COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

BIFURCATION AND ASYMPTOTIC PROPERTIES
OF PERIODIC SOLUTIONS IN DISCONTINUOUS SYSTEMS

Dissertation thesis

2012 RNDr. Michal Pospisil



COMENIUS UNIVERSITY IN BRATISLAVA
FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

BIFURCATION AND ASYMPTOTIC PROPERTIES
OF PERIODIC SOLUTIONS IN DISCONTINUOUS SYSTEMS

Dissertation thesis

Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg., full time

form)
Field of Study: 9.1.9. applied mathematics
Departments: FMFLKAMS - Department of Applied Mathematics and Statistics
Tutor: prof. RNDr. Michal Feckan, DrSc.

Bratislava 2012 RNDr. Michal Pospisil



87224329

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: RNDr. Michal Pospisil

Study programme: Applied Mathematics (Single degree study, Ph.D. III. deg.,
full time form)

Field of Study: 9.1.9. applied mathematics

Type of Thesis: Dissertation thesis

Language of Thesis: English

Secondary language: Slovak

Title: Bifurcation and asymptotic properties of periodic solutions in discontinuous
systems

Tutor: prof. RNDr. Michal Feckan, DrSc.
Departments: FMFLKAMS - Department of Applied Mathematics and Statistics

Electronic version available:
bez obmedzenia

Assigned: 27.01.2011

Approved: 27.01.2011 prof. RNDr. Marek Fila, DrSc.

Guarantor Of Study Programme

Student Tutor



87224329

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: RNDr. Michal Pospisil

Studijny program: aplikovana matematika (Jednoodborové studium,
doktorandské III. st., denna forma)

Studijny odbor: 9.1.9. aplikovana matematika

Typ zaverecnej prace: dizerta¢na

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Bifurcation and asymptotic properties of periodic solutions in discontinuous
systems

Skolitel’: prof. RNDr. Michal Feckan, DrSc.

Katedra: FMFILKAMS - Katedra aplikovanej matematiky a $tatistiky

Sposob spristupnenia elektronickej verzie prace:
bez obmedzenia

Datum zadania: 27.01.2011

Détum schvalenia: 27.01.2011 prof. RNDr. Marek Fila, DrSc.

garant §tudijného programu

Student Skolitel’ prace



I would like to thank to my supervisor prof. RNDr. Michal Feckan, DrSc. for
his well-managed leadership and friendly cooperation. I am grateful also to my family,
fiancée and friends for supporting me during my studies. Special thanks belong to prof.
RNDr. Milan Medved’, DrSc. for encouraging me to do the math in the future.

v



Abstrakt

Téato préaca je venovand studiu bifurkacii periodickych rieseni vSeobecnych n-rozmernych
nespojitych autonémnych systémov. Za predpokladu transverzalneho prechodu cez
hranicu nespojitosti st stanovené postacujice podmienky prezitia jediného periodic-
kého rieSenia pri neautonémnej perturbacii z jediného rieSenia alebo autonémnej per-
turbécii z nedegenerovaného systému rieseni alebo izolovaného riesenia. Dalej st stu-
dované bifurkacie periodickych kizavych rieseni z kizavych periodickych rieseni neper-
turbovanych nespojitych rovnic a ntitené periodické riesenia impaktnych systémov
z jediného periodického rieSenia neperturbovanych impaktnych rovnic. Naviac st
vysSetrované lokdlne asymptotické vlastnosti odvodenych perturbovanych periodickych
rieSeni. Prilozené 2-, 3- a 4-rozmerné priklady nespojitych obycajnych diferencialnych
rovnic a impaktnych systémov znazornuju teoretické vysledky.

KT'acové slova: periodicka orbita, klzava periodickd orbita, nespojité systémy, im-
paktné systémy, bifurkécia.



Abstract

This work is devoted to the study of bifurcations of periodic solutions for general n-
dimensional discontinuous autonomous systems. By the assumption of a transversal
intersection with the discontinuity boundary the sufficient conditions for the persis-
tence of a single periodic solution under nonautonomous perturbation from a single
solution or autonomous perturbation from a nondegenerate family of solutions or iso-
lated solution are stated. Furthermore, bifurcations of periodic sliding solutions from
sliding periodic solutions of unperturbed discontinuous equations and forced periodic
solutions for impact systems from a single periodic solution of unperturbed impact
equations are studied. In addition, local asymptotic properties of derived perturbed
periodic solutions are also investigated. Examples of 2-; 3- and 4-dimensional discon-
tinuous ordinary differential equations and impact systems are given to illustrate the
theoretical results.

Keywords: periodic orbit, sliding periodic orbit, discontinuous systems, impact sys-
tems, bifurcation.
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Foreword

Discontinuous systems describe many real processes which are characterized by instan-
taneous change such as electrical switch or bouncing ball. These can be only approx-
imated by classical — smooth-systems theory. This is the reason why there occurred
many papers and books on this topic in the last few years. However, the scientists
avoid the use of so-called discontinuous Poincaré mapping which maps a point to its
position after one period, since the work with the mapping is rather technical. On the
other side, by this method we can get results for general dimensions of spatial vari-
ables and parameters as well as the asymptotical results such as stability, instability
and hyperbolicity. This is the aim of this thesis. After my diploma thesis on periodic
orbits in planar discontinuous systems, it was a natural consequence to immerse myself
in discontinuous systems and investigate their problems. No one else has ever before
studied the discontinuous systems in such general settings. Therefore, our results are
original and successfully published. I have to admit that this would not be possible
without the aid and ideas of my supervisor.
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Introduction

The persistence/bifurcation/continuation of periodic oscillations is one of the funda-
mental problems in evolutionary differential systems. The corresponding mathematical
theory is well-developed for smooth nonlinear dynamical systems (NDS) and can be
found e.g. in books [12,14,19]. These books include a lot of references on the classical
theory of differential equations. Recently, many interesting results appeared extending
the known theory to systems with discontinuous right-hand side. In various cases (for
references see e.g. [9,27,38]) such systems are much more appropriate for describing
the real problems concerning

e a composition of smooth systems — perturbed piecewise-smooth NDS (PPSNDS)
[1-9,26-29, 34-44],

e a smooth system with impact condition — impacting hybrid systems [11,13,18,50].

Discontinuous systems are used for modelling systems with instantaneous change of
external forces or parameters of the system, e.g. electrical circuits with switches,
diodes or transistors, mechanical devices in which components impact with each other
(such as gear assemblies), problems with friction, sliding or squealing and models in
the social and financial sciences where continuous change can trigger discrete actions.

In this work we apply the Melnikov method for continuous systems [32] on PP-
SNDS and hybrid systems. It means that assuming the existence of an isolated peri-
odic solution or a parametrized system of periodic solutions for unperturbed system we
construct a discontinuous Poincaré mapping [9,35,36] and the corresponding distance
function/bifurcation map which zeros imply the periodic solutions for the perturbed
system. Using Lyapunov-Schmidt reduction method [12,45] we derive sufficient con-
ditions in terms of Poincaré-Andronov-Melnikov function on the perturbation for the
persistence of a single periodic solution. For the simplicity, we always assume that
the original solution hits the boundary transversally. Note that one of the analogical
results for the smooth case is Poincaré-Andronov theorem [46].

In Chapter I on PPSNDS we consider two autonomous differential equations con-
nected by a discontinuity boundary/level/set which is usually a smooth submanifold
of codimension 1 in R™. First we investigate the persistence of a T-periodic solution
under a small nonautonomous T-periodic perturbation in Section 1, then the bifurca-
tion of a periodic solution from a family of periodic orbits or a single periodic solution
under an autonomous perturbation in Section 2 and Section 3, respectively. The final
section of the first chapter is devoted to the continuation of a sliding periodic solution
of a discontinuous autonomous equation under a nonautonomous perturbation, i.e. we
consider a periodic solution which remains on the discontinuity level for some time. In



Chapter II, when a solution of a differential equation hits the boundary, it is imme-
diately mapped by a difference equation to a point of the boundary. So we study the
persistence of a periodic solution of a periodically forced autonomous impacting hybrid
system.

Moreover, we study the local asymptotic properties of a persisting solution such
as hyperbolicity, stability and instability. This is probably the biggest advantage of
the method of Poincaré mapping used in this work. In addition, each section contains
applications of derived theory to a nontrivial problems, often endowed with numer-
ically computed illustrations which confirm the theoretical results. Furthermore, in
comparison to papers and books published by other authors, we have no restriction on
the dimensions of a spatial variable and parameters. Finally, we note that this work is
based on our papers [21-25] created by the even contribution of both their authors.

Notation:
[U1, .., U] linear span of vectors vy, ..., vy,
° inner product in R,
Il ] norm in R" generated by (-, -),
B(x,r) ball with the center at z and radius r,
Cy (M) the set of all functions that are uniformly continuous and bounded
on M up to the r-th order,
SA imaginary part of A € C,
I n X n identity matrix,
IFT implicit function theorem [16],
NA null space of the operator A,
RA real part of A € C,
RA range of the operator A.



Chapter I

Piecewise-smooth systems

This chapter is devoted to perturbed piecewise-smooth nonlinear dynamical systems
under which we understand a differential equation

&= F(t,r,X),

where F'(t,x, ) is a smooth function on R x (R™\S) x R™ periodic in ¢ € R. Here S
denotes the discontinuity set — in this work it is a sufficiently smooth hypersurface of R™.
Moreover, we suppose that F(t,z,0) = F(x), i.e. function F(¢,x, x) is independent of
t at xo = 0 and the associated autonomous system

&= F(z)

possesses a periodic solution 7(t) that transversally hits S. For the case of transverse
crossing we prove the persistence of periodically forced isolated solution and the bi-
furcation from a nondegenerate family or a single periodic solution under autonomous
perturbation (here F(t,x,x) = F(x,x) for any x). If v(¢) does not cross the bound-
ary, we investigate a periodically forced sliding periodic solution. We also investigate
hyperbolicity, stability and instability of free solutions.

1 Periodically forced discontinuous systems

In this section, we investigate the persistence of periodic orbit in an autonomous discon-
tinuous system under a small nonautonomous perturbation. More precisely, we assume
that the unperturbed equation possesses a periodic solution that transversally crosses
the discontinuity boundary and we look for sufficient conditions on the perturbation
such that the perturbed equation has a periodic solution which is close to the original
one and has the same period.

Let 2 C R" be an open set in R® and h(z) be a C"-function on , with r > 2.
We set Qy = {z € Q| £h(z) > 0}, Q := {z € Q | h(z) = 0}. Let fr € C}(Q),
g€ CI(Q xR xR xRP) and h € C;(Q,R). Furthermore, we suppose that g is T-
periodic in £ € R and 0 is a regular value of h. Let e, € R and u € RP,p > 1 be
parameters.

Definition 1.1. We say that a function z(t) is a solution of the equation

:i::fi(x)+€g(x,t+a7s,p), xeﬁia (11)

3



if it is continuous, piecewise C*, satisfies equation (1.1) on Q. and, moreover, the
following holds: if for some ¢, we have x(to) € €y, then there exists p > 0 such that for
any t € (ty — p,to) we have z(t) € Q. and for any ¢ € (¢, o + p) we have z(t) € Q.

We assume (see Fig. 1.1)

H1) For e = 0 equation (1.1) has a T-periodic solution 7(¢) which has a starting point
T € 4 and consists of three branches

’Yl(t) ifte [O,tl],
Y(t) = 7a(t) ift e [t ta, (1.2)
v3(t) ift € [ta, T7,

where 0 < 11 <ty < T, ’yl(t) S Q+ for t € [07t1), ’}/Q(t) € QO_fort e (tl,tg) and
v3(t) € Q4 for t € (to,T] and

x1 = m1(t1) = 72(t1) € Qo
Ty 1= Ya(t2) = 73(t2) € Qo, (1.3)
zo = 3(T) = (0) € Q.

H2) Moreover, we also assume that

Dh(z1)fe(z1) <0 and Dh(zy)fr(xg) > 0.

2 fi (o)

V3 Q4
71

i) 1 QO

V2

Fig. 1.1: Used notation

Let x4 (7,€)(t, e, u, @) denote a solution of initial value problem

&= fe(x) +eg(z,t+a,e,p)

#(r) =¢ b

with corresponding sign.
Using implicit function theorem (IFT) [16] we show that there are some trajectories
in the neighbourhood of ¥(t) and then we select periodic ones from these.



Lemma 1.2. Assume H1) and H2). Then there exist e3,73 > 0 and a Poincaré map-
ping
P(-,e,pu,a): B(xg,r3) = X

for all fized € € (—e3,e3), p € RP, « € R where ¥ = {z € R" | (x — x¢, f+(x9)) = 0}
and B(x,r) is the ball of radius r and center at x. Moreover, P is C"-smooth in all
arguments.

Proof. We denote A(T,&,t e, p, ) = h(xo(1,&)(t, €, p, ). Since
A(0, 29, 1,0, 1, ) =0, DpA(0, 2o, t1,0, p, ) = Dh(xq) f1 (1) <0,
IFT yields the existence of 7,71, 91,1 > 0 and C"-function
ti(sy ey ey e) s (—=m,m) X B(xg, 1) X (—€1,61) X RP X R — (t; — 61,1 + 61)

such that A(7,&,t,e,u, ) = 0 for 7 € (—1,71), £ € B(xo, 1) C Q4 € € (—£1,61),
weRP aeRandt e (t; —dy,t; +6y) if and only if t = ¢4(7, &, €, p, ).
Next we set

B(r,&,t e, ) = h(x_(t(7,§, 6, @), 24 (T, §) (0 (7, €, €, 1, @) €, 1, @)) (L, €, 1, @)
Then
B(0, zo,t2,0, u,a) =0, D B(0, xg, t2,0, , ) = Dh(z2) f-(x) > 0,
hence IFT implies that there exist 7,79, d2, 9 > 0 and C"-function
to(y ey ey e) s (=T, 72) X B(xg,72) X (—€2,62) X RP X R — (t2 — 0,2 + 02)

such that B(7,&,t,e,u,) = 0 for 7 € (=12, 1), & € B(xg,12) C Qy,e € (—e9,62),
pweRP aeRand t € (ty — da,t9 + 02) if and only if t = t5(7, &, &, p, ).
Once more time we use IFT on function C defined as
C(T,f,t,E,M,O[) = (m+(t2(r,§,g,u,a),x_(tl(T,g,s,,u,a),x+(7,5)(t1(7,§,s,u,oz),s,,u,oz))
(tQ(Ta 57 &, W, O[), g, 1, O[))(t, €, l, Ol) — Zo, f+((L’0)> .
Since
C(0,0,T,0,p,) =0, DyC(0, 0, T,0, u, ) = || f+(z0)|* > 0,

there exist 73,73, 03,3 > 0 and C"-function
tg(', oty ) : (-7‘3,7’3) X B(I‘0,T3) X (—63,53) xR x R — (T — 53,T+ (53)

such that C(1,&,t,e,u,a) = 0 for 7 € (—73,73), £ € B(xo,73) C Qp,e € (—e3,¢€3),
weER o€ Randt € (T — 3, T+ d3) if and only if ¢t = t3(7,&, e, u, ). Moreover
t1(0, g, 0, i, ) = tq, t2(0, 20, 0, 1, &) = t5 and t3(0, 0, 0, u, ) = T'. Now we can define
the Poincaré mapping from the statement

P(g,g, s Oé) = x+(t2(07€7 €, U, O‘)v x*(tl(ovgv g, K, Oé), -T+(07 f)(tl(oa 5757 2 a)757 s Oé))
(t2(07£767M?a)767/’b7a))(t3(07£767u7 a)767u7 a)'
Obviously, P maps B(xg,r3) to X. O



Our aim is to find T-periodic orbits, which is the reason for solving the following
system

P&, e, pa)=¢
t3(0,&, e, p, ) =T

for ¢ and ¢ sufficiently close to xg and 0, respectively. This problem can be reduced to
one equation

F(& e, pi,a) =& — P(€,5,p,0) = 0 (1.5)

where

ﬁ(ga g, i, a) = l‘+(t2(0, 5787 K, Ot), x—(tl(()?gv €, W, Oé), I+(O,£)(t1(0, fa €, 4, 04), g, i, 04))

(t2(07 57 €, My Oé), €y My Oé))(T, gy My a)
(1.6)
is so-called stroboscopic Poincaré mapping (cf. [9]). It is easy to see that (£, e) = (20, 0)
solves equation (1.5) for any p € R?, a € R. However, IFT can not be used here, what
is proved in the next lemma (see [35,36]).

Lemma 1.3. Let ﬁ(ﬁ,au,a) be defined by (1.6). Then ﬁg($070,u,a) has eigenvalue
1 with corresponding eigenvector fi(zo), i.e. Pe(xo,0, u, &) f(z0) = f1(z0), where P
denotes the partial derivative of P with respect to &.

Proof. Let V' be a sufficiently small neighbourhood of 0. Then

'I-i-(O? £C+<0, l’o)(t, 07 , a))(tl(()) $+(O, (Eo)(t7 07 K, Oé), 07 1, O[)a 07 K, Oé)
=24 (0,20)(t + t1(0, 2+ (0,20)(¢, 0, t, ), 0, pt, ), 0, , )
for any ¢t € V', where the left-hand side of (1.7) is from Qy and the right-hand side is

a point of y(t). Thereafter ¢t + ¢1(0, x4 (0,x0)(t,0, 1, ), 0, u, @) = ¢4, i.e. it is constant
for all t € V. Similarly

x_(t1(0, 24 (0, 20)(t, 0, i, ), 0, g, ), (0, 24 (0, 20) (¢, 0, 1, @) ) (£1(0, 24 (0, x0)
(t,0, p, ), 0, g, ), 0, p, ) (t2(0, 24 (0, 20) (¢, 0, 1, ), 0, 1, @), 0, 1, @)
=2_(t1(0, 24 (0, 20) (¢, 0, 1, ), 0, 1, ), 24 (0, z0) (t1, 0, 1, )
(t2(0, 24(0,20)(¢,0, p, ), 0, p, ), 0, p, cx)
=x_(ty — t,24(0,20)(t1,0, pt, ) ) (t2(0, 21 (0, 20) (¢, 0, p, ), 0, p, ), 0, p, cx)
=x_(t1,21)(t2(0, 24 (0, 20) (t, 0, i1, ), 0, pt, @) + ¢, 0, p, cx)

and we obtain ¢ + t5(0, 2 (0, 20)(¢,0, p, ), 0, p, ) = t5 for all t € V.
With these results we can derive

(1.7)

P(x4(0,20)(t, 0, 1, ), 0, p, @)
= x4 (t2(0, 24 (0, 20)(t, 0, p, ), 0, pt, ), x_(t1(0, 24 (0, 20) (¢, 0, 1, ), 0, p, @),
24 (0, 24(0,20)(¢,0, g, ) ) (£1(0, 2 (0, 20) (£, 0, 1, @), 0, 1, @), 0, 1, @)
(t2(0, 24(0,20) (¢, 0, p, @), 0, 1, @), 0, 1, @) ) (T, 0, pa, )
= x4 (t2(0, 24.(0, 20) (¢, 0, p, @), 0, 1, @), w2) (T, 0, p1, )
=ai(te —t,22)(T,0, p, ) = xy (ta, x2) (T + 1,0, 1, cv)



and finally

]Bg(xo,&u, ) f(zo) = Dy | P(24(0, 30)(t, 0, 11, @), 0, 11, @) o
= Dt [$+ <t27 x2)<T + ta 07 1, a)]t:o
= f(l.-i-(t?a xQ)(T +1t, 0? 1y a))lt:O = f(mo)
O

In the next step we construct the linearization ]35(3:0, 0, i, @) which will be important
in further work.
Differentiating (1.4), with respect to & at the point (7,&, ) = (0,9, 0) we get

i+§(07 xO)(tv 07 H, Oé) = Df+(’}/(t))$+§(0, xO)(t7 07 K, OZ)
x-‘rﬁ(oa 1‘0)(0, 0, 1, a) =1
where I denotes n x n identity matrix. Denote by X;(¢) the matrix solution satisfying

this linearized equation on [0, ], i.e.

Xi(t) =Df(v(1)Xa(t)

X,(0) =1. (18)

So 24¢(0,20)(¢,0, u, ) = X;(t). By differentiation (1.4), with respect to 7 at the same
point we get
i‘+7(0, IO)(tv 0) H, Ck) = Df.;,_(’}/(t))ﬂf_;,_‘,-(o, l’o)(t, 07 My O[)
x‘l‘T(O? ZL’())(O, 07 My Ol) = _f+($+(07 fL’())(O, Oa H, Oé))
Hence
‘rJrT(Ov xO)(t7 07 H, Oé) = _Xl(t)f+(x0)
for t € [0,¢;]. Also the derivative of (1.4); with respect to € at (0, zo, 0) will be needed.

We obtain the initial value problem

*’t-‘rE(Ov xo)(t, 07 s a) = Df+(’7(t))fl?+g(0, .’L‘())(t, 07 1, O[) + g(’}/(t), t + «, 07 /1’)
24:(0,20)(0,0, ) =0

which solved by variation of constants gives equality

ar0.00) 10, ) = | X)X (8)g(1(5), s + a0, )

holding on [0, ¢4].
First intersection point on €2y fulfils

h($+(T, 5)(751(7—) 57 €, [, O[), €, [, O[)) =0
for all (,&,e) sufficiently close to (0,20,0) and p € RP, o € R. Thus differentiating
the latter identity with respect to &, 7 and ¢ at (7,&,¢) = (0, 2, 0) yields
Dh(z1)(X1(t1) + f+(21)t16(0, 20, 0, 1, @) = 0
Dh(xl)Xl(tl)

t _ Dh(z) X ()
16(0:20, 0, p.0) = =pE S



Dh(xl)(_Xl(t1>f+(x0) + f+($1>t17(07 o, 0, p, O‘)) =0
_ Dh(z1) X1 (1) f1 (20)
00 000 = TG e )
and
Di(er) ( Fulota 00,0, 1) / X)X $)g(5). 5+ 0,0, s ) =0

¢ (0 0 )_ _Dh( Xl(tl)X ( )g(f)/( ),S—FOz,O,M)dS

B Dh(e:) () |
respectively.

with respect to &, 7 and ¢ at the point (7,&,¢) =

Next, differentiating (1.4)_
(t1,21,0) we obtain

i.—f(tla xl)(tv 07 My O{) = Df—(IY(t))x—E(tla xl)(t7 07”7 Ck)
x,g(tl, 33'1)(151, O, U, Oé) = H,

i—‘r<t1a xl)(tv 0, p, a) = Df—(V(t)))x—T(tlv xl)(t> 0, 1, a)
x—T(tlﬂxl)(tlvovuﬂ a) = _f—(x—(tlvxl)(t1707uva))

and
(tr,21)(t, 0, p, ) = D (y(8))w—c(tr, 21) (2, 0, p, ) + g(7(2), t + e, 0, )
x*z’:‘(tla xl)(tla 07 122 Oé) = 07
respectively, for ¢ € [t1,t5]. Using matrix solution X,(t) of the first equation satisfying
Xo(t) =1,

ie. w_g(ty,21)(,0, u, ) = Xo(t), we can rewrite the other two solutions as

r_(t1,x1)(t, 0, pu, ) = =X (t) f— (1),
oot )t 0, / Xa(t) X5 (8)9(x(s), 5 + 0,0, p)ds

fort € [thtg].
Second intersection point is characterized by

h(l‘* (tl (7—7 57 €, i, Oé), J]+(T, 5)(t1 (7—7 57 €, My Oé), €, My a))(t2(7—7 67 €, 1y Oé), €y 1y Oé)) =0.

From that we derive
Dh(:L.Q)(:L.fT(tl? xl)(t% 07 Hs a)tlﬁ(oz Zo, Oa s Oé) + x*ﬁ(tla $1)(t2, 07 s CY)
X [x-i-f(oa xO)(tla 07 1, O./) + LL’_H(O, xO)(tlv 07 K, a)tlf(ov Zo, 07 H, Oé)]
+x—t(t17 xl)(t% 07 H, a)t2§(07 Zo, 07 1, a)) =0



Dh(x2)Xa(te)S1X1(t1)
Dh(z2) f— ()

Dh(Ig)(I_.,—(tl, xl)(th Ov s a)tl'r(07 Zo, 07 1y a) + x—{(tlp xl)(t% 07 H, Oé)
X [$+T(0ﬂ xO)(tla 07 H,y O[) + x-‘rt(ov xO)(th 0> M, a)t17(07 Lo, 07 1y a)}
+x—t(t17 xl)(t% 07 M, Of)tz,,—(o, Zo, 07 122 O{)) =0

_ Dh(#2) X (t2)S1.X1(t1) f+ (o)
far0 0 000 0 = D) ()

th(()? Zo, 07 M, O[) = -

and

Dh(l‘z)(%‘,T(tl, xl)(t% 07 H, a)tle(oa o, 07 K, OZ) + 'I*E(th .Tl)(tg, 07 H, O{)
X [l‘+5(0, l‘o)(tl, 07 1, a) + CU.H(O, l‘o)(tl, 07 K, a)tlé(ov Zo, 07 , Oé)]
+$—t(t1a xl)(t% 07 1, a>t25(07 o, 0> 22 Ck) + ’I—E(tlv xl)(t% Oa , a)) =0

B D]’L(.IQ)
Dh(z2) f-(2)

to

xg(y(s),s+ «,0, u)ds + Xo(t2) X5 (s)g(v(s), s + , 0, u)ds) ,

t1

i1
1. (0, 20,0, 1, ) — (Xz<t2>sl [
0

where

(f-(x1) — f4(21))Dh(z1)

Si=1 Dh(z1) f (1)

(1.10)

is so-called saltation matrix [35,42].
Finally, we count derivatives of (1.4), with respect to &, 7 and € at (71,&,¢) =
(t2,72,0) to obtain

i‘+§(t27 x?)(tv 07 w, Oé) = Df+(’}/(t))$+§(t27 $2)(t, 07 K, Oé)
x+f(t27 ‘/I:Z)(t% 07 M, OZ) = H?

$+T(t27 xQ)(tv 0, 1, a) = Df+(7(t))x+‘r (t27 xQ)(t> 0, 1, Oé)

Tir (b2, T2) (L2, 0, 1, @) = — fo (24 (L2, 22) (L2, 0, p, @)
and

pe(ta, 22)(t, 0, py o) = Dfy (v())212 (2, 22) (2, 0, 1, @) + g(v(2), t + @, 0, )
Tye(te, x2)(ta, 0, p, ) = 0,
respectively, on [ty, T]. Matrix solution Xj3(t) for first equation that for t € [to,T]
satisfies )
X3(t) =D f(v(2))Xs(t)
Xs(t2) =1,

ie. wye(ta, 22)(t,0, 1, ) = X;5(t), simplifies expressions for the other two solutions:
Tir (b2, 2) (8,0, p, @) = =X5(0) f(22),

T et 22)(1 0, 1, 0) = / X3(t) X34 (5)g(1(s), 5 + 0,0, p)ds

(1.11)

for t € [t2,T]. Now we can state the following lemma.
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Lemma 1.4. Let ﬁ(f,s,u, a) be defined by (1.6). Then
P§($0,0 M, & ( )SQXQ(tQ)Sle(tl) (112)

P (20,0, p, / A(s ), s+, 0, 1)ds, (1.13)

where ]55 and ]3E denote the partial derivatives ofﬁ with respect to & and €, respectively,
Xi(t), Xo(t) and X5(t) are matriz solutions of corresponding linearized equations (1.8),
(1.9) and (1.11), respectively, Sy is the saltation matriz given by (1.10), Sy is a second
saltation matrix given by

(fy(z2) = f(22))Dh(zy)

Sy =1+ D2 [ (23] (1.14)
and
X3(T) S X5 (t2)S1 X1 (1) XM () ift €[0,1y),

A(t) =  X3(T)S2 Xa(t2) X5 (1) ift € [t1,t2), (1.15)
X3(T) X5 (t) ift € [ty, T).

Proof. Direct differentiation of (1.6) and the use of previous results give statement of
the lemma:

Pe(wo, 0, 1, @) = @y (b2, 22) (T, 0, 1, @)t2e(0, 20, 0, 1, @) + @y (b, ) (T, 0, p1, )
X[@_r(t1, 1) (t2, 0, g, @)t1£(0, 0, 0, p1, @) + x_¢(t1, 1) (L2, 0, p1, )
X[x4¢(0,20)(t1, 0, 1, @) + 244(0, 20) (1, 0, 1, @)t1£(0, 20, 0, 1, )]

+x_¢(t1, z1)(t2, 0, 1, )t2e (0, 2o, 0, 1, )]

= (1) ) PR ) () Xt o)
 Xa(t) [ Xu(t) = folon) O | oy PR

= Xg(T)SQXQ(tQ)Sle(tl)
Equality (1.13) can be shown by the same way. O
For the further work, we recall the following well-known result (cf. [33]).

Lemma 1.5. Let X (t) be a fundamental matriz solution of equation X' = UX. Then
X (t)™"* is a fundamental matriz solution of adjoint equation

(X)) =-Ux (@)

We solve equation (1.5) via Lyapunov-Schmidt reduction. As it was already shown
in Lemma 1.3, dim N (I — Pg(x,0, p, «)) > 1. From now on we suppose that

H3) dim N (I— ﬁg(xo,(),u,oz)) =1

10



and therefore codim R(I — ?5(:1:0, 0, 1, )) = 1. We denote

~ ~ 1
Ry =R~ Pelr0,0,1,0)),  Ro= [R(I~ Pe(a0,0, 4, ) (1.16)

the image of the corresponding operator and its orthogonal complement in R™. Then
two linear projections are considered P : R — Ry and Q : R® — R; defined by

(y, ) (y, )
1412 [[4]]2

where 1 € Ry is fixed. We assume that initial point £ of perturbed periodic trajectory
is an element of ¥. Equation (1.5) for (§,a) € ¥ x R is equivalent to a couple of
equations

Py = 1, Qu=(1-Ply=y— Y

QF(§,e,p,0) =0,  PF(&e,p,a) =0

for ({,a) € ¥ x R with parameters (e, ) € R x RP. The first one can be solved via
IFT which implies the existence of rg, g > 0 and a C"-function

€:(—€0,60) X RP X R — B(xg,19) NE

such that QF (&, e, u,a) = 0 for € € (—ep,20), 4 € RP, a € R and € € B(xg,r9) N2 if
and only if & = £(e, p, ). Moreover £(0, i, @) = xy.
Then the second equation has the form

<f(57/%04)—ﬁ(f(faﬂ’a)yfaﬂ»a)awzo' (117)

Again, if e = 0 this equation is satisfied for any (u,a) € R? x R. Differentiation with
respect to € at 0 gives

<€6(07 122 a) - ﬁé(fl/'o’ 07 H, O‘)gﬁ(O?Mv Oé) - ﬁE(IOJ 07 s a)7¢>
= <(H - ﬁﬁ(l‘Oa 07 22 Oé))fe(o, , a) - ﬁa(ﬂfo, 07 , Oé),l/)>

= <(]I — ]55(330, 0, 1, @))&(0, p, OZ),1/1> - <]Se($oa 0, p, 04)71/}>

o[ Aot a0 s

=—A<<@a<>s+aomwm

[ lor(s)s 00,00, A0

where
X7 (X7 (1) ST X5 (82) S5 X3(T) it t € [0, 1),
A*(t) = X2 (1) X5 (t) S5 X3(T) ift € [t1,t2), (1.18)
Xy () X;5(T) if € [ts, 7.

Note that by Lemma 1.5, A*(t) solves the adjoint variational equation

X' = -Dft(v(t)X if0<t<t,
X' = D (W)X ifts<t<T

11



of (1.1). Differentiation of the left-hand side of (1.17) with respect to ¢ and o at € =0
gives

T
— [ Dgr(5)5 + 0., A°(5)u) .
0
In conclusion, we obtain the next result.

Theorem 1.6. Let conditions H1), H2), H3) hold, v(t), Ry and A*(t) be defined
by (1.2), (1.16) and (1.18), respectively, and 1) € Ry be arbitrary and fized. If ap € R
is a simple root of function M* («) given by

M¥(0) = / (g(1(E), t + a0, ), A*(£)s) (1.20)

i.e. MF (o) = 0, DM#"(ap) # O then there exists a neighbourhood U of the point
(0,0) in R x R? and a C"'-function a(e,n), with a(0, ) = g, such that equa-
tion (1.1) with o = (e, ) possesses a unique T-periodic piecewise C*-smooth solution
for each (e,pu) € U.

Proof. Let us denote

D(e, p, ) =

Hele,pa) = P(§(e, pya) e pa) v) - fore #0,
DE<£(€7M7 a) - P(g(gauva{)agauva)ﬂ/O fore = 0.

Then D is C"!-smooth and the assumptions on M*0 are fulfilled if and only if
D(O, Mo, CY(]) = O, DQD(O, Ho, Oé[)) ?é 0.

IFT implies the existence of the function a(e, p) from the statement of the theorem. O

Function M*(«) is a Poincaré-Andronov-Melnikov function for system (1.1).
Remark 1.7.

1. If ¢ is discontinuous in z, i.e.

,t, e, if x € Q,
g(x,t e, 1) = g+(@,1,€, 1) LT
g-(z,t,e,pu) ifz e,

it is possible to show that Theorem 1.6 still holds. Of course, g has to be T-
periodic in ¢.

2. It can be shown that in Theorem 1.6 we can take any other solution of the
adjoint variational system consisting of the adjoint variational equation (1.19)
and corresponding impulsive and boundary conditions (see Lemma 2.4).
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1.1 Geometric interpretation of condition H3)

Consider the linearization of unperturbed problem of (1.1) along ~(t), given by
&= Dfs(2(0)r. (1.21)
Then (1.21) splits into two unperturbed equations

& =Df (v(t)r  ifte[0,6] Uk, T],
i =Df (y(t)r  ift € (t,ts)

with impulsive conditions [35,36,42]
z(ti+) = Siz(t1—), x(ta+) = Sax(ta—)

where x(t+) = lim, 4+ 2(s). We already know (from (1.8), (1.9), (1.11)) that they have
the fundamental matrices X (t) resp. Xs3(t) and Xo(t) satisfying X;(0) = Xo(t1) =
X3(ty) = 1. Consequently, the fundamental matrix solution of discontinuous variational
equation (1.21) is given by
Xi(1) ift €10,t)
X(t) - Xg(t)lel(tl) lft S [tl,t2)7
Xg(t)SQXQ(tQ)Sle(tl) ift € [tg, T]

Then a T-periodic solution of (1.21) with an initial point £ fulfils £ = X(T)€ or
equivalently (I — X(7))¢ = 0. Now one can easily conclude the following result.

Proposition 1.8. Condition H3) is equivalent to say that discontinuous variational

equation (1.21) has a unique T-periodic solution up to a scalar multiple.

1.2 Nonlinear planar applications

Here we consider the following piecewise nonlinear problem

T = Wl(y - 6) +591($7yat+0‘757,u)

. ify >0,
Y= —wx + 892($, Y, t+ a, g, /’L)
T =nx+ ws(y +9) (1.22).
+ [IZ + (y + 5)2] [—CLZE - b(y + 5)] + Egl(x7y7t+ O[,E’/,L) lfy <0
Y= —wx +n(y+9)
+ [2% 4 (y +0)*] [br — aly + 8)] + ega(, y,t + a, e, p)
with assumptions
b
1,0,wi,we,w,a >0, beR, WQ—T/_>O, 0 52 (1.23)
a a

Note the dependence on ¢ in the notation (1.22).. Hence (1.22), refers to the unper-
turbed system.
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Due to linearity, the first part of (1.22)y can be easily solved, e.g. via matrix
exponential. For starting point (x¢,yo) = (0,9 + \/g) and t € [0, ;] the solution is

1(t) = <\/§sinw1t, o+ \/ﬁcosw1t> . (1.24)
a a

Time ¢, of the first intersection with discontinuity boundary Qq = {(z,y) € R? | y = 0}
and the point (xy,y;) of this intersection are obtained from relations h(vy;(¢;)) = 0 for

h(x, y) =y and (5517 y1) = 71(151), respectively:

t, = * arccos <—\/§(5> , (x1,11) = < n_ (52,0> )
w1 n V a

After transformation x = rcosf, y +d = rsiné in the second part of (1.22),, we get

f’:nr—ar?’

9. = —Wwsy + b?”2
from which, one can see that the second part of (1.22), possesses a stable limit cy-
cle/circle with the center at (0, —0) and radius /7, which intersects boundary €.
Now it is obvious that (x1,y;) is a point of this cycle and the direction of rotation
remains the same as in 0, = {(x,y) € R* | y > 0}. Therefore y,(¢) is a part of the

circle, given by

Y2(t) = (x1 cosws(t — t1) + dsinws(t — t1), (1.25)
—0 — xysinws(t —t1) + dcosws(t —t1)) '

for t € [t1,t5], where w3 = wy — %b Equation h(y2(t2)) = 0 together with symmetry of
v2(t) give the couple of equations
x1cosws(ty — t1) + Osinws(ty — 1) = —xq,

—0 — xy sinws(te — t1) + 0 cosws(te — t1) = 0.
From these them we obtain
1 _52 2
ty = — | ™+ arccot rrn + .
W3 2(5.%’1

Point (22, y2) is a second intersection point of the limit cycle and €, i.e.

(72,92) = 1a(t2) = <—\/ﬁ, 0) .

Next, solution 7(t) continues in 2 following the solution of the first part of (1.22),.

Thus we have
v3(t) = (wg coswy (t — ty) — dsinwy (t — o),

o — T2 sinwl(t — tg) — (5COSW1(t — tz))
for t € [ta, T]. Period T obtained from identity v3(7") = (o, yo) is

1
T = — arccos (—\/E5> + 5.
w1 n

The next theorem is due to Diliberto (cf. [12,46]) and we shall use it to find the
fundamental matrix solution of the variational equation.

(1.26)
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Theorem 1.9. Let v(t) be a solution of the differential equation @ = f(x), x € R2. If
v(0) = p, f(p) # 0 then the variational equation along ()

V =Df(v(t)V

has the fundamental matriz solution ®(t) satisfying det ®(0) = || f(p)||?, given by

where [\, Xo] stands for a matriz with columns Ay and Ay and

V(1) = a(t)f(+(8)) + b(t)f-(1(0).
alt) = / (v () + div F-(4(5))] b(s)ds,
b(S) _ ||f( )H fotdivf('y(s))ds’

[FCIONE
div f(z) = aglw(f) + aggx(j), div f*(z) = _8];2;136) + 82196(;),
<0(0) = T [AOORO0) - A6 A6

Lemma 1.10. Assuming (1.23), unperturbed system (1.22)y has fundamental matrices
Xy, Xy and X3 satisfying (1.8), (1.9) and (1.11), respectively, given by

[ coswit  sinw;t
Xi(t) = <— sin wyt cosw1t> ’
a
Xs(t) = ) A1, Aol X3(t) = Xq(t — to)
where
N U(=0x1 + oW + I%W) + V(62 + 23W — 5x1W)
PN U(=62 = 22W 4 50 W) + V(=621 + 62 W + 22W) )

N = U(z? + W + 51:1W) + V(=dz1 + 6 W — 52W)
? U621 — 62, W + 82W) + V(22 + W + 62, W)
U = sinws(t — t1), V = cosws(t — t1),

W= 2=t = 9(1 - W),

a
1 _6(w1+w3)
ot
0%

and saltation matrices

1 _6(W1+UJ3)
S = w11 S
1 0 Zi ) 2

defined by (1.10), (1.14), respectively.
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Proof. Matrices X;(t) and X3(¢) are derived easily because of the linearity of function
f+(2,y). Using

Je(z,m) = <_w1—w215_ 52) ) J-(z1,1) = <—w3%> ) 1.27)

w3d
[+ (@2,y0) = <w1 1_§2) f-(22,y2) = (Ldg\/ﬁ ’

saltation matrices are obtained directly from their definitions. Since (1.22)y is 2-
dimensional and one solution of the second part is already known — the limit cycle, we
can apply Theorem 1.9 to derive the fundamental solution of this part. So we get a
matrix

Tty m [ TUH SV UGW + W)+ V(a W — 6W)
2 \=0U =1V U(=ayW + W) + V(W + 2, W)

such that 5
X)) = — h
== (0
and det Xo(t1) = || /- (z1, 1) = 13, If Xo(t) has to satisfy (1.9) then X(t) =
X)Xy (1), 0

Now, we can verify the basic assumptions.

Proposition 1.11. Assuming (1.23), unperturbed system (1.22)o has a T-periodic so-
lution with initial point (xg,yo) = (0,0 + \/g) defined by (1.2) with branches ~1(t),
Y2(t) and v3(t) given by (1.24), (1.25) and (1.26), respectively. Moreover, conditions
H1), H2) and H3) are satisfied.

Proof. Condition H1) was already verified. Since Vh(x,y) = (0,1) for all (z,y) € R?
and (1.27) holds, also condition H2) is fulfilled.

Now suppose that dim N (I — ﬁg(ﬁg,@,ﬂ, a)) > 1. We recall that fi(zo,y0) €
N(I— ]Sg(xo, 0, i, ). Since N (I — ]55(370, 0, 1, «)) is linear, there is a vector

v EN(H_ﬁg(-r&Oa/'l’va))

such that (v, f4(20,y0)) = 0. Then we can write v = (0,v)". Using formula (1.12) for
P we look for the image of 0 by mapping Pe(xo, 0, p1, ). We subsequently obtain

62(w1+w3)
v a B e mA.cal
51X1(t1) = w_l\/% (W1(L'1 _5w3z1 )’

Xo(t2) 81 X1 (t)0 = i\/@ (%(OA +ws) — W Z — 5W1;Zv)
n

1]

w1 0wy +w3) + 0w Z — mqyw Z

where Z = e~21t2=11) and 7 = Y(1 = Z) are values of W and W at t =ty

_9 _ (w1 4 nws 7
52X (t2)$1.X1 ()5 = — \/§ m (@1t ws) — (S04 N2 unZ
w3 n 5(&11 + W3) + 5w1Z — xlwlZ
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and finally

0 witws S witws 7 w1y
XS(T)SQXQ(tQ)S1X1(t1)17 = (Il w3 + 1 w3 Z wsz) .

Since Z < exp{—Q—"W} < 1, it is obvious that v = f’g(xo,(),u, a)v if and only if

w3

v = (0,0)*. Hence the verification of condition H3) is finished. O

Because, in general, the formula for A(t) is rather awkward, we move to examples
with concrete parameters.
Example 1.12. Consider system (1.22). with
a=b=6=1,n=2 w =1, wy =5,

( ; ) (sinwt, 0)* ify >0, (1.28)
m? ) 757 = .
TEYHER =9 (0, 0) ity <0,

Then we have ws = 3, T' = 2, initial point (2, yo) = (0, 141/2), saltation matrices

1 —4 1 —4
— — 3
iloa) b Y)

~ 1 14 272
Pg(l‘o,yo, 07 M, a) - <O e§27r > .

Therefore Ry = [(1 + %e_%,e_%r — 1)*] and ¢ = (1 —e 2 1+ 36_2”) € Ry. After
some algebra we obtain

1 e-27
T 3wr—1
for M(a) = M“(«) of (1.20), where

A =4+/2sin <Z7Tw> + (362”\/5 + \/5) sin <Z7rw> + (3e*™ — 3) sin (27w)
3 )
B=-5—3"" — (\/5 + 3\/§e%> cos (Zvrw) + 4v/2 cos (Zmu> + (5 + 3e*") cos (27w) ,

and

M(«) [(wA + B)sinwa + (wC + D) coswal

C = 3e*™ — 3 — 4v2cos <%W> - (\/5 + 3\/562”) cos <g7rw) + (3 = 3e*") cos (271w) ,

3 D
D=— (\/5 + 3\/§e2’r> sin <Z7rw) + 4v/2sin (Zﬂw> + (5 + 3e”") sin (27w) .
(1.29)
For w > 0, w # 1, M(«) has a simple root if and only if (wA + B)? 4+ (wC + D)? > 0.
Since A and C' are 8-periodic functions,

2
VB2 + D2 < <(5 +3e% + V2 +3V2e¥ +4vV2 4+ 5+ 362”)

2\ 3
+ <5+3e2”+\/§+3\/§e2”+4\/§> )

=3 (1 n \@) V9ei™ 1 30627 + 25 < 6739,
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and according to Fig. 1.2 we have the estimate

V(WA+ B)2+ (wC + D)2 > wVA2+ C? — VB2 + D? > 400w — 6739

and one can see that for w > 17, T-periodic orbit in perturbed system (1.22). persists
for all £ # 0 small. It can be proved numerically (see Fig. 1.2) that

1
1]
for w € (0,17). We conclude

Corollary 1.13. Consider (1.22). with parameters (1.28). Then 2m-periodic orbit
persists for all w > 0 and € # 0 small.

V(wA+ B)2 + (wC + D)2 >0 (1.30)

50004 5000+
4000+ 4000
3000 3000+
20004 20004

10004 10004

Fig. 1.2: Graphs of the functions vV A? + C? and the left-hand side of (1.30)

Example 1.14. Consider system (1.22). with

a=b=0=1,n=2 w =1, wy =5,

p(sinwt, 0)* ify >0, (1.31)

g(z,y,t e, ) = .
po(z +1y,0) ify <O0.

Consequently, Poincaré-Andronov-Melnikov function of (1.20) is
1 —27
M(a) = png 62 1 [(wA + B) sinwa + (wC + D) coswa] + poF
w [R—
where A, B, C, D are given by (1.29) and
\/5 —27
E:%(739—223e ).

Function M («) possesses a simple root if and only if

1 e /(wA+ B)?+ (wC+ D)?
3 |w? —1| E
Applying Theorem 1.6 we obtain the next result.

2| < |pal. (1.32)
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Corollary 1.15. Consider (1.22). with parameters (1.31). If p1, po and w sat-
isfy (1.32) then 2m-periodic orbit persists for e # 0 small.

Remark 1.16. Inequality (1.32) means that if the periodic perturbation is sufficiently
large (with respect to non-periodic part of perturbation) then the T-periodic trajectory
persists. Note that the right-hand side of (1.32) can be estimated from above by

Veiw? + cow + c3
-1

for appropriate constants ¢y, ca, c3, which tends to 0, if w tends to +00. Hence the
bigger frequency w, the bigger |u;| is needed for fixed py # 0 for persistence of the
T-periodic orbit after Theorem 1.6.

1.3 Piecewise linear planar application

Now we consider the system

T = b] + e sin wt

. if y >0,
y = —2a1b1x + epig cos wt
(1.33).
T = —by + epy sinwt
P T eEm ify <0
Y = —2a9bsx + g coswt

where all constants a;, b; for i = 1,2 are assumed to be positive and (u1, pu2) # (0,0),
w > 0.
The starting point can be chosen in the form (z¢,y9) = (0, y0) with yo > 0. Then
with h(z,y) = y we obtain results similar to those of the nonlinear previous case.
First, one can easily find the periodic trajectory starting at (0,yo) € Q4 = {(z,y) €
R? | y > 0}, intersecting transversally Qy = {(z,y) € R* | y = 0} to Q_ = {(z,y) €
R? | y < 0} and returning back to Q, transversally through €.

Lemma 1.17. For any yo > 0, unperturbed system (1.33)y possesses a unique periodic
solution starting at (0,yq) given by

’Yl(t) = (blt, —alb%tz + yo) th S [O,tl],
Y(t) = § 2(t) = (21 — ba(t — t1), a0(z1 — ba(t — t1))? — apx})  if t € [t ta],
Y3(t) = (xo 4+ b1 (t — t2), —ar(z2 + by (t — t2))* + arz3) ift € [t2, T

T Jyo /Yo 2 |yo
t = — _ R = —, 0 s t —_ — _ t ,
1 o\ o (1,y1) < a 2 b\ ay + 1

1
(3527242) - (_xlvo)u T 7 @

= + to.
bl aq 2

Fundamental and saltation matrices are described in the next lemma.
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Lemma 1.18. Unperturbed system (1.33)o has the corresponding fundamental matrices

Xt = (—2;1b1t (1)> Xa(t) = <—2a2b21(t—t1) ?) ’

X3(t) = <_2a1b11(t ) (1)>

and saltation matrices

1 Vai(bi+b2) 1 Va1 (bi+b2)
Sl — 2a1b1\/yT) , 5’2 — 2(121)2@ .
0 azgz 0 a121
aiby azbz

Proof. Because of the linearity of this case, fundamental matrices are obtained from

equalities
eAlt—t2)

Xl(t) = eAta XQ(t) = eB(t_tl)v X3(t) =

where
0 0 0 0
A o (-2@1()1 0) ’ B= <—2a2b2 0)

are Jacobi matrices of the functions f(x,y) and f_(z,y), respectively. Saltation ma-
trices are given by their definitions in (1.10) and (1.14) where Vh(z,y) = (0,1) in Q

and
by

—b,
e =iy i) o= (i)
1.3
b —b
f+($2,y2) = (2@1(711\/?—0) ) f*(x%yQ) = (2@2(72\2/?—0) '

O

In this case, the corresponding matrices can be easily multiplied to derive the

following result.
Lemma 1.19. Function A(t) of (1.15) for the system (1.33). possesses the form

( 1— 2y/aibit(bi+b2) by 4bo
S ift € [0,4),
101
1_ 2 i Vai(t—t1)(bi+b2) /a1 (bi+b2)
Alt) = ba Vi bV ) ift e [t t), (1.35)
2(,/a1y0—a1b2(t—t1)) —Z_;
1 0 ft € [ta, T
[/ 2 .
\ 2(a1bi(t — t2) — Jaryo) 1

It remains to verify the basic assumptions.

Proposition 1.20. Conditions H1), H2) and H3) are satisfied.
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Proof. From Lemma 1.17 and using (1.34), conditions H1) and H2) are immediately
satisfied. N
Now let dim N (I — P¢(zo, y0, 0, pt, )) > 1. Then there exists

v E N(H - ﬁﬁ(x()a Yo, 07 H, OZ))
such that (0, fi(zo,y0)) = 0 and we can write v = (0,v)*. Since

D _v(bitbs)
Pe(x0, 90,0, pr, 0)v = A(0)v = bay/aiyo
v

then v = 0, dim N (I — ﬁf(:ro,yo,o,u,a)) = 1 and the condition H3) is verified as

well. 0O
Note that there is a lot of periodic trajectories in the neighbourhood of ~(t) but

none of them has the same period, because the period T = 2 g—? (é + é) depends

on the initial point (xq, yo).

We have B

Accordingly, we set ¢ = (0,1)* and A*(t)y) = (am(t) >7 i.e. the second column of matrix

a2 (t)

A(t). The assumptions of the Theorem 1.6 are equivalent to say that
T T
M () = sinwa (ul / ag (t) coswtdt — ug/ ago(t) sin wtdt)
0 0

T T
+ coswa (ul / as (t) sinwtdt + o / ag(t) cos wtdt>
0 0

has a simple root. It is easy to see, that this happens if and only if
T
B(w) = / e~ (1111 (1) — 17120 (£))dE £ 0 (1.36)
0

where 1 = v/ —1.

Similarly to [7], function ®(w) is analytic for w > 0 and hence the following theorem
holds (see [7, Theorem 4.2] and [49]).

Theorem 1.21. When ®(w) is not identically equal to zero, then there is at most a
countable set {w;} C (0, 00) with possible accumulating point at +o0o such that for any
w € (0,00)\{w,}, the T-periodic orbit y(t) persists for (1.33). under perturbations for
e # 0 small.

Because for general parameters, conditions on pq and ps, so we could decide when
®(w) is identically zero, or the set of roots is finite or countable, are too complicated,
we rather provide an example with concrete numerical values of parameters.

Example 1.22. Consider system (1.33). with parameters

aq :a2:b1 :b2 = Yo = 1. (137)

21



Now, from (1.36) we have

—2ww

O(w) = —4

— (211 + wpo) sinw(cosw — 1).
Thence for w € (0,00) it holds: if w = k7 for some £ € N or w = —% > 0 then
®(w) = 0. Applying Theorem 1.6 we arrive at the following result.

Corollary 1.23. Consider (1.33). with parameters (1.37). If w > 0 is such that
w # km for all k € N and w # —% with py # 0 then T-periodic orbit v(t) persists
under perturbations for € # 0 small.

Finally, if ®(w) is identically zero then higher order Poincaré-Andronov-Melnikov
function must be derived [8]. We omit those computations in our case, because they
are very awkward.
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2 Bifurcation from family of periodic orbits in au-
tonomous systems

In the previous section, we studied the discontinuous systems with time-periodic per-
turbation. Now, we move our attention to the case of autonomous perturbation. In
this section, we investigate the persistence of a single periodic solution from a bunch of
transverse periodic solutions of unperturbed system. In comparison to Section 1, here
we seek the periodic solution with period close to the period of the original trajectory.

Let Q C R™ be an open set in R” and h(z) be a C"-function on €, with r > 3.

We set Qi = {z € Q| £h(z) > 0}, Qo := {z € Q| h(z) = 0}. Let fr € CI(Q),
gECI(QxRxRP)and h € CF (L, R). Let ¢ € R and pu € RP,p > 1 be parameters.
Furthermore, we suppose that 0 is a regular value of h.

We say that a function x(t) is a solution of equation

i = fi(x) +eg(z,e,pn), €y, (2.1)

if it is a solution of this equation in the sense analogical to Definition 1.1.
Let us assume

H1) For ¢ = 0 equation (2.1) has a smooth family of T”-periodic orbits {v(,?)}
parametrized by S € V C R¥, 0 < k < n, V is an open set in R¥. Each of
the orbits is uniquely determined by its initial point z¢(5) € Q, zo € C}, and
consists of three branches

Vl(ﬁat) ife¢e {Ovtf]a
Y(Bit) = a(Bit) ift € [t], 1), (2:2)
vs(B,t) ift € [t3,T7),

where 0 < t¥ < 1§ < TP ~(3,t) € QO for t € [0,1)), %(B,t) € Q_ for t € (t7,5)
and (3, ) € Q4 for t € (t5,T7] and
z1(B) == (B,1]) = 72(8, 1) € Qo
xQ(ﬁ) = 72(57755) = 73(67t§) € QOv (23)
2o(B) == 73(8,T%) = 11(8,0) € .

We suppose in addition that vectors

dzo() dzo()
opy T OBk

are linearly independent whenever g € V.

7f+(x0(ﬁ))

H2) Moreover, we also assume that
Dh(x1(B))fe(z1(8)) <0 and Dh(xe(B))fe(z2(5)) >0, SeV.

Note by H1), H2) and implicit function theorem (IFT) it can be shown that ¢7, 2
and T%? are CJ-functions of 3 [1].
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Now we study local bifurcations for (3, ), so we fix 8y € V and set z) = x0(50),
19 =t ete. Note by H1) 2o(V) is an immersed C™-submanifold of R™.
Let x4 (7,€)(t,e, p) and x_(7,£)(t, €, u) denote the solution of initial value problem

T = fi(x) —i—gg(a:,g,,u)

o) =¢ 24

with corresponding sign.
As in Lemma 1.2, conditions H1) and H2) establish the existence of a Poincaré

mapping.

Lemma 2.1. Assume H1) and H2). Then there exist 9,79 > 0, a neighbourhood
W CV of By in R¥ and a Poincaré mapping (cf. Fig. 2.1)

P(,B,em) - Blalro) > S
for all fized p € W, e € (—e¢,€0), 1t € RP, where

Ys={y e R" | (y — z0(B), f+(z0(B))) = 0}.

Moreover, P : B(x3,70) x W x (—&¢,&0) x R? — R" is C"-smooth in all arguments and
‘TO(W) - B(xgvr()) - QJr'

Proof. TFT implies the existence of positive constants 1, r1, 41, €1 and C"-function
tl('7 LN ) : (—7'1,7'1) X B(.Cl?g,?"l) X (—61,51) x RP — (t(l) — (51,t(1) + (51)

such that h(z(7,&)(t,e,p)) = 0 for 7 € (=71, 71), £ € B(2d,m1) C Q4 € € (—¢&1,21),
peRPandt € (t9—6,,t946,) if and only if t = t,(7, &, €, p). Moreover, t,(0, 29,0, ) =
t? and

24(0,20(8))(£1(0, 20(8), 0, 1), 0, ) € Qo N {7(B, 1) | £ € R},

thus #1(0, 20(3),0, ) = ¢7. Similarly, we derive functions ¢, and t; satisfying, respec-
tively,

h(x—(t1(7_>£7 & ,LL),$+(T, 5)(t1(7—7 §:¢€, :u)v 6,#))(152(7', 5757 :u)a &, /"’)) =0,
<$+(t2(7_7€75’M)?xf(tl(ﬂévgnu%er(Tv f)(t1(77§75;ﬂ)757ﬂ))
(tQ(Tv ga g, u)v €, M))(tJ(Ta 57 ﬁa g, M)?gv :u) - Io(ﬁ), f+($0(ﬁ))> =0.

Moreover, we have t5(0,z0(8),0, ) = t5 and 5(0, z4(53), 8,0, 1) = T?. Poincaré map-
ping is then defined as

P(£a6757“’) = er(tZ(ov5757M)?x*(tl(ovga67/’6)7x+(0a5)(t1(07€7‘€7u)767u))

(tQ(Oa 5’ &€, ,U,), &€, M))(t?)(o» 67 57 &, M)v g, M) (25>

0

The next lemma describes some properties of derived Poincaré mapping.
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Fig. 2.1: Discontinuous Poincaré mapping

Lemma 2.2. Let P(§,3,¢, 1) be defined by (2.5). Then

Pe(x0(B), 8,0, 1) = (I = Sp) A(B, 0), (2.6)
Pﬁ(x0(6>76707u) :SﬁDxO(/g)7 (27)

Pe(z0(8), 8,0, p) = (I - Sp) (/0 A(B,S)Q(V(B,S),O,u)d8> ; (2.8)

where Pe, P, P. are partial derivatives of P with respect to &, 3, €, respectively.
Here Sg is the orthogonal projection onto the 1-dimensional space [f1(xo(B))] de-

fined by
(u, fo(20(8))) f+(20(B))

R TACAEIE 29
and A(B,t) is given by
X3(Bv T'B)S?(ﬁ)X?(ﬁv tg)Sl(ﬁ)Xl(ﬁv tf)Xl_l(ﬂ7 t) ift € [07 t?),
(8,1) (8,T9)S2(8)Xs(8, 15) X5 (8, ) ift €t ty), (210)
X5(8, T%)X5(8,1) ift € [ty, 7],
where
o (Fo(@1(8) = fi(2a(B)))Dh(1(8))
S = T D @ @) 21y
_ (f+(z2(B)) — f-(72(B)))Dh(2(B))

S = D @(B) 212
and finally, X1(B,t), Xo(B,t) and X3(5,t) solve the following linear initial value prob-
lems )

Xi1(8,0) =1,
3(8.1) = DI-(1(8.0) Xa(5.) o1
XQ(ﬁv tﬂ> = ]Ia
(5 5 =1,
respectively.
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Note saltation matrices S;(/3), S2(f) are invertible (cf. [35]) with

o (f@B) — fo(w(8)Dh(aa(8))
G D07 ’
o (f(@a(B) — fo(22(8)Dh(zs(8))
S ) = e S o @B

Considering the inner product (a,b) = b*a, it is possible to introduce matrix notation
for operator Sg of (2.9):

Feleo (o)
IAENGIE

which is symmetric, i.e. S; = Sg. The derivative of mapping (2.5) has an important
property:

Lemma 2.3. For any § € B(x),1), f € W, £ € (—eg,£0) and p € R? Pe(§, B, e, 1)
has eigenvalue 0 with corresponding eigenvector f1 (&) +eg(&, e, p), i.e

Pe(&, By, w)[f+(€) +eg(€,e,1)] = 0.

Proof. Similarly to unperturbed case in Lemma 1.3 (see also [35]) we have
er(Oa ZL‘+(O, é)(tv &, :u))(tl(ov $+(0a 5)(t7 €, :U’)7 &, M)a g, M)
= x+(07 é)(tl(()? er(Oa 5)({;7 €, M), g, /L) =+ t? &, ILL)

as the first intersection point of the trajectory of perturbed system (2.1) and disconti-
nuity boundary €y. Hence

tl(O,x+(O,§)(t,€,u),€,u) _'_t = tl(@f;&#)

for any ¢ sufficiently close to 0. Analogically we get

t2(0,$+(0,£)(t, & “)7 &, :u) +t= t2(07 £, 57“)'

Syu = (2.16)

Next,

P(x4(0,8)(t, €, 1), B, 6, 1) = 24 (82(0,24.(0, §) (¢, €, 1), €, 1),

$_(t1(0, x+<07 5)@7 & :u)a & /‘)7 :C+(O, $+(O> f)(t, & /L))
(100,24 (0,8) (¢t &, ), €, 1), €, 1)) (820, 24 (0, §) (2, &, ) €, 1) €, 1))
(t3(0a $+(0, 5)(757 &, :u)a 67 &, :u)a &, /J’)
= x4 (t2(0,€, 6, 1), 2 (£1(0,&, €, 1), 24.(0,§) (1(0, €, €, 1), €, 1))

(120, 8, 1), €, 1)) (£3(0, 24.(0,€) (L, €, ), B, 2, 1) + t, €, )
for any t close to 0. The most left-hand side of the latter equation is from Y3 and
the most right-hand side is a point of a trajectory of (2.1) with given e starting at &,

therefore it is a fixed point ¢ € Xz and t5(0,2.(0,&)(t, e, 1), B, e, 1) + t is constant.
Consequently,

Pe(&, B8, ) f+(&) + eg(&, 6, )] = DiP(24.(0,€)(t, e, ), B, 8, )],y = D],y = 0
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Note if we take £ = zo(f) and € = 0 in the above lemma then ( = z¢(3) and

£3(0, -0, o)1, 0. 2). 8.0,p) + £ = T7. i}
For any £ € R" we define orthogonal projection Sz onto ¥

S 1 € € — Sp(€ — w()).

Denoting F'(§, 8,¢e, 1) == gﬁ( ) — P(&, B, e, 1), € is an initial point from X4 of periodic

orbit of perturbed system (2.1) if and only if it satisfies

F(& B,e,p) =0,  §€Xs

For £ e R"
Fg(l’o(/6>,570,/,t)f = (]I - Sﬂ)é- - Pf(x()(ﬁ)w@)oaM)ga

thus from Lemma 2.3
Fe(xo(B), 8,0, p) f(xo(B)) = 0,
where F¢ is the partial derivative of F with respect to . On the other side,
F($0(5)7B,0,M):xo(ﬁ)—P(.fo(ﬁ),B,O,,u):O, VﬁGVV,

hence from (2.7)
Pe(20(8), 8,0, u)Dxo(B) = (I — S5)Dxo(B)
and therefore

Fe(xo(B), 8,0, p)Dao(8) =0, VB e W.

Here we state the third condition:

H3) The set

dzo(B) dzo(P)
{ 851 1t aﬁk 7f+(1‘0(ﬁ))}

spans the null space of the operator F¢(xo(3), 3,0, ).
Note X5 = [f+(z0(8))]* + 20(B). Let us denote

Zy = N Fe(wo(B), 8,0, 1) N [f(wo(B))]*, Y = RF(wo(B), 8,0, )

(2.17)

(2.18)

(2.19)

the restricted null space and the range of the corresponding operator, respectively.

Now from condition H3) we have

3500(50) aﬂﬂo(ﬁo)
opyr T OB

Zg =

Using Gram-Schmidt orthogonalization we find an orthonormal basis {yi, . ..

for vector space Zj such that Zz L Zz and Zs @ Zz = [f4(zo(B))] "
We can define orthogonal projections

QB : Eﬂ — YB’ ,Pﬁ : 25 — YﬂJ',

27

 fo(20(8)) | N [f+(zo(B))]* = (I~ S)Do(B).

3 ynfkfl}

(2.20)



where Y3 is an orthogonal complement to Yj in [f4 (zo(f))]*, and the decomposition
for any z sufficiently close to manifold (W)

dzo(B) 53?0(5)]l
opy 7 OB '

The second condition of (2.17) gives another restriction on &, i.e.

s m(B) € for BGW,SG[

dzo(8)  Dw(B) .
56 861 PR aﬁk 7f+(x0<ﬁ)):| )
therefore
z=ao(B)+€&  BeEW, £y (2.21)

Note Zs, Qp and Ps are C" '-smooth with respect to 5. Consequently, applying
Lyapunov-Schmidt reduction, equation (2.17) is equivalent to the next couple of equa-
tions

QsF(xo(B) +¢&, 8,6, 1) =0, (2.22)
Psl(xo(B8) + &, 8,6, 1) = 0. (2.23)

Considering the first one as the equation for & € Zﬁl, it can be solved via IFT, since
QﬁF(xO(ﬁ),B,O,M) =0 and

DEQﬁF(xO(B) +§a670aﬂ)}§:0 = QﬁFf(x0(5)7ﬁaovﬂ)‘Zé_v

where ‘ 4. denotes the restriction on Z é, is an isomorphism Z BL onto Yp for all u € RP.
E

So there exist positive constants €5, ry and C"~!-function
5('7 ) ) : B(ﬁ@ﬂb) X (_52752) x RP — ZﬁL

such that QgF(x¢(5) + &, 5,e,1u) = 0 for 5 € B(fy,12), € € (—¢e2,62) and p € RP if

and only if £ = £(B, e, u). Moreover £(3,0, 1) = 0, since QzF (zo(5), 5,0, 1) = 0.
Equation (2.23) now has the form

G(ﬂv&“) = ,PﬁF(IO(B) + f(ﬁ,g,u),ﬁ,g,,u) =0 (224)

for 8 close to By, € to 0 and p € RP. In unperturbed case, this is easily solved, i.e.
G(B,0,1) = 0. In order to have a persisting periodic orbit, equation (2.24) has to be
satisfied for all ¢ sufficiently close to 0. The next condition follows

0= GE(Ba())/'L) = PﬁDsF(xO(ﬁ) + £<Ba5>u)7ﬁa5>“’)‘g:0
= Pp [Fe(z0(B), 8,0, 1)€(B,0, 1) + Fe(zo(B), 58,0, )] (2.25)
= PﬁFE(x()(ﬁ)?ﬁ? 07/-1/) = _PﬂPE(x()(ﬁ)?ﬁvOmu) 3

where G., F. are the partial derivatives of G, F' with respect to e, respectively.
We note [31] that there exists an orthogonal basis {¢1(8),...,9x(B)} of Y3, ie.
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= [¥1(B), ..., ¥Yx(B)] for each B € W and +; are C"'-smooth. Then projection Py
of (2.20) can be written in form

Oy, (B (B
Pﬂy‘i_zl C

Equation (2.25) can be rewritten as follows

5 (Pao(B), B, 0, 1), i(B)) :(B)
Z 14:(3)]2

Using linear independence of ¢ (), . .., ¢¥x(f) and Lemma 2.2 together with (2.26), we
arrive at

= 0. (2.26)

M*(5) =0 if and only if G.(5,0,u) =0, (2.27)
where
M"(B) = (ML(B),..., ML (B)),
¢ (2.28)
M (B) = / (9(v(B.1),0, ), A*(B. )W (B))dt,i = 1, ... k.
Note by (2.10), we have
X (B, 0)X7(B,8))S(B)X5(B,15)S5(B)X5(8,T7) it t € [0,¢),
A5(B,1) = § X5 (B, ) X5(B,15)55(8) X3(8,T7) ift e[t 1),
X5 (B, ) X5(B,T7) ift e [ty,T7).
(2.29)

We shall call the function M* defined by (2.28) as a Poincaré-Andronov-Melnikov
function for discontinuous system (2.1) (see Remark 2.6 below).
We know [35] that the linearization of (2.1) with e = 0 along T”-periodic solution

(B, t) is given by
& =Dfe(y(8,1))x (2.30)

which splits into two unperturbed equations
& =Df(y(8,0)x  ift € [0,¢)) Uy, T,
T = Df_(’}/(ﬁ,t))l' ift¢e [t?vtg)

satisfying impulsive conditions

z(t{+) = Si(B)z(ti-), w(ty+) = Sa(B)x(ts ) (2.31)

and periodic condition
(I— S3)(x(T") — 2(0)) =0 (2.32)

as well, where z(t£) = lim,_,;+ x(s). Corresponding fundamental matrices are X;(/3, ),
X3(5,t) to plus-equation and X5(f,t) to minus-equation (cf. Lemma 2.2). It follows
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that the fundamental matrix solution of unperturbed variational equation (2.30) is
given by

X1(67t) if ¢ € {Ovt{j)a
X(ﬁvt) = X?(ﬁvt)sl(ﬁ)Xl(ﬁatf) ife¢e {t?vtg)v (233)
X3(8,1)S2(8) Xa(B8, 5)S1(B) X1 (B, 1)) if t € [t5,T”].

Especially, X (3,T") = A(3,0). To proceed, we need the following Fredholm like result
for linear impulsive boundary value problems of the form (2.30), (2.31) and (2.32).

Lemma 2.4. Let A(t) € C([0,T], L(R™)), By, By, Bs € L(R"), 0 < t; <ty < T and
h € C = C([0,t1],R™) N C([t1,t2], R™) N C([t2, T],R™). Then the nonhomogeneous
problem

= A(t)xr + h(t),

x(ti+) = Bix(t;i—), i = 1,2, (2.34)
Bs(x(T) — 2(0)) =
has a solutz’on x e Ch:=CH[0,t1], R") N C([ty, ta), ]R") N CY([ta, T],R™) if and only if
fo ))dt = 0 for any solution v € C' of the adjoint system given by
0 =—A"(t)v,
v(t;i—) = Biv(ti+),i=1,2, (2.35)

v(T) = v(0) € NBy.

Proof. If h € C satisfies (2.34) for a z € C! then for any v € C! fulfilling (2.35), we
derive

/0 " (), o))t = /O ") — A@(0), o())dt
= (@(T),v(T)) — ((tat), v(ta+)) + (@(t2—), v(t2—))
—(z(ti+), v(ti+)) + (z(ti—), v(t1—)) — (2(0),0(0)) — /OT@(t),@(t) + A*(t)o(t))dt
= (2(T) = 2(0),v(T)) + (2(0),v(T") = v(0)) + (x(t1—),v(t1—) — Biv(ti+))

+(z(ta—), v(ta—) — Byv(ta+)) —/O (z(t),0(t) + A*(t)v(t))dt = 0.

Reversely, we suppose that h € C satisfies f0T<h(t),v(t)>dt = 0 for any v € C' ful-
filling (2.35). Let X(¢) be the fundamental solution of & = A(t)z with X(0) = L
Then

X ()X (t) BEX 1 (8) X *(ta) BEX 1 (t) X*(T)v(T)  ift € [0,ty),
(t) = ¢ X1 (t) X (t2) B X () X*(T)v(T) ift € [ty,1,),
X ()XH(T)u(T) if t € [ty, 7]

and
X*(t) B X ™ (4) X* () B3 X (1) X*(T)0(T) = v(T) € NBy = RB; . (2.36)
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So

oz/%( </ X(T)X~(s)h(s)ds

/ X(T)X " (t2) Ba X (£2) X~ (s)h(s)ds

/ X(T)X (1) B X (1 )X‘l(tl)BlX(tl)X_l(s)h(s)ds,v(T)>.

Next, by (2.36) and (2.37), we obtain v(T") = Bjw for a w € R" satisfying
along with

0 = (Bsu, w),
u = /TX(T)X ds+/ X(T)X (ty) B X (t2) X (s)h(s)ds
/ X tQ BQX( )X_l(tl)BlX(tl)X_l(S)h(S)dS.

But (2.38) and (2.39) imply the existence of zy € R™ such that
B (X(T)X ' (t2) BaX (t2) X ' (t1) BiX (t1)mo +u — x0) = 0.

Then using (2.40), we see that the function

Y(t1) By

YN

X (t1)zo +f0 X‘l(s)h(s)ds>

z(t) = 2) By (X Y(t1) By (X( 1)Zo

+ X ()X (s)h ds) + [ X( X1<s)h(s)ds>

is a solution of (2.34). The proof is finished.

(2.37)

(2.38)

(2.39)

(2.40)

1‘0 —|—f0 (t)X 1 ift € [O,tl),

+ft1 ) XL(s)h(s) if t € [ty,ta),

L+ Ji, X(6) X (5)h(s)ds if 1 € [t T]

O

Applying the above lemma to (2.30), (2.31) and (2.32) we see that the adjoint
variational system of (2.1) is given by the following linear impulsive boundary value

problem
X = -Dfi(v(8,1)X if t € 0, t]],
X =-Dfr(v(B,t)X  ift et ty],
X = —Df_T_(’)/(ﬁ,t))X ift € [tgﬂTB]v
X(t+) = SH(B) ' X(t)-), i =1,2,

X(T?) = X(0) € [f+(zo(B))]"
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Note for each i = 1,...,k and for any £ € [f, (z(8))]* we have Sg1);(8) = 0 and

0= <F§(f750(5)75’07#)5ﬂ/%(5)> = <(]I - PE(IO(B%BaOv/J’))g’wz(B»
= (& ¥i(B) — AT(B,0)(I — Sp)vhi(B)) = (&, (I— A™(B,0))i())

and for & € [f4(zo(f))] (cf. (2.18))

0= <F£(xo(5)75707/i)571/%(5)> = <(H - Sﬁ - P&(%(ﬂ%@@ﬂ))&%(ﬁ»

Hence A*(8,0)v:(8) = vi(B).
Next, from Lemma 1.5 it is easy to see that for each i = 1,... k, A*(B,t)(0) is

the solution of (2.41).

Consequently, we can take in (2.28) any basis of T”-periodic solutions of the adjoint
variational equation.

Note, the condition M*(5) = 0 is a necessary one for the persistence of periodic
orbit.

The following theorem states the sufficient condition for the existence of a unique
periodic solution of equation (2.1) with ¢ # 0:

Theorem 2.5. Let conditions H1), H2), H3) be satisfied and M"(3) be defined by (2.28).
If By € V is a simple root of MM, i.e.

M“O(ﬁo) = 0, det DM”O(ﬁo) 7é 0,

then there exist a neighbourhood U of the point (0, o) in R x RP and a C"~2-function
B(e, 1), with B(0, o) = Po, such that perturbed equation (2.1) possesses a unique per-
sisting closed trajectory. Moreover, it contains a point

2 (e, 1) = 20(B(e, 1)) + E(Ble, 1), £, 1) € S (2.42)

and it has a period t3(0, x*(e, 1), Be, p), €, p).

Proof. We introduce the function

%G(/Bﬂgnu’) 1f€7é07

Hb.em) = {Gg(ﬁ,au) ife = 0.

We recall that G, is the partial derivative of G with respect to . Clearly, H is C" %
smooth and H(f,e, ) = 0 gives the desired periodic solution. Note that H(3,0,u) =
—WU(B)MH* (), where U(f3) is n x k matrix with i-th column % Next, for the
partial derivative Hg of H with respect to 3, we derive

Hp(B0,0, o) = —=DW(Bo) M" (By) — W (Bo)DM"(Bo) = =¥ (o) DM" (),

thus Hg (5o, 0, po) is an isomorphism, and from (2.27), IFT implies the existence of
neighbourhood U and function (e, ) from the statement of the theorem. Results on z*
and the period of the persisting orbit follow immediately from preceding arguments. [
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Let us denote the persisting periodic trajectory from the latter theorem by v*(e, u, t).

Then clearly v*(0, p, t) = v(Bo, t).
Note that if function ¢ is discontinuous in z, the above theorem remains true.

Remark 2.6. If (2.1) is smooth, i.e. fi = f, then S;(8) =1, i = 1,2 and (2.41) has the

form )
X=-Df(v(B,)X if te[0,T7,

2.43
X(T%) = X(0) € [F. ()] 24
So the Poincaré-Andronov-Melnikov function (2.28) possesses the form
M*(B) = (MY(B), - .., M (),
(2.44)

Mzu(ﬁ)_/o <g(7(ﬁvt)vo7u)v¢i(5at)>dtvi:17'-‘>k

for any smooth basis {1;(3,t)}¥_, of solutions of the adjoint periodic linear prob-
lem (2.43). Note (2.44) is the usual Poincaré-Andronov-Melnikov function [12,14] for
bifurcation of periodic orbits for NDS. This is a reason why we name (2.28) again as
Poincaré-Andronov-Melnikov function for PPSNDS (2.1).

2.1 Geometric interpretation

In this section, we look at the investigated problem from a geometric point of view.
For any f3, 5 € W, we can solve t(3, #) from

(v(B,t(8,8)) — 20(B), f+(x0(B))) =0
(B, 8) = 0.

Note
O(B.B) _ _ (Dxo(B), fe(wa(B)))
o5 @)l 249

I

Set #3(8) = v(B,1(8, ), v5(B.t) = 7(B, (8, B) + ). So 75(B,0) = Fs(B). Ts(8) =
zo(B), v5(B,t) = v(B,t) and

F(z5(8),8,0,1) = 0. (2.46)

Indeed, analogically to proof of Lemma 2.3 ¢;(0, fg(g), 0, p) + t(B, E) = tiB fori=1,2,
therefore

P(%ﬁ(ﬁ)vﬁ7oau) = l’+(t'2§, l‘g(ﬁ))(tg((),%ﬁ(g),ﬁ,o,u) +t(67§)7oau)

Since 55(5) € X, we obtain tg((),fﬁ(g),ﬁ,O,u) + t(ﬁ,g) =77 + t(ﬁ,g) and conse-
quently

NF(%ﬁ(ﬁ)vﬁl Ovlu’) = fﬁ(ﬁ) - P(fﬁ(ﬁ)vﬁuovﬂ)N
= F5(8) — w4 (15, 2(B)(T° + 18, B), 0, 1) = F5(B) — v(B, T + (8, B)) = 0.
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Equation (2.46) implies Fg¢(xo(53), 5,0, #)DZs(8) = 0. Note by (2.45) Dzg(f8) = (I —
Sg)Dzo(5) and hence Fe(xo(B), 5,0, 1) (I — Sg)Dao(8) = 0 what by (2.6) is equivalent
to
(I = Sp)Do(B) = (1= Sp)A(B, 0)(I = Sp)Dao(5).
Note (I — Sg)Dzo(f) is k-dimensional.
Some solutions of (2.30) are described in the next lemma.

Lemma 2.7. Vectors 87;5;”, e 879(55), a'ygf’t) satisfy equation (2.30) as well as condi-

tions (2.31) and (2.32).

Proof. Using notation from (2.2) we obtain

20, 20(8)) (¢, 0, 1) ift € [0,4],
Y(B.) = - (87, 2+(0, 20(B)) (17, 0, 1)) (£, 0, 1) ift € 17, 5],
x-i-(tgv T (t?> $+(0, xo(ﬁ))@ﬁ 0, M))(t§7 0, M))(t7 0, /~L> ift e [tg> Tﬁ]'
(2.47)
Direct differentiation of (2.47) gives equation (2.30) with z = awag A fori=1,... kor

x = %. Relations (2.31) are also easily obtained from (2.47). Next, dlfferentlating
Y(B,t+T?) = ~v(B,t) for any t € R we derive 4(3,t + T?) = 4(3,t) and

(3.t +17) o1 01(8.1)

B8
o5, 95, /B t+T) = =55

what implies

(I— S5)4(8,7%) = (1= S5)3(8,0) = (L = S5) 1 (xo(8)) = 0

and
(B, 1%  9v(B,0) o1”
I— - - a1 —0.
Consequently, (2.32) holds as well. The proof is finished. O

We get the following equivalence to condition H3):
Proposition 2.8. Condition H3) is equivalent to say that the set

{87(/6’,1?) (B, 1) 87(6,75)}
opy T 0B T ot

is a basis of linearly independent solutions of (2.30), (2.31) and (2.32).

2.2 On the hyperbolicity of persisting orbit

Here we state the sufficient condition for the hyperbolicity of trajectory v*(e, u, t) with
e # 0. First, we recall the result from [17] (see also [48]):

A 0
0 B.
for e >0 such that ||Ac]| < 1—ce, ||BZY| < 1— ce, where c is a positive constant, A,
and B. are k1 x ki and (k — k1) x (k — k1) blocks, respectively, i.e. E(g) is strongly
1-hyperbolic. Then E(g)+¢e2D(g) has no eigenvalues on S* for e # 0 sufficiently small.

Lemma 2.9. Let E(e) = and D(e) be continuous matriz functions R — R*
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We shall also need the following lemma.

Lemma 2.10. Let U be a neighbourhood of 0 in R and M € C*(U, L(R")), i.e. M(e)
is a real matriz of the form n x n with an eigenvalue \() = exp(a(e) +16(¢)) and the
corresponding eigenvector u(e). Suppose that A(0) # 0 is simple. Then

(o) — R0 (0 SO Ou(0).u(0),

AO)[u(0)I3, A [u(0)113,

where (-, -)ar s an inner product in C* such that (M (0)q, u(0))a = 0 whenever (g, u(0))y =
0, and |lql[3; = (¢ 0)m

Proof. 1f we denote

710 -

§

(&)[[u(0)[[
u(e), u(0))m
= 1 and therefore (v'(¢),v(0))y = 0.
(e) at e = 0 gives

v(e) =

(e
for each e sufficiently small then (v(e),v(0)
Differentiation of the identity M(g)v(e) = A

—~

|
);
Jm =
(e)v
M'(0)0(0) + M (0)v'(0) = A(0)[a(0) +28'(0)]u(0) + A(0)v'(0).

Applying inner product in form (-, v(0)) on the above equality gives

(M'(0)(0),v(0))ar = A(0)[a'(0) + 25'(0)].
When one returns to u(0) the proof is finished. O

Let (Bo, o) determine the persisting trajectory v*(e, u,t) (see Theorem 2.5). We
shall study the hyperbolicity of the orbit on the fixed hyperplane g, instead of chang-
ing 35 with 8 = B(e, n). Take wo(e, pu) = (0, 2% (e, p))(ta(e, 1), €, ) where t4(e, p) is
the nearest return time (|t4(e, )| is small) such that wy(e, p) € Xg,. Note t4(0, ) =0
and wo(0, 1) = xo(So). Moreover, x (0, wo(e, p))(-, &, ) is a unique persisting solution
of (2.1) with € # 0 small and u close to pg, which is in a neighbourhood of (S, ).
More precisely,

x4 (0, wole, 1)) (t, e, 1) =7 (e, u, tale, p) +1).

Theorem 2.11. Let (fy, o) be as in Theorem 2.5, & € R™ and C' be a regular n X n
matriz such that

C_lpf(xO(BO)vﬁOa 07#0)0 = <H(;€ g) = A,

where T, is the k x k identity matriz and B has simple eigenvalues Ay, ..., \ € ST\{1}
with corresponding eigenvectors vy, . .., v; and none of other eigenvalues on S*. Suppose
that if we denote

B o [An Ap
C™ ' D: Pe(wo(e, to), Bos s po)|.—y C' = A1_<A21 Axn)’

where Ay1 is a k X k block then Ay has no eigenvalues on imaginary axis. Moreover,
let
(A22'Uia Ui)B
Aillvill %

where (-, +) g is an inner product in C" such that (Bq,v;)p = 0 whenever (q,v;)p = 0 for
eachi=1,...,1, and ||q||% = (q,q)s. Then the persisting orbit v*(e, u,t) is hyperbolic.

R 40, Yi=1,...,1,
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Proof. Let us denote A¥(g) = C*Pe(wo(e, i), Bo, €, ), €, 1)C for e small. Now from
Taylor expansion we have A*(¢) = A+eA{+0(e?), where A}® = A; and the same for its
parts (note if ¢ = 0, the dependency on p is lost). If we take P¥(g) = I+eBY +£?Bb(e)
with continuous matrix function BY,

0 B _ _
= (g ). Bhoab-m), Bh- oDy
then 4
~ I, O 0
Jz — pu B p—1 N 11 2
At (e) := PH(e)A*(e)P* (e) = <O B) +€< 0 A§2) + O(e7).

Similarly, without the change of eigenvalues, we could transform A}, into form

Al{l 1 0
0 AIILIQ ’

where A}, is k1 X ky with 0 < ky; < k, Ro(A};) C (0,00) and Ro(Af}5) C (—o0,0),
hence we shall suppose that AY; is already in this form. Consequently,

. ]Ikl + gAlfll 0 0
AN(&f) = 0 ]kakl + €A'L1L12 0 -+ 0(82)
0 0 B+ eAl
Er(e 0
_ ( {€) B+5A’2‘2> +O().

It can be shown [17,48] that E*(e) is strongly 1-hyperbolic for £ > 0 sufficiently small.
Next, Lemma 2.10 applied on matrix function AL () = B + A4, with eigenvalues
Ni(€), ..., M(e) such that M(0) = Aq,...,\(0) =\, € S, and eigenvectors vy, ...,y
corresponding to Z‘QLQ(O) and A1, ..., A, respectively, implies that 252(5) is also strongly
1-hyperbolic for € > 0 sufficiently small. Consequently, (EHO(E) B +05 A‘Q‘Z) is strongly
1-hyperbolic and Lemma 2.9 applies to Z“(e).

Note from Lemma 2.3 A*(e) has eigenvalue 0 with eigenvector f,(wo(e,pn)) +
eg(wo(e, 1), €, ). In conclusion by Lemma 2.9, A#(¢) has no eigenvalues on S! for
¢ > 0 sufficiently small. Analogical result can be proved for ¢ < 0. That means that
for |e| > 0 sufficiently small perturbed trajectory ~v*(e, u, t) is hyperbolic. O

By special assumptions, the sufficient condition for stability of persisting periodic
orbit may be easily obtained from the above-stated theorem.

Corollary 2.12. Let the assumptions of Theorem 2.11 be fulfilled. Furthermore, let B

have no eigenvalues outside the unit circle, Ay1 have all eigenvalues with negative real

part and

(Aopvi,v4)B
Aillvill B

Then v*(e, p, t) is stable (repeller) for e >0 (¢ < 0) small.

R <0, Vi=1,...,L
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Generally, the formula for D. Pe(wo(e, it), Bo, €, 1t)|._, is really complicated. How-
ever, in concrete examples it may be much easier found using computer software. Now
we describe how to do that.

Differentiating expansion

P(wa 507 57/140) = P(wv 50, 07 IuO) + Spl(w?ﬁoa 07 IMO) + 0(82)

for any w € g, gives

Pﬁ(wv 60757 MO) = Pf(w7507 07 ,UO) + €P1£(’LU, 607 07 /-LO) + 0(62)7

thence
Ds P&(wO(E» MO)v &, N0)|5:0
Awo(0, 11o) (2.48)

= Plf(LEO(ﬁO)»BOaOmuO) +P€€(x0(60)760707/j“0) Oe )

where Pj¢ is the partial derivative of P, with respect to &, while P is the second
partial derivative of P with respect to &.
Now we note that P;(&, 3,0, i) can be obtained by linearization of (2.4) as follows:
For the sense of simplicity, we shall omit some arguments. Let us denote y(s),
y2(s) and ys3(s) the solutions of equations

U= fr(y) +egyr,e,p) on[0,81]  go = f(y2) +e9(ya,€, 1) on [s1, 59
Z/l(o) =¢, y2(51) = yl(sl)a

Uz = fy(ys) +eg(ys, e, 1) on [sz,00)
y3(s2) = y2(s2),

respectively, where the first one has a general initial condition { € X3 and s; < s
satisfy h(yi(s1)) = h(ya2(s2)) = 0. Moreover, let s3 > s9 be such that

(y3(s3) — z0(B), f1(z0(B))) = 0.
Taylor expansions with respect to e

yi(t) =y (t) +eyi (1) + O(?),  i=1,2,3,
si=s+es; +0(%), i=1,23

imply
90 = fr(y)) y1 =D fr(y)yt + 9(y?,0, 1)
y2(0) =€ € X, y1(0) =0,
070\ _ 1_ Dh(9(s?)yi(s?)
h(yd(sY)) =0, 51 = T DRGIED): WD)
v = f-(49) Uy = DJ- ((g/S)y% + go(yS, 0, 0”)0
_ sY))— s Dh s
B =00, u(eD) = [T+ AR i s0),
00V _ 1 Dh(y9(s9))yz(s9)
h(y2(s2)) =0, 2 = T DRI GGD)
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U3 = f+(y3) U3 =Dfr )yl + 9(y3, 0, 1)

f 0(s0 _f— 0 (sOYNDA (19 (s0
869 =869, e = [T+ SRR WD,

(y3(s3).f+ (z0(8)))
(F+ W3 (9 f+(@o(B)

yg(sg) < 257 Silf} ==
Note that all 4/ and s/ depend on €. Since
P(&, 8., 11) = ys(s3) = ys(s5) + € [5(s5)s3 + y3(s5)] + O(”),

we get

Pi(&, 8,0, 1) = f+(y3(s5))s5 + y3(s3)- (2.49)
Remark 2.13. If € = 20(83) then 9 = 7, s§ = 5, 59 = T8, 49(s%) = z,(B), y9(s9) =
22(B), y3(s5) = wo(B) and Pi(xo(8), 8,0, i) = Pe(20(B), B,0, 1) (see (2.8)).

Hence the algorithm consists of subsequent computation of y?, yi, 9, st, 49, ya, s9,

s, Y9, ys, 89, sk, applying formula (2.49) and computing left over terms in (2.48).

2.3 The particular case of initial manifold

Here we consider special case of the manifold of initial points when k = n—1, i.e. ¢(V)
is immersed submanifold of codimension 1. Related problems have been studied in [47]
for smooth dynamical systems. Then we can suppose that zo(5) = (f1,. .., Bn-1,0) =
(B,0). Let us denote & = (£,0) for £ € V. We take ¥ = R*™' x {0} N Q4 and a new

Poincaré mapping P : V' X (—&g,&9) X R? — X defined as

ﬁ(g)gv :U’) - $+(t2<0,g, fa /’l’)v x—(tl(()?ga €, /j‘)v m+(075)(t1(07 67 g, /L)?éf, :U’))
(2(0,€, &, ), €, 1)) (£3(0, &, €, 1) €, ),

where t3(-, -, -, ) is a solution close to T¢ of equation

§I+(t2(07 gv €, M)) x—_(tl(ov ga €, M)? x+(0, g)
(t1(07 ga &, :u)v g, /L))(tQ(Oa £> &, :u)a &, M))(tv &, M)7 €n> =0

with e, = (0,...,0,1) € R™. Moreover t3(0,&,0, ) = T¢. Then one can easily derive
for the partial derivatives P, P. of P with respect to £ and ¢, respectively, the following
formulae

Pe(€,0,1) = (I T)A(€,0),

ﬁe(gaonu’) = (]I_TE) < A(f,s)g(*y(f,s),(],u)ds)

0

with Teu = % and A given by (2.10). Note ]5(5,0,;1) =¢€ Y and

ﬂaam:5+dwﬂao A6, 1)g(7(&,1),0, p)dt + O(e?).

Consequently, we have the following theorem [17]:
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Theorem 2.14. Let conditions H1), H2) be satisfied and k = n — 1. Let there be
(&0, o) € V x RP such that M* (&) =0 and det DM (&y) # 0, where

T¢

(]I - Tf) 0 A(gvt)g<7(£7t)707:u’)dt

M*(§) =

Rn—1

and the lower index R"~! denotes the restriction on first n — 1 coordinates. Then there
is a unique periodic solution x*(e, p,t) near v(&,t) of (2.1) with u close to py and
€ # 0 small. Moreover, for e > 0 small

1. if Ro(DMHM(&)) C (—00,0) then x*(e, u,t) is stable,
2. if Ro(DM*M(&)) N (0,00) # O then x*(e, u, t) is unstable,

3. if 0 ¢ Ro(DMH0(&y)) then x*(e, u, t) is hyperbolic with the same hyperbolicity type
as DM (&).

Proof. The existence part for x*(e, u, t) follows like above. The local asymptotic prop-

erties for x*(e, u, t) are derived from standard arguments of [17,48]. O

2.4 3-dimensional piecewise-linear application
We shall consider the following problem
Tt =¢e(z—2a")
g = b if 2> 0,
3= =2a1b1y + (p1 — p2y®)z

(2.50).
z=0
= —by ifz<0
z= —2a2b2y

with positive constants ai, as, by, be; n € N and vector p = (g, o) of real parameters.

Here we have Q4 = {(z,y,2) € R® | £z > 0}, Q = {(x,9,0) € R3} and h(z,y, 2) =
z. Let xo(8) = (61,0,82), B = (B1,P2), P2 > 0 be an initial point. Then we have
¥ ={(,0,2) € R* | z > 0}. Due to linearity of problem (2.50)y some results may be
easily obtained. These are concluded in the following lemma.

Lemma 2.15. Unperturbed system (2.50)¢ possesses a 2-parametrized system {y(5,1) |
Ba > 0} of periodic orbits starting at (f1,0, 52) and given by (cf. (2.2)):

Y1(B,t) = (B, bit, —arbit® + Bo),
(B t) = (Br,212(8) — ba(t — 1)), az(212(8) — ba(t — 17))* — azaty(B)),
(B, 1) = (Br, 22(8) + bi(t — 15), —ar(wn(B) + bi(t — 15))* + a123,(8)),
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where

1 2 1
=~ b tgz—,/@wf, T8 =~ @Hg,
ax

- by al’ ba B b1V a;

zi(B) = (i (8), zi2(B), xi3(8)), i=1,2,

1(B) = (ﬁl,\/fif,o> , xo(B) = (51,—\/%,()).

The corresponding fundamental matrices of (2.13), (2.14) and (2.15) have now the
forms

1 0 0 1 0 0
Xi(B,t)=10 1 0], Xo(B,t) =10 1 0],
0 —2a1b1t 1 0 _2a2b2(t — tl) 1
1 0 0
X@n=[(0 1 o
0 —2&1b1 (t — tg) 1
and saltation matrices of (2.11) and (2.12) are given by
10 0 10 0
Vai(bi+b2) V@i (bi+bs)
Si(B)=10 1 2a11ab111)‘/ﬁ_§ , Se(B)= [0 1 2a12ab2;/ﬂ—§
00 oy 00 e
Proof. The lemma can be proved exactly as Lemma 1.18. O

Another lemma shows that the derived theory can be applied to system (2.50)0:

Lemma 2.16. System (2.50)¢ satisfies conditions H1) and H2).

Proof. Since ago—ﬁlﬁ) = (1,0,0)*, ag‘)ﬁ(f) = (0,0,1)*, fi(zo(B)) = (0,01,0)* and using

Lemma 2.15, H1) follows immediately. Since Dh(z,y, z) = (0,0,1) and

Folwi(8) = <o,b1,—2a1b1 @) L F@(8) = (0, by, —2ahy @> |
aq ay
- Y ~ B\
f+(332(5)) = (0751,20151 —) ) f,(xQ(ﬁ)) = (0, —ba, 2a5by —> )
ay a1
H2) is also fulfilled. O
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Using Lemma 2.15 we get

1 0 0
_ 2y/arbit(bi+b2)  bi+b . B
0 1-="" Ve b5 it te[0,4),
0 2a1b1t 1
1 0 0
an (t—t? a :
A =140 —1—2 4 yal)buh) vabis) |if te [t 6),  (251)
0 Q(M—ale(t—tf)) —Z—;
1 0 0
0 1 0 if t e[ty T°
L 0 2(@1()1(?5 - tg) - \/CL152) 1

from (2.10). Consequently, the mapping M* () from Section 2.3 has the form

M“(ﬁ) _ _g%@ﬁ? - 262) iﬁg/z(aulal — /Lgﬁg)
= 3 \/Ebl 5 15 a?/le .

From Theorem 2.14 we obtain the following result.

(2.52)

Proposition 2.17. For u € R? such that pips < 0, (ju1, p2) # 0 no periodic orbit
persists. For pipg >0 if e > 0 and

1. n is odd, the only persisting periodic trajectory v(Bo,t) of system (2.50)q is de-
termined by By = (Bo1, Boz) with oy = (%ﬁog)l/n, B2 = 5%‘“ Moreover, this
trajectory is stable — it is a sink — for puy > 0 and unstable/hyperbolic for uy < 0,

2. n s even, there are exactly two persisting orbits v, v— given by o1 = £ (%Bog)l/n,
Boa = 5’2;2’“ with corresponding sign in Bo1. Moreover, if

(a) py > 0, then vy is stable — it is a sink — and y_ is unstable/hyperbolic,

(b) p1 <0, then vy is unstable/hyperbolic and v_ is unstable — it is a source.
If e <0, the above statements remain true with sinks instead of sources and vice versa.
Proof. From (2.52) one can see that for (u1, pe) # (0,0) the positive solution Sy of

i5§/2(5u1a1 — p2f)

=0
15 a‘;’/zbl

exists if and only if [y = 5*/:%2‘“ and pqpg > 0. Then with respect to n we get one or

two solutions 3y of
_2VBa(36) —2,)

=0.
3 Jaib
For arbitrary n € N we have g = 5’212‘“ and
n—1 3n—2 . 3n;2
9 \'/n W) Tam a(B) T 4
DM* (502) Doz | = vaib 301\ h2
3 0 _4\/5N1 K1
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Therefore, this orbit persists. If n is even then

n—1 3n—2 3n—2
NS BT )T s
DM* —(5502) s Boz | = vaibi 301\ 2

0 _4hu fm
3b1 2

Hence it also persists. The statements on the stability of persisting trajectories follow

directly from DM*(53). O
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Fig. 2.2: Numerically computed trajectory projected onto xy-, yz- and zz-plane and
the Poincaré mapping of the orbit of (2.50). with a; =as =b;y =by =1, pu3 =1,
2 =2,n=2¢=0.05 6= (1.6,1). Asterisk corresponds to persisting periodic

orbit/stable limit cycle, denoted dark in previous figures
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Remark 2.18. If (u1, po) = (0,0) it is not possible to determine the persisting orbit via
Theorem 2.14 since

MO (B) = (_2%(36? _262),0> :

3 Jah

However, we know that if there is a persisting trajectory, then there exists fo > 0
such that the trajectory contains ((gﬁg)n , O,Bg) € R3 if n is odd and ((%Bg)n ) O,ﬂg)
or (— (%62)n ,0, Bg) if n is even. To find the persisting orbit, higher order Melnikov
function has to be computed (cf. [8]).

2.5 Coupled Van der Pol and harmonic oscillators at 1-1 res-
onance

In this section we shall consider two weakly coupled oscillators at resonance, one of
which is Van der Pol oscillator and the other harmonic oscillator, given by equations

i+e(l—a®)i+aie+ep(z—y)=0

L for £2>0 (2.53):
J+ey+wy—culzr—y)=0
with positive constants a,, a_, w such that
2 1 1
—=— 4+ —, (2.54)

w oap  a-

where p > 0 is a fixed parameter and € # 0 is small. After transforming (2.53). into a
4-dimensional system we get

Ty = a+Ty

x.z = —Qa4+T1 — 5(1 — .CE%)SUQ - gﬁ(xl - yl)

. a+ for + x>0 (255)5
Y1 = Wy2

: 1
Y2 = —WY1 — €Y2 +5;(9€1 — 1)

and h(zy,22,91,y2) = 1. Thus we have Qi = {(21,22,y1,72) € R* | £z, > 0},
Qo = {0} x R® and we take ¥ = {(21,0,91,y2) € R* | z; > 0} with initial point
xo(B) = (51,0,02,03), f1 > 0. From linearity of unperturbed system (2.55)q the
next result follows immediately and can be proved using matrix exponential (see e.g.
Section 1.2).

Lemma 2.19. System (2.55)q has a 3-parametrized family {v(B,t) | f1 > 0} of periodic
solutions such that v(53,0) = (B4, 0, B, B3) given by (cf. (2.2)):

7 (B, t) = (Prcosayt, —fy sinat, fy coswt + [z sinwt, —fa sinwt + (3 coswt),
Yo (B, t) = ( — Bisina_(t —t7), =B cosa_(t — t}), By cos wt + B3 sin wt,
— o sinwt + 33 cos wt),
(B, t) = <Bl sina (t —t5), Bi cosa (t — t5), Ba coswt + f5 sin wt,

— o sinwt + 33 cos wt) ,
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where

and (cf. (2.3))

‘i‘l(ﬁ) :(jil(ﬁ)a"ﬂjﬂ(ﬁ))ﬂ L= 1,2,
71(B) = (O, — By, Bacoswt? + Bysinwt?, — By sinwt? + B4 Coswt’f> ,

T9(B) = (0,51,52 cos with + B3 sinwts, — By sinwth + B5 cos wtg) :

Using notation

cosa4+t sinaxt 0 0

| —sina4t cosaqt 0 0
Xe(t) = 0 0 coswt sinwt
0 0 —sinwt coswt

the corresponding fundamental matrices of (2.13), (2.14) and (2.15) are X1 (t) = X (),
Xo(t) = X_(t —t7) and Xs(t) = X, (t — t5), respectively. Saltation matrices of (2.11)
and (2.12) are diagonal:

$1(8) = diagla_/as,1,1,1},  Sy(8) = diag{a,/a_,1,1,1}.

Note that the assumed relation (2.54) between a,, a_ and w means wT? = 27.
That explains the name 1-1 resonance in (2.53)..

Lemma 2.20. System (2.55), satisfies conditions H1) and H2).

PTOOf. Since IO(/B) = (51a0762753)7 Dh(m,y,z) = (17070)0) and

fe(wo(B)) = (0, —ay B, wphs, —wpa)",
J+(Z1(B)) = (—a+p1,0,wT14(5), —wT13(6))",
J+(Z2(B)) = (a+B1,0,wT2u(B), —wT23(3))"

both conditions are easy to verify. O

Of course, it is possible to continue with general values of a1+ and w, but resulting
formulae are rather awkward. Therefore we set ay, = 2, a_ = 6, w = 3. Then
following the procedure of Section 2.3 we derive the discontinuous Melnikov function

M*(B) = (M{'(8), My(B3), My (B)) with
3\f

MY(B) = 15 (87 = )81 — —=nbs,
43
M) = Lo+ B2, /3;?" T, (256)
43 2 28
My (B) = %M@ - g53 - —1;?#% + —1?:?:#51
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Equation M}'(3) = 0 has a simple root

45v2 (7 — 4)5
344 1 '

Bs(p, B1) = (2.57)

Similarly

45V2
ﬁ ( 61) 3;{17 (%11 )ﬁl

is a simple root of equation M3 (51, Ba, B3(p, £1)) = 0. Third equation ME(5) = 0 now

has the form
V25 5, 255 4 75 2, g 2) g1
(B2 — 82 \ 344" 1T Age" T3l )M

210 , 15 , , 448 180 5 15 5, 1792
2= _ i = - i -0
(437T+344 T 3 )/Bl BT TR Tt

(2.58)

(2.59)

It is not possible to find solutions 5, of the last equation analytically. Nevertheless, we
can derive p? as a rational function of 3; given by

2 _ . p1(51)
p(Br) = F(br) = (B

pi(Br) = 20257%(6} — 4)(B; - 8)*,
p2(B2) = 963237 — (202572 + 154112) 32 + 810072 + 616448,

which is plotted in Fig. 2.3.

(2.60)

5017
40
304

204

Fig. 2.3: The graph of the function p?(3;) with respect to ;. Asymptotes intersect
pr-axis at By = 2.445 and B, = 3.478. The bifurcation point
(B1, F(B1)) = (4.097,40.423) is denoted by a circle

Note pa(51) = (b1 — B1-)(B1 + B1-)(B1 — Bry ) (B1 + Biy) for

1
8

1
Brs = \/301 (154112 + 202572 + 457154112 + 20257r2)
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with £ = 2.445 and (3,4, = 3.478. Clearly, only for positive values of u? a periodic
orbit can persist, which is determined by the equation p? = F(8;), 81 > 0. Thus from
now on we assume f; > 2. Moreover, from Fig. 2.3 one can see that for all u > 0
a periodic orbit can persist and for y? > F(B3,) = 40.423 there exist three possible
persisting periodic solutions. Here (; = 4.097 is a unique solution of F’(3;) = 0
greater than 2v/2 = 2.828. Note F(2v/2) = F'(2y/2) = 0. Since

p(B1) = F(B1) >0

for all
Grel =L UILU I,

L= (2,51_) = (2,2.445),
I = (B4, B1) = (3.478,4.097), (2.61)
Iy = (B1,00) = (4.097, 00)

is a simple root of equation (2.59) we know (see [20, Lemma 3.5.5]) even without

calculating DM*(B) that (81, Bo(1u(Br), 1), Bs(1(B1), B1)) is a simple root of M5 ()
for all ; € I. Hence using the first part of Theorem 2.14 we have just proved the

following statement.

Proposition 2.21. Let S5(u, £1), B3(, £1) be defined by (2.58), (2.57) and I by (2.61),
respectively. For i € (0,/F(B1)) = (0,6.358) there is a unique persisting periodic
solution x*(e, u,t) of system (2.55). for any € # 0 small. Moreover

z*(0, 11,0) = (67,0, Ba(p, 6), Bs(p, 6)), B* €Ly

for 5% = B*(u) being a unique positive solution of equation (2.59).
For p € (\/F(f1),00) = (6.358,00) system (2.55). possesses three persisting peri-
odic solutions x} (e, p,t), i = 1,2,3 for any € # 0 small. In addition,

27 (0, 1,0) = (87,0, Bo(ps, B7), Bs(w, B7)), B € L;, i=1,2,3

for positive solutions 57 = B (), B3 = P5(n) and 5 = B5(1) of equation (2.59).

To study asymptotic properties of these periodic solutions, we need the following
result.

Lemma 2.22. The next statements hold for a cubic equation \* +as \? +a A\ +ag = 0:
(i) Its all roots have negative real parts if and only if az > 0 and ayjas > ag > 0.
(11) Its all roots have positive real parts if and only if as < 0 and ajas < ag < 0.

(11i) It has a zero root if and only if ag =0, and this root is simple if a; # 0.

(iv) It has a nonzero pure imaginary root if and only if a; > 0 and ajay = ag, and
then it is given by +/aqt.

Proof. (i) follows from the Routh-Hurwitz criterion [30]. (ii) follows from (i) by ex-
changing A <> —\. (iii) and (v) are elementary to prove. O
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The Jacobian matrix of function M*(3) of (2.56) at By = B2, 1), B3 = P31, P1)

is given by

DM*(5) =

T32 _ 7
4/81 23 2
_ 15v2r2 (B1—4)
1376 28
A

_ 43v2

V2 (202572 + 38528) 84 — (1620072 + 616448) 32 + 3240072 4 2465792)

185760
301 |
\
\ \
\ \
20 ‘ ‘
| \
\ \
“ \ \
\ \
10 | |
\ \
\ \
\ \
\ \
0 — — T
2 3 4 5
\ \ By
\ \
\ \
~104 \ \
501 |
\
y ‘
0 ; ———
1 2 ‘l 3 ‘r 4 5
By
\ \
-50 \ \
\ \
\ \
-100- \ \
\ \
alaz—ao ‘ ‘
- 150 \ \
\ \
\ \
-2001 | |
\ \
\ \ /\
-250- | |

0 135 M
50 -8) 335 |,
_m B} _x
12 328 3
(87 — 8)? ’
(2.62)
304 ‘
| v
\
\
20 |
\
\
al ‘
\
104 |
\
\
\
\ |
0 T T T ‘ T
1 2 3 4 5
\ B
\
\
\

20

T T T T
2.441 2442 2443 2A444‘ 2.

T T T 1
fS 2.446 2.447 2.448
By

Fig. 2.4: Tllustration of coefficients ag(/1), a1(/51) with respect to £ and the
combination a;(51)as(51) — ap(f1) with detail in the neighbourhood of the asymptote
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Consequently, the characteristic polynomial of matrix (2.62) has the form

P(A\) = N + axA\* + a1\ + ag,
3

a0(B1) = Joezs (481687 — (20257 + 115584) 7 + (162007 + 924672) 5]
— (3240072 + 2465792)57) ,
2
a1(B1) = —— (1444885 — (20257 + 423808) 8% + (4860072 + 4315136)3*  (2.63)

- 728
— (2268007 + 17260544) 87 + 2592007 + 19726336) ,

it o«
az(B1) = 3~ gﬂf,
B = 96326 — (20257% + 154112) 57 + 81007* 4 616448.

Dependence of ag(f1), a1(51) and a1 (B1)az(51) — ag(B1) on fy is illustrated in Fig. 2.4.
Now, a result on stability of persisting trajectories follows.

Proposition 2.23. Let z*(e, u,t), zf(e,u,t), i = 1,2,3 be as in Proposition 2.21.
Then for any € # 0 small all of these solutions of system (2.55). are hyperbolic and for
e > 0 small none of them is stable and the only repeller is x3(e, u,t).

Proof. Using Theorem 2.14 and Lemma 2.22 applied on characteristic polynomial (2.63)
we directly obtain the statement. The sign of ay(f;) is obvious and those of ag(51),
a1(B1) and a1 (51)as(B1) —ao(P1) can be seen from Fig. 2.4 or computed from definitions
in (2.63). O

Note, that from Lemma 2.22 in bifurcation point (cf. Fig. 2.4) B, = 4.097, i =
V F(B1) = 6.358 the matrix DM*(3) of (2.62) has an eigenvalue 0 of multiplicity 1. In
this case we can not apply Theorem 2.14 and higher order Melnikov function (cf. [8])
has to be used to determine if the solution v(531, B2(fi, 1), Bs(fi, B1),t) even persists.
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3 Bifurcation from single periodic orbit in autono-
mous systems

In this section, we consider degenerated case of the manifold of initial points from
previous section, i.e. we shall assume, that the unperturbed equation possesses one
isolated transverse periodic solution of period T" and we look for sufficient condition on
the perturbation such that the perturbed system has a periodic solution close to the
original one with period close to T

Let Q C R™ be an open set in R” and h(z) be a C"-function on €, with r > 3.
We set Qi = {z € Q| £h(z) > 0}, Qo := {z € Q| h(z) = 0}. Let fr € CI(Q),
gECI(QxRxRP)and h € CF (L, R). Let ¢ € R and pu € RP,p > 1 be parameters.
Furthermore, we suppose that 0 is a regular value of h.

We say that a function z(t) is a solution of the equation
j”:f:t(x)+€g(x7€7u)v meﬁ:b (31)

if it is a solution of this equation in the sense analogical to Definition 1.1.
Let us assume

H1) For € = 0 equation (3.1) has a unique periodic orbit (t) of period T'. The orbit
is given by its initial point xy € €2, and consists of three branches

y(t) iftel0,t],
Y(t) = 7a(t) ift e [t ta], (3.2)
Y3(t) ift € [ta, T7,

where 0 < t1 <ty < T, 7 (t) € Qy fort € [0,t1), 12(t) € Q_ for t € (t1,t2) and
v3(t) € Q4 for t € (to, T] and

x1 = m1(t1) = 72(t1) € Qo,
Tg 1= Ya(t2) = 73(t2) € o, (3.3)
zo :=73(T) = n(0) € Q4.

H2) Moreover, we also assume that

Dh(xl)fi(xl) <0 and Dh(l’g)fi(l'g) > 0.

Let a4 (7,&)(t, e, ) and x_(7,€)(t, &, 1) denote the solution of initial value problem

T = f:l:(x) +€g($757:u)
() =¢

with corresponding sign. Note

(3.4)

xi(Ta 5)({;7 &, /u) = xi(oa 5)(t - T8 :u)' (35)

First, we slightly modify Lemma 1.2 for autonomous case.
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Lemma 3.1. Assume H1) and H2). Then there exist e9,79 > 0 and a Poincaré map-

ping (cf. Fig. 3.1)
P(-e,pn): B(xg,m9) = X

for all fixred € € (—eq,€0), 1 € RP, where
Y ={y € R" [ {y — z0, f1(0)) = 0}

Moreover, P : B(xg,70) X (—¢€0,€0) X R? — R" is C"-smooth in all arguments and
B(.’L'(),T’(]) C Q+.

Proof. The lemma can be easily proved as Lemma 1.2 using implicit function theorem
(IFT). We obtain the existence of C"-functions ¢, to and t3 satisfying, respectively,

h(l‘+(7’, 5)(751(7—7 5757 :U’)v 57”)) =0,
h(l',(tl(T, fa & ﬂ)v er(T?é)(tl(Tv 5; & /L)v &, M))(tQ(Ta 5757 ,LL), 5»#)) =0

and
<$+(t2(7’, 57 €, M)) x—(tl (7_7 €7 €, M)> Z'+(’7', 5)(t1(7_> 57 €, M)) &, ;u))

(t2(7—7€7 g, ,u),f‘:, M))(t?)(Tv 57 & M)?gv :u) — Xo, f+(.§C0)> =0

for (7,€,¢) close to (0,z9,0) and p € RP. Moreover, we have t;(0, 0,0, ) = t1,
t2(0, 29,0, ) = to and t3(0, xg, 0, u) = T. Poincaré mapping is then defined as

P(£7€7M) = ‘r+(t2(0)gvgalu)?x—(tl(()?g)87lu)ax-i-(oﬂg)(tl(ov5557/'075’#)) (3 6)
(tQ(O,f,6,M),S,,u))(t3(0,§,5,,u),5,ﬂ).

O

Fig. 3.1: Discontinuous Poincaré mapping

In contrast to Section 1 and Section 2, here we shall need to calculate second order
derivative of Poincaré mapping with respect to £. In order to do this, we construct
linearization of P at general point (£, 0, 1) with £ sufficiently close to zy. Note that in
each of the next steps, dependence on p is lost, since we set € = 0 and p occurred only
as a parameter of g. Therefore we omit the dependence on ¢ and p in the following
linearizations and denote x4 (7,&,t) the solution of unperturbed system

x(1) =&
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For this time ¢;(§) = ;(0,£,0, 1) for i = 1,2,3 and

z1(§) = 24.(0,£,t1(€)),
z9(§) = - (t1(£), 21(§), t2()), (3.8)
23(§) = w4 (t2(§), 22(§), t3(E))-

Differentiating of (3.7) with respect to £ we get

i'iﬁ(’ra 57 t) = Df:l:(xi (7—7 57 t))x:tﬁ(Tv é—a t)

xig(T,f,T) =1 (39)

where the lower index ¢ denotes the partial derivative with respect to € and T the
(n x n)-identity matrix. Let us denote

XE(t) = 2.6(0,6,1), (3.10)
X5(t) = z_¢(ta(€), 21(8), 1), (3.11)
X5(t) = wye(ta(), a2(€), 1). (3.12)
From identities
hMzi(§)) =0, h(@2(8)) =0,  (23(§) — o, f+(0)) =0
using relations (3.8) we derive, respectively,
he(€) = ~ Dh(1(£) X (1 (€)) e (€) = _ Dh(a(€)) X5 (12(€)) ST XS (11(€))
“ Dh(a:()f+(1:(€) ™ Dh(ws(§))f-(12(€)
e (€) = (K5 (12(€) S5 X5 (12(E)) S X (12(€))-, S (o))
* (- (23(€), [ (x0)) ’
where
¢ o (@(§)) — fr(21(8)))Dh(x1(£))
R TP 5) N 3 (319)
¢ o, Ur(22(8)) — f-(22(€)))Dh(x2(E))
B T DA ) (#2(6) 1y

are saltation matrices taken at general initial point £. Considering the inner product
(a, by = b*a, we can write

Fil@o) X5 (t5(£)) S5 X5 (£2(€)) ST X1 (11(€))
(f+(x3(8)), f+(20)) .

In view of these facts, we can state the lemma concluding some properties of Poincaré
mapping.

Lemma 3.2. Let P({, e, 1) be defined by (3.6). Then for £ sufficiently close to x
Pe(€,0,p) = (I— S%)A(&,0), (3.15)
T
Po(20, 0, 1) = (I — §%) ( /0 Ao, 8)g(1(5), 0, u)ds) , (3.16)

tae(§) = —
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where P, P. are partial derivatives of P with respect to &, €, respectively. Here

S — S (@3(§)) f+(x0)"
(f(23(8)), f+(0))

is the projection onto [fy(x3(€))] in the direction orthogonal to fy(zq) (i.e. SSy =0 if
and only if (y, f+(zo)) =0) and A(&,t) is given by

(3.17)

Xg(tz(é”))SfXE(tz(é))Sfo(tl(5))Xf(t)’1 ift €[0,4(¢)),
A6, 1) = (ts(5))55X§(t2(€))X§(t)‘1 ift € [ta(8),12(S)),  (3.18)
X5 (t5(6)X5(6) ™ ift € [t2(€), ta(8)]

with saltation matrices S¢ of (3.13) and S5 of (3.14) and X%, X5, X5 being defined by
(3.10), (3.11), (3.12), respectively. In addition, Pe(xo,0,p) has an eigenvalue 0 with
corresponding eigenvector fi(xg), i.e.

Pf(fc0707/l’)f+(x0) =0.

Proof. Since P(£,0, 1) = x3(§) where z3(&) is given by (3.8), result on P (¢, 0, i) follows
from preceding discussion. P.(xq,0, 1) is obtained by differentiating (3.4) with respect
to € (cf. Lemma 1.4). Statement on the eigenvalue is proved in more general form in
Lemma 2.3. O

For simplicity, we shall drop the upper index § when & = zg, i.e. X;(t) = X°(¢t) for
i=1,2,3,5; =5 fori=1,2, S = 5%. Clearly ti(xg) = t1, ta(xo) = ta, t3(x¢) =T,
x1(xo) = w1, x2(x0) = Ta, x3(x9) = x9 and S is the orthogonal projection onto [f4 (zo)].

Now we want to find a persisting periodic solution of (3.1) for ¢ # 0, i.e. we are
looking for periodic solution of perturbed equation in the neighbourhood of ~(-) such
that if £ tends to 0 then the new solution tends to y(-). This problem is equivalent to
solve the next equation

F(z,e,pu) =2 — P(x,e,u) =0 (3.19)
for (xz,e) € ¥ x R close to (xg,0). Thus
F : (B(zo,70) NE) X (=0, €0) X R? = [f1(20)]F C R"
and F(xg,0, ) = 0. If we denote
Z = NF¢(20,0, 1), Y = RFe(x0,0, p) (3.20)

the null space and the range of the operator F¢(xo,0, 1), then we take the orthogonal
decomposition

[fe(z0)]" =Z @ Z+, [fr(zo)] =Y @Y+

with the orthogonal projections Q : [fi(zo)]* — Y, P : [fi(20)]t — Y. Note
Y = 20 + [fr(20)]* and dim Z = dimY*. For & € Z, & € Z+ we consider Taylor
expansion

F(‘TO + 51 + §2a &, u) = DEF(‘%‘O) Oa :u)g? + 6DEF’(£0; 0, :U/)
1 1
+§D££F(9€07 0, )€1 + &a]? + eDee F (o, 0, p)[€1 + &) + §€2D55F($0, 0, 1)
Ol + |&° + [e).
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Equation (3.19) has the form F(z¢ + & + &, 6,1) = 0 for & € Z and & € Z+ small.
To solve it we apply Lyapunov-Schmidt decomposition

QF (o + &1 + &6, 1) = 0, (3.21)
PF(xo + & + &a,8, 1) = 0. (3.22)

First of these equations solved via IFT gives the existence of a unique C"-function
& (&1, e, 1) for &, € small such that equation (3.21) is satisfied for &, &, € small
if and only if & = &(&,e, ). Moreover &(0,0,u) = 0. Differentiating (3.21) for
& = &(&, e, ) with respect to & at (&1,) = (0,0) we derive D¢ &(0,0, ) = 0.
Therefore & = O(£7) 4+ O(g). So we scale

& &y, £+ ££2.

Then we get

1
0= 5PF(xo+e& + &a(eéy, 12, 1), 262, 1)
- 1 (3.23)

as an equivalent problem to equation (3.22). Let dim Z = k > 0 and {¢1,...,9x} be
an orthogonal basis of Y*. Then applying Lemma 3.2 equation (3.23) is

T
0= Z o [ [ 60,00, sas
1 *
+5 (A7 (20, 0)De((I = S)A(E, 0)&1) g, A"(w0, 0)13) | + O(e).

Linearization of equation (3.1) with ¢ = 0 along T-periodic solution ~(¢) gives the
variational equation

(t) = D fe(y(t)z(t) (3.24)
which splits into couple of equations

& =Dfi(v(t)z ift €[0,t1) Ut T1,
P =Df (v(O)r  ift€ [th)

satisfying impulsive conditions
$(t1+) = Slx(tl—), x(tg—l—) = ng(tg—) (325)

and periodic condition

(I— S)(x(T) — 2(0)) = 0 (3.26)

as well, where x(t+) = lim, 4+ (s). From definition of X;(¢),

X, (t) ift € [0,1),
X(t) = { Xo(t)S1 X1 (1) ift € [t1,12),
Xg(t)SQXQ(tQ)Sle(tl) lft S [tQ,T]
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solves variational equation (3.24) and conditions (3.25). So does X (¢)c for any ¢ € R™.
Moreover, X (t)v is a solution of periodic condition (3.26) if and only if v € [f1 (), Z].
Indeed, from Lemma 3.2 and since (I — 5)f,(z9) = 0 we get

(I=S5)(I = A(20,0)) f+(x0) = 0.
For w € Z C [f1 ()"
0 = DeF (0, 0, p)w = (I — (I — S)A(wo, 0))w = (I — S)(I — A(zo, 0))w
and for w € Z+ C [fy (wo)]*"
0 % DeF (20, 0, p)w = (I — S)(I — A(zg, 0))w.

From our result — Lemma 2.4 we know that the adjoint variational system of (3.1)
with € = 0 is given by the following linear impulsive boundary value problem

X = D)X it e o,
X = “Df ()X ifte [t ba),
X - —Df_,_(’y(t)) ift € [tQaT]v (327)
X(t;i—) =S X(ti+), i=1,2,

X(T) = X(0) € [f1 (o))"
Since
A (o, t) = X7H() X7 (1) ST X5 (82) 95 X5(T),

Lemma 1.5 implies that A*(zo,t)1 solves adjoint variational equation with impul-
sive conditions. If moreover 1) € Y+ then also boundary condition is satisfied, hence
A*(x0, )1 is a solution of adjoint variational system (3.27) whenever ¢ € Y+. To see
that A*(xg, 1)y satisfies boundary condition, we consider

0= (D (0,0, )€, 1) = ([ = (I = 5)A(x0,0))§, )
= (&, (T = A" (0, 0)(I = 5%))) = (&, (L = A™(x0,0))¢)
for all £ € [fy (zo)]* and if € € [f4 (20)], from Lemma 3.2 follows
0= ((T=95)§ = Pe(wo,0, )€, ¢0) = (T = S)(I = A(o,0)), )
= (& (L= A"(20,0))9)

taking P; as a partial derivative of P with respect to . In conclusion, we get the
following theorem.

Theorem 3.3. Let {¢1,...,Ux} be an orthogonal basis of Y+ with Y given by (3.20)
and A(E,t) be defined by (3.18). If &Y is a simple root of function MY°(&;) where

ME(E) = (ME(E), .., MEL (&) and

M (6)) = + / (9(7(), 0, 1), A"z, 5)i55)ds

+ <A_1(“T07 O)Dﬁ((ﬂ - SE)A(& 0)51)52960617 A” (1‘07 O)d)z>

N | —
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fori = 1,....k with “+7 or “=7 sign, i.e. M{°(&?) = 0, det De, MY (€) # 0 or
ME(&D) = 0, det Dg, M*(£D) # 0, then there exists a unique (for each sign) C"-
function & (e, ) with € ~ 0 small and p ~ po such that there is a periodic solution of
equation (3.1) with e = +€* # 0 sufficiently small and p close to pg. This solution has
an initial point

Tt =1z0+ 661(67 :u) + 52(661 (Ea M)? :l:€27 /’L)
and period t3(0, 2%, €%, 1). Note & (0, o) = &Y.

3.1 The special case — linear switching manifold

If the function h has the form h(z) = (a,z) + ¢ for given a € R", ¢ € R, some of our
results can be simplified. In this case we can take X C )y and derive another Poincaré
mapping P(-,&,u) : B(xg,19) C ¥ — X given by (cf. (3.6))

P(f,a,,u) = x*(er(g)(tl(ga57”)78au))(t2(£76au) - tl(f,s,,u),e,,u) (328)

where we omitted the dependence on 7, since we always assume 7 = 0 and equa-
tion (3.1) is autonomous. This time

ta(&, e, ) = t3(&, 6, 1), 22(§) = 2_(t1(§), 11(§), 12(§)) = 23()

(see (3.8)) and we have only one saltation matrix S*. Hence the assumption H1) has
this time the form:

H1’) For € = 0 equation (3.1) has a unique periodic orbit v(¢) of period T. The orbit
is given by its initial point 2o € ¥ C )y and consists of two branches

t) iftel0,t
’}/(t): ’71() 1 6[ ) 1]7
’)/Q(t) ift € [tl, T],
where 0 < t; < T, 71(t) € Q for t € (0,t1), 12(t) € Q_ for t € (¢;,7T) and
zy = 7(t) = 72(t1) € Qo,
Xo = ’)/Q(T) = ’)/1(0) € Q.
The new Poincaré mapping has slightly different properties.

Lemma 3.4. Let h(z) = (a,z) + ¢ for given a € R", ¢ € R and P(, &, 1) be defined
by (3.28). Then for & € ¥ sufficiently close to xq

Pe(€,0, 1) = (T— S%)A(£,0),
T
PE(I()a 07 :U’) = (]I - SZUO) </ A(l’o, S)g(’}/(S), 07 /’L)d‘S) )
0
where P, P. are partial derivatives of P with respect to &, €, respectively,

(a,w)
(a, f-(2(€))
AE1) = {X§<t2<§>>sfxf<t1<s>>xf<t>1 ift € [0,1:(6)),

@) X507 it € [11(6), ta(6)]

Séw = f-(22(8)) w € R", (3.29)

~—
~—
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with saltation matriz S5 of (3.13) now given by

{a,w)

(a, f+(21(£)))

and X¢, X5 being defined by (3.10), (3.11), respectively.

Stw =w + (f=(z1(8) = fe(@1(8))) weR" (3.31)

We consider equation (3.19) with P given by (3.28). By the procedure described in
the preceding section we derive Poincaré-Andronov-Melnikov function and the following
theorem analogical to Theorem 3.3.

Theorem 3.5. Let h(z) = (a,z) + ¢ for given a € R, ¢ € R, {t1,...,¢Ur} be an
orthogonal basis of Y+ with Y given by (3.20) and A(£,t) be defined by (3.30) and S*
by (3.29). If € is a simple root of function MK° (&) where

Mi(ﬁl) = (Mfi(gl)a R Mz’fi(fl))
and

ME(€) = + / (9(7(5), 0, ), A* (0, 8t}

(A7 0, 0)D((L — S)A(E. )1 )e—rss. A” (0, O)15)

fori = 1,...,k with “+7 or “=7 sign, i.e. M{°(&)) = 0, det Dg, MY (D) # 0 or
M (&Y) = 0, det De, M (&)) # 0, then there exists a unique (for each sign) C"-
function & (e, u) with € ~ 0 and p ~ po such that there is a periodic solution of
equation (3.1) with e = +€e* # 0 sufficiently small and p close to pg. This solution has
an initial point

at =0 + 651(67 :u) + 52(651(67 M)? j:627 N)

and period to(z*, +€% 11). Note & (0, o) = &9.

The method of Poincaré mapping can be used to determine the hyperbolicity and
stability of the persisting orbit, similarly to Section 2.2. For the degenerate case when
dim Z =n — 1 for Z defined in (3.20), i.e. Y = {0} = Z+ and Y+ = [¢)1,..., %] = Z,
we have the next result.

Theorem 3.6. Let g, & be as in Theorem 8.5, h(z) = (a,z) + ¢ for given a € R",
c € R and P be defined by (3.28). Assume that Dee P(z0, 0, uo)g?\w has no eigenvalues
on imaginary axis. Then the persisting trajectory is hyperbolic.

Proof. From Taylor expansion with respect to € at € = 0 for the derivative of Poincaré
mapping at general point x

D¢ P(x, 262, )v = D¢ P, 0, p)v + O(£?)
we have at xg + €& (g, )
A (e)0 = DeP (g + 26a(e, 1), £22 ) = DePlzg + 61(,1),0, g + O(=)

= D¢ P(x0, 0, 11)v + eDge P9, 0, n)&Jv + O(e%) = v + eDee P(0, 0, 1) EYv + O(e?).
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Hence A*(¢) = [+eAf+O(e?) where A} = Dge P(x0,0, )&7| - Let k1 be the number
of all eigenvalues of A4 with negative real parts and ky := n — k; — 1 with positive.
Then there exists a regular matrix P*(e) such that

At(e) = PH(e) AM(e)P* M (e) =T+ ¢ <Agl A92‘2> +0(e?) = E*e) + 0O(?)

where AY}, AL, are (ky X k1)-, (k2 X k2)-blocks, respectively, and Ro(AY;) C (—o0,0),
Ro(AL,) C (0,00). It can be shown [17,48] that E*(e) is strongly 1-hyperbolic. Con-
sequently, the statement follows from Lemma 2.9. O

We can slightly modify the assumptions of the last theorem to obtain a stability
criterion.

Corollary 3.7. Let the assumptions of Theorem 3.6 be fulfilled and moreover all eigen-
values of Dee P(xo,0, 1 )§1| n have negative real parts. Then the persisting periodic
orbit is stable (repeller) for e > 0 (e < 0) sufficiently small.

3.2 Planar application

In this section we consider the following system

T=y+6+ex(2— ma® — poy?)

i = —ot oz 4 y(e — 7)) ity >0,
i=x4+y—0+ @+ (y—0)>)(—z— (y—9)) (3.32)-
+ (2 + (y = 0))(x/4+ (y — 6)/2) ity <0

y:—x+y S+ (2 +(y—0)*)(z—(y—9))
+ (2% + (y — 6)*)*(—z/2+ (y — 6)/4)

with parameters p, o € R and constant 0 < § < v/2. We investigate the persistence
of periodic orbit under perturbation using the method described in Section 3.1. In this
case we have h(z,y) =y, Qr = {(z,y) € R* | £y > 0}, Qy = R x {0} and take ¥ =
{(x,0) € R? | # < 0}. Phase portrait of the first part of unperturbed problem (3.32),
considered in whole plane consists of concentric circles with the common center at
(0,—4). In affine polar coordinates © = pcos¢, y = psing + 0, the second part
of (3.32)¢ has the form

_]‘ 2 22 ;o 1 2 p4
p=r" =27 o=-14p"—7,

so it possesses only one periodic solution which is described in the next statement.

Lemma 3.8. Unperturbed system (3.32)g possesses a unique periodic solution given by

(—v2 —0%cost + dsint,—0 + /2 — 6?sint + o cost) ift € [0, 1],
Y(t) = < (V2 — 0% cos(t —t1) — dsin(t — t;), (3.33)
— V2 —0%sin(t — t1) — dcos(t — t1)) ift € [t1,T]
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with
t; = arccos(6% — 1), T =2t

and

Ty = (—V2 —42,0), 71 = (V2 —02%0).

Now we should calculate fundamental matrices X¢(t), X5(t), saltation matrix S (&)
and projection S¢ for general £ € ¥ close to Z,. However, it is sufficient to derive the
formula D¢((I — S¢)A(£,0)6)& at € = Ty and for & € X. This formula is rather
awkward and can be found at the end of this section. We underline that it is enough
to derive Xi(t), Xs(t), Si, and S, i.e. the matrices evaluated at £ = Zy. Nevertheless,
Diliberto’s Theorem 1.9 has to be used to obtain fundamental matrix Xs(¢). Applying
this theorem we get the mentioned matrices.

Lemma 3.9. System (3.32)¢ has fundamental matrices X1(t), Xa(t) along ~(t) of
(3.33), satisfying (3.10), (3.11) for & = Ty, respectively, given by

cost sint ~ ~
Xi(t) = <— sint COSt) ’ Xo(t) = Xo(t) X5 (1)
where
)Zv (t) . —V/2 — 62 sin(t—tl) —5COS(t—t1) ASiIl(t—tl) —|—BCQS(t_t1)
2T /252 cos(t —t1) +0sin(t —t1) Acos(t —t1) — Bsin(t —t1) /)’

A= —4V2—8(t—t,) =6,  B=+v2—-02—48(t —t,).

Saltation matriz Sy of (3.31) at & = Tg has the form

1 28
— V2-52
5 ( N ) .
Projection S defined by (3.29) at £ = zg is

0 ——9%_
— V262
s=(o F7).

Proof. Matrices S; and S are obtained directly from their definitions. Since the first
part of (3.32) is linear, X (¢) is the matrix solutions of this system. Using Theorem 1.9
we derive matrix X,(¢) and consequently X(¢) which has to fulfil Xy(¢;) = 1. O

Using the above Lemma 3.9, we derive

1 ——9%

(I — S™)A(Z,0) = (O \/S—W) , 1 =(1,0)

so (cf. Lemma 3.4)
Pe(20,0,p1) = (I - SiO)A(:EO,O)]TiOE =1

for the derivative of the Poincaré mapping and |7, s denoting the restriction onto the
tangent space to X at Z.

58



For arbitrary 0 < § < /2 the Poincaré-Andronov-Melnikov function is rather
awkward. Therefore, we fix parameter § = 1, so after some algebra we get

MY (u) = £G(p) — mu?, = (p1, i),
_ 68— 135m+307° 8197 +6n° 28— 657 + 1877 (3.34)

G(p) ol 3 o 51 oy

For the simplicity we shortened
Mi : Tfoz =R x {0} — TEOEJ 51 - (u70) = Mi(fl)
to
MR =R, w > MY (u).
Theorem 3.5 implies the existence of periodic solutions after perturbation.

Proposition 3.10. Let p° = (Y, 19) be such that G(u°) # 0 for G given by (3.34).
Then equation (3.32). with 6 = 1 has exactly two (zero) periodic solutions orbitally
close to ~y for e # 0 sufficiently small with G(u°)e > 0 (G(u°)e < 0) and p close to p°.

Proof. Let G(1°) > 0. Then
G (1)

™

Ui:ﬂ:

are simple roots of Mﬁo (u) = 0 for M given by (3.34). Similarly, if G(u°) < 0 then

are simple roots of M* ’ (u) = 0. Consequently, the statement follows from Theorem 3.5.
O

One can compute that in this case DgeP (29,0, p)uv = —2muv. So, from Corol-
lary 3.7 we get the result on stability of the persisting orbits (cf. Fig. 3.2). For
the simplicity, we denote 75, (t) and 77, (¢) the persisting solutions containing points
7o + €(ux, 0) + O(g?) and xg + (v, 0) + O(e?), respectively.

Proposition 3.11. Let ;i° be such that G(u°) > 0 (G(u°) <0). Then ~y; (t) is stable
and 7y;,_(t) is repelling (v;, (t) is repelling and ~; (t) is stable).

Formula for the second derivative

We calculate
De((1 = S)A(E, 0)u)esyt
= De ((1— S)X5 (1) SEXS (12()) SEXT ((€)u) _ w

=0
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Fig. 3.2: Numerically computed trajectory of (3.32). with § =1, u; = 3, gz = 4 and
€ = 0 on the left, ¢ = 0.1 on the right. Per10d1c orbits are denoted with dark. In
perturbed case G(1°) = 0.563, uy = —0.958, u_ = —1.042

as the derivative of a product, where

Dy :Xf(h(f))_ u =Yi(t)u+ Dfy(z1) X1 (t1)Dti(zo)u,

D¢ :X§(t2(§)) LU Ya(t2) 51 X1 (t)u — Xo(ta)Df-(21) Dty (w0)u
+ Df-(22) X3(t2) Dta(x0)u,
De [X§(ta(€))] u=Yal(T1)SaXa(t2)S1Xa(t)u — Xa(T)D S (w2) Dto(ao)u
+ D f4(20) X3(T)Dts(zo)u,

¢ u = ! 1) — T T1\(To)U I
+ (f-(z1) = f+(11))D2h(331)D$1($0)U]Dh($1)f+(l’l)
— (f-(x1) = fi(21))Dh(21)[D*h(z1)Da: (wo)ufy (1)
+ Dh(x1)D fy xl)Dxl(Jjo)uH,
¢ u = 1 To) — i) To(To)U i)
DS2 20 (Dh(.TQ)f, xz))Q H(Df-‘r( ) Df—( ))D ( ) Dh( )
+ (fi(x2) = f-(x2))D?h(22)Dws(x0)u]Dh(xs) f-(22)
— (f1(w2) = f-(2))Dh(w2)[D*h(w2)Daa(wo)uf—(x2)
+ Dh(z2)D f— (x2) Do (m0)ul],
DS u= (|] f (o) ||PT — f+(1?0)f+($0)*)Df+($0)D$3($0)Uf+(330)*7

u =
o If+ (o)l
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Dz (xo)u = X1 (t1)u + fi(z1)Dtq(x0)u,
Dzo(xo)u = Xo(t2)S1X1(t)u + f—(22)Dta(zo)u,
Dzs(xo)u = (I — S)A(xo, 0)u,

Dh(xl)Xl(tl)u Dh(l’g)Xz(tQ)Sle(tl)u
~ Dh(xy) fy(x1) Dh(z2) f-(z2)
S+ (@0)" X5(T) 52 Xo(t2) 51 X1 (t)u
1+ (o) |2 ’

Dtl (.’IJ())U = Dtg(l’o)u = —

Diz(zo)u = —

Yi(t)uv = Xl(t)/o X (8)D?fo(v(s) X1 (s)uXi(s)vds, t€0,t],
Yo (t)uv = Xg(t)/t X, (8)D?f_(v(8)) Xa(s)uXa(s)vds, t € [ty,ta],

Ys3(t)uv = Xg(t)/t X1 (8)D? £ (v(8) Xs(s)uXs(s)vds, t € [to, T).
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4 Sliding solution of periodically perturbed systems

Until now, we always assumed, that the periodic trajectory of unperturbed system
transversally crosses the discontinuity boundary and later returns back, again transver-
sally through the boundary. This time, we shall investigate the persistence of periodic
trajectories that after a transverse impact remain on the boundary for some time and
then return into the original region. We consider a discontinuous differential equation
with a time periodic nonautonomous perturbation as in Section 1.

Let Q C R™ be an open set in R™ and h(x) be a C"-function on 2, with r > 3. We
set Qp :=={z € Q| £h(z) > 0}, Qy := {x € Q| h(z) = 0} for a regular value 0 of h.
Let fr € CI(Q), g+ € C;(Q xR x R x RP) and h € CJ(Q,R). Moreover, let g5 be
T-periodic in t. Let ¢ € R and p € R?, p > 1 be parameters.

Definition 4.1. We say that a function x(t) is a sliding solution of the equation
i = fo(x) +ege(m,t+a,e,1), € Qy, (4.1)
if it is continuous, piecewise C, satisfies equation (4.1) on €., equation
&= Fy(z,t + a,e, ) (4.2)
on £y, where
Fo(x,t e, p) = (1= B, t, e, 0)) F-(x,t, 6, 1) + Blx, t, e, p) Fy(z, 1,8, ),

Fi(xvta‘E?M) - fi(x) "’?‘H(%@&M%

B Dh(z)F_(z,t,¢, 1)
Blat.e,m) = Dh(x)(F-(x,t, ¢, p) — Fy(z,t,, 1))

(see [27]) and, moreover, the following holds: if z(ty) € € and there exists p; > 0 such
that for any 0 < p < p; we have x(typ — p) € €4, then there exists p, > 0 such that
x(to + p) € Qp for any 0 < p < py (the solution remains on 2y for some nonzero time).

Note that the “sliding” of a sliding solution is assured since Dh(z) Fy(x, t+a, e, 1) =
0 for = € Q.
Let us assume
H1) For ¢ = 0 equation (4.1) has a T-periodic orbit y(¢). The orbit is given by its
initial point xy € {2, and consists of three branches

y(t) ifte0,t],
Y(t) = 7a(t) ifte [t ta, (4.3)
Y3(t) ift € [ta, T7,

where 0 < t; < tp < T, 71(?5) S Q+ for t € [O,tl), "}/Q(t) € Qg for t € [tl,tg],
v3(t) € Qy for t € (to, T] and

x1:=7(t1) = 72(t1) € Qo,
To = ’72(t2) = ’73(t2) c Qo, (44)
To 1= ’}/3(T) = ’}/1(0) € Q+.

62



H2) Moreover, we also assume that

Dh( (- () = fi(a )) if 2 € (o,
Dha(y(0) f+(7(1)) < if t € [t1,t2),
Dh(y(8)f-(v(2)) > ift € [t1, 1],

Dh(x3) fy(x2) =0, Di[h( (ta +5))]s=0+ # 0.

Later, it will be seen that it is sufficient to assume the first inequality in H2) to be
satisfied only in the neighbourhood of {y(t) | ¢t € [t1,ts]}. Next, from H2) it follows
that Dh(z)(F_(x,t,e, u)— Fy(x,t,e, 1)) > 0 for any e # 0 sufficiently close to 0. Hence
Fy(x,t,e, p) is well-defined and we get

FO(:E’ t75> /1’) = f0($) + 690(x>t> g, :u)

where
(o) — LIS (@) = £ (@)Dh(w)f (x)
Dh(2) (J—(2) — [+ (2))
and
gole, b, 1) = ! ((f () — f-(2))

[Dh(@)(f-(x) = [+(@))]?
x(Dh(z)g (2, t,0, p)Dh(z) f-(x) — Dh(z)g-(x,,0, n)Dh(z) f+(x))
+(g+(,t,0, u)Dh(z) f-(x) — g-(2,,0, p)Dh(z) f1(x))Dh(z)(f-(x) — fi(2))] + O(e).
Denote
Kepo={x€Q |z~ a9, Dh(z)F(x,¢, p, ) = 0}.
Remark 4.2.
1. We obtain that K = Kj ., is a C"'-submanifold of Qy of codimension 1 in a

neighbourhood of x5. So is K., , for € sufficiently small.

2. Since (t5) = fo(xa) = fy(w2) = §(t5) where §(t*) = lim, = §(s), then 4(t) is
C'-smooth at t = t,.

3. From identity
D2[A(Y(t2 + 5))]s=0+ = Ds[Dh(v(t2 + ) f1(7(t2 + 5))]s=0+
= Dzh($2)f+(952)f+($2) + Dh(22)Df1(22) f+(22) = Do[Dh(z) f1(2))a=c, fo(T2)

we get that y(t) crosses K transversally. Then clearly the solution of perturbed
equation, which is close to () crosses K. ,, transversally. Moreover, assump-
tions H1), H2) imply that

D[h(Y(tz + 5))]smot > 0.

Let x;(7,£)(t, e, u, ) denote the solution of initial value problem
= fi(z) +egi(z,t +a,e,pn)
z(1) =€

with ¢ being an element of a set of lower indices {+, —, 0}. First, we modify Lemma 1.2
for the case of a sliding trajectory and show the existence of a sliding Poincaré mapping.

(4.5)
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Lemma 4.3. Assume H1) and H2). Then there exist e9,79 > 0 and a Poincaré map-

ping (cf. Fig. 4.1)
P(- e, pu,a) 2 B(xg,r9) = X

for all fized € € (—eg,€0), 1 € R, a € R, where
Y ={y €R" | (y — zo, f1+(20)) = 0}

Moreover, P : B(xg,19) X (—€0,80) X RP x R — R" is C""-smooth in all arguments
and B(xg, 1) C Q4.

Proof. Implicit function theorem (IFT) yields the existence of positive constants 7,
r1, 01, €1 and C"-function

such that h(z4(7,&)(t, e, u, ) =0 for 7 € (—1,7), & € B(xg, 1) CQy, € € (—e1, 1),
we R o€ Randt € (ty — 1,6 + 61) if and only if t = ¢,(7,&, e, u, ). Moreover,
t1(0, xg, 0, pt, ) = t1. Now, since

Dsh(xo(t1<0> 2o, Oa s Oé), (E+(0, xo)(tl (07 Zo, 0, 2 Ot), 0, K, a))<t2 + s, 0, K, a))s:0+ =0,
Dgh(IO(tl (07 Zo, 07 M, OZ), er(Oa xO)(tl (07 Zo, 07 M, OZ), 07 M, Oé))(tz + S, 07 M, OZ))5:0+ > 07

IFT gives the existence of positive constants 7o, 19, ds, €5 and C"~*-function
to(cy sy )t (=72, m2) X B(xo,72) X (—€2,82) X RP X R — (tg — 09, 1o + o)
such that
xo(ti (7, & e, o), xy (1, 6) (0 (T, € €, 1y ), €, p, ) (E, €, pty ) € K s
ie.
Doh(wo(ta(7, €, 6, 1y ), 4. (7, ) (1a(7, €, 6, s @) €,y @) ) (E+ 8, €, 1, ) ) o = 0,
D2h(wo(t1 (7, &, 8, 1, @), w4 (7, ) (t1 (T, €, 6, 1, @), €, 1, @) (E 4 8,6, 1, @) ) s—gt > 0

for 7 € (=1, 1), & € B(xg,m2) C B(xg,7r1), € € (—€9,62), p € RP, € R and
t € (ty — 09, ty + 09) if and only if t = to(7,&, &, p, ). Moreover, t5(0, xg, 0, 1, ) = L.
Similarly to ¢, (7, €, €, 1, ), we obtain positive constants 7g, o, o, €0 and C™~!-function

tg(', Syt ) : (—7'07 T()) X B((Eo, T’o) X (—60, 50) xR x R — (T — 50, T+ 50)
satisfying
<$+(t2(77 €7 €, [, a)) $0(t1(7‘7 57 €, Oé), $+(7—7 5) (tl(Ta 57 €, Oé), €, Oé))
(t2(7—7 gu g, 1, O[), g, 1, a))(t?)(T» 57 €y Iy Oé), €, Uy Oé) — Zo, f+($0)> =0
for any 7 € (—70,70), £ € B(xo,70) C B(zo,72), € € (—€0,60), 4 € R, € R. In
addition, t3(0, zo, 0, 4, «) = T'. Consequently, the Poincaré mapping is defined as
P(£7 6? M? OZ) = x+(t2(07 57 57 l’L7 O[), xo(tl(()? 57 E? /"67 OZ), x+(07 f)(t1(07 57 57 M’ a)’ 57 M’ a))
(t2(07 67 €, Uy Oé), €, W, a))(t3(07 67 & Wy Oé), & Ky Oé).

O
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Fig. 4.1: Sliding Poincaré mapping

To find T-periodic solutions of perturbed equation (4.1) close to ¥(-), we solve a
couple of equations

P(ga €5 Cl() = 57
t3(07 57 €, 1, CK) =T.

We reduce this problem to a single equation

F(x,s,,u,oz) Z:ZE—P(x,E,/J,,Ot):O (46>

for (z,a) € ¥XR, x ~ g and parameters e ~ 0, u € RP by introducing the stroboscopic
Poincaré mapping (cf. (1.6))

ﬁ(g,{f, 1, a) - [E+(t2(0, 67 g, i, 04), l‘o(tl(o,f, g, i, 04), 1‘+(0, 6)(t1(07£7 €, i, Oé), €, My a))
(tZ(nga €, [, Oé), & u, a))(Ta €5 a)'

(4.7)
Properties of the mapping are concluded in the following lemma.
Lemma 4.4. Let ﬁ(f,a,,u, a) be defined by (4.7). Then its derivatives fulfil
DeP (0,0, 1, o) = A(0), (4.8)
T
D.Pla.0.0) = [ Als)g(a(s)s + s, (4.9)
0
where
t ‘ Q
g(l',t,/i) — g+($7 707/‘) fo € +> (410)
go(I,t,O,M) Zfl' € QO?
A(t) is given by
X3(T) Xo(ta)SX (1) X1 (t)™1 ift €[0,¢1),
A(t) =  X3(T) Xo(t2) Xo(t) ! ift € [t1,ta), (4.11)
X3(T) X5(t) " ift € [t2, T]
with saltation matrix
g = 14 Yolz) = fu(z1))Dh(zy) (4.12)

Dh(z1) f (1)
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and fundamental matriz solutions X1(t), Xo(t), Xs3(t) satisfying, respectively,

X1(t) = Dy () X1 (t)  Xa(t) = Dfo(y(1)Xa(t)  Xa(t) = Dfy(v(t) Xs(t)
X1(0) =1, Xo(ty) =1, X3(te) =L
B (4.13)
In addition, D¢ P(x,0, pt, &) has an eigenvalue 1 with corresponding eigenvector fi (o),
i.€.
DeP (20,0, p, ) f1(z0) = f+(20).
Proof. Analogically to Section 1 we derive the following identities

Dex (0, 20) (2,0, u, ) = X4(2),

D.x(0,20)(t,0, u, / Xq(t g+(v(s), s+, 0, u)ds
for ¢t € [0,t4],
Dexo(tr, 21) (8,0, p, ) = Xa(t),  Drxo(ts, 21)(t, 0, p, ) = = Xo(t) fo(21),
Dexo(ty, z1)(t, 0, p, o / Xs(t) go(v(s), s+ ,0, u)ds
for t € [ty,ts],
Dewy (to, 22) (8,0, 1, 0) = X5(t),  Drai(ta, 22) (4,0, 1, ) = —X5(t) f+(22),
D.x(ty, x2)(t,0, 1, o / Xs(t g+ (v(8), s+, 0, u)ds

for t € [to, T'] and for times

Det1(0, 20,0, pt, ) = — (“TliX 1(t)

Dh(w1) fy(21)
Dh(x1) fy' X1(t1) X (8)g4((s), s + @, 0, p)ds
Dh(l’l)ﬁ( 1)

D€t1(07 Lo, Oa 2 Oé) - =

Y

_ (D?R(x2) fo(wa) + Dh(2)D fo(w2)) Xa(t2) SXi(t1)
Pet2(0:70:0:14:) = =501 (o) olwa) o) + Dh(zz) Do) folzz)

1
- DQh(ZL'Q)fo(l'Q)fo(ZUQ) + Dh(xQ)DfO(:E2)fO('T2)

{(D h(x2) fo(z2) + Dh(x2)D fo(x2) (/ Xo(t2) X5 1 (8)go(v(s), s + a, 0, )ds

DEtQ(O) Zo, 07 L, Ol) =

+/0 Xz(t2)5X1(t1)X1_1(5)9+(7(5)»5+O‘70>M)d5> + Dh(z2)go(z2, t2 + @, 0, 1) | -

Differentiating (4.7) with respect to &, respectively e, we get the statements on the
derivatives. Now let ¢ be sufficiently small. Since

T+ (07 {L‘+(0, .I‘O)(t, 0, p, a))(tl(ov I.,.(O, (Eo)(t, 0, p, a)) 0, 1, a)v 0, p, a)
= $+(0, xO)(t1(07 l'+(0, l’o)(t, 07 Hs Ol), Oa H, Oé) +1, Oa H, Oé)
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is an element of Qy and as well of {y(t) | t ~ t;} we have
t1(0, 2(0, 20) (¢, 0, p, ), 0, p, @) + t = t;
for all £ close to 0. Consequently,
24(0,20)(t1(0, 24 (0, 20)(t, 0, pt, ), 0, pt, @) + £, 0, 1, @) = 1.

Similarly, the left-hand side of the following identity is an element of K and the right-
hand side is from {7y(t) | t ~ t2}

2o (t1(0, 25 (0, 20)(t, 0, pt, ), 0, 1, ), (0, x4 (0, 20) (£, 0, 1, @))
(t1(0,2,(0, 20) (¢, 0, pr, ), 0, , ), 0, g, ) ) (t2(0, 24 (0, 20) (¢, 0, 1, ), 0, p, ), 0, i, )
= 20(t1(0, 24 (0, 20) (¢, 0,y @), 0, p1, &), 1) (t2(0, 24 (0, 20) (£, 0, 1, ), 0, 1, ), 0, 1, )
= xo(t1 — t, 1) (t2(0, 24 (0, o) (¢, 0, i, ), 0, pt, ), 0, pu, )
= xo(t1, 21)(t2(0, 21 (0, 20) (¢, 0, pr, @), 0, pu, @) + ¢, 0, p, ).
Therefore,
t2(0, 2, (0, 20)(t, 0, i, @), 0, pu, @) + t = to

for all ¢ close to 0 and

.I'Q(t], xl)(t2(07 ‘T+(07 l’o)(t, 07 M, Oé), 07 12 Oé) =+ ta 07 1, Oé) = T2.

Finally,

x4 (t2(0, 24 (0, 20) (t, 0, i, ), 0, pt, @), 2o(t1(0, 24 (0, o) (t, 0, i, ), 0, , ),
24 (0,240, 20) (¢, 0, g, ) ) (£1(0, 2 (0, 20) (¢, 0, 1, ), 0, 1, ), 0, pa, )
(t2(0, 24(0,20)(¢,0, p, ), 0, 1, @), 0, 1, &) )(T, 0, p, )
=24 (t2(0, 24(0, 20) (¢, 0, u, ), 0, pu, ), 2) (T, 0, p1, )
=z (ta — £, 22)(T,0, p, ) = 2y (2, 22)(T + £,0, 1, ).

Hence,

Dfp(foa 07 H, Oé)f+($0) = Dt[P(‘T-i-(Oa xO)(tﬂ 07 12 04)7 07 122 a)]t:O
= Dy[z 1 (t2, 22) (T + 1,0, pt, @)]i=0 = f+(x0)

and the proof is finished. O

Note that in the case of sliding the second saltation matrix (see (1.14), (2.12),
(3.14)) Sy has the form

(f+(x2) — fo(w2))(D*h(x2) fo(w2) + Dh(z2)D fo(x2))
D?h(x2) fo(w2) fo(w2) + Dh(w2)D fo(x2) fo(z2)
since fy(z2) = fo(z2). This corresponds to the regularity of v(t) at ¢ (see Remark 4.2).

Now, we solve equation (4.6) using Lyapunov-Schmidt reduction method. We de-
note

Sy =1+ =1

Z = NDEF(xm 07 2 O[), Y = RDﬁF('IOa 07 Ky a) (414)
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the null space and the range of the operator D¢ F'(xo, 0, i1, o) and
Q:R"—>Y, P:R*"— Y+ (4.15)

orthogonal projections onto Y and Y+, respectively, where Y* is the orthogonal com-
plement to Y in R". From Lemma 4.4 we know that f,(zo) € Z. For the simplicity,
we take the third assumption, so-called non-degeneracy condition

H3) ND¢F(x0,0, 1, ) = [f+(z0)].

Using the orthogonal projections, we split equation (4.6) into couple of equations

QF(é.v 57 lua Oé) = 07

PFE(, e, p,a) =0. (4.16)

The first one of these can be solved using IFT, since
QF(IOa 0, K, O!) =0

and QD¢ F (20,0, 1, ) is an isomorphism [fy(x0)]* onto Y for all (u,a) € RP x R.
Thus we get the existence of a unique C™!-function ¢ = £(g, u, ) for & close to 0
and (u,a) € RP x R satisfying QF(&(e, p, ), e, u, ) = 0 for all such (e, u, ) and
£(0, pt, ) = . The second equation is so-called bifurcation equation for o € R

Let Y+ = [¢] for arbitrary and fixed . Then we can write

(u, )¢
1912

and bifurcation equation (4.17) gets the form

F(§(€7 /"67 a)787 /"67 a)? w>¢
Il

Pu =

G(e,p, ) == < = 0. (4.18)
Since &(0, p, ) = xo and x is a fixed point of 15(-,(),,11,04)7 G(0, u, ) = 0 for all

(1, ) € RP x R. Next, we want the periodic orbit to persist for all € # 0 small, so we
set D.G(0, u, ) = 0, i.e.

((DeF (20,0, 1, @)DLE(0, p, @) + D F (0, 0, 1, @), )¢
[4]2
<D8F($07 Oa 1y Oé), T/JWJ <D5ﬁ(1’0, 07 K, Ol), lZ)WJ

_ - = 0.
KR ]2

We define the sliding Poincaré-Andronov-Melnikov function as

D.G(0, p, cr) =

M¥(a) = / (9(7(), 8 + o, ), A*(s)p)ds (4.19)
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where g(x,t, ) is given by (4.10) and

CU(OXT(0)S XS (1) X(T) ift € [0,1),
A*(t) = () X5 (t2) X3(T) ift € [t1,t2), (4.20)
X3 (1) Xx(T) ift € [ta, T).
We note that A*(t)y = X;™(t)y for any t € [0,t;) and D.G(0, u, ) = —W.

Linearization of equations (4.1), (4.2) with ¢ = 0 along ~(t) gives the variational
equation
#(t) = DL (O)2(t) L€ [0,0) Ulta, T,

4.21
#(0) = Dfar(0)a(t) it e fi,ta) 2y
with impulsive condition
x(tf) = Sa(t)) (4.22)
and periodic condition
B(z(0) —z(T)) =0 (4.23)

where B = % is the orthogonal projection onto Y*. Note that C'-smoothness of

v(t) at t, corresponds to the second “impulsive” condition z(t;5) = Iz(t;). Due to
definitions of X (t), Xo(t), X5(¢) in (4.13), it is obvious that

X1 (t) itte[0,t),
X(t) - Xg(t)SXl(tl) lft S [tl,tg),
X3(t)X2(t2)SX1(t1) ift € [tQ,T]

satisfies variational equation (4.21) together with conditions (4.22), (4.23). Using the
classical result — Lemma 1.5 and our result — Lemma 2.4 we shall derive the adjoint
variational equation to (4.1), (4.2) with € = 0 along (¢). One can simply set B; = 5,
By =1, By = B in Lemma 2.4 to see, that the adjoint variational system is given by
the following linear impulsive boundary value problem

a(t) = =Dy (y(0)x(t) ift €0,41) Uy, T,
(t) = =D fg ((t))z(t ) if t €[ty t2),

z(ty " (ty),

- (4.24)
z(T) = ( )eY.

From definition of A(t) in (4.11) it is easy to see that A~!(¢) solves the variational
equation (4.21) with the impulsive condition (4.22). Then Lemma 1.5 yields that
A*(t)1 solves the adjoint variational equation with corresponding impulsive condition.
In fact, it satisfies the boundary condition as well. Indeed, from Lemma 4.4 for any

¢ € [f4(20)]
0=((I—-A(0))& ) = (& (I—A0))

and the same holds in the orthogonal complement to [f, (x)], i.e. if £ € [f1(z0)]* then

Consequently, we can take in (4.19) any solution of the adjoint variational system (4.24)
instead of A*(t)y. In conclusion, we get the main result.
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Theorem 4.5. Let Y, M*(«a), g, A*(t) be given by (4.14), (4.19), (4.10), (4.20),
respectively, and v € Y+ be arbitrary and fived. If og is a simple root of M0, i.e.

/0 (9(1(5), 5 + o, o), A*())ds = 0,

/0 (Dig(7(s), s + g, pro), A*(s)Y)ds # 0

then there exists a unique C™*-function a(e, p) for e ~ 0, u ~ py such that a(0, o) =
ap and there is a unique T-periodic solution x(e, pu)(t) of equation (4.1) with parameters
e, i and a = af(e, p), which solves equation (4.2) on Qo and is orbitally close to (1),

i.e. |z(e, m)(t) —v(t —ale,p)| = O(e) for any t € R.

4.1 Piecewise linear application

In this section we shall consider the following three dimensional piecewise linear prob-

lem
& = —d3x +ecosp(t+ )

y=0y —w(z—01) +esinus(t+a) ifz2>0,
Z=wy+da(z— )

(4.25).
T = —(53$ +u
Z=w(y+9)

with constants 6123 > 0, 6 > —y; (y1 will be determined later, for this time we consider
J sufficiently large), u € R and parameters o € R, pq, o > 0, € ~ 0. We shall shorten
the notation p = (uq, o) for vector of parameters.

Clearly, we have h(z,y,2) = z, Qx = {(z,y,2) € R® | £2 > 0}, Qy = R? x {0}.
Consequently, we obtain equation on )

&= Az + By + C+eGcos i (t + o)

y=Dy+ E + G sin ps(t + ) (4.26).
2=0
where
W 0102u
A=-9 B=——— —_mr
> wd + 0,05 wd + 010
502 4+ w?) w(y +9)
= =z 7 E=0D =
wo + 5152 ’ 0 ’ G wo + 51(52

Since both equations — the first part of (4.25)y and (4.26), are linear, one can easily
derive their flows in €2, and €y, respectively,

pi(x,y,2,t) = (ve™ e (y coswt — (2 — §;) sinwt),

! (ysinwt + (2 — 6;) coswt) + 1) ,

_ _ pAt Dt _ At
o0 = (ot - =D | BUSOCT ) gy ).

,€
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Now we need to find points &; = (x;,y;, ), © = 0,1,2 and then we set

N1(t) = o1 (To,t),  72(t) =@o(Tr,t —t1), () = (T, t —t2).  (4.27)
At grazing point T, two conditions are satisfied
Zo = 0 and WyY2 + 52(2’2 — (51) =0
due to the assumption H2). Thus we get K = R x {22} x {0} and T = (x5, 222,0).
Following 73 we reach the point v3(T) = Zy. If we set Tp = (20,0, 2), we get an
equation for the period T’

010
2Tt (ﬁ cosw(T —t9) + dy sinw(T — tg)) =0.
w

Denoting ¢ = arctan 2 € (0,7/2) we have T' = ¢, + (7 — ¢)/w as the time of first
intersection of {73(t) | t > to} with R x {0} x R. Then the other coordinates of z, are

)
To = Tae B and  zy = e/ 05 + w? + 01.
w

Note that zg > 26;. The relation v;(t1) = Z1 € Qp yields the implicit equation for t;:

01
Z0 — 51

M coswty = — (4.28)

where we look for the smallest positive root. Note that the right-hand side of the last
identity is from (—1,0). Therefore ¢t; € (7/(2w),m/w). Next we obtain z1, y; and,
finally, we connect Z; with Z5 via 7,. In conclusion, we have the following lemma.

Lemma 4.6. Unperturbed system (4.25)o, (4.26)¢ possesses a T-periodic sliding solu-
tion y(t) of (4.3) given by (4.27). Moreover, T; = (x;,ys, z;), i = 0, 1,2 where

st Blyy + 8)(ePz—1) — A=)} (0~ §B)(1 — eA(tZ_tl))]

~ st (r—o/w) _ | D—A A

) /
Yo = 07 z0 = ;1662(71-_0)/"‘) 6% + wQ + 517

016
T = ($Q€_63t1, _e5zt1 (ZO _ 51) sin wt, 0) , To= <ajoe53(TF—C)/(/.)7 1 2,0) :
w

Zo

ty is given by (4.28) and

1. y2+6
to =1+ =1 T=t - ~
2 1+Dny1+57 2+(7T C)/w
Fundamental matrices X1(t), Xo(t), X3(t) of (4.13) have, respectively, the form
et 0 0
Xit)=1 0 e?coswt —e?'sinwt |,

0 e2sinwt e%coswt

D(t— A(t—
eA(tfh) B(e (t—t1) _eA(t t1))
D—A

%Nn=[ o Dl
0 0

X3(t) = Xq(t — t2)

_ o O
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and the saltation matriz of (4.12) is

10 Y
wd+3§71.02
_ w—6é
S - O 1 w16+61 55
0 0 0

Proof. The statement on the periodic trajectory and the mentioned points follow from
the preceding discussion. The fundamental matrices are easily obtained due to linearity
of unperturbed systems (4.25)y and (4.26)o, matrix S from its definition (4.12). O

Now, we verify the basic assumptions of this section.
Lemma 4.7. System (4.25)o, (4.26)¢ satisfies conditions H1), H2).

Proof. We have constructed «(t) such that the first condition would be satisfied. To
verify the second one, we estimate

Dh(Z)(f-(Z) — f+(Z)) = wd + 0102 > 0
for T € Q,

Dh(y(t)) f+(7(t)) = =102 + w (_5 + (i + 5)6D(t—t1))
< _5152 +w (—(5 + (y1 + 5)eD(t2*t1)) =0

for t € [th tg) and
Dh(fg)f.,.(i‘g) = WYy — 5152 = 0.

Furthermore,
DA(y(£)f-(1(8)) = w(ys +8)e” ™) > w(y, +6) > 0
for t € [t1,t5] and
D2[(y(ts + 5))]s=o+ = Dh(Z2)Df4(Z2) f1(T2) = w(dayz + iw) > 0.
Moreover, note that for ¢ € (£, T] we have

(51 ((Sg + (.U2) e(iz(tftz)

Dh(y(t)) =~

sinw(t —t3) > 0.

Hence h(~(t)) > 0 for all ¢ € (t2,T]. This completes the proof. O

Since we can not express explicitly ¢; from equation (4.28), we proceed numerically.
From now on, we consider fixed values of 0123, 6 and w. We set

51 = 63 = ]., 52 = ]./2, 0= 10, w=1. (429)

From Lemma 4.6 we get

o = (0.007u, 0,5.265), t = 1.673,
71 = (0.001u, —9.793,0), ty = 34.642,
7y = (0.106u, 0.5, 0), T = 37.320.

When parameters are fixed, we verify the third assumption.
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Lemma 4.8. System (4.25)., (4.26). with parameters (4.29) satisfies condition H3) if
u # 0.

Proof. From Lemma 4.4, dimZ > 1 for Z given by (4.14). Let us suppose that
dim Z > 1. Then there exists a vector v € Z such that (v, f1(Zg)) = 0, i.e. there
exist constants a,b € R such that |a| + |b] > 0 and

52(2’0 — 51) —W(Z() — 61)
v=a 0 +b 030
53370 0

since [f1(Zo)]t = [(62(20 — 61), 0, 6370)*, (—w(20 — 61), I3, 0)*]. On substituting pa-
rameters (4.29) we obtain

2.133 —4.265
v=aq 0 +b1 0.007u
0.007u 0

Consequently,

(—0.005a — 0.002b)u? + 2.133a — 4.265b
(I— A(0)v = (—2.787a — 1.394b)u
(1.401a + 0.701b)u

what is equal to zero for u # 0 if and only if @ = b = 0 and we get a contradiction with
the dimension of Z. O

Note that in the case u = 0 the condition H3) is broken and the considered system
possesses a degenerate sliding periodic solution which remains in the yz-plane for all
the time.

Using Fredholm alternative we get

Y+ = R(DeF (0,0, 1, )" = N (DeF (0, 0, p, )" = [(0,1,1.98957)"]

where the last equality was derived numerically. So we choose ¥ = (0,1,1.98957)*.
Then the Poincaré-Andronov-Melnikov function defined by (4.19) has the form

t1
MH* () = / (cos s — 1.98957 sin s)e*/? sin puy (s + a)ds
0

to T
- / 0.0178sin pa(s + a)ds + / 107(2.458 cos s — 28.186 sin s)e™*/% sin o (s + a)ds.

t1 to
(4.30)
This can be easily transformed to

M*"(a) = K sin ppar + L cos piacx
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Fig. 4.2: Sliding periodic orbit in unperturbed system (4.25)0, (4.26)¢ with
parameters (4.29) and u = 10 projected onto yz-, xz- and xy-plane and the
3-dimensional overview

where

t1 to
K = / (cos s — 1.98957 sin s)e™/2 cos pigsds — / 0.0178 cos pigsds
0 t1
T
+ / 107(2.458 cos s — 28.186 sin s)e*‘s/2 COs f125ds,
t
ho N (4.31)
L= / (cos s — 1.98957 sin s)e ™/ sin pysds — / 0.0178 sin pasds
0

t1

T
+ / 107(2.458 cos s — 28.186 sin s)e™*/? sin pysds.

2}
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Clearly, M*(«) has a simple root if and only if K2+ L? # 0 or, alternatively, if function

T
Blz) = [ ple)erds
0
with
(cos s — 1.98957 sin s)e™*/2 if s €0,t1),
o(s) =<1 —0.0178 if s € [t1,12),
107(2.458 cos s — 28.186sin s)e ™%/ if s € [to, T

and ¢ = y/—1, is nonzero. After integrating we obtain

1
(1) =
(hz) pia(4pt3 + 4ogir — 5)

—(0.0891 + 34.016412)€"22 — (5.958415 + 4yyu3)e* 2] .

[5.95811 + 4opt3 + (0.0892 — 3.106p5 + 3.5362413)e™ 142

(4.32)
Since the denominator is nonzero for any ps > 0, function ®(usy) is well-defined and it
is enough to investigate the numerator. Now we apply the condition on the period of
the perturbation function, more precisely

(COS /'LIT7 sin M?Tv 0) = (17 O) O)a

ie. py = 2kim/T, ps = 2kom/T for some ki, ko € N. For such py the numerator
in (4.32) has the form

(0.0892 — 3.10645 + 3.5362u3)e" 172 — (0.0892 4 34.0165)e"2H2.
For the simplicity, we denote it by ¢(uz2). Then
lo(p2)| > 3.536u3 — 37.123p5 — 0.178

what is greater than zero for uy positive if uy > 11. Hence the function ®(us) is nonzero
for such py € (2m/T)N. Moreover, it can be numerically shown that ¢(us) is nonzero
for ps € (0,11] as well (cf. Fig. 4.3). Consequently, ®(2ky7m/T") is nonzero for each
ko € N and Theorem 4.5 can be applied.

Proposition 4.9. Let u # 0, uy = 2kyw/T, ps = 2komw /T for given ki, ko € N. Then
for each k € R where
R={reZ|rmr—Xe€l0,2kym)}

and X\ is such that

K L
)\: — i )\: _—
COS 2+L2 Sin 2+L2

for K, L defined by (4.31), there ezists a unique T-periodic sliding solution xy()(t) of
system (4.25). with € # 0 sufficiently small and

_ km—A
M2

+ O(e)

a = ayie)

such that

|z (e)(t) —(t — )] = O(e)
for any t € R. So for each uw # 0, ki,ky € N there are at least as many different
T-periodic sliding solutions as the number of elements of R.
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Fig. 4.3: The dependence of |¢(u2)| on us. Diamonds depict the values at 2kom/T for
ko € {1,...,65}

Proof. First, the period matching condition 7' = 2ky7/puy = 2kom/uy for ki, ke €
N has to be satisfied. Next, for puy such that ®(us) # 0, the root oy of Poncaré-
Andronov-Melnikov function M*(a) of (4.30) satisfies sin(usa + A) = 0. Therefore,
ag = (km — X)/pe for k € Z. Moreover, the T-periodicity of functions g, g (and
consequently of function gg) in ¢ means that only for g € [0,7), i.e. for k € R we get
the different solutions. The rest follows from Theorem 4.5. O
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Chapter 11

Hybrid systems

Combination of differential and difference equation is known as hybrid system (cf. [9]).
In this system, a mapping given by the difference equation is applied on a solution z(t)
of the differential equation at appropriate times, which leads to time-switching system
or impacting hybrid system (hard-impact oscillator) where the switching depends on
the position x(t) not on time ¢. In this chapter we study the second case. For a better
imagination we introduce a motivation example.

Consider a motion of a single particle in one spatial dimension described by the
position x(t) and the velocity & (t). We suppose that it is moving under a linear spring, it
is weakly damped and forced. So its position satisfies the ordinary differential equation

T+elt+x=cpcoswt if xz(t) <o, (0.1)

where ¢ measures the viscous damping, x4 is the magnitude of forcing, € is a small
parameter, and we suppose that the motion is free to move in the region x < ¢ for
o > 0, until some time ¢t = {; at which + = o where there is an impact with a rigid
obstacle. Then, at ¢ = ty, we suppose that (z(t;),Z(t,)) is mapped in zero time via
an impact law to

2(tf) =z(ty) and 2(t) = —(1 +er)i(ty),

where z(t) = lim,_,+ 2(s), ©(t) = lim,_,= @(s) and 0 < 1 +er < 1 is the Newton
coefficient of restriction [9]. Another well-known piecewise linear impact system is a
weakly damped and forced inverted pendulum given by equations [26]

T+e(t—x=cpcoswt if |z(t)] <o,

() ==z(t") and @(tY)=—-Q+er)z(t") if |z(t7)| =0 (0.2)

We can study coupled (0.1) and (0.2) to get higher dimensional impact system.
So a system for weakly forced impact oscillator consists of an ordinary differential
equation
&= fi(z, &) +eqi(z, @, t,e, 1) (0.3)

and an impact condition

B(t7) = fo(&(t7)) +ega(a(tT), #(t7), te,p) i h(x(tT)) =0 (0.4)
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The above equation rewritten as an evolution system has a form
T1 = To
Ty = fi(w1,22) +eg1(a1, 22, L, €, 1),
22(t7) = falw2(t7)) + ega(w1(t7), 22(t7), 1,6, 1) 3 (a1 (t7)) = 0.

In fact, we shall investigate a more general case (see (1.1), (1.2)).

1 Periodically forced impact systems

In this section we investigate the persistence of a single T-periodic orbit of autonomous
system with impact under nonautonomous perturbation and derive a sufficient condi-
tion.

Let 2 C R™ be an open set in R® and h(z) be a C"-function on §, with r > 3.

We set Qy := {z € Q| h(z) = 0}, Q; := Q\Qy. Let fi € CJ(), fo € CJ (20, ),
G ECTAXRXRXRP), gy € Cr(2 x RxRxRP) and h € CF(Q,R). Furthermore,
we suppose that g; o are T-periodic in ¢t € R and 0 is a regular value of h. Let ,a0 € R
and pu € RP,p > 1 be parameters.

Definition 1.1. We say that a function z(t) is a solution of an impact system
i:fl(x)+ggl(x7t>gaﬂ)a erl» (11)
2(t7) = fo(x(t7)) +ega(x(t™) te, p) if h(z(t7)) =0, (1.2)

if it is piecewise C''-smooth satisfying equation (1.1) on €, equation (1.2) on Qg and,
moreover, the following holds: if for some ¢, we have z(ty) € o, then there exists p > 0
such that for any ¢ € (to — p,to), s € (to, to + p) we have h(z(t))h(z(s)) > 0.

For modelling problem given by (1.1), (1.2) we assume

H1) The unperturbed equation
i= fi(z) (1.3)
has a T-periodic orbit v(¢) which is discontinuous at t = t; € (0,7) where it
satisfies impact condition

z(tT) = fo(x(t7)) if h(x(t7)) =0. (1.4)
The orbit is given by its initial point xg € €); and consists of two branches

’yl(t) ift S [O,tl),
’}/(t) = {.Tl,l‘g} lft:tl, (15)
’72(15) ift S (tl,T],
where 0 < t1 < T, ")/(t) c Ql fort € [O,tl) U (thT], ’)/(tl) C QO and
xry = 71(t1_) S Qo,
Ty = ’72(t1+) S Qo, (16)
XTo .= ’}/Q(T) = ’)/1(0) S Ql.

78



H2) Moreover, we also assume that
Dh(ZII1>f1(SU1)Dh(l‘2)f1(I'2) < 0.

The geometric meaning of assumption H2) is that the impact periodic solution ()
from H1) transversally hits and leaves the impact surface 0y at ¢, and t], respectively.

Next, since impact system (1.3), (1.4) is autonomous, v(t — «) is also its solution
for any a € R. So we are looking for a forced T-periodic solution x(t) of the perturbed
impact system (1.1), (1.2) which is orbitally close to v, i.e. x(t) ~ v(t — «) for some «
depending on £ # 0 small. For this reason, by shifting the time, we study a shifted (1.1),
(1.2) of the form

= fi(x)+eqx,t+a,epn), =€, (1.7)
z(tt) = fo(x(t7)) + ega(x(t™),t + a,e, 1) if h(z(t™))=0 (1.8)

with additional parameter o € R.
Let x(7,&)(t, e, 1, ) denote the solution of initial value problem

= fi(z)+egi(z,t+ o e, pn)
x(1) =¢.
First, we modify Lemma 1.2 from Chapter I for impact system (1.7), (1.8).

(1.9)

Lemma 1.2. Assume H1) and H2). Then there exist e9,79 > 0 and a Poincaré map-
ping (cf. Fig. 1.1)
P('7€7M7&) : B(J}Q,’Fo) — X

for all fizred € € (—ep,€0), 1 € R, a € R, where B(x,r) is a ball in R"™ with center at
x and radius r, and

Y={y eR" | (y — 0, fi(z0)) = 0}.
Moreover, P : B(xg,79) X (—€0,60) X R? x R — R" is C"-smooth in all arguments and
B(LE(),T(J) C Ql,
Proof. The lemma follows from implicit function theorem (IFT) [16]. We obtain the
existence of positive constants 7, 1, d1, €1 and C"-function

tl(',',',', ) : (—7'1,7'1) X B(I‘Q,Tl) X (—81,51) X RP x R — (tl — 51,t1 +51)

such that h(z(1,&)(t,e,u,)) = 0 for 7 € (=1, 71), £ € B(xg,7m1) C Q4, € € (—¢€1,61),
pweERP o€ Rand t € (t; — 01,81 + 61) if and only if ¢t = ¢,(7,&, €, u, ). Moreover,
t1(0, 2o, 0, i, ) = t5.
Analogically, we derive function ¢, satisfying
(@t (7, & e ), folz(m, O (t(7, & e, 1 a) €, 1, )
+ega(x(m, ) (L (T, & 6, 1) &, py @), 1 (7, € 8, py @) + e, 1))
(ta(7.€, 8, 11, @), €, 1, @) — o, fi(wo)) = 0.

Moreover, we have t5(0, zo, 0, 4, «) = T'. Poincaré mapping is then defined as

P(§a€>/~l’a a) - x(tl(o)gvsa/%a)vfQ(x(Oag)(t1(07€7€7M> oz),s,,u, O[))

+592($(076)(1:1(076757u?a)7£7u7a)7t1(07£767u7 a)—"_a’67/1/))(1:2(076767/'1/7@)767/'[/7@)'
(1.10)
The proof is finished. O
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O
Fig. 1.1: Impact Poincaré mapping

Since we are looking for a persisting periodic orbit with fixed period T, we have to
solve a couple of equations

P(ga €, Ky 04) - 57
t2(07 57 & K, Oé) =T.

Therefore, we define the stroboscopic Poincaré mapping (cf. (1.6), (4.7) in Chapter I)

ﬁ(f,{;‘, H, Oé) = x(t1(07§, €, U, Oé), fZ(x(ng)(tl(()?gv €, U, Oé), €, U, Oé))

(1.11)
+5g2(1’(0, g)(tl(oa 67 57 ,U/7 O{), 57 ,U/7 O{), t1(07 57 87 ,LL, O[) + Oé, 57 :U’))(T7 87 ,U/7 O{)
and solve a single equation
F(& e, p, ) ;:5—15(5,5,“,@):0 for &€ X (1.12)

Now, we calculate the linearization of P at (&,e) = (20,0). We obtain the next result.

Lemma 1.3. Let ]5(5,8,,11,, «) be defined by (1.11). Then for all u € R?, « € R

P (0,0, 1, ) = A(0), (1.13)

T
Ps(xo,07/,l,,0é) = / A(S)gl(’Y(S)aS‘|‘04a07,u)d5+X2(T)92(l‘17t1 —|—OC,O,IU/), (114)
0

where ]55, ]55 are partial derivatives of]S with respect to &, e, respectively. Here A(t) is
given by

Aft) = {XQ(T)SXi(tl)Xfl(t) e on), 1.15)
Xo(T) X5 (1) ift €ty T
with impact saltation matriz
S =Dfay(xy) + (f1(z2) —]?ii%x(jﬁ)l}ﬂléf)l))ljh(xl) (1.16)
and fundamental matriz solutions X1 (t), Xo(t) satisfying, respectively,
() = DAGEIXE) Xalt) = DAGO)Xal) .

X1(0) =1, Xo(t1) =L
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In addition, ﬁg(xo,(),u,a) has an eigenvalue 1 with corresponding eigenvector fi(x),
1.€.
Pe(0,0, i, @) f1(wo) = fi(xo).

Proof. The statement on the derivatives of P follows from its definition with the aid
of the following identities

Dex (0, 20)(t, 0, 1, o) = X4 (1),

D.(0, o) (1,0, 1, /X1 01(7(s), 5 + 0,0, j1)ds
for t € [0, 4],
Dﬁi’?(tl,ﬂfz)(t 0, p, a ) X2 D 517@17902)(75 0,p, )_ —Xz(t)fl(l“z),
Der(tr, ) (¢, 0, 1, / Xo(t)X5 1 (5)gn (7(s), 5 + 1, 0, )

for ¢t € [t;,T] and

Dh(z1) X: (t)
D 13 07 Zo, 07 y ) = —,
¢t1(0,20,0, 1, ) Dh(x1) fi(z1)
han) J3* Xa(t) X7 (5)gn(1(s), 5 + @, 0, pr)ds
D.t1(0, xg, 0, 1, ) = 0 )
0 D) Dh(ax) (o)
To proceed with the proof, we note ¢ = 0 results x(7, £)(t, 0, u, o) = (7, £)(t), the solu-

.
tion of & = fi(z), z(7) = ¢, and it is independent of (4, ). Analogically (7, &, 0, u, o) =

tl(Ta 5)) t2(7-v€7 Ov:U’a a) - t2(7»6)7 P(gvovua a) - P(f and P(&a 07M’a) - P(f)
Now, since for all £ > 0 small, it holds that

2(0,7(6)(81(0,7(1))) = (0, 20) (¢ + 12(0,71.(2))) = (¢ + 1:(0,7(2)))

is an element of Qy and as well of {v(t) | t € R} we have

t+t1(0,7(t)) = t;.

Consequently
2(0,71.(8))(2(0, 1 (2))) = 71

Then we obtain

P(y1(8)) = 2(t2(0, (1)), fo(2(0,751(8)) (t1(0, n())(T)
= 2(t1(0,(1)), falw))(T) = =(ty — 1, wa)(T) = a(ty, 2)(T'+1) = n(?).

Hence B _
Pe(0,0, i1, @) f1(w0) = De[P(71(t))]i=o+ = De[y1(8)]i=o+ = f1(z0)-
The proof is finished. O
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We solve equation (1.12) for (¢, ) € ¥ x R with parameters ¢, yu using Lyapunov-
Schmidt reduction method. Obviously F(zo,0, p,a) = 0 for all (u, @) € R? x R. Let
us denote

Z = ND¢F (20,0, u, ), Y = RD¢F (0,0, u, ) (1.18)

the null space and the range of the corresponding operator and
Q:R"—>Y, P:R*"—- Y+ (1.19)

orthogonal projections onto Y and Y+, respectively, where Y* is the orthogonal com-
plement to Y in R". Here we take the third assumption

H3) ND¢F (20,0, i, o) = [f1(z0)]-

Equation (1.12) is split into couple of equations

QF(£7 57 /La Oé) - 07

PFE(, e, p,a) =0 (1.20)

where the first one can be solved using IFT, since
QF('%'Ov 07 s Ol) =0

and QD¢ F (g, 0, i, @) is an isomorphism from [fi(zo)]* onto Y for all (4, a) € R? x R.
Thus we get the existence of a C"-function £ = {(e, u, ) for € close to 0 and (i, ) €
R? x R such that QF(¢(e, u, ), e, pu, ) = 0 for all such (e, p, ) and (0, p, o) = xo.
The second equation is so-called persistence equation for a € R

PE(&(e, p, ), e,y ) = 0. (1.21)
Let ¢ € Y be arbitrary and fixed. Then we can write

(u, )¢
]2

and persistence equation (1.21) has the form

F(§(€7 /"67 a)7€7 /"67 a)? w>¢

Pu =

(
G(e, p,a) == =0. (1.22)
102
Clearly, G(0,u, ) = 0 for all (u,«) € RP x R. Moreover, we want the periodic
orbit to persist, so we need to solve G(e,u, ) = 0 for ¢ # 0 small. But since

G(e, ) = D.G(0, p, a)e + o(e), the equality D.G(0, ug, ag) = 0 is a necessary con-
dition for a point (0, ug, ) to be a starting persistence value, this means if there is a
sequence {(&n, thn, ) }nen such that e, # 0, (en, fin, @) = (0, po, o) for n — oo and
G(en, tin, o) = 0, then D.G(0, uo, avg) = 0. So we derive

((DeF (0,0, p1, )DLE(0, 1, ) + D F(o, 0, 1, @), 1)1
Ils
<D5F<CI}0,O7[L, a)aw>w <Deﬁ($070aﬂ70¢)7¢>¢.

11> N 11>

D.G(0, p, o) =

82



We denote

Mﬂ(a) = /0 <gl(7(s>> s+, 0, :u)v A*(S)¢>d8 + <X2(T)92(x17t1 +a,0, M)»"v@ (1'23)

the impact Poincaré-Andronov-Melnikov function, where

A%(1) = {X;l*(t)x (t1)S*X3(T) ift € [0,ty), 1.24)

i
X, () X3(T) ift € [ts, 7).

Note that D.G(0, i, ) = _%'

Linearization of unperturbed impact system (1.3), (1.4) along T-periodic solution
v(t) gives the variational equation

@(t) = Dfi(v(t))z(t) (1.25)
with impulsive condition
x(tf) = Saz(t)) (1.26)
and periodic condition
B(z(0) —z(T)) =0 (1.27)
where B = % is the orthogonal projection onto Y+. From definition of X (t), X5(t),
Xq(t if ¢ t
X(t) _ 1( ) 1 € [Ov 1)7
Xg(t)SXl(tl) ift e [tl,T]

solves variational equation (1.25) and conditions (1.26), (1.27).

Now, on letting By = .S, B, =1, B3 = B in Lemma 2.4 one can see that the adjoint
variational system of (1.3) and impact condition (1.4) (i.e. adjoint system of (1.25),
(1.26), (1.27)) is given by the following linear impulsive boundary value problem

i(t) = =Dfi(v(t)z(t),  t€[0,7],
a(ty) = S*x(t]), (1.28)
z(T) = z(0) € Y*.

From (1.24) we know that A*(¢)7 solves adjoint variational equation with impulsive
condition. To see that it satisfies the boundary condition as well, we consider

0= (D (0,0, , @), ) = (I = A(0))€, ) = (&, (L= A*(0))¥)
for all € € [f1(xo)]* and if € € [f1(z0)], from Lemma 1.3 follows

0=(§—=&v) = (I-A0)E ¢) = (£ (T- A™(0))y).

As a consequence, we can take in (1.23) any solution of the adjoint variational sys-
tem (1.28). Summarizing, we get the main result.
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Theorem 1.4. Let ¢ € Y+ be arbitrary and fized, Y be given by (1.18) and A*(t),
Mt («r) be defined by (1.24), (1.23), respectively. If o is a simple root of function
MHro(a), i.e.

T
/ <gl(7(8)7 s+ Qq, 07 :u())a A*(s)w>ds + <X2(T)92($17 tl + Qg, 07 FLO)a 7/1> = 07
0

T
/ <Dt91(7(3)a s+ ap, 0, MO); A*(s)wds + <X2(T)Dt92(951, t1 + o, 0, Mo)a ¢> 75 0
0

then there exists a unique C™'-function a(e, p) for e ~ 0 small and p ~ o such that
a(0, o) = ap and there is a unique T-periodic solution z. ,(t) of equation (1.1) with
parameters ¢ # 0 sufficiently small, p close to po and o = af(e, p), which satisfies
condition (1.2) and |z, ,(t) —~v(t — ale, 1)) = O(e).

Proof. We set
D.G(0,p, ) fore =0,

Hie, o) = {G(&,u, a)/e  fore #0.

Then H is C" !-smooth. Assumptions of our theorem imply H (0, g, ) = 0 and
D, H (0, 1o, ig) # 0. By IFT there exists a unique C"~!-function a(e, ) for € ~ 0 small
and g ~ po such that «(0, po) = g, and H(e, u, (e, 1)) = 0. But this means that
x(0,&(e, u, (e, 1)) (t, e,y e, ) is a solution of (1.7), (1.8) with v = (e, ) and it
satisfies
|2(0,&(e, 1, ale, 1))(E &, 1 ale, 1)) — y(E)] = O(e).
Then
Tep(t) = 2(0,§(e, p, (e, ) (t — ale, ), €, py ale, 1))

is the desired solution of (1.1), (1.2). The proof is completed. O

1.1 Pendulum hitting moving obstacle

Here we provide an application of derived theory to problem of mathematical pendulum
which impacts an oscillating wall (see Fig. 1.2). The horizontal distance between the
wall and the center of the pendulum is 0 + €z(¢, ¢, ) where z is periodic in ¢ and ¢ is
a positive constant. We denote x the angle and [ the length of the massless cord.

Fig. 1.2: Impacting pendulum
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Then x satisfies the dimensionless equation
T =—wr
with a given frequency w > 0 and impact condition

VI — (0 +ez(t,e,p))?
l

2(th) = —a(t7) +ei(t e, p)
whenever
d+ez(t™ e, p)
{

which follows from actual position of the wall and its speed projected onto tangent line
to the trajectory of bob. Writing as a system we get

z(t™) — arcsin =0,

T =wy
Y= —wzr
and
r(t) = a(t")
12— (0 t= 2
) = —(t) + 2t e, ) L O 200
if 5 -
z(t”) — arcsin 0textten 0.

l
To obtain a problem in form of (1.7), (1.8) we introduce parameter o and transform
the variables

. 0+ez(t+ a,e, ) )
u = T — arcsin + arcsin -, v=1y.

l l

So we get
2t +a,e, )

u(t) = wolt) — E\/l2 — (04 ez(t+a,e,pn))?

(t +a,0, 1) (1.29).
(1) = —wu(t) 22T A0
0(t) = —wu(t) — € = T O(£?)
with impact condition
w(tt) =u(t™)
12— (0 t— 2
o(tt) = —o(t7) + ei(t™ —i—oz,a,u)\/ (0+ea(t” + e, p)) (1.30).

wl

if h(u(t),v(t”))=0
where

h(u,v) = u — arcsin 7

Note the dependence on ¢ in notation, i.e. (1.29)y, (1.30) denotes the unperturbed

system and the unperturbed impact condition, respectively. Moreover, we denote 4 =
.
arcsin 7.

In this case we have Qy = {(u,v) € R? | u =a}, ¥ = {(u,0) € R* | u < —a4} and
the following lemma describing the unperturbed problem.
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Lemma 1.5. System (1.29)q, (1.30)o possesses a family of periodic orbits v*(t) para-
metrized by u < —4 such that

(ucoswt, —usinwt) ift €10,t1),
Y4(t) = € {(ur,v1), (ug, v2)} ift =ti,
(wcosw(T —t),usinw(T —t)) ift € (t1,T]
where
t = 1 arccos E’ (ug,v1) = (ucoswty, —usinwty) = (4, Vu? — 42),
w u

T = 2t4, (ug,v2) = (ur, —v1) = (U, —Vu? — u?).

The fundamental matrices defined by (1.17) and impact saltation matriz of (1.16) have
the form

X () = ( cos wt smwt) ’ Xolt) = X1 (t — t), S = (__i _01> ,

—sinwt coswt o

respectively.

Proof. Due to linearity of (1.29), taken (u,0) € ¥ as an initial point of 4*(¢) one can
easily compute 7i(¢) (see (1.5)). Time of impact ¢; is the first intersection point of
{7i(t) | t > 0} with Qg and is obtained from identity h(v{(t1)) = 0. Accordingly, we
get (uy,v1) = 4(t1) and (ug, ve) = fo(uy, v1) where fo(u,v) = (u, —v) is the right-hand
side of (1.30)9. Analogically to ;' (t) we get

Y5 (t) = (ug cosw(t — t1) + vasinw(t — t1), —ugsinw(t — t1) + vy cosw(t — t1)).
From periodicity of v*(t) we get T" as a solution of equation
7 (1) = (u,0)
or equivalently of a couple of equations

ugcosw(T —t1) +vasinw(T — ty)
—ugsinw(T — t1) + v cosw(T — 1)

U
0.

We have

1 U
T =1, + —arccot =2 - 2ty.
w (%)

Therefore using trigonometric sum identities
Yo (t) = (ucosw(T —t), usinw(T — t)).

Matrices X;(t), X2(t) and S are obtained directly from their definitions since (1.29),
is linear. |

Now we verify the basic assumptions.

Lemma 1.6. System (1.29)y, (1.30)¢ satisfies conditions H1), H2) and H3).
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Proof. From construction of v*(t), H1) is immediately verified. So is H2) since
Dh(ul, vl)fl(ul, Ul) = wvy > 0, Dh(UQ, UQ)fl(UQ, Ug) = wvy < 0.

From Lemma 1.5 we get

0 O
DeF(u,0,0, p, ) =T — Xo(T)SXy () = <2ﬂ 0) '

V1

Hence, it is easy to see, that fi(u,0) = (0, —wu) € Z for Z of (1.18). Suppose that
dim Z > 1. Then there exists w € Z such that (w, fi(u,0)) =0, i.e. w = (¢,0). Next

0
DgF(u7O707/’L7OZ)w = (M) :

v1

Thus ¢ = 0 and the verification of the last condition is completed. O

According to (1.15), by multiplying the corresponding matrices from Lemma 1.5
we derive

ift € [0,1),

_2u
Alt) = u

cos (wt — 2 arccos %) —sin (wt — 2 arccos %)

cos wt — sinwt
cos wt + sin wt 2% sin wt + cos wt

) ift € [t1,7).

sin (wt — 2 arccos %) cos (wt — 2 arccos %)

Fredholm alternative yields

R AQ) =N T-40) =& (5 ) = [1,0)]

thus we take ¢ = (1,0)*.

Let us consider z(t,e, u) = sin ut. It is sufficient to assume g > 0 (the case p < 0
is covered by parameter a € R). Then Poincaré-Andronov-Melnikov function defined
by (1.23) has the form

M*(a) — ) cos(wt — p(t + )

1 1
mm—&é(“

—(w + p) cos(wt + p(t + «))dt

u

VI2 — 6% py
wl

— cos u(t .
» cos ity + o)

+# /T(w — J1) COS (wt — 2 arccos 4 (t+ a))
WE—o2 ), TN p

—(w + p) cos (wt — 2 arccos % + p(t + a)) dt —

After some algebra we get
v(u) cos pu(ty + «)

VIZ — 52

2 52 A\ 2
lz(u):M 1—(%) — 2sin pt;.

wl

M*(a) =

where

Function M*#(«) can be easily differentiated with respect to a and one can apply
Theorem 1.4.
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Proposition 1.7. Let 0 < w, 0 < p and k € N be such that kw < pu < 2kw. Then

for each r € {0,1,---,2k — 1}, there exists a unique 2km/p-periodic solution xy , -(t)
of system (1.29)., (1.30). with € # 0 sufficiently small and

2 1
o = g () = ”(72"7:) 1 0(e)
such that
[Thre(t) — 7" (t — )| = O(e)
for any t € R and u = u(k) = —%~. So there are at least sze(i ﬁ)me different
COST 2w w

impact periodic solutions.

Proof. Since the forcing sin ut has periods 2km/u, k € Z, we need the period matching
condition T = 2k7/pu for some k € N. This gives

~

1
2km/p =T =2t = 2; arccos %

Since arccos % € (m/2,7) we get the assumption kw < p < 2kw. Then

~

u

u=u(k) = p— < —.
m
Hence ) h
G . kwrm
v(u(k)) = — sin p > 0.

So clearly, M*(ap) = 0 if and only if

~ m(2s+1) o m(2(s—k)+1)
21

g = ——F————t =

21
for s € Z. In the period interval [0, T = [0, 2k7/p], we have 2k different

0,1,--- 2k —1} 5.
e ).

Obviously, each ag is a simple root of M*#(«). The rest follows from Theorem 1.4. O
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Conclusion

The aim of this thesis was to establish sufficient conditions for the bifurcation of a single
periodic solution under perturbation in discontinuous systems in general n-dimensional
space. This was done by the construction of a discontinuous Poincaré mapping and
the corresponding distance function which roots imply the existence of a periodic so-
lution close to the original one for perturbed system. Then the roots were found
by Lyapunov-Schmidt reduction method and the results were stated in the terms of
Poincaré- Andronov-Melnikov function. So the aim was successfully achieved in Chap-
ter I, more specifically in Section 1 for nonautonomous perturbation and in Sections 2
and 3 for autonomous perturbation assuming that the unperturbed autonomous system
possessed a nondegenerate family of periodic solutions or isolated periodic solution, re-
spectively. In the case of autonomous perturbation we also stated conditions for the
hyperbolicity, stability and instability of the persisting solution. These results can be
analogically shown for the other problems investigated in the work. Next, we have
studied the persistence of a forced sliding periodic solution in perturbed piecewise-
smooth nonlinear dynamical systems and impact periodic solution in impact systems,
in Section 4 and Section 1 of Chapter II, respectively. Moreover, after each theoreti-
cal part we provided one or more applications of the preceding results on planar and
more-dimensional examples. One can see that in concrete examples the computations
were nontrivial and sometimes the only possibility to finish them was with the aid of
computer. Of course, the solutions of nonlinear problems in illustrations were obtained
numerically.

Throughout the work, one of our basic assumption was the transversality condi-
tion. It means that the original solution hits and leaves the discontinuity boundary
transversally, except the sliding solution which always leaves the boundary tangen-
tially. Subsequently, this led to construction of discontinuous Poincaré mappings. In
further research, this assumption can be make weaker or even omitted, e.g. for the
study of grazing bifurcations where the solution of the unperturbed problem “touches”
the boundary and after perturbation it can transversally cross the boundary, again hit
it tangentially or stay in its original part of the phase space.
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