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1 Introduction

Finite automata and regular languages are one of the oldest topics in formal languages
theory. The basic properties of this class of languages were investigated in 1950s and
1960s. Although regular languages are the simplest languages in Chomsky hierarchy,
some challenging problems are still open. The most famous is the question of how many
states are su�cient and necessary for two-way deterministic automata to simulate two-
way nondeterministic automata, which is connected to the well-known NLOGSPACE vs.
DLOGSPACE problem [1].

In last three decades, we can observe a new interest in regular languages which have
applications in software engineering, programming languages, and other areas of com-
puter science. However, they are also interesting from the theoretical point of view [22].
Various properties of this class are now intensively studied. One of them is descriptional
complexity which studies the cost of description of languages by formal systems such as
deterministic and nondeterministic automata, or grammars.

Rabin and Scott in 1959 [31] de�ned nondeterministic �nite automata (NFAs), de-
scribed an algorithm known as the "subset construction" which shows that every n-state
nondeterministic automaton can be simulated by at most 2n-state deterministic �nite
automaton (DFA). In 1962 Yershov [33] then showed that this construction is optimal.
Maslov [29] investigated the state complexity of union, concatenation, and star, and also
some other operations. Birget in [2, 3] examined intersection and union. He also con-
sidered the question of the size of nondeterministic automaton for the complement of a
language. The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \ L, where Σ∗ is the set of all strings over an alphabet Σ. The complementation
is an easy operation on regular languages represented by deterministic �nite automata
(DFAs) since to get a DFA for the complement of a regular language, it is enough to
interchange the �nal and non-�nal states in a DFA for this language.

On the other hand, complementation on regular languages represented by NFAs is
an expensive task. We �rst must apply the subset construction to a given NFA, and
only after that, we may interchange the �nal and non-�nal states. This gives an upper
bound 2n.

Sakoda and Sipser [32] presented an example of languages over a growing alphabet size
meeting this upper bound. Birget claimed the result for a three-letter alphabet in [3], and
later corrected this to a four-letter alphabet. Holzer and Kutrib [20] obtained the lower
bound 2n−2 for a binary n-state NFA language. Finally, binary n-state NFA languages
meeting the upper bound 2n were described by Jirásková in [24]. In the case of a unary

1



alphabet, the complexity of complementation is in eΘ(
√
n lnn) [20, 24].

Birget [2] described a lower-bound technique for proving minimality of NFAs. The
technique is known as a fooling-set method. Although in some cases there is a large gap
between the size of a fooling set and the size of minimal nondeterministic automaton
[23], in a many other cases, the fooling sets can be used to prove the minimality of
nondeterministic machines, and we successfully use this method throughout our thesis.

The systematic study of the state complexity of operations on regular languages began
in the paper by Yu et al. [34]. The nondeterministic state complexity of operations was
investigated by Holzer and Kutrib [20], and some improvements of their results can be
found in [24]. Some special operations were examined as well: proportional removals
in [10], shu�e in [8], and cyclic shift in [26].

Recently, researchers investigated subclasses of regular languages such as, for example,
pre�x- and su�x-free languages [9,15,18], ideal languages [5], closed languages [6], bi�x-,
factor-, and subword-free languages [4], union-free languages [25], or star-free languages
[7]. In some of these classes, the operations have smaller complexity, while in the others,
the complexity of operations is the same as in the general case of regular languages.

Pre�x-free languages are used in codes like variable-length Hu�man codes or country
calling codes. In a pre�x-code, there is no codeword which is a proper pre�x of any other
codeword. Therefore, a receiver can identify each codeword without any special marker
between words. This was a motivation for investigating this class of languages in last few
years [11,12,17,19,28].

The non-deterministic state complexity of operations on pre�x-free and su�x-free lan-
guages was studied by Han et al. in [15�17,19]. For the nondeterministic state complexity
of complementation, they obtained an upper bound 2n−1 + 1 in both classes, and lower
bounds 2n−1 and 2n−1−1 for pre�x-free and su�x-free languages, respectively. The ques-
tions of tightness remained open. In the �rst part of this thesis, we solve both of these
open questions, and we prove that in both classes, the tight bound is 2n−1. To prove
tightness, we use a ternary alphabet. Hence the nondeterministic state complexity of
complementation on pre�x- or su�x-free languages de�ned over an alphabet that con-
tains at least three symbols is given by the function 2n−1. We also show that this upper
bound cannot be met by any binary pre�x- or su�x-free language. We get a similar re-
sult in the class of factor-free languages, and moreover we obtain the tight upper bounds
on the nondeterministic complexity of each considered operation in each of the four free
classes. We also study the unary free languages, and, besides some other results, we prove
that the nondeterministic state complexity of complementation is in Θ(

√
n) in the each
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of the four classes of free languages.
Then we deal with the operations of intersection, union, concatenation, star, reversal,

and complementation on pre�x-, su�x-, factor-, and subword-closed languages, and on
right (left, two-sided, and all-sided) ideal languages. In all cases, we get tight upper
bounds on the nondeterministic complexity for all operations. Except for three cases, our
witnesses are de�ned over small �xed alphabets.

Finally, we use our results to show that the nondeterministic complexities of basic
regular operations, except for complementation, in the classes of pre�x-, su�x-, factor-,
and subword-convex languages are the same as in the general case of regular languages.
As for complementation, the complexity in the class of su�x-convex languages is 2n which
is one of the most interesting results of this thesis.

2 Aims

1. Summarize known results concerning deterministic and nondeterministic complexity
of basic operations in the class of regular languages and its subclasses.

2. Investigate properties of nondeterministic �nite automata accepting languages in
some special subregular classes (pre�x-, su�x-, factor-, and subword-free languages,
closed languages, convex languages and ideal languages).

3. Use the properties of nondeterministic automata to get nondeterministic complexity
of operations union, intersection, concatenation, star, reversal and complementation
in above mentioned subregular classes.

3 Main results

We present our main results on nondeterministic state complexity of basic regular op-
erations as union, intersection, concatenation, (Kleene) star, reversal, complementation
in subclasses of regular languages. We consider these subclasses: pre�x (su�x, factor,
subword) - free (closed, convex) and right (left, two-sided, all-sided) ideals.

For �nding upper bounds we use properties of languages belonging to mentioned sub-
classes. For lower bounds we use very useful tools for estimation the number of states
in NNFAs based on fooling set techniques [2, 3, 14, 21]. Recall that set of pairs of strings
{(u1, v1), (u2, v2), . . . , (un, vn)} is called a fooling set for a language L if for all i, j in
{1, 2, . . . , n},
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(F1) uivi ∈ L,

(F2) if i ̸= j, then uivj /∈ L or ujvi /∈ L.

Lemma 3.1 ( [2, Lemma 1], Lower bound method for NNFAs). Let F be a fooling

set for a language L. Then every NNFA for the language L has at least |F| states.

We use more variants of this method.

3.1 Free languages

A language is pre�x-free if it does not contain two distinct strings such that one of them is
a pre�x of the other. Su�x-, factor-, and subword-free languages are de�ned analogously.
We use the notion of a free language for a language belonging to one of these four classes.

Table 1 provides an overview of complexities of operations on unary-free languages
and compares them to the known results on regular unary languages from [20]. Notice
that the exact complexity of concatenation in the case of regular languages is still not
known. Table 2 summarizes our results on the nondeterministic complexity of operations
on pre�x-, su�x-, factor-, and subword-free languages and compares them to the results
on regular languages which are from [20,24]. Notice that the complexity of each operation
in each class is always smaller than in the general case of regular languages, except for
the reversal operation on su�x-free languages. All our wittnes languages are de�ned over
small �xed alphabet which are always optimal, except for intersection and complementa-
tion on subword-free languages where it remains open whether the upper bounds can be
met by subword-free languages de�ned over smaller alphabets. We conjecture that the
bound mn is assymptotically tight for intersection of binary subword-free languages.

We assume nondeterministic complexity of languages K,L are m,n, respectively in
the next tables.

K ∩ L K ∪ L KL L∗ Lc

Unary free m = n max{m,n} m+ n− 1 n− 1 Θ(
√
n)

Unary regular [20] mn; m+ n+ 1; ≥ m+ n− 1 n+ 1 2Θ(
√
n logn)

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 1: Nondeterministic complexity of operations on unary free languages.
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Class Regular [20,24] Pre�x-free Su�x-free Factor-free Subword-free

K ∩ L mn 2 mn−(m+n−2) 2 . 2 mn−2(m+n−3) 2 . m+n−5

K ∪ L m+ n+ 1 2 m+ n 2 m+ n− 1 2 m+ n− 2 2 . 2

KL m+ n 2 m+ n− 1 1 . 1 . 1 . 1

L∗ n+ 1 1 n 2 . 2 n− 1 1 . 1

LR n+ 1 2 n 1 n+ 1 2 n 1 . 1

Lc 2n 2 2n−1 3 . 3 2n−2 + 1 3 . 2n−2

Table 2: Nondeterministic complexity of operations on free classes. The dot means that
the complexity is the same as in the previous column.

3.2 Closed languages

A language L is pre�x-closed if w ∈ L implies that every pre�x of w is in L. Su�x-,
factor-, and subword-closed languages are de�ned analogously.

We investigated the nondeterministic state complexity of basic regular operations on
the classes of closed languages. For each class and for each operation, we obtained the
tight upper bounds. To prove tightness we usually used a binary alphabet. In all the cases
where we used a larger alphabet for describing witness languages, it remains open whether
the obtained upper bounds can be met also by languages de�ned over smaller alphabets.
We also considered the unary case. Our results are summarized in the following tables.
The tables also display the size of alphabet used to describe witness languages.

Class K ∩ L |Σ| K ∪ L |Σ| K · L |Σ|
Pre�x-closed mn 2 m+ n+ 1 2 m+ n 3
Su�x-closed mn 2 m+ n+ 1 2 m+ n 3
Factor-closed mn 2 m+ n+ 1 2 m+ n 3
Subword-closed mn 2 m+ n+ 1 2 m+ n 3
Unary closed min(m,n) max(m,n) m+ n− 1

Regular mn 2 m+ n+ 1 2 m+ n 2
Unary regular mn; m+ n+ 1; ≥ m+ n− 1

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 3: The nondeterministic complexity of union, intersection, and concatenation on
closed languages. The results for regular languages are from [20].
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Class L∗ |Σ| LR |Σ| Lc |Σ|
Pre�x-closed n 2 n+ 1 2 2n 2
Su�x-closed n 2 n+ 1 3 1 + 2n−1 2
Factor-closed 1 1 n+ 1 3 1 + 2n−1 2
Subword-closed 1 1 n+ 1 2n− 2 1 + 2n−1 2n

Unary closed 1 n n− 1

Regular n+ 1 1 n+ 1 2 2n 2
Unary regular n+ 1 n 2Θ(

√
n logn)

Table 4: The nondeterministic complexity of star, reversal, and complementation on
closed languages. The results for regular languages are from [20,24].

3.3 Ideal languages

A language L over an alphabet Σ is a right (left, two-sided, all-sided) ideal if L = LΣ∗

(L = Σ∗L, L = Σ∗LΣ∗, L = L� Σ∗, respectively).
We investigated the nondeterministic state complexity of basic regular operations on

the classes of ideal languages. For each class and for each operation, we obtained the tight
upper bounds. These bounds are the same as in the general case of regular languages for
intersection and star on all four classes, and reversal on left ideals, while in the remaining
cases the complexity is always smaller than for regular languages.

To prove tightness we usually used a binary alphabet which is always optimal. In all
the cases where we used a larger alphabet for describing witness languages, It remains
open whether the obtained upper bounds can be met also by languages de�ned over
smaller alphabets. We also considered the unary case. Our results are summarized in the
following tables.
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Class K ∩ L |Σ| K ∪ L |Σ| K · L |Σ|
Right ideal mn 2 m+ n 2 m+ n− 1 1
Left ideal mn 2 m+ n− 1 2 m+ n− 1 1

Two-sided ideal mn 2 m+ n− 2 2 m+ n− 1 1
All-sided ideal mn 2 m+ n− 2 2 m+ n− 1 1
Unary ideal max(m,n) min(m,n) m+ n− 1

Regular mn 2 m+ n+ 1 2 m+ n 2
Unary regular mn; m+ n+ 1; ≥ m+ n− 1

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 5: The nondeterministic complexity of intersection, union, and concatenation on
ideal languages. The results for regular languages are from [20].

Class L∗ |Σ| LR |Σ| Lc |Σ|
Right ideal n+ 1 2 n 1 2n−1 2
Left ideal n+ 1 2 n+ 1 3 2n−1 2

Two-sided ideal n+ 1 2 n 1 2n−2 2
All-sided ideal n+ 1 2 n 1 2n−2 2n−2

Unary ideal n− 1 n n− 1

Regular n+ 1 1 n+ 1 2 2n 2
Unary regular n+ 1 n 2Θ(

√
n logn)

Table 6: The nondeterministic complexity of star, reversal, and complementation on ideal
languages. The results for regular languages are from [20].

3.4 Convex languages

A language L is pre�x-convex if u,w ∈ L and u is a pre�x of w imply that each string v

such that u is a pre�x of v and v is a pre�x of w is in L. Su�x-, factor-, and subword-
convex languages are de�ned analogously. Except for complementation on factor- and
subword-convex languages, we always obtain tight upper bounds.

Tables 7 and 8 summarizes our results on convex languages. In the second table, the ·
means that the complexity is the same as in the previous column. This table also displays
the sizes of alphabet used for describing wittnes languages. Whenever the alphabet is
binary or unary, it is always optimal, otherwise we do not know whether the upper
bounds are tight also for smaller alphabets. The exact complexity of complementation in
the classes of factor-convex and subword-convex languages remains open.
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K ∩ L K ∪ L KL L∗ Lc

Unary convex max{m,n} max{m,n} m+ n− 1 n− 1 n+ 1

Unary regular [20] mn; m+ n+ 1; ≥ m+ n− 1 n+ 1 2Θ(
√
n logn)

gcd(m,n) = 1 gcd(m,n) = 1 ≤ m+ n

Table 7: Nondeterministic complexity of operations on unary convex classes.

Regular [20,24] Pre�x- Su�x- Factor- Subword-convex

K ∩ L mn 2 . 2 . 2 . 2 . 2

K ∪ L m+ n+ 1 2 . 2 . 2 . 2 . 2

KL m+ n 2 . 3 . 3 . 3 . 3

L∗ n+ 1 1 . 2 . 2 . 2 . 2

LR n+ 1 2 . 2 . 2 . 2 . 2n− 2

Lc 2n 2 . 2 . 5 ≥ 2n−1 + 1 2 ≥ 2n−1 + 1 2n

≤ 2n ≤ 2n

Table 8: Nondeterministic complexity of operations on convex classes. The · means that
the complexity is the same as in the previous column.

4 Conclusions

In this thesis, we studied the nondeterministic state complexity of basic unary and binary
operations on the subregular classes of free, closed, ideal, and convex languages. After
providing basic de�nitions and notations, we summarized the known results concerning
the complexity of basic operations on the above mentioned classes in the deterministic
case, and on the class of regular languages in the nondeterministic case. We described
upper and lower bound methods used throughout this thesis.

We examined the operations on the classes of pre�x-, su�x-, factor-, and subword-free
languages, and we obtained tight upper bounds in each case. The most interesting result
of this part of the thesis is obtaining the complexity of complementation for pre�x-, su�x-
, and factor-free languages. In each of these three classes, we described witness languages
over a ternary alphabet, and we were able to show that the upper bounds cannot be met
by any binary languages.
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In the next parts we studied closed and ideal languages. For each of these eight sub-
classes, we again found the exact nondeterministic complexity of each considered opera-
tion. Except for three cases, all our witness languages are desribed over a �xed alphabet
of size at most three, and moreover binary alphabets are always optimal.

For convex languages we used our previous results to show that the complexity of each
operation, except for complementation, in the class of convex languages is the same as
in the general case of regular languages. A careful reader might notice that the classes
of pre�x-free, pre�x-closed, and right ideal languages are subclasses of the class of pre�x-
convex languages; and we have similar inclusions in the other three convex classes. In the
case of complementation on su�x-convex languages, we obtained another very interesting
result of this thesis. We described a proper su�x-convex language, that is, a su�x-convex
language which is neither su�x-free, nor su�x-closed, nor left ideal, meeting the upper
bound 2n for its complementation. We had to �nd such a special language because the
complexity of complementation on the classes of su�x-free, su�x-closed, and left ideal
languages is less than 2n.

Some problems remained open. For complementation on subword-free languages, we
de�ned witnesses over a growing alphabet. It is open whether the upper bound is tight for
some �xed alphabet. In the classes of closed and ideal languages, some of our witnesses
were described over a ternary alphabet. We do not know whether or not a binary al-
phabet can be used to describe the corresponding witnesses. The exact nondeterministic
state complexity of complementation in the classes of factor-convex and subword-convex
languages remains open as well.
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5 The list of my published papers

1. Conference papers [the number of citations]

(a) Mlynár£ik,P.: On average complexity of InsertSort. ITAT 2005, Information
Technologies - Applications and Theory, Proceedings, Slovakia, 117-122
[cited: 0]

(b) �evorová, K., Jirásková, G., Mlynár£ik, P., Palmovský, M., �ebej, J.: Op-

erations on Automata with All States Final. Z. Ésik and Z. Fülöp (Eds.):
Automata and Formal Languages 2014 (AFL 2014) EPTCS 151, 2014, pp.
201�215, doi:10.4204/EPTCS.151.14
[cited: 2 (self)]

(c) Jirásek, J., Jirásková, G., Krausová, M., Mlynár£ik, P., �ebej, J.: Pre�x-Free
Languages: Right Quotient and Reversal In: H. Jürgensen et al. (Eds.): DCFS
2014, LNCS 8614, pp. 210-221. Springer International Publishing Switzerland
(2014)
[cited: 1 (self)+1 (non-self)]

(d) Jirásková, G., Mlynár£ik, P.: Complement on Pre�x-Free, Su�x-Free, and

Non-Returning NFA Languages. In: H. Jürgensen et al. (Eds.): DCFS 2014,
LNCS 8614, pp. 222-233. Springer International Publishing Switzerland (2014)
[cited: 3 (self)+1 (nonself)]

(e) Mlynár£ik,P.: Complement on Free and Ideal Languages. In: Shallit, Okhotin
(Eds.): DCFS 2015, LNCS 9118, pp. 185-196. Springer International Publish-
ing Switzerland (2015)
[cited: 2 (self)]

(f) Hospodár, M., Jirásková, G., and Mlynár£ik, P.: Nondeterministic Complexity

of Operations on Closed and Ideal Languages. In: Han YS., Salomaa K. (Eds.):
Implementation and Application of Automata. CIAA 2016. LNCS 9705, pp.
125-137. Springer (2016)
[cited: 1 (self)]

(g) Hospodár, M., Jirásková, G., and Mlynár£ik, P.: Nondeterministic Complexity
of Operations on Free and Convex Languages. In: Carayol A., Nicaud C.
(Eds.): Implementation and Application of Automata. CIAA 2017. LNCS
10329, pp. 138-150. Springer (2017)
[cited: 0]
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2. Journal papers

(a) Jirásek, J., Jirásková, G., Krausová, M., Mlynár£ik, P., �ebej, J.: Pre�x-free

languages: Left and right quotient and reversal. (2014) Theoretical Computer
Science

cited: 0

Non-self citations in:

1. Yuan Gao and Nelma Moreira and Rogério Reis and Sheng Yu: A Survey on Opera-

tional State Complexity. CoRR, abs/1509.03254, (2015), http://arxiv.org/abs/1509.03254

2. Michal Hospodár: Complexity of unary union-free and unary star-free languages.

In: Henning Bordihn, Rudolf Freund, Benedek Nagy, and Gyrgy Vaszil (eds.):
Eighth Workshop on Non-Classical Models of Automata and Applications, NCMA
2016, Debrecen, Hungary, August 29-30, 2016. Short Papers. Computersprachen
TU Wien, pp. 15-23 (2016) ISBN 978-3-200-04725-9

6 The list of given talks

This part contains the list of my talks in signi�cant conferences concerning to the topic
of my thesis.

1. 16th International Workshop on Descriptional Complexity of Formal Systems.

August 5-8, 2014, Turku, Finland

2. Workshop on �erný's Conjecture and Optimization Problems.

November 2014, Opava, Czech Republic
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4. CIAA 2016 21st International Conference on Implementation and Application of
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July 19-22, 2016, Seoul, South Korea

5. 18. Konferencia ko²ických matematikov
April 20-22, 2017, Her©any, Slovak Republic
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6. Workshop on �erný's Conjecture and Optimization Problems of Finite Automata.

May 16-17, 2017, Opava, Czech Republic

7. CIAA 2017 22st International Conference on Implementation and Application of

Automata

June 27-30, 2017, Paris (Marne-la-Vallée), France

12



References

[1] Berman, P., Lingas, A.: On the complexity of regular languages in terms of �nite
automata. Technical Report 304 (Polish Academy of Sciences, 1977)

[2] Birget, J.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185�190 (1992), http://dx.doi.org/10.1016/0020-0190(92)
90198-5

[3] Birget, J.: Partial orders on words, minimal elements of regular languages and state
complexity. Theoretical Computer Science 119(2), 267�291 (1993), http://dx.doi.
org/10.1016/0304-3975(93)90160-U

[4] Brzozowski, J., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bi�x-, factor-,
and subword-free regular languages. Acta Cybernetica 21, 507�527 (2014)

[5] Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36�52 (2013), http://dx.doi.org/10.1016/j.tcs.2012.
10.055

[6] Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed lan-
guages. Theory Comput. Syst. 54(2), 277�292 (2014), http://dx.doi.org/10.1007/
s00224-013-9515-7

[7] Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J.
Found. Comput. Sci. 23(6), 1261�1276 (2012), http://dx.doi.org/10.1142/

S0129054112400515

[8] Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity
of shu�e of regular languages. Journal of Automata, Languages and Combinatorics
7(3), 303�310 (2002)

[9] Cmorik, R., Jirásková, G.: Basic operations on binary su�x-free languages. In:
Kotásek et al. [27], pp. 94�102, http://dx.doi.org/10.1007/978-3-642-25929-6_
9

[10] Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455�468 (2002)



[11] Eom, H., Han, Y., Salomaa, K.: State complexity of k-union and k-intersection for
pre�x-free regular languages. In: Descriptional Complexity of Formal Systems �
15th International Workshop, DCFS 2013, London, ON, Canada, July 22-25, 2013.
Proceedings. pp. 78�89 (2013), http://dx.doi.org/10.1007/978-3-642-39310-5_
9

[12] Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for pre�x-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science. In Memoriam Alexandru Mateescu
(1952-2005). pp. 137�151. The Publishing House of the Romanian Academy (2014)

[13] Ésik, Z., Fülöp, Z. (eds.): Automata, Formal Languages, and Related Topics - Dedi-
cated to Ferenc Gécseg on the occasion of his 70th birthday. Institute of Informatics,
University of Szeged, Hungary (2009)

[14] Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
�nite automata. Inf. Process. Lett. 59(2), 75�77 (1996), http://dx.doi.org/10.
1016/0020-0190(96)00095-6

[15] Han, Y., Salomaa, K.: State complexity of basic operations on su�x-free regular
languages. Theor. Comput. Sci. 410(27-29), 2537�2548 (2009), http://dx.doi.org/
10.1016/j.tcs.2008.12.054

[16] Han, Y., Salomaa, K.: Nondeterministic state complexity for su�x-free regular
languages. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings Twelfth Annual
Workshop on Descriptional Complexity of Formal Systems, DCFS 2010, Saska-
toon, Canada, 8-10th August 2010. EPTCS, vol. 31, pp. 189�196 (2010), http:

//dx.doi.org/10.4204/EPTCS.31.21

[17] Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic op-
erations for pre�x-free regular languages. Fundam. Inform. 90(1-2), 93�106 (2009),
http://dx.doi.org/10.3233/FI-2009-0008

[18] Han, Y., Salomaa, K., Wood, D.: Operational state complexity of pre�x-free regular
languages. In: Ésik and Fülöp [13], pp. 99�115

[19] Han, Y., Salomaa, K., Wood, D.: Operational state complexity of pre�x-free regular
languages. In: Ésik and Fülöp [13], pp. 99�115

14



[20] Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages 14(6), 1087�1102 (2003), http://dx.doi.org/10.1142/S0129054103002199

[21] Hromkovi£, J.: Communication Complexity and Parallel Computing. Texts in Theo-
retical Computer Science. An EATCS Series, Springer (1997), http://dx.doi.org/
10.1007/978-3-662-03442-2

[22] Hromkovi£, J.: Descriptional complexity of �nite automata: Concepts and open
problems. Journal of Automata, Languages and Combinatorics 7(4), 519�531 (2002)

[23] Jirásková, G.: Note on minimal automata and uniform communication protocols. In:
Martín-Vide, C., Mitrana, V. (eds.) Grammars and Automata for String Processing:
From Mathematics and Computer Science to Biology, and Back: Essays in Honour
of Gheorghe Paun. Topics in Computer Mathematics, vol. 9, pp. 163�170. Taylor and
Francis (2003)

[24] Jirásková, G.: State complexity of some operations on binary regular languages. The-
oretical Computer Science 330(2), 287�298 (2005), http://dx.doi.org/10.1016/j.
tcs.2004.04.011

[25] Jirásková, G., Masopust, T.: Complexity in union-free regular languages. Int.
J. Found. Comput. Sci. 22(7), 1639�1653 (2011), http://dx.doi.org/10.1142/

S0129054111008933

[26] Jirásková, G., Okhotin, A.: State complexity of cyclic shift. ITA 42(2), 335�360
(2008), http://dx.doi.org/10.1051/ita:2007038

[27] Kotásek, Z., Bouda, J., �erná, I., Sekanina, L., Vojnar, T., Antos, D. (eds.): Mathe-
matical and Engineering Methods in Computer Science - 7th International Doctoral
Workshop, MEMICS 2011, Lednice, Czech Republic, October 14-16, 2011, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 7119. Springer (2012),
http://dx.doi.org/10.1007/978-3-642-25929-6

[28] Krausová, M.: Pre�x-free regular languages: Closure properties, di�erence, and
left quotient. In: Kotásek et al. [27], pp. 114�122, http://dx.doi.org/10.1007/
978-3-642-25929-6_11

[29] Maslov, A.N.: Estimates of the number of states of �nite automata. Soviet Mathe-
matics Doklady 11, 1373�1375 (1970)

15



[30] Mlynár£ik, P.: Complement on free and ideal languages. In: Shallit, J., Okhotin, A.
(eds.) Descriptional Complexity of Formal Systems - 17th International Workshop,
DCFS 2015, Waterloo, ON, Canada, June 25-27, 2015. Proceedings. Lecture Notes
in Computer Science, vol. 9118, pp. 185�196. Springer (2015), http://dx.doi.org/
10.1007/978-3-319-19225-3_16

[31] Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114�125 (Apr 1959), http://dx.doi.org/10.1147/rd.32.0114

[32] Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way �nite automata.
In: Lipton, R.J., Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.)
Proceedings of the 10th Annual ACM Symposium on Theory of Computing, May
1-3, 1978, San Diego, California, USA. pp. 275�286. ACM (1978), http://doi.acm.
org/10.1145/800133.804357

[33] Yershov, Y.L.: On a conjecture of V. A. Uspenskii. Algebra i logika (seminar) 1,
45�48 (1962 (in Russian))

[34] Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125(2), 315�328 (1994), http:
//dx.doi.org/10.1016/0304-3975(92)00011-F

16


