)) = 1 iff i ∈ S (gs = q1). We define δ′ to

satisfy the condition: for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) =

bin(j) where i ∈ δ(j, a). Then L(A′) = L(AR).

3. Square on DFAs

Let us begin with the precise method to construct an NFA for the square of some

languages accepted by a minimal DFA with n states.

Construction 4. (DFA A −→ NFA N for L2(A))

Let A = ({q0, q1, . . . , qn−1},Σ, ·, q0, FA) be a minimal DFA. We construct NFA

N = ({q0, q1, . . . , qn−1} ∪ {0, 1, . . . , n− 1},Σ, ◦, I, FN) as follows:

(a) take A and add a copy of A with the state set {0, 1, . . . , n− 1};
(b) for each symbol aand each stateqi with qi · a ∈ FA, add transition (qi, a, 0);

(c) the set of initial states of N is I = {q0} if q0 /∈ F , and I = {q0, 0}otherwise;

(d) the set of final states of N is FN = {j ∈ {0, 1, . . . , n− 1} | qj ∈ FA}.

Proposition 5 (Upper Bound). Let L be a language with sc(L) = n, and let the

minimal DFA for L have k final states. Then sc(L2) ≤ n2n − k2n−1.

Proof. Let L be accepted by DFA A = ({q0, q1, . . . , qn−1},Σ, ·, q0, FA) and let

|FA| = k. Construct an NFA N for L2 as described above. Since A is deterministic,

every reachable subset in the subset automaton of N is in the form of {qi} ∪ S,

where S ⊆ {0, 1, . . . , n − 1}. Furthermore, if qi is a final state of A, then 0 ∈ S

because of the used construction. It follows that subsets containing a final state of

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1121

A and missing 0 are unreachable. Hence the subset automaton of N has at most

n2n − k2n−1 reachable states.

Notice that the upper bound given by the above proposition is maximal if k = 1,

and it is n2n − 2n−1 in this case. The binary witness language meeting this bound

was presented by Rampersad in 2006 [11].

Theorem 6 ([11], Theorem 1). For every n ≥ 3, there exists a DFA M with n

states such that the minimal DFA for the language L2(M) has n2n − 2n−1 states.

Unfortunately, the square of Rampersad’s automaton with k final states does

not meet the upper bound on the state complexity in the general case. Here we

provide the binary witness automaton with k final states that meets the upper

bound n2n − k2n−1.

Theorem 7. Let n ≥ 3 and 1 ≤ k ≤ n − 2. Then there exists a minimal n-state

DFA A with k final states defined over a binary alphabet such that every DFA for

L(A)2 has at least n2n − k2n−1 states.

Proof. Let us take n-state DFA A = ({q0, q1, . . . , qn−1},Σ, ·, q0, FA) with k final

states shown in Fig. 1. Notice that q0 and q1 remain non-final with every k in

this DFA and there are two cycles; one on a, (q0, q1, . . . , qn−1) of length n and the

second on b, (q2, q3, . . . , qn−1) of lengthn− 2. Let us build an NFA N for L(A)2 as

in Construction 4. An example of NFA N if n = 6 and k = 2 is shown in Fig. 2.

We observe that there are only two types of states reachable in the subset

automaton of N :

• {qi} ∪ S, where S ⊆ {0, 1, . . . , n− 1} and 0 ≤ i ≤ n− k − 1;

• {qi, 0} ∪ S, where S ⊆ {1, . . . , n− 1} and n− k ≤ i ≤ n− 1.

We denote this family of sets asR. We can see that in the familyR there are exactly

(n− k)2n sets of the first type and k2n−1 sets of the second type. Hence the family

R consists of (n− k)2n + k2n−1 = n2n − k2n−1 sets. Our goal is to show that the

sets in R are reachable and also pairwise distinguishable in the subset automaton

of N . Let us start with reachability. We use mathematical induction by number of

elements in set/state. The sets with one and two elements are reachable, because:

−→ {q0} a−→ {q1} a−→ · · · a−→ {qn−k−1} a−→ {qn−k, 0},

q0 q1 q2 . . . qα qα+1 . . . qn−1
a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

Fig. 1. A witness DFA A with k final states meeting thebound n2n−k2n−1, where α = n−k−1.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1122 G. Jirásková & I. Krajňáková

q0 q1 q2 q3 q4 q5

0 1 2 3 4 5

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a
b

a, ba, b

Fig. 2. NFA N for the square of L(A), if n = 6 and k = 2.

{qn−k, 0} b−→ {qn−k+1, 0} b−→ · · · b−→ {qn−2, 0} b−→ {qn−1, 0},

{qn−1, 0} a−→ {q0, 1} b−→ {q0, 0},

{q0, 1} a−→ {q1, 2} b−→ {q0, 3} b−→ {q0, 4} b−→ · · · b−→ {q0, n− 1} b−→ {q0, 2},

{q0, (j− i) mod n} ai−→ {qi, j} for i = 0, 1, . . . , n− k− 1 and j = 0, 1, . . . , n− 1.

Assume now that every set in R with t elements is reachable. We show that then

every set in R of size t + 1 is reachable. Let S = {qi, s1, s2, . . . , st} be our desired

set in R of sizet + 1, where qi ∈ Q and 0 ≤ s1 < s2 < · · · < st ≤ n − 1. We deal

with three cases:

(1) We show the reachability of sets of the second type, so let n− k ≤ i ≤ n− 1

and therefore s1 = 0. We can write i as i = α + β, where α = n − k − 1 and

1 ≤ β ≤ k, so our desired set is S = {qα+β , 0, s2, s3, . . . , st}.
Let s2 = 1, and take the set {qα+β−1, 0, s3 − 1, . . . , st − 1}, which is in R and is

reachable because it has t elements; recall that the transitions on b form the cycle

(q2, q3, . . . , qn−1) in A. Then we have

{qα+β−1, 0, s3 − 1, . . . , st − 1} a−→ {qα+β , 0, 1, s3, . . . , st} = S.

Let s2 ≥ 2 and take the set {qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1}, which is in

R and is reachable because it has t elements. Then we have

{qα, s2 · bn−1−β − 1, . . . , st · bn−1−β − 1} a−→ {qα+1, 0, s2 · bn−1−β , . . . , st · bn−1−β}
bβ−1

−−−→ {qα+β , 0, s2 · bn−2, . . . , st · bn−2} = {qα+β , 0, s2, . . . , st} = S.

(2) Next we show the reachability of sets of the first type in the next two steps.

Let i = 0. We distinguish between three cases of s1.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1123

Firstly let s1 = 0. We start from the set reached previously in (1) to achieve S

in case of s2 = 1 by {qn−1, 0, s3 − 1, . . . , st − 1, n − 1} a−→ {q0, 0, 1, s3, . . . , st} = S.

Otherwise, if desired s2 ≥ 2, we reach S using previously reached set

{q0, 0, 1, s3 − s2 + 1, . . . , st − s2 + 1} a−→ {q1, 1, 2, s3 − s2 + 2, . . . , st − s2 + 2}
bn−2

−−−→ {q0, 0, 2, s3 − s2 + 2, . . . , st − s2 + 2} bs2−2

−−−→ {q0, 0, s2, . . . , st} = S.

Secondly let s1 ≥ 1. Then the set S′ = {qn−1, 0, s2 − s1, . . . , st − s1} is reached

in (1). If s1 = 1, then S′
a−→ S, otherwise s1 ≥ 2, and S′

aabn−2bs1−2

−−−−−−−−→ S.

(3) Let 1 ≤ i ≤ n − k − 1. Now we can reach the remaining sets of the first

type using sets achieved in (2) like this {q0, (s1 − i) mod n, . . . , (st − i) mod n} ai−→
{qi, s1, . . . , st} = S.

Let us continue with proving distinguishability of reached sets. Note that in N

we have

{n− 1} b−→ {2} a−→ {3} bn−2

−−−→ {3} abn−2

−−−−→ {4} abn−2

−−−−→ · · · ab
n−2

−−−−→ {n− 1}.
This means that the word w = b(abn−2)n−3 is accepted from the state n−1. Let us

read w from a different state t, 2 ≤ t ≤ n− 2. First we have t ◦ b ∈ {3, 4, . . . , n− 1}.
Next {3, 4, . . . , n − 1} ◦ (abn−2)n−3 = {0}, so w is not accepted from t. Similarly,

reading w from {0, 1} results in the set {0}, thus w is not accepted from {0, 1}
either. Moreover, w is not accepted from {qi}, because {qi} ◦ w ⊆ {qj , 0}, where

either j = 0 if i < n − 1, or j = n − 1 if i = n − 1. Therefore w is accepted by N

from and only from the state n− 1. Notice that each state t in {1, 2, . . . , n− 1} has

exactly one in-transition on a going from the state t − 1, so the word an−1−tw is

accepted by N only from state t, 0 ≤ t ≤ n − 2. It follows that two sets {qi} ∪ S

and {qj} ∪ T in R are distinguishable if S 6= T .

Now consider two distinct subsets {qi} ∪ S and {qj} ∪ S in R. Without loss of

generality, we have 0 ≤ i < j ≤ n− 1. We will discuss three cases:

(1) Let i = 0 and j = 1. Then

{q0} ∪ S
(abn−2)n−2

−−−−−−−→ {q0, 0} a−→ {q1, 1} an−k−1

−−−−−→ {qn−k, 0, n− k},

{q1} ∪ S
(abn−2)n−2

−−−−−−−→ {qn−1, 0} a−→ {q0, 1} an−k−1

−−−−−→ {qn−k−1, n− k}.
Now we can distinguish these sets because they differ in the element from the second

automaton copy.

(2) Let i = 0 and j ≥ 2. Then

{q0} ∪ S bn−1−ja−−−−−→ {q1} ∪ S1,

{qj} ∪ S bn−1−ja−−−−−→ {q0} ∪ S′1,
for some subsets S1, S

′
1 of {0, 1, . . . , n− 1}. If the subsets S1 and S′1 are the same,

then we continue as in (1), otherwise we continue as in case of S 6= T .

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1124 G. Jirásková & I. Krajňáková

(3) Let i ≥ 1. Then

{qi} ∪ S an−j
−−−→ {qi+(n−j)} ∪ S1,

{qj} ∪ S an−j
−−−→ {q0} ∪ S′1.

Similarly as in (2), if the subsets S1 and S′1 are the same we continue as in (1) or

(2), otherwise we continue as in case of S 6= T .

3.1. Square for DFAs with n − 1 final states

Recall that the automaton in the proof of Theorem 7 must have at least two non-

final states. We show that for every language L accepted by an n-state DFA A =

(Q,Σ, ·, q0, F) with a single non-final state, the state complexity of L2 never meets

the upper bound set in Proposition 5. In particular, weshow:

(a) if q0 ∈ F , then sc(L2) ≤ (n+ 2)2n−2 and this bound is tight if |Σ| ≥ 2;

(b) if q0 /∈ F , then sc(L2) ≤ (n+ 3)2n−2 and this bound is tight if |Σ| ≥ 3.

Moreover we show that the upper bound (n+ 3)2n−2 in the case q0 /∈ F cannot

be met by any binary language, and that the tight upper bound in the binary case

is (n+ 3)2n−2 − 1. Firstly let us consider the case of |F | = n− 1 and q0 ∈ F .

Lemma 8. Let n ≥ 3 and let L be a regular language accepted by an n-state DFA

A = (Q,Σ, ·, q0, F) with n−1 final states, where q0 ∈ F . Then sc(L2) ≤ (n+2)2n−2,
and this bound is tight if |Σ| ≥ 2.

Proof. The formula for the upper bound is based on the observation that q0 is

initial and also accepting in A, so the initial state in the subset automaton for L(A)2

is {q0, 0}. It follows that for every i ∈ {0, 1, . . . , n− 1} if {qi}∪X is reachable, then

i ∈ X. So we consider the following family R of possible reachable sets in the subset

automaton for L(A)2 :

R =
{
{q0, 0} ∪X |X ⊆ {1, 2, . . . , n− 1}

}

∪
{
{q1, 1} ∪X |X ⊆ {0, 2, 3, . . . , n− 1}

}

∪
{
{qi, 0, i} ∪X | 2 ≤ i ≤ n− 1, X ⊆ {1, 2, . . . , n− 1}\{i}

}
,

where we assume that q1 is the only non-final state. Notice that this family consists

of (n+2)2n−2 sets. Hence sc(L2) ≤ (n+2)2n−2. To prove the tightness of this upper

bound, we introduce the DFA A shown in Fig. 3 and we show that every DFA for

L(A)2 has at least (n+ 2)2n−2 states.

Construct an NFA N for L(A)2 as described in Construction 4. We want to

show that each set in R is reachable in the subset automaton of N and that all

these sets are pairwise distinguishable.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1125

q0 q1 q2 q3 . . . qn−1
a

b

a

b

a, b a, b a, b

a

b

Fig. 3. A witness DFA A with n− 1 final states meeting the bound (n+ 2)2n−2, where q0 ∈ F .

Firstly, we prove reachability by induction on the size of the subsets. The basis,

where |S| = 2, holds true since {q0, 0} is the initial subset, and it goes to {q1, 1} by

a. Now, let 2 ≤ t ≤ n and assume that each set in R of size t is reachable.

Let S = {qi, s1, s2, . . . , st}, where 0 ≤ i ≤ n − 1, be a set in R of size t + 1. If

i = 0, then we have 0 = s1 < s2 < · · · < st ≤ n−1. If i = 1, then we have s1 = 0 and

1 = s2 < · · · < st ≤ n−1. If i ≥ 2, then s1 = 0, s2 = i and 1 ≤ s3 < · · · < st ≤ n−1.

We consider several cases:

(1) Let i = 2 and thus s1 = 0 and s2 = i = 2. Then {q1, 1, s3 − 1, . . . , st − 1} a−→
{q2, 0, 2, s3, . . . , st}. The former set is reachable by the induction hypothesis.

(2) Let i ≥ 3, so s1 = 0 and s2 = i. Then

{q2, 0, 2, s3 · bn−2−i+2, . . . , st · bn−2−i+2} bi−2

−−−→ {qi, 0, i, s3, . . . , st} and the set on the

left was reached in (1).

(3) Let i = 0 and thus s1 = 0.

(3a) Let s2 = 1. Then {qn−1, 0, n− 1, s3 − 1, . . . , st − 1} a−→ {q0, 0, 1, s3, . . . , st}.
The former set is considered in case (2).

(3b) Let s2 ≥ 2. Then we have {q0, 0, 1, s3 − s2 + 1, . . . , st − s2 + 1} a−→
{q1, 1, 2, s3−s2 +2, . . . , st−s2 +2} bn−2

−−−→ {q0, 0, 2, s3−s2 +2, . . . , st−s2 +2} bs2−2

−−−→
{q0, 0, s2, s3, . . . , st}. The first set in this chain is considered in case (3a).

(4) Let i = 1 (s1 = 1). Then we have {q0, 0, s2 − 1, s3 − 1, . . . , st − 1} a−→
{q1, 1, s2, s3, . . . , st}. The former set is considered in (3). This proves reachability.

Secondly we prove distinguishability by analysing possible cases of two distinct

states p = {qi} ∪ S and q = {qj} ∪ T . Notice that the word abn−2 performs the

transformation

2
abn−2

−−−−→ 3
abn−2

−−−−→ · · · ab
n−2

−−−−→ n− 1
abn−2

−−−−→ 0
abn−2

−−−−→ 0 and 1
abn−2

−−−−→ 0,

so by reading the word (abn−2)n−3 the state q2 is sent to qn−1 while every other

state is sent to q0. It follows that theword (abn−2)n−3a is accepted only from the

state q2 and the word b(abn−2)n−3a is accepted only from the state qn−1. Finally,

for each t, 0 ≤ t ≤ n− 1, the word an−1−tb(abn−2)n−3a is accepted by NFA N only

from state t. It follows that the sets {qi} ∪ S and {qj} ∪ T are distinguishable if

S 6= T . Consider now the opposite situation, that two sets p and q differ only in i

or j, that is, S = T and without loss of generality 0 ≤ i < j ≤ n− 1.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1126 G. Jirásková & I. Krajňáková

(1) Let i = 0 and j = n−2. Then {0, n−2} ⊆ S. We use bn−2 to get {q0, 0}∪S1

and {qn−2, 0} ∪S1 where S1 ⊆ {2, 3, . . . , n− 1}. Now, if n− 1 /∈ S1, we use a to get

{q1, 1} ∪S′1 and {qn−1, 0, 1} ∪S′1 which differ in state 0, and so are distinguishable.

If n− 1 ∈ S1, we use abn−2 to get {q0, 0} ∪ S2 and {qn−2, 0} ∪ S2 where

S2 ⊆ {2, 3, . . . , n− 1} and |S2| < |S1|.
We use the same argument to S2. If state n− 1 is in all the resulting sets, then we

eventually get {q0, 0, n−2} and {qn−2, 0, n−2}. Finally we use a to get {q1, 1, n−1}
and {qn−1, 0, 1, n− 1}, which differ in state 0.

(2) Let i = 0, 2 ≤ j ≤ n− 3. We read bn−2−j and get {q0} ∪ S′ and {qn−2} ∪ S′
which is considered in case (1).

(3) Let i = 0 and j = 1. Here we read ab and get {q0, 0} ∪ S1 and {q3, 0} ∪ S′1.

If S1 6= S′1 then we can continue as in case S 6= T , otherwise as in case (2).

(4) Let i = 0, j = n − 1. We read a and get {q1} ∪ S′ and {q0} ∪ S′ which is

considered in case (3).

(5) Let 1 ≤ i < j ≤ n − 1. We read an−j and get {qn−j+i} ∪ S′ and {q0} ∪ S′
which is considered in cases (1)–(4).

Now let us consider the case where |F | = n− 1and q0 /∈ F .

Lemma 9. Let n ≥ 3. Let L be a regular language accepted by an n-state DFA

A = (Q,Σ, ·, q0, F), where |F | = n− 1 and q0 /∈ F . Then sc(L2) ≤ (n+ 3)2n−2, and

the bound is tight if |Σ| ≥ 3. The bound (n + 3)2n−2 − 1 can be met by a binary

language.

Proof. We start with the upper bound. Suppose we have constructed an NFA

N from the DFA A as described in Construction 4. Consider the corresponding

subset automaton of N . We first show that two distinct subsets of this automaton,

{qi} ∪ S and {qj} ∪ S, where {i, j} ⊆ S are equivalent. If a word w is rejected from

state {qi} ∪ S then s
w−→ 0 for each element s in S. It follows thatw is rejected

from {qj} ∪ S because {qj} ∪ S w−→ {q0, 0}. Likewise, if w is rejected from {qj} ∪ S
then w is rejected from {qi} ∪ S. Excluding these equivalents subsets gives us the

family R of (n+3)2n−2 reachable and pairwise distinguishable subsets of the subset

automaton of N , which is:

R = {{q0} ∪X |X ⊆ {0, 1, . . . , n− 1}}

∪ {{qi } ∪X |X ⊆ {0, 1, . . . , n− 1}, 0 ∈ X, i /∈ X}.
To prove the tightness of this upper bound, we introduce the DFA B shown

in Fig. 4 and we show that every DFA for L(B)2 has at least (n + 3)2n−2 states.

Construct an NFA N for the square of L(B)2 as described in Construction 4. Let

us show that each set in R is reachable in the subset automaton of N and that all

these sets are pairwise distinguishable.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1127

q0 q1 q2 q3 . . . qn−2 qn−1
a

b

a, b a, b a, b a, b a

b

a

b

Fig. 4. A binaryDFA B with sc(L2(B)) = (n+ 3)2n−2 − 1.

We prove the reachability by induction on the size of subsets. The basis, where

|S| ≤ 2, holds true up to one set, namely {q0, n− 1}, since we have

−→ {q0} a−→ {q1, 0} b−→ {q2, 0} b−→ · · · b−→ {qn−2, 0} b−→ {q0, 0},

{qn−2, 0} a−→ {qn−1, 0, 1} b−→ {qn−1, 0, 2} b−→ · · · b−→ {qn−1, 0, n− 2} b−→ {qn−1, 0},

{qn−1, 0} a−→ {q0, 1} b−→ {q0, 2} b−→ · · · b−→ {q0, n− 2}.

We deal with {q0, n−1} later. Now assume that each set in R of size t is reachable.

Let S = {qi, s1, s2, . . . , st} be a set of size t+1. Consider several cases.

(1) Let i = 1, so s1 = 0. Then {q0, s2−1, . . . , st−1} a−→ {q1, 0, s2, . . . , st}, where

the former set of size t is reachable by the induction hypothesis.

(2) Let 2 ≤ i ≤ n− 2, so S = {qi, 0, s2, s3, . . . , st}.
If s2 = 1, then {qi−1, 0, s3 − 1, . . . , st − 1} a−→ S.

If s2≥2 and st≤n−2, then {qi−1, 0, s2 − 1, . . . , st − 1} b−→ S.

If s2≥2 and st=n−1, then {qi−1, 0, s2−1, . . . , st−1−1, n−1} b−→ S.
This induction step with case (1) as the basis proves case (2) by induction on i.

(3) Let i = n− 1, so S = {qn−1, 0, s2, s3, . . . , st}. Consider two cases of st.

If st ≤ n−2, then {qn−2, 0, s3−s2, . . . , st−s2} abs2−1

−−−−→ S.

If st = n− 1, then {qn−2, 0, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.
The starting set is reachable by induction on t in both cases.

(4) Let i = 0, so S = {q0, s1, s2, . . . , st}. We consider four cases of s1 and st:

If s1 = 0, st ≤ n−2, then {qn−1, 0, n−1, s3−s2, . . . , st−s2} abs2−1

−−−−→ S.

If s1 = 0, st = n−1, then {qn−1, 0, n−1, s3−s2, . . . , st−1−s2, n−2} abs2−1

−−−−→ S.

If s1 ≥ 1, st ≤ n−2, then {qn−1, 0, s2−s1, . . . , st−s1} abs1−1

−−−−→ S.

If s1 ≥ 1, st = n−1, then {qn−1, 0, s2−s1, . . . , st−1−s1, n−2} abs1−1

−−−−→ S.
The starting sets are considered in case (3).

This proves reachability. To prove distinguishability, notice that the word bn is

accepted by NFA N only from state n−1. It follows that an−1−tbn is accepted only

from state t, 0 ≤ t ≤ n−1. Hence two sets {qi}∪S and {qj}∪T are distinguishable

if S 6= T . Consider two sets {qi} ∪ S, {qj} ∪ S where 0 ≤ i < j ≤ n− 1 and assume

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1128 G. Jirásková & I. Krajňáková

that {i, j} * S. Let i = 0 and S ⊆ {0, 1, . . . , n− 1}. Then 0 ∈ S and j /∈ S, and we

have

{q0} ∪ S an−1−jbn−−−−−−→ {q0, 0} a−→ {q1, 0, 1},

{qj} ∪ S an−1−jbn−−−−−−→ {qn−1, 0} a−→ {q0, 1},

where the resulting states differ in state 0. If i ≥ 1, then we use an−j to get the

case above.

Up to now, we reached all sets in R except for {q0, n − 1}. This set remains

unreachable because of the inability to reach it by a nor b from other state. Hence

sc(L2(B)) = (n+ 3)2n−2− 1. To reach the set {q0, n− 1}, we add one more symbol

to B. We define the transitions on the symbol c as follows:

δ(q0, c) = q0; δ(qi, c) = qi+i if 1 ≤ i ≤ n− 2; δ(qn−1, c) = q0.

Denote the resulting DFA over {a, b, c} by C. Then in the corresponding subset

automaton for L2(C) the set {q0, n−1} is reachable from {q0, n−2} by c. The proof

of the distinguishability remains the same. Thus sc(L2(C)) = (n+3)2n−2.

As a corollary of the two lemmas above, we get the next result.

Corollary 10. Let n ≥ 3 and L be a language over Σ accepted by an n-state DFA

in which n− 1 states are final. Then sc(L2) ≤ (n+ 3)2n−2, and this bound is tight

if |Σ| ≥ 3. The bound (n+ 3)2n−2 − 1 is met by a binary language.

We tested the state complexity of square on all binary automata with 3, 4

and 5 states where the initial state is the only non-final state. But we did not

find any binary automaton with the state complexity of its square greater than

(n+ 3)2n−2− 1. The following result shows that this lower bound is tight for every

n ≥ 3 on a binary alphabet.

Theorem 11. Let n ≥ 3 and L be a binary language accepted by an n-state DFA

in which n − 1 states are final. Then sc(L2) ≤ (n + 3)2n−2 − 1, and this bound is

tight.

Proof. We already showed the witness language with sc(L2) ≥ (n+ 3)2n−2 − 1 in

Lemma 9. It remains to show that the upper bound (n+ 3)2n−2 cannot be met in

the binary case.

Suppose for a contradiction that there is a minimal n-state DFA A =

(Q, {a, b}, ·, q0, Q\{q0}) where the only non-final state is the initial state and the

NFA for its square has (n + 3)2n−2 reachable and also distinguishable states. Let

us take a closer look at its transitions.

The option of q0 · a = q0 · b = q0 is unsatisfying because that means that A

is not minimal. Without the loss of generality let q0 · a = q1 where q1 6= q0. We

show that q0 · b = q0. If not, then q0 · b = qj and j 6= 0. Let us show that we are

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1129

unable to reach the set {q0, 0}. If we would try to reach it by reading an a or b

from {q0} ∪ S we would reach {q1, . . .}, or {qj , . . .}. We can try from the subset

{qi} ∪ S, where i 6= 0, so 0 ∈ S. Then we would have {qi, 0, . . .} a−→ {. . . , 1, . . .} or

{qi, 0, . . .} b−→ {. . . , j, . . .}, so not reach {q0, 0} at all. Hence q0 · b = q0.

Now we consider the transitions that would ensure the reachability of the sub-

sets {q0, 0}, {q0, 1}, {q0, 2}, . . . , {q0, n − 1}. All of them, except for {q0, 1}, cannot

be reached by reading an a for the same reason as we showed previously with

{q0, 0}. That means that they are reached by reading a b. There must be some

final state, that has outcoming transition on b to q0 otherwise {q0, 0} will remain

unreachable since q0 /∈ F . Let us denote this state as qn−1. There must be also

incoming transitions on b to states q2, q3, . . . , qn−1. This enforces b transitions to be

like q0
b−→ q0, q1

b−→ q2
b−→ · · · b−→ qn−1

b−→ q0. Now we know for sure that {q0, 1} is not

reached by reading a b so there must be some x 6= 0 that qx
a−→ q0.

We claim that transitions on a has to be a permutation in order to achieve

all the subsets. Suppose for a contradiction that transitions on a do not form a

permutation and let us see how we are unable to reach the subset {q0, 0, 1, . . . , n−1}
in such a case. Our subset is not reached by b, because b has no incoming transition

to q1, so we should try to reach it by a instead. If transitions on a do not form

a permutation, then there is a state qy that has at least two incoming transitions

on a from at least two different states. Therefore there is a state qj that has no

incoming transtions on a. State qj is not q0 because we already said that there is

some qx
a−→ q0. Reading an a does not reach subset containing j, thus neither the

subset {q0, 0, 1, . . . , n− 1}. To conclude, transitions on a must form a permutation.

Now we know that to reach all the possible subsets we have to have a DFA as

showed in Fig. 5 where the transitions on a form a permutation. We show that

some subsets of the subset automaton for the square of this DFA that should be

distinguishable are actually equivalent. For this reason we introduce the families

of subsets T1, . . . , Tn−1, where family Ti consists of subsets {q0, 0, i} ∪ S and S ⊆
{i+1, i+2, . . . , n−1}. Moreover let Tn = {q0, 0}. Using previously defined transitions

on a we have

{q0, 0, 1} ∪ S a−→ {q1, 0, 1, 1 · a} ∪ S · a ≈ {q0, 0, 1, 1 · a} ∪ S · a ∈ T1,

{q0, 0, i} ∪ S a−→ {q1, 0, 1, i · a} ∪ S · a ≈ {q0, 0, 1, i · a} ∪ S · a ∈ T1,

q0 q1 q2 q3 . . . qn−2 qn−1
a

b

b b b b b

b

Fig. 5. Transitions on b in a binary witness.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1130 G. Jirásková & I. Krajňáková

T1 T2 . . . Ti Ti+1 . . . Tn−1 {q0, 0}
b b b b b b b

ba

a a
a a a

a a

Fig. 6. Families of subsets and transitions between them.

that is, reading a from every subset in Ti results in a subset in T1; here ≈ stands for

the equivalence between states; recall that in the begining of the proof of Lemma

9 we showed that two distinct subsets {qi} ∪ S and {qj} ∪ S, where {i, j} ⊆ S are

equivalent for the case when the only non final state is the initial state.

Now consider transitions on b:

{q0, 0, 1} ∪ S b−→ {q0, 0, 2} ∪ S · b ∈ T2,
{q0, 0, i} ∪ S b−→ {q0, 0, i+ 1} ∪ S · b ∈ Ti+1,

{q0, 0, n− 1} b−→ {q0, 0}, {q0, 0} b−→ {q0, 0}.

This means that reading b from every subset in Ti results in a subset in Ti+1 except

for Tn that stays in itself. This is illustrated in Fig. 6.

Observe that all the elements from one family upon reading any word w would

end up in the accepting state from some of the families T1, . . . , Tn−1 or in the only

rejecting state {q0, 0}. That means that the elements of the family Ti are equivalent.

It remains to show that at least one of these families has more than one reachable

subset. Let us take family T1:

{q0, 0} a−→ {q1, 0, 1} bx−1

−−−→ {qx, 0, x} a−→ {q0, 0, 1} ∈ T1.

To reach another subset from T1 we use the argument of the permutation formed

by transitions on a. The state q0 has an outgoing transition on a to the state q1. If

the state q1 is returning to the q0 on a then we have, where qy
a−→ q2 and y ≥ 2,

{q0, 0, 1} by−1

−−−→ {q0, 0, y} a−→ {q1, 0, 1, 2} a−→ {q0, 0, 1, 2 · a} ∈ T1.

Otherwise, if q1
a−→ qz, where 2 ≤ z ≤ n− 1, supposing that qz

ak−→ q0 then we have

{q0, 0, 1} a−→ {q1, 0, 1, z} a−→ {qz, 0, 1, z, z · a}
ak−→ {q0, 1, z, z · a, z · a2, . . . , z · ak} ⊇ {q0, 0, 1, z},

so the reached subset is from T1. So far we showed that to reach the subsets we

need to start from DFA as shown in Fig. 5 with a being a permutation. However in

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1131

such a case at least two reached subsets that should be distinguishable, as observed

in Lemma 9, are equivalent. Our proof is complete.

3.2. Square on unary DFAs

To complete the overview about the square operation on deterministic automata we

should not forget unary alphabets. We refer to the paper by Rampersad [11] once

again. Notice that the complexity of square in this case is exponentially smaller than

in the binary case. To get the complexity of square (respectively power) in the unary

case, Rampersad used the result on concatenation by Pighizzini and Shallit [10],

Theorem 10, the proof of which is rather complicated. For the sake of completeness

we provide a simple proof for square here.

We use Nicaud’s notation for unary automata: We identify each state q with the

smallest number i such that q0 ·ai = q. Given two integers n and ` with 0 ≤ ` ≤ n−1

and a set F ⊆ {0, 1, . . . , n− 1}, we denote by A = (n, `, F) the n-state unary DFA

A with the state set Q = {0, 1, . . . , n − 1}, in which i · a = i + 1 if 0 ≤ i ≤ n − 2

and n− 1 · a = `, and the set of final states is F .

Theorem 12 ([11], Theorems 3 and 4 with k = 2). Let L be a unary language

with sc(L) = n. Then sc(L2) ≤ 2n− 1 and the bound is tight.

Proof. Let L be accepted by a unary DFA A = (n, `, F). Let us show that L2 is

accepted by the DFA A′ = (2n− 1, n− 1 + `, {i+ j | i, j ∈ F ′}) where

F ′ = {i+ j | 0 ≤ i+ j ≤ 2n− 2 and ai, aj ∈ L}
Notice that both of A and A′ have a loop of length n − `. It follows immediately

from the construction that for every m with 0 ≤ m ≤ 2n− 2, the state m is a final

state of the DFAA′ if and only if am ∈ L2. We next show that for every m with

m ≥ n− 1 + `, the word am is in L2 if and only if the word am+(n−`) is in L2.

If m ≥ n − 1 + ` and am ∈ L2, then m = i + j where ai, aj ∈ L and, without

loss of generality, we must have i ≥ `. It follows that ai+(n−`) ∈ L, and therefore

am+(n−`) ∈ L2.

To prove the converse, let m ≥ n−1+ ` and am+(n−`) ∈ L2. Then m+(n− `) =

i+j where ai, aj ∈ L, and, without loss of generality, we must have i ≥ n. It follows

that ai−(n−`) ∈ L, and therefore am ∈ L2.

The upper bound 2n− 1 is met by the unary language {am |m ≥ n− 1}.

0 1 2 3 4

0 1 2 3 4 5 6 7 8

A = (5, 2, {1, 2})

A′ = (9, 6, {2, 3, 4, 6, 7})

Fig. 7. The construction of a unary DFA for square; n = 5, ` = 2, F = {1, 2}.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1132 G. Jirásková & I. Krajňáková

4. Square on Alternating and Boolean Automata

Fellah, Jürgensen, and Yu in Ref. [4], Theorem 9.3, showed that if a language K is

accepted by an m-state AFA and a language L is accepted by an n-state AFA, then

the language KL is accepted by an AFA of at most 2m + n + 1 states. It follows

that 2n + n+ 1 is an upper bound for the square on AFAs. Here we use our results

from the previous section to prove tightness of this upper bound. For the square

on BFAs, we get the tight upper bound 2n + n. Recall that asc(L) is the smallest

number of states in any AFA for L and bsc(L) is defined analogously.

Theorem 13 (Square on AFAs). Let n ≥ 2. Let L be a regular language over Σ

with asc(L) = n. Then asc(L2) ≤ 2n + n+ 1, and the bound is tight if |Σ| ≥ 2.

Proof. From given upper bound from [4], Theorem 9.3, we know that asc(L2) ≤
2n+n+1. For tightness, let LR be the language accepted by the DFA A defined in the

proof of Theorem 7 with2n states where half of the states are final, that is, k = 2n−1.

By Lemma 3, L is accepted by an AFA with n states. Using Theorem 7 we know

that sc((LR)2) = 2n22
n − 2n−122

n−1. By Corollary 2, asc(L2) ≥ dlog(sc((LR)2))e =

2n + n.

Suppose for a contradiction that L2 is accepted by an AFA with 2n + n states.

By Lemma 1, the language (L2)R is accepted by a 22
n+n- state DFA with 22

n+n−1

final states. It follows immediately that the minimal DFA for (L2)R has at most

22
n+n−1 final states. However, the minimal DFA for the language (L2)R = (LR)2 has

2n22
n − 2n−122

n−1 = 2n−122
n

+ 2n−122
n−1 states,where 2n−122

n−1

+ 2n−122
n−1−1

of them are non-final—those {qi} ∪ S, where S ⊆ {q0, q1, . . . , q2n−1−1}. Thus the

number of final states in the minimal DFA for (L2)R is

2n−1(22
n

+ 22
n−1)− 2n−1(22

n−1

+ 22
n−1−1),

and since n ≥ 2, we get

2n−1(22
n

+ 22
n−1)− 2n−1(22

n−1

+ 22
n−1−1)

= 22
n

2n−1
(

1 +
1

2
− 1

22n−1 −
1

22n−1+1

)

> 22
n+n−1

(
1 +

1

2
− 1

4
− 1

4

)
= 22

n+n−1.

Hence the minimal DFA for (L2)R has more than 22
n+n−1 final states, a contradic-

tion. It follows that asc(L2) ≥ 2n + n+ 1.

Theorem 14 (Square on BFAs). Let n ≥ 2. Let L be a regular language over Σ

with bsc(L) = n. Then bsc(L2) ≤ 2n + n, and the bound is tight if |Σ| ≥ 2.

Proof. The upper bound follows from the upper bound 2m + n on the complexity

of the concatenation operation on BFAs [7], Theorem 4. Let LR be a language

accepted by DFA A from Fig. 1 with 2n states and one final state. By Lemma 3,

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

Square on Deterministic, Alternating, and Boolean Finite Automata 1133

L is accepted by an n-state BFA. We are able to determine the state complexity of

(LR)2 using Theorem 7: sc
(
(LR)2

)
= 2n · 22n − 22

n−1. By Corollary 2,

bsc(L2) ≥ dlog
(
2n · 22n − 22

n−1)e = 2n + n.

The next result shows that the binary alphabet in the two theorems above cannot

be decreased to unary.

Theorem 15 (Square on unary BFAs). Let n ≥ 2. Let L be a unary regular

language with bsc(L) = n. Then bsc(L2) ≤ n+ 1.

Proof. If L is accepted by an n-state BFA, then the language LR is accepted by a

2n-state DFA. Since L is unary, we have LR = L. By Theorem 12 the language L2

is accepted by a DFA with at most 2n+1 − 1 states. It follows that L2 is accepted

by a BFA with at most n+ 1 states.

5. Conclusions

We studied the state complexity of the square of languages represented by deter-

ministic, alternating, and Boolean finite automata. First, for each k such that

1 ≤ k ≤ n − 2, we showed that the upper bound n2n − k2n−1 on the square of

languages represented by n-state DFAs with k final states is tight in the binary

case. Then we analysed the case of n − 1 final states, where we proved that the

bound (2n+2)2n−2 cannot be met. We provided the tight upper bound (n+2)2n−2

for the case when the initial state is final and we found a binary witness. When the

initial state is the only non-final state, we obtained the upper bound (n + 3)2n−2

with a ternary witness. In the binary case we proved that the tight upper bound is

(n + 3)2n−2 − 1. Since the complexity of the square on unary alphabet is 2n − 1,

the binary alphabet is always optimal in our witness examples.

Finally, we used our results on the square on deterministic finate automata

to describe binary witness languages meeting the upper bounds2n + n + 1 and

2n+n for square on alternating and Boolean finite automata,respectively. We proved

that the binary alphabet is again optimal. Our results can be extended for the

concatenation operation just by concatenatingtwo of our automata with different

number of states. This provides an alternative solution for the open problem stated

by Fellah, Jürgensen, and Yu in Ref. [4].

There remain a few unanswered questions. For example, the exact complex-

ity of the square operation on unary alternating and Boolean automata; the state

complexity of the power on alternating and Boolean automata, resolved for deter-

ministic automata, e.g. by Domaratzki and Okhotin[3], and of course the range of

possible complexities for square.

Acknowledgments

This research is supported by grant VEGA 2/0084/15 and grant APVV-15-0091.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

September 7, 2019 10:47 112-IJFCS 1940031

1134 G. Jirásková & I. Krajňáková

References

[1] J. A. Brzozowski and E. L. Leiss, On equations for regular languages, finite automata,
and sequential networks, Theoretical Computer Science 10 (1980) 19–35.

[2] K. Čevorová, G. Jirásková and I. Krajňáková, On the square of regular languages,
CIAA 2014, eds. M. Holzer and M. Kutrib, LNCS 8587, (Springer, 2014), pp. 136–
147.

[3] M. Domaratzki and A. Okhotin, State complexity of power, Theoretical Computer
Science 410(24–25) (2009) 2377–2392.

[4] A. Fellah, H. Jürgensen and S. Yu, Constructions for alternating finite automata,
International Journal of Computer Mathematics 35(1–4) (1990) 117–132.

[5] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and
Computation (Addison-Wesley, 1979).

[6] M. Hospodár and G. Jirásková, Concatenation on deterministic and alternating
automata, NCMA 2016, eds. H. Bordihn, R. Freund, B. Nagy and G. Vaszil, Vol. 321
(Österreichische Computer Gesellschaft, 2016), pp. 179–194.

[7] G. Jirásková, Descriptional complexity of operations on alternating and Boolean
automata, CSR 2012, eds. E. A. Hirsch, J. Karhumäki, A. Lepistö and M. Prilutskii,
LNCS 7353, (Springer, 2012), pp. 196–204.

[8] E. L. Leiss, Succint representation of regular languages by Boolean automata, Theo-
retical Computer Science 13 (1981) 323–330.

[9] A. N. Maslov, Estimates of the number of states of finite automata, Soviet Mathe-
matics Doklady 11(5) (1970) 1373–1375.

[10] G. Pighizzini and J. Shallit, Unary language operations, state complexity and Jacob-
sthal’s function, International Journal of Foundations of Computer Science 13(1)
(2002) 145–159.

[11] N. Rampersad, The state complexity of L2 and Lk, Information Processing Letters
98(6) (2006) 231–234.

[12] M. Sipser, Introduction to the Theory of Computation (Cengage Learning, 2012).
[13] S. Yu, Handbook of Formal Languages: Volume 1 Word, Language, Grammar

(Springer, Berlin, Heidelberg, 1997), Berlin, Heidelberg, ch. Regular Languages,
pp. 41–110.

[14] S. Yu, Q. Zhuang and K. Salomaa, The state complexities of some basic operations
on regular languages, Theoretical Computer Science 125(2) (1994) 315–328.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
19

.3
0:

11
17

-1
13

4.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

58
.1

97
.3

6.
22

1
on

 0
4/

15
/2

0.
 R

e-
us

e
an

d
di

st
ri

bu
tio

n
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n
A

cc
es

s
ar

tic
le

s.

81

Appendix [B]

Michal Hospodár, Galina Jirásková, Ivana Krajňáková:
Operations on Boolean and alternating finite automata.

In: Fedor V. Fomin, Vladimir V. Podolskii (eds.): Computer Science – Theory and
Applications – 13th International Computer Science Symposium in Russia, CSR 2018,

Moscow, Russia, June 6–10, 2018, Proceedings.
Lecture Notes in Computer Science, vol. 10846, pp. 181–193, Springer (2018). ISSN:

0302-9743, ISBN: 978-3-319-90529-7, DOI: 10.1007/978-3-319-90530-3_16

82

Operations on Boolean and Alternating
Finite Automata

Michal Hospodár, Galina Jirásková, and Ivana Krajňáková(B)

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com, {jiraskov,krajnakova}@saske.sk

Abstract. We investigate the descriptional complexity of basic regular
operations on languages represented by Boolean and alternating finite
automata. In particular, we consider the operations of difference, sym-
metric difference, star, reversal, left quotient, and right quotient, and
get tight upper bounds m + n, m + n, 2n, 2n, m, and 2m, respectively,
for Boolean automata, and m + n + 1, m + n, 2n, 2n, m + 1, and 2m + 1,
respectively, for alternating finite automata. To describe witnesses for
symmetric difference, we use a ternary alphabet. All the remaining wit-
nesses are defined over binary or unary alphabets that are shown to be
optimal.

1 Introduction

The Boolean finite automata (BFAs) are generalization of nondeterministic finite
automata (NFAs). In an NFA, the transition function maps any pair of state and
input symbol to a subset of states. This subset can be viewed as disjunction of
its states. We obtain a BFA by considering other Boolean functions on states
as a result of the transition function. Alternating finite automata (AFAs) start
from the only one initial state, wheares Boolean automata may start their com-
putation in any Boolean function designated as the initial function.

Boolean automata recognize the class of regular languages [2,4]. Every n-state
Boolean automaton can be simulated by 22n

-state deterministic finite automaton
(DFA), or by (2n + 1)-state NFA, and both upper bounds are tight already in
the binary case [2,10].

Some of the constructions and upper bounds for elementary operations on
alternating automata were introduced in [5]. The upper bound 2m + n + 1 for
concatenation from [5] has been shown to be tight in [8]. Detailed results for the
square on alternating and Boolean automata can be found in [12]. Tight upper
bounds for union and intersection were shown in [10]. For star and reversal, the
upper and lower bound provided in [10] differed by one.

Research supported by grant VEGA 2/0084/15 and grant APVV-15-0091. This work
was conducted as a part of PhD study of Michal Hospodár and Ivana Krajňáková
at the Faculty of Mathematics, Physics and Informatics of the Comenius University.

c© Springer International Publishing AG, part of Springer Nature 2018
F. V. Fomin and V. V. Podolskii (Eds.): CSR 2018, LNCS 10846, pp. 181–193, 2018.
https://doi.org/10.1007/978-3-319-90530-3_16

182 M. Hospodár et al.

In this paper we continue the study of the operational complexity on Boolean
and alternating finite automata. We improve the results on star and reversal from
[10] and provide exact complexity of these two operations. We also examine
other regular operations: complementation, difference, symmetric difference, left
and right quotient on both Boolean and alternating automata. We get the exact
complexity for each operation on both BFAs and AFAs. All our witness languages
are defined over a small fixed alphabet which is optimal in most of the cases.

2 Preliminaries

Let Σ be a finite alphabet of symbols. Then Σ∗ denotes the set of words over Σ
including the empty word ε. A language is any subset of Σ∗. The cardinality of
a finite set A is denoted by |A|, and its power-set by 2A. The reader may refer
to [7,17,18] for details.

A nondeterministic finite automaton (NFA) is a quintuple A =
(Q,Σ, ◦ , I, F), where Q is a finite set of states, Σ is a finite non-empty alphabet,
◦ : Q × Σ → 2Q is the transition function which is naturally extended to the
domain 2Q × Σ∗, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final
states. The language accepted by A is the set L(A) = {w ∈ Σ∗ | I ◦ w ∩ F �= ∅}.
For a symbol a, we say that (p, a, q) is a transition in NFA A if q ∈ p ◦ a, and

the state q has an in-transition on a. For a word w, we write p
w−→ q if q ∈ p ◦ w.

An NFA A is deterministic (DFA) if |I| = 1 and |q ◦ a| = 1 for each q in Q
and each a in Σ; so all DFAs in this paper are assumed to be complete. We write
p · a = q instead of p ◦ a = {q} in such a case. The state complexity of a regular
language L, sc(L), is the smallest number of states in any DFA for L. A state q
of a DFA is called sink state if q · a = q for each a in Σ.

For unary DFAs we use the Nicaud’s notation [15]. For two integers � and n
such that 0 ≤ � ≤ n − 1 and a subset F of {0, . . . , n − 1}, A = (n, �, F) is the
unary automaton whose set of states is Q = {0, . . . , n − 1} and the transition
function is given by q · a = q + 1 if 0 ≤ q ≤ n − 2 and (n − 1) · a = �. The initial
state of this automaton is 0 and its set of final states is F .

Every NFA A = (Q,Σ, ◦, I, F) can be converted to an equivalent DFA
D(A) = (2Q, Σ, · , I, F ′), where S · a = S ◦ a for each S in 2Q and a in Σ
and F ′ = {R ∈ 2Q | R∩F �= ∅}. We call the DFA D(A) the subset automaton of
the NFA A. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent to other states.

To prove distinguishability of the states of the subset automaton, the follow-
ing notions and observations are useful. A state q of an NFA A is called uniquely
distinguishable if there is a word w which is accepted by A from and only from
the state q, that is p ◦ w ∩ F �= ∅ if and only if p = q. A transition (p, a, q) is
called a unique in-transition if there is no state r such that r �= p and (r, a, q) is
a transition in A. A state q is uniquely reachable from a state p if there exists a
sequence of unique in-transitions (qi, a, qi+1) for i = 0, 1, . . . , k such that q0 = p
and qk+1 = q.

Operations on Boolean and Alternating Finite Automata 183

Proposition 1 [1, Propositions 14 and 15]. Let A be an NFA and D(A) be the
corresponding subset automaton.

(a) If two subsets of D(A) differ in a uniquely distinguishable state of A, then
they are distinguishable.

(b) If a state q of A is uniquely distinguishable and uniquely reachable from a
state p, then the state p is uniquely distinguishable as well.

(c) If there is a uniquely distinguishable state of A which is uniquely reachable
from any other state of A, then every state of A is uniquely distinguishable.

(d) If every state of A is uniquely distinguishable, then the subset automaton
D(A) does not have equivalent states.

�

Let K and L be languages over an alphabet Σ. The difference and symmet-
ric difference of K and L are the languages K\L = {w ∈ K | w /∈ L} and
K ⊕ L = {w ∈ K | w /∈ L} ∪ {w ∈ L | w /∈ K}, respectively. If languages K and
L are accepted by DFAs A = (QA, Σ, ·A, sA, FA) and B = (QB , Σ, ·B , sB , FB),
then the language K ∩ L is accepted by the product automaton A × B =
(QA×QB , Σ, ·, (sA, sB), FA×FB) where (p, q)·a = (p·Aa, q ·B a). For the remain-
ing Boolean operations we only need to change the set of final states in the prod-
uct automaton. For union, difference, symmetric difference the set of final states
is (FA ×QB)∪ (QA ×FB), FA × (QB\FB), (FA × (QB\FB))∪ ((QA\FA)×FB),
respectively.

The reverse of a word is defined as εR = ε and (wa)R = awR for each symbol
a and word w. The reverse of a language L is the language LR = {wR | w ∈ L}.
The reverse of an NFA A is an NFA AR obtained from A by reversing all the
transitions and by swapping the roles of initial and final states. The NFA AR

recognizes the reverse of L(A).
The concatenation of K and L is the language KL = {uv | u ∈K and v ∈L}.

The square of a language L is the language L2 = LL. The right quotient of K by
L is the language KL−1 = {x ∈ Σ∗ | xy ∈ K for some y ∈ L}. The left quotient
of K by L is the language L−1K = {x ∈ Σ∗ | yx ∈ K for some y ∈ L}.

A Boolean finite automaton (BFA) is a quintuple A = (Q,Σ, δ, gs, F), where
Q is a finite non-empty set of states, Q = {q1, . . . , qn}, Σ is an input alphabet,
δ is the transition function that maps Q×Σ into the set Bn of Boolean functions
with variables {q1, . . . , qn}, gs ∈ Bn is the initial Boolean function, and F ⊆ Q is
the set of final states. The transition function δ can be extended to the domain
Bn × Σ∗ as follows: For all g in Bn, a in Σ, and w in Σ∗, we have δ(g, ε) = g; if
g = g(q1, . . . , qn), then δ(g, a) = g(δ(q1, a), . . . , δ(qn, a)); δ(g, wa) = δ(δ(g, w), a).
Next, let f = (f1, . . . , fn) be the Boolean vector with fi = 1 iff qi ∈ F . The lan-
guage accepted by the BFA A is the set L(A) = {w ∈ Σ∗ | δ(gs, w)(f) = 1}.

A Boolean finite automaton is called alternating (AFA) if the initial function
is a projection g(q1, . . . , qn) = qi. For details, we refer to [2,5,10,13,17,18].

The Boolean (alternating) state complexity of L, bsc(L)(asc(L)), is the small-
est number of states in any BFA (AFA) for L. It is known that a language L is
accepted by an n-state BFA (AFA) if and only if the language LR is accepted

184 M. Hospodár et al.

by an 2n-state DFA (with 2n−1 final states). Since this is the crucial observation
used later in the paper, we state it in the next two lemmas and provide proof
ideas here.

Lemma 2 (cf. [5, Theorem 4.1, Corollary 4.2] and [10, Lemma 1]). Let
L be a language accepted by an n-state BFA (AFA). Then the reversal LR is
accepted by a DFA of 2n states (of which 2n−1 are final).

Proof (Proof Idea). Let A = ({q1, q2, . . . , qn}, Σ, δ, gs, F) be an n-state BFA for
L. Construct a 2n-state NFA A′ = ({0, 1}n, Σ, δ′, S, {f}), where

– for every u = (u1 . . . , un) ∈ {0, 1}n and every a ∈ Σ,
δ′(u, a) = {u′ ∈ {0, 1}n | δ(qi,a)(u′) = ui for i = 1, . . . , n};

– S = {(b1, . . . , bn) ∈ {0, 1}n | gs(b1, . . . , bn) = 1};
– f = (f1, . . . , fn) ∈ {0, 1}n with fi = 1 iff qi ∈ F .

Then L(A) = L(A′) and (A′)R is deterministic. Moreover if A is an AFA
then A′ has 2n−1 initial states. It follows that LR is accepted by a DFA with 2n

states, of which 2n−1 are final if A is an AFA. �

Lemma 3 (cf. [10, Lemma 2]). Let LR be accepted by a DFA A of 2n states
(of which 2n−1 are final). Then L is accepted by an n-state BFA (AFA).

Proof (Proof Idea). Consider 2n-state NFA AR for L which has exactly one final
state and the set of initial states S (and |S| = 2n−1). Let the state set Q of AR be
{0, 1, . . . , 2n −1} with final state k and the initial set S (S = {2n−1, . . . , 2n −1}).
Let δ be the transition function of AR. Moreover, for every a ∈ Σ and for every
i ∈ Q, there is exactly one state j such that j goes to i on a in AR. For a state
i ∈ Q, let bin(i) = (b1, . . . , bn) be the binary n-tuple such that b1b2 · · · bn is the
binary notation of i on n digits with leading zeros if necessary.

Let us define an n-state BFA A′ = (Q′, Σ, δ′, gs, F
′), where Q′ = {q1, . . . , qn},

F ′ = {q� | bin(k)� = 1}, and gs(bin(i)) = 1 iff i ∈ S (gs = q1). We define δ′ to
suffice the condition: for each i in Q and a in Σ, (δ′(q1, a), . . . , δ′(qn, a))(bin(i)) =
bin(j) where i ∈ δ(j, a). Then L(A′) = L(AR). �

As a corollary of the previous two lemmas, we get the following results.

Corollary 4. If L is a regular language, then bsc(L) ≥ log(sc(LR))� and
asc(L) ≥ log(sc(LR))�. �

Corollary 5. Let L be a unary language. Then L is accepted by an n-state BFA
(AFA) if and only if L is accepted by a 2n-state DFA (with 2n−1 final states). �

Now we prove several propositions which we use later in our paper.

Proposition 6. If L is accepted by an n-state BFA, then L is accepted by an
(n + 1)-state AFA.

Operations on Boolean and Alternating Finite Automata 185

Proof. Let a language L be accepted by an n-state BFA (Q,Σ, δ, g, F). Let A =
(Q∪{s}, Σ, δ′, s, F ′) where s /∈ Q, δ′(q, a) = δ(q, a) if q ∈ Q and δ′(q, a) = δ(g, a)
if q = s; F ′ = F if ε /∈ L and F ′ = F ∪ {s} if ε ∈ L. Then A is an (n + 1)-state
AFA for L. �
Proposition 7. Let K and L be languages over Σ. Then

(a) (KL−1)R = (LR)−1KR;
(b) (L−1K)R = KR(LR)−1.

�
Proposition 8. Let a non-empty language L be accepted by an n-state DFA.
Then L∗ is accepted by a 2n-state DFA with half of the states final.

Proof. Let L be accepted by an n-state DFA A = (Q,Σ, ·, s, F). If the initial
state is the only final state in A, then L∗ = L, and we may add final and non-
final unreachable sink states to get the desired automaton. Otherwise there is a
final state qF such that qF �= s. Construct an NFA N for L∗ from A as follows:

(a) add the transition (q, a, s) whenever q · a ∈ F ;
(b) add a new initial and final state q0;
(c) the initial states of N are s and q0 and the set of final states is F ∪ {q0}.

In the corresponding subset automaton D(N) the initial subset is {q0, s} and
any other reachable subset S is a non-empty subset of Q such that S ∩ F �= ∅
implies s ∈ S. By the construction above every set S such that qF ∈ S and
s /∈ S is unreachable. That means that there are at most 1+2n −1−2n−2 = 3

42n

reachable sets in D(N). Let us show that in the minimal DFA for L∗ the number
of non-final states as well as the number of final states is at most 2n−1. The non-
final subsets in D(N) must not contain the state qF , so there are at most 2n−1

of them. Next the initial subset {q0, s} is final and any other final subset must
contain the state s. This gives at most 1 + 2n−1 subsets. However, if s ∈ F then
{q0, s} and {s} are equivalent, and if s /∈ F then {s} is non-final. Therefore the
minimal DFA for L∗ has at most 2n−1 final states. To obtain 2n-state DFA we
may add some unreachable sink states. Since the number of final and non-final
states are at most 2n−1 it is possible to achieve that exactly half of the states
would be final and the other half non-final in the resulting 2n-state DFA. �
Proposition 9. Let m,n ≥ 2 and gcd(m,n) = 1. Let K and L be unary regular
languages accepted by deterministic finite automata A = (m, 0, {0}) and B =
(n, 0, {1, 2, . . . , n − 1}), respectively. Then sc(K ⊕ L) = mn.

Proof. Since symmetric difference is a commutative operation, we may assume
that m < n. Denote QA = {0, 1, . . . ,m − 1}, QB = {0, 1, . . . , n − 1}. Consider
the product automaton A×B = (QA ×QB , {a}, ·, (0, 0), F) where the set of final
states is F = {(0, 0)}∪{1, 2, . . . ,m− 1}×{1, 2, . . . , n− 1}. Since gcd(m,n) = 1,
every state of the product automaton is reachable. To prove distinguishability,
let p and q be two distinct states of the product automaton. Then there is an
integer k ≥ 0 such that p · ak = (m − 1, 0) and q · ak = q′ where q′ �= (m − 1, 0).
We have three cases:

186 M. Hospodár et al.

(a) q′ ∈ F . Then ak distinguishes p and q since (m − 1, 0) /∈ F .
(b) q′ = (0, n − 1). Then akam distinguishes p and q since

p
ak

−→ (m − 1, 0)
am

−−→ (m − 1,m) ∈ F ,

q
ak

−→ (0, n − 1)
a−→ (1, 0)

am−1

−−−→ (0,m − 1) /∈ F ; recall that m < n.
(c) q′ is a non-final state different from (0, n− 1). Then aka distinguishes p and

q since (m − 1, 0) · a /∈ F and q′ · a ∈ F .

Hence all the states of the product automaton are reachable and pairwise
distinguishable. This means that sc(K ⊕ L) = mn. �

3 Operations on Boolean and Alternating Automata

In this section we investigate the descriptional complexity of basic regular oper-
ations on languages represented by Boolean and alternating automata. We start
with the complementation operation and we show that a language and its com-
plement have the same complexity.

Theorem 10 (Complementation). Let L be a regular language. Then we
have asc(L) = asc(Lc) and bsc(L) = bsc(Lc).

Proof. Let L be accepted by a minimal n-state BFA (AFA). Then the lan-
guage LR is accepted by a 2n-state DFA (with half of the states final) by
Lemma 2. This means that (LR)c is accepted by a 2n state DFA (with half of
the states final) since we only interchange final and non-final states in the DFA
for LR. Next (LR)c = (Lc)R. Therefore Lc is accepted by an n-state BFA (AFA)
by Lemma 3. Hence asc(Lc) ≤ n and bsc(Lc) ≤ n. Moreover we cannot have
asc(Lc) < n because after another complementation we would get asc(L) < n.
The argument for bsc(Lc) is the same. �

We continue with the star operation. We improve the results from [10, The-
orems 8, 9] where upper and lower bounds differed by one. We get tight upper
bound 2n for both BFAs and AFAs as a corollary of the next theorem.

Theorem 11 (Star). Let n ≥ 2.

(a) If L is accepted by an n-state BFA, then L∗ is accepted by a 2n-state AFA.
(b) There exists a language L accepted by an n-state AFA such that every BFA

for L∗ has at least 2n states.

Proof
(a) Let L be accepted by an n-state BFA. Then LR is accepted by a 2n-state

DFA by Lemma 2. By Propostion 8, (LR)∗ is accepted by a 22n

-state DFA with
half of the states final. Next (LR)∗ = (L∗)R. This means that L∗ is accepted by
a 2n-state AFA by Lemma 3.

(b) Let LR be the Palmovský’s witness language for star [16] with 2n states
and 2n−1 final states shown in Fig. 1. By Lemma 3 the language L is accepted by
an n-state AFA. By [16, Proof of Theorem 4.4] sc((LR)∗) = 22n−1+22n−1−2n−1

=

22n−1(1+2−2n−1

). Since (LR)∗ = (L∗)R we get bsc(L∗) ≥ log(sc((L∗)R))� = 2n

by Corollary 4. �

Operations on Boolean and Alternating Finite Automata 187

0 1 . . . 2n−1 . . . 2n − 2 2n − 1

b

a a, b a, b a, b a, b a, b a

b

a b

Fig. 1. The reverse of a binary witness for star on BFAs and AFAs.

In what follows we use Lemmas 2, 3 and Corollary 4 without citing them
again and again. The next theorem provides tight upper bounds on the com-
plexity of difference, symmetric difference, reversal, and right and left quotient
on languages represented by Boolean finite automata.

Theorem 12 (Operations on BFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K \ L) ≤ m + n, and the bound is tight if |Σ| ≥ 2;
(b) bsc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) bsc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) bsc(KL−1) ≤ 2m, and the bound is tight if |Σ| ≥ 2;
(e) bsc(L−1K) ≤ m, and the bound is tight if |Σ| ≥ 1.

Proof. Let A = (QA, Σ, δA, gA, FA) be an m-state BFA for the language K and
B = (QB , Σ, δB , gB , FB) be an n-state BFA for L with QA ∩ QB = ∅.

(a) The language K \L is accepted by BFA (QA∪QB , Σ, δ, gA∧gB , FA∪FB),
where δ = δA on QA and δ = δB on QB . Thus bsc(K \L) ≤ m+n. For tightness,
let K and L be binary witness languages for intersection on BFAs described in
[10, Proof of Theorem 2]. Then K and Lc are witnesses for difference since
K \ Lc = K ∩ L.

(b) The symmetric difference K ⊕ L is accepted by BFA
(QA ∪ QB , Σ, δ, (gA ∧ gB) ∨ (gA ∧ gB), FA ∪ FB)

where δ = δA on QA and δ = δB on QB . Thus bsc(K⊕L) ≤ m+n. For tightness,
let KR and LR be the languages accepted by 2m-state and 2n-state DFAs with
half of states final shown in Fig. 2. Then K and L are accepted by m-state and
n-state BFAs. In the product automaton, each state (i, j) is reached by aibj .
Two (non-)final states are distinguished by c if they are in different quadrants
and by a word in a∗ + b∗ otherwise. So we get sc(KR ⊕ LR) = 2m+n. Next
KR ⊕ LR = (K ⊕ L)R. Therefore bsc(K ⊕ L) ≥ m + n.

(c) The language LR is accepted by 2n-state DFA, the special case of BFA.
For tightness, let LR be the Šebej’s binary witness language for reversal [11]
accepted by a DFA with 2n states. Then L is accepted by an n-state BFA. By
[11, Proof of Theorem 5] sc((LR)R) = 22n

and therefore bsc(LR) ≥ 2n.
(d) If K and L are accepted by an m-state and n-state BFA, respectively,

then KR and LR are accepted by a 2m-state and 2n-state DFA, respectively. By
Proposition 7 (KL−1)R = (LR)−1KR and by [19, Theorem 4.1] sc((LR)−1KR) ≤
22m − 1. It follows that bsc(KL−1) ≤ 2m. For tightness, let L = Σ∗ and K be
the language accepted by the DFA shown in Fig. 3. Then bsc(K) ≤ m and

188 M. Hospodár et al.

0 1 . . . 2m−1 . . . 2m − 2 2m − 1a a a a a a a

a

b, c b, c b, c b, c b, c b, c

0 1 . . . 2n−1 . . . 2n − 2 2n − 1b b b b b b b

b, c

a, c a, c a, c a a a

c c

Fig. 2. The reverses of ternary witnesses for symmetric difference on BFAs.

0 1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b

a, b

Fig. 3. The reverse of a binary witness for right quotient (by Σ∗) on BFAs.

bsc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR and by [19, Proof of Theorem 4.1]
sc((Σ∗)−1KR) = 22m − 1. Therefore bsc(KL−1) ≥ 2m.

(e) Since (L−1K)R = KR(LR)−1 and sc(KR(LR)−1) ≤ 2m [19, p. 323], we get
bsc(L−1K) ≤ m. For tightness, let K = {ai | 2m−1−1 ≤ i ≤ 2m−2} and L = a∗.
Then bsc(K) ≤ m and bsc(L) ≤ n. Next KR(a∗)−1 = {ai | 0 ≤ i ≤ 2m − 2}, so
sc(KR(a∗)) = 2m. Therefore bsc(L−1K) ≥ m.

In the next theorem we study the complexities of same operations on lan-
guages represented by alternating finite automata. Note that while the complex-
ities of intersection, union, and difference on AFAs exceed those on BFAs by
one, the complexity of symmetric difference on AFAs and BFAs is the same.

Theorem 13 (Operations on AFAs). Let K and L be (regular) languages
over an alphabet Σ accepted by an m-state and n-state AFA, respectively. Then

(a) asc(K \ L) ≤ m + n + 1, and the bound is tight if |Σ| ≥ 2;
(b) asc(K ⊕ L) ≤ m + n, and the bound is tight if |Σ| ≥ 3;
(c) asc(LR) ≤ 2n, and the bound is tight if |Σ| ≥ 2;
(d) asc(KL−1) ≤ 2m + 1, and the bound is tight if |Σ| ≥ 2;
(e) asc(L−1K) ≤ m + 1, and the bound is tight if |Σ| ≥ 1.

Proof
(a) Since every AFA is BFA we get bsc(K \ L) ≤ m + n by Theorem 12(a).

Therefore asc(K\L) ≤ m+n+1. For tightness, let K and L be the binary witness
languages for intersection on AFAs described in [10, Proof of Theorem 3]. Then
K and Lc are witnesses for difference since asc(K\Lc) = asc(K∩L) = m + n + 1.

Operations on Boolean and Alternating Finite Automata 189

(b) If K and L are accepted by m-state and n-state AFAs, then KR and
LR are accepted by 2m-state and 2n-state DFAs with half of the states final.
It follows that KR ⊕LR is accepted by a product automaton of 2m+n states and
half of them are final. Therefore K ⊕ L is accepted by (m + n)-state AFA. For
tightness, let KR and LR be the languages accepted by 2m-state and 2n-state
DFAs with half of the states final shown in Fig. 2. Then K and L are accepted
by m-state and n-state AFAs. As shown in Theorem 12(b) every BFA for K ⊕L
has at least m + n states. Therefore asc(K ⊕ L) ≥ m + n.

(c) If L is accepted by an n-state AFA, then LR is accepted by 2n-state
DFA. Every DFA is a special case of AFA. Therefore AFA for language LR has
2n states. For tightness, let LR be the language accepted by 2n-state Šebej’s
automaton in which half of the states are final shown in Fig. 4. By [11, Proof of
Theorem 5] we have sc((LR)R) = 22n

; notice that any nontrivial number of final
states does not matter since the subset automaton of NFA for (LR)R does never
have equivalent states [11, Proposition 3]. Hence asc(LR) ≥ 2n by Corollary 4.

0 1 2 3 4 . . . 2n−1 . . . 2n − 1
a a

a

a a a a a a

a

b

b

b

b

b b b b

Fig. 4. The reverse of a binary witness for reversal on AFAs.

(d) By Propostion 6 and Theorem 12(d) we get asc(KL−1) ≤ bsc(KL−1) +
1 ≤ 2m + 1. To prove tightness, let L = Σ∗ and KR be the language accepted
by the DFA A shown in Fig. 5 in which half of the states are final. Then
asc(K) ≤ m and asc(L) ≤ n. Next (KL−1)R = (Σ∗)−1KR. Let us show that
sc((Σ∗)−1KR) = 22m − 1. Construct an NFA N for (Σ∗)−1KR from the DFA A
by making all the states initial. Every non-empty subset in the corresponding
subset automaton is reachable as it was shown in [19, Proof of Theorem 4.1].
To prove distinguishability, notice that the state 1 is uniquely distinguishable by
the word b2m−2, and it is uniquely reachable in N from any other state through
the unique in-transitions 2

a−→ 3
a−→ · · · a−→ 2m−1

a−→ 0
a−→ 1. By Proposition 1,

all states of the subset automaton are pairwise distinguishable. The number of
final states in the subset automaton is 22m −22m−1

, which is greater than 22m−1.
Therefore by Lemma 2 we get asc(KL−1) ≥ 2m + 1.

0 1 . . . 2m−1 . . . 2m − 2 2m − 1

b

a a, b a, b a, b a, b a, b a, b

a, b

Fig. 5. The reverse of a binary witness for right quotient (by Σ∗) on AFAs.

190 M. Hospodár et al.

(e) By Proposition 6 and Theorem 12(e) asc(L−1K) ≤ bsc(L−1K) + 1 ≤
m + 1. To get tightness, consider the same two languages as in Theorem 12(e).
Notice that the minimal DFA for KR(a∗)−1 has more than 2m−1 final states. �

In the next theorem we study the complexity of basic regular operations on
unary languages represented by Boolean finite automata.

Theorem 14 (Unary BFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state BFA, respectively. Then

(a) bsc(K ∩ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(b) bsc(K ∪ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(c) bsc(K\L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(d) bsc(K ⊕ L) ≤ m + n, and the bound is tight if gcd(m,n) = 1;
(e) bsc(LR) = bsc(L);
(f) bsc(L∗) ≤ 2n and the bound is tight;
(g) bsc(KL−1) ≤ m, and the bound is tight.

Proof. Let unary languages K and L be accepted by m-state and n-state BFA,
respectively. Then K and L are accepted by 2m-state and 2n-state DFA, respec-
tively, by Corollary 5, and the languages K ∩L, K ∪L, K\L, K ⊕L are accepted
by a 2m2n-state product automaton. This gives upper bounds m + n in cases
(a)–(d). To prove tightness for intersection, let K = (a2m

)∗ and L = (a2n−1)∗.
Then K and L are accepted by a 2m-state and 2n-state DFA, respectively, so by
an m-state and n-state BFA, respectively. Since gcd(2m, 2n − 1) = 1, we have
sc(K∩L) = 2m(2n−1). This means that bsc(K∩L) ≥ log(2m(2n−1))� = m+n.
For union, we may use the languages Kc and Lc, since Kc ∪Lc = (K ∩L)c and a
language and its complement have the same Boolean state complexity. Similarly,
for difference we use the languages K and Lc. For symmetric difference, let us
consider unary languages K and L accepted by automata A = (2m, 0, {0}) and
B = (2n − 1, 0, {1, 2, . . . , 2n − 2}). By Proposition 9 sc(K ⊕ L) = 2m(2n − 1). It
follows that bsc(K ⊕ L) ≥ log(2m(2n − 1))� = m + n.

(e) The equality follows from the fact that L = LR in the unary case.
(f) The state complexity of the star operation in the unary case is (n−1)2+1

[3,19]. If a unary language L is accepted by an n-state BFA then L is accepted by
a 2n-state DFA. This means that L∗ is accepted by a DFA of at most (2n−1)2+1
states, so by a DFA of at most 22n states. Therefore bsc(L∗) ≤ 2n. For tightness,
let L be the unary language accepted by the DFA (2n, 0, {2n − 1}) meeting the
upper bound for star [19, Theorem 5.3]. Then L is accepted by an n-state BFA
and bsc(L∗) ≥ log(sc(L∗))� = log((2n − 1)2 + 1)� = 2n.

(g) In the unary case, KL−1 = L−1K. In Theorem 12(e) we proved that
bsc(L−1K) ≤ m and we provided a unary witness. �

Recall that by Proposition 6 asc(L) ≤ bsc(L)+1. Therefore as a corollary of
the previous theorem we get the following upper bounds.

Corollary 15 (Unary AFAs). Let n ≥ 2 and K and L be unary languages
accepted by an m-state and n-state AFA, respectively. Then

Operations on Boolean and Alternating Finite Automata 191

(a) asc(K ∩ L) ≤ m + n + 1;
(b) asc(K ∪ L) ≤ m + n + 1;
(c) asc(K \ L) ≤ m + n + 1;
(d) asc(LR) = asc(L);
(e) asc(L∗) ≤ 2n + 1;
(f) asc(KL−1) ≤ m + 1.

We are not able to prove the tightness since the complexity of operations on
unary DFAs with half of the states final is not known. The previous theorem
and its corollary imply that a binary alphabet for some of our witness languages
is optimal in the sense that it cannot be reduced to a unary alphabet.

4 Conclusions

We investigated the descriptional complexity of basic regular operations on lan-
guages represented by Boolean and alternating finite automata. We considered
the operations of complementation, star, difference, symmetric difference, rever-
sal, and left and right quotient. For each operation we obtained the tight upper
bound on its complexity on both Boolean and alternating automata.

Our results are summarized in Table 1. The table also shows the size of
alphabet used for describing witness languages, and compares our results to the
known results for deterministic [11,14,19] and nondeterministic finite automata
from [6,9]. The results for intersection and union on Boolean and alternating
automata are from [10]. Notice that the complexity of intersection, union, and
difference on alternating automata is m+n+1 while the complexity of symmet-
ric difference is m + n. Except for ternary witnesses for symmetric difference,
all the other provided witnesses are defined over a binary or unary alphabets
and, moreover, a binary alphabet for the witness languages for star, reversal,
and right quotient on BFAs and AFAs is optimal in the sense that it cannot be
reduced to a unary alphabet.

Table 1. The complexity of operations on languages represented by BFAs, AFAs,
DFAs, NFAs. The results for DFAs are from [11,14,19], the results for NFAs are from
[6,9], and the results for intersection and union on BFAs and AFAs are from [10].

BFA |Σ| AFA |Σ| DFA |Σ| NFA |Σ|
Complement n 1 n 1 n 1 2n 2

Intersection m + n 2 m + n + 1 2 mn 2 mn 2

Union m + n 2 m + n + 1 2 mn 2 m + n + 1 2

Difference m + n 2 m + n + 1 2 mn 2 ≤ m2n

Symmetric difference m + n 3 m + n 3 mn 2 ≤ 2m+n

Reversal 2n 2 2n 2 2n 2 n + 1 2

Star 2n 2 2n 2 3
4
2n 2 n + 1 1

Left quotient m 1 m + 1 1 2m − 1 2 m + 1 2

Right quotient 2m 2 2m + 1 2 m 1 m 1

192 M. Hospodár et al.

References

1. Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szyku�la, M.: On the state
complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit,
J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41114-9 6

2. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata,
and sequential networks. Theoret. Comput. Sci. 10, 19–35 (1980). https://doi.org/
10.1016/0304-3975(80)90069-9

3. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis,
R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39310-5 26

4. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981). https://doi.org/10.1145/322234.322243

5. Fellah, A., Jürgensen, H., Yu, S.: Constructions for alternating finite automata.
Int. J. Comput. Math. 35(1–4), 117–132 (1990). https://doi.org/10.1080/
00207169008803893

6. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14(6), 1087–1102 (2003). https://doi.org/10.
1142/S0129054103002199

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Boston (1979)

8. Hospodár, M., Jirásková, G.: Concatenation on deterministic and alternating
automata. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, G. (eds.) NCMA 2016,
vol. 321, pp. 179–194. Österreichische Computer Gesellschaft (2016). books@ocg.at

9. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330(2), 287–298 (2005). https://doi.org/10.1016/j.tcs.2004.
04.011

10. Jirásková, G.: Descriptional complexity of operations on alternating and Boolean
automata. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR
2012. LNCS, vol. 7353, pp. 196–204. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30642-6 19

11. Jirásková, G., Šebej, J.: Reversal of binary regular languages. Theoret. Comput.
Sci. 449, 85–92 (2012). https://doi.org/10.1016/j.tcs.2012.05.008

12. Krajňáková, I., Jirásková, G.: Square on deterministic, alternating, and Boolean
finite automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol.
10316, pp. 214–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
60252-3 17

13. Leiss, E.L.: Succint representation of regular languages by Boolean automata.
Theoret. Comput. Sci. 13, 323–330 (1981). https://doi.org/10.1016/S0304-
3975(81)80005-9

14. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math.
Doklady 11(5), 1373–1375 (1970)

15. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 231–240. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-
3 21

16. Palmovský, M.: Kleene closure and state complexity. RAIRO - Theor. Inf. Appl.
50(3), 251–261 (2016). https://doi.org/10.1051/ita/2016024

17. Sipser, M.: Introduction to the theory of computation. Cengage Learn (2012)

Operations on Boolean and Alternating Finite Automata 193

18. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages. Volume 1: Word, Language, Grammar, pp. 41–110. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5 2

19. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994). https://doi.
org/10.1016/0304-3975(92)00011-F

	Introduction
	Preliminaries
	Known Results
	Combined Operations, Self-verifying and Unambiguous Automata
	Boolean and Alternating Automata

	Square on Deterministic, Alternating, and Boolean Finite Automata
	Corollary for Concatenation

	Operations on Boolean and Alternating Finite Automata
	NFA-to-DFA Trade-Off
	Star
	Boolean Operations
	Reversal, Left and Right Quotient
	Concatenation
	Conclusions

	Summary and Future Works

