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Abstrakt

Táto práca je venovaná štúdiu bifurkácíı periodických riešeńı všeobecných n-rozmerných
nespojitých autonómnych systémov. Za predpokladu transverzálneho prechodu cez
hranicu nespojitosti sú stanovené postačujúce podmienky prežitia jediného periodic-
kého riešenia pri neautonómnej perturbácii z jediného riešenia alebo autonómnej per-
turbácii z nedegenerovaného systému riešeńı alebo izolovaného riešenia. Ďalej sú štu-
dované bifurkácie periodických ḱlzavých riešeńı z ḱlzavých periodických riešeńı neper-
turbovaných nespojitých rovńıc a nútené periodické riešenia impaktných systémov
z jediného periodického riešenia neperturbovaných impaktných rovńıc. Naviac sú
vyšetrované lokálne asymptotické vlastnosti odvodených perturbovaných periodických
riešeńı. Priložené 2-, 3- a 4-rozmerné pŕıklady nespojitých obyčajných diferenciálnych
rovńıc a impaktných systémov znázorňujú teoretické výsledky.

Kl’účové slová: periodická orbita, ḱlzavá periodická orbita, nespojité systémy, im-
paktné systémy, bifurkácia.
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Abstract

This work is devoted to the study of bifurcations of periodic solutions for general n-
dimensional discontinuous autonomous systems. By the assumption of a transversal
intersection with the discontinuity boundary the sufficient conditions for the persis-
tence of a single periodic solution under nonautonomous perturbation from a single
solution or autonomous perturbation from a nondegenerate family of solutions or iso-
lated solution are stated. Furthermore, bifurcations of periodic sliding solutions from
sliding periodic solutions of unperturbed discontinuous equations and forced periodic
solutions for impact systems from a single periodic solution of unperturbed impact
equations are studied. In addition, local asymptotic properties of derived perturbed
periodic solutions are also investigated. Examples of 2-, 3- and 4-dimensional discon-
tinuous ordinary differential equations and impact systems are given to illustrate the
theoretical results.

Keywords: periodic orbit, sliding periodic orbit, discontinuous systems, impact sys-
tems, bifurcation.
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Foreword

Discontinuous systems describe many real processes which are characterized by instan-
taneous change such as electrical switch or bouncing ball. These can be only approx-
imated by classical – smooth-systems theory. This is the reason why there occurred
many papers and books on this topic in the last few years. However, the scientists
avoid the use of so-called discontinuous Poincaré mapping which maps a point to its
position after one period, since the work with the mapping is rather technical. On the
other side, by this method we can get results for general dimensions of spatial vari-
ables and parameters as well as the asymptotical results such as stability, instability
and hyperbolicity. This is the aim of this thesis. After my diploma thesis on periodic
orbits in planar discontinuous systems, it was a natural consequence to immerse myself
in discontinuous systems and investigate their problems. No one else has ever before
studied the discontinuous systems in such general settings. Therefore, our results are
original and successfully published. I have to admit that this would not be possible
without the aid and ideas of my supervisor.
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Introduction

The persistence/bifurcation/continuation of periodic oscillations is one of the funda-
mental problems in evolutionary differential systems. The corresponding mathematical
theory is well-developed for smooth nonlinear dynamical systems (NDS) and can be
found e.g. in books [12,14,19]. These books include a lot of references on the classical
theory of differential equations. Recently, many interesting results appeared extending
the known theory to systems with discontinuous right-hand side. In various cases (for
references see e.g. [9, 27, 38]) such systems are much more appropriate for describing
the real problems concerning

• a composition of smooth systems – perturbed piecewise-smooth NDS (PPSNDS)
[1–9, 26–29, 34–44],

• a smooth system with impact condition – impacting hybrid systems [11,13,18,50].

Discontinuous systems are used for modelling systems with instantaneous change of
external forces or parameters of the system, e.g. electrical circuits with switches,
diodes or transistors, mechanical devices in which components impact with each other
(such as gear assemblies), problems with friction, sliding or squealing and models in
the social and financial sciences where continuous change can trigger discrete actions.

In this work we apply the Melnikov method for continuous systems [32] on PP-
SNDS and hybrid systems. It means that assuming the existence of an isolated peri-
odic solution or a parametrized system of periodic solutions for unperturbed system we
construct a discontinuous Poincaré mapping [9, 35, 36] and the corresponding distance
function/bifurcation map which zeros imply the periodic solutions for the perturbed
system. Using Lyapunov-Schmidt reduction method [12, 45] we derive sufficient con-
ditions in terms of Poincaré-Andronov-Melnikov function on the perturbation for the
persistence of a single periodic solution. For the simplicity, we always assume that
the original solution hits the boundary transversally. Note that one of the analogical
results for the smooth case is Poincaré-Andronov theorem [46].

In Chapter I on PPSNDS we consider two autonomous differential equations con-
nected by a discontinuity boundary/level/set which is usually a smooth submanifold
of codimension 1 in Rn. First we investigate the persistence of a T -periodic solution
under a small nonautonomous T -periodic perturbation in Section 1, then the bifurca-
tion of a periodic solution from a family of periodic orbits or a single periodic solution
under an autonomous perturbation in Section 2 and Section 3, respectively. The final
section of the first chapter is devoted to the continuation of a sliding periodic solution
of a discontinuous autonomous equation under a nonautonomous perturbation, i.e. we
consider a periodic solution which remains on the discontinuity level for some time. In

1



Chapter II, when a solution of a differential equation hits the boundary, it is imme-
diately mapped by a difference equation to a point of the boundary. So we study the
persistence of a periodic solution of a periodically forced autonomous impacting hybrid
system.

Moreover, we study the local asymptotic properties of a persisting solution such
as hyperbolicity, stability and instability. This is probably the biggest advantage of
the method of Poincaré mapping used in this work. In addition, each section contains
applications of derived theory to a nontrivial problems, often endowed with numer-
ically computed illustrations which confirm the theoretical results. Furthermore, in
comparison to papers and books published by other authors, we have no restriction on
the dimensions of a spatial variable and parameters. Finally, we note that this work is
based on our papers [21–25] created by the even contribution of both their authors.

Notation:

[v1, . . . , vk] linear span of vectors v1, . . . , vk,
〈·, ·〉 inner product in Rn,
‖ · ‖ norm in Rn generated by 〈·, ·〉,
B(x, r) ball with the center at x and radius r,
Cr
b (M) the set of all functions that are uniformly continuous and bounded

on M up to the r-th order,
=λ imaginary part of λ ∈ C,
I n× n identity matrix,
IFT implicit function theorem [16],
NA null space of the operator A,
<λ real part of λ ∈ C,
RA range of the operator A.
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Chapter I

Piecewise-smooth systems

This chapter is devoted to perturbed piecewise-smooth nonlinear dynamical systems
under which we understand a differential equation

ẋ = F (t, x, χ),

where F (t, x, χ) is a smooth function on R× (Rn\S)× Rm periodic in t ∈ R. Here S
denotes the discontinuity set – in this work it is a sufficiently smooth hypersurface of Rn.
Moreover, we suppose that F (t, x, 0) = F (x), i.e. function F (t, x, χ) is independent of
t at χ0 = 0 and the associated autonomous system

ẋ = F (x)

possesses a periodic solution γ(t) that transversally hits S. For the case of transverse
crossing we prove the persistence of periodically forced isolated solution and the bi-
furcation from a nondegenerate family or a single periodic solution under autonomous
perturbation (here F (t, x, χ) = F (x, χ) for any χ). If γ(t) does not cross the bound-
ary, we investigate a periodically forced sliding periodic solution. We also investigate
hyperbolicity, stability and instability of free solutions.

1 Periodically forced discontinuous systems

In this section, we investigate the persistence of periodic orbit in an autonomous discon-
tinuous system under a small nonautonomous perturbation. More precisely, we assume
that the unperturbed equation possesses a periodic solution that transversally crosses
the discontinuity boundary and we look for sufficient conditions on the perturbation
such that the perturbed equation has a periodic solution which is close to the original
one and has the same period.

Let Ω ⊂ Rn be an open set in Rn and h(x) be a Cr-function on Ω, with r ≥ 2.
We set Ω± := {x ∈ Ω | ±h(x) > 0}, Ω0 := {x ∈ Ω | h(x) = 0}. Let f± ∈ Cr

b (Ω),
g ∈ Cr

b (Ω × R × R × Rp) and h ∈ Cr
b (Ω,R). Furthermore, we suppose that g is T -

periodic in t ∈ R and 0 is a regular value of h. Let ε, α ∈ R and µ ∈ Rp, p ≥ 1 be
parameters.

Definition 1.1. We say that a function x(t) is a solution of the equation

ẋ = f±(x) + εg(x, t+ α, ε, µ), x ∈ Ω±, (1.1)
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if it is continuous, piecewise C1, satisfies equation (1.1) on Ω± and, moreover, the
following holds: if for some t0 we have x(t0) ∈ Ω0, then there exists ρ > 0 such that for
any t ∈ (t0 − ρ, t0) we have x(t) ∈ Ω±, and for any t ∈ (t0, t0 + ρ) we have x(t) ∈ Ω∓.

We assume (see Fig. 1.1)

H1) For ε = 0 equation (1.1) has a T -periodic solution γ(t) which has a starting point
x0 ∈ Ω+ and consists of three branches

γ(t) =





γ1(t) if t ∈ [0, t1],

γ2(t) if t ∈ [t1, t2],

γ3(t) if t ∈ [t2, T ],

(1.2)

where 0 < t1 < t2 < T , γ1(t) ∈ Ω+ for t ∈ [0, t1), γ2(t) ∈ Ω− for t ∈ (t1, t2) and
γ3(t) ∈ Ω+ for t ∈ (t2, T ] and

x1 := γ1(t1) = γ2(t1) ∈ Ω0,

x2 := γ2(t2) = γ3(t2) ∈ Ω0,

x0 := γ3(T ) = γ1(0) ∈ Ω+.

(1.3)

H2) Moreover, we also assume that

Dh(x1)f±(x1) < 0 and Dh(x2)f±(x2) > 0.

γ1
γ3

γ2

x1x2

Σ f+(x0)

Ω0

Ω+

Ω−

Fig. 1.1: Used notation

Let x±(τ, ξ)(t, ε, µ, α) denote a solution of initial value problem

ẋ = f±(x) + εg(x, t+ α, ε, µ)

x(τ) = ξ
(1.4)±

with corresponding sign.
Using implicit function theorem (IFT) [16] we show that there are some trajectories

in the neighbourhood of γ(t) and then we select periodic ones from these.
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Lemma 1.2. Assume H1) and H2). Then there exist ε3, r3 > 0 and a Poincaré map-
ping

P (·, ε, µ, α) : B(x0, r3)→ Σ

for all fixed ε ∈ (−ε3, ε3), µ ∈ Rp, α ∈ R where Σ = {x ∈ Rn | 〈x − x0, f+(x0)〉 = 0}
and B(x, r) is the ball of radius r and center at x. Moreover, P is Cr-smooth in all
arguments.

Proof. We denote A(τ, ξ, t, ε, µ, α) = h(x+(τ, ξ)(t, ε, µ, α)). Since

A(0, x0, t1, 0, µ, α) = 0, DtA(0, x0, t1, 0, µ, α) = Dh(x1)f+(x1) < 0,

IFT yields the existence of τ1, r1, δ1, ε1 > 0 and Cr-function

t1(·, ·, ·, ·, ·) : (−τ1, τ1)× B(x0, r1)× (−ε1, ε1)× Rp × R→ (t1 − δ1, t1 + δ1)

such that A(τ, ξ, t, ε, µ, α) = 0 for τ ∈ (−τ1, τ1), ξ ∈ B(x0, r1) ⊂ Ω+, ε ∈ (−ε1, ε1),
µ ∈ Rp, α ∈ R and t ∈ (t1 − δ1, t1 + δ1) if and only if t = t1(τ, ξ, ε, µ, α).

Next we set

B(τ, ξ, t, ε, µ, α) = h(x−(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))(t, ε, µ, α)).

Then

B(0, x0, t2, 0, µ, α) = 0, DtB(0, x0, t2, 0, µ, α) = Dh(x2)f−(x2) > 0,

hence IFT implies that there exist τ2, r2, δ2, ε2 > 0 and Cr-function

t2(·, ·, ·, ·, ·) : (−τ2, τ2)× B(x0, r2)× (−ε2, ε2)× Rp × R→ (t2 − δ2, t2 + δ2)

such that B(τ, ξ, t, ε, µ, α) = 0 for τ ∈ (−τ2, τ2), ξ ∈ B(x0, r2) ⊂ Ω+, ε ∈ (−ε2, ε2),
µ ∈ Rp, α ∈ R and t ∈ (t2 − δ2, t2 + δ2) if and only if t = t2(τ, ξ, ε, µ, α).

Once more time we use IFT on function C defined as

C(τ, ξ, t, ε, µ, α) = 〈x+(t2(τ, ξ, ε, µ, α), x−(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))
(t2(τ, ξ, ε, µ, α), ε, µ, α))(t, ε, µ, α)− x0, f+(x0)〉 .

Since
C(0, x0, T, 0, µ, α) = 0, DtC(0, x0, T, 0, µ, α) = ‖f+(x0)‖2 > 0,

there exist τ3, r3, δ3, ε3 > 0 and Cr-function

t3(·, ·, ·, ·, ·) : (−τ3, τ3)× B(x0, r3)× (−ε3, ε3)× Rp × R→ (T − δ3, T + δ3)

such that C(τ, ξ, t, ε, µ, α) = 0 for τ ∈ (−τ3, τ3), ξ ∈ B(x0, r3) ⊂ Ω+, ε ∈ (−ε3, ε3),
µ ∈ Rp, α ∈ R and t ∈ (T − δ3, T + δ3) if and only if t = t3(τ, ξ, ε, µ, α). Moreover
t1(0, x0, 0, µ, α) = t1, t2(0, x0, 0, µ, α) = t2 and t3(0, x0, 0, µ, α) = T . Now we can define
the Poincaré mapping from the statement

P (ξ, ε, µ, α) = x+(t2(0, ξ, ε, µ, α), x−(t1(0, ξ, ε, µ, α), x+(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

(t2(0, ξ, ε, µ, α), ε, µ, α))(t3(0, ξ, ε, µ, α), ε, µ, α).

Obviously, P maps B(x0, r3) to Σ.
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Our aim is to find T -periodic orbits, which is the reason for solving the following
system

P (ξ, ε, µ, α) = ξ

t3(0, ξ, ε, µ, α) = T

for ξ and ε sufficiently close to x0 and 0, respectively. This problem can be reduced to
one equation

F (ξ, ε, µ, α) := ξ − P̃ (ξ, ε, µ, α) = 0 (1.5)

where

P̃ (ξ, ε, µ, α) = x+(t2(0, ξ, ε, µ, α), x−(t1(0, ξ, ε, µ, α), x+(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

(t2(0, ξ, ε, µ, α), ε, µ, α))(T, ε, µ, α)
(1.6)

is so-called stroboscopic Poincaré mapping (cf. [9]). It is easy to see that (ξ, ε) = (x0, 0)
solves equation (1.5) for any µ ∈ Rp, α ∈ R. However, IFT can not be used here, what
is proved in the next lemma (see [35, 36]).

Lemma 1.3. Let P̃ (ξ, ε, µ, α) be defined by (1.6). Then P̃ξ(x0, 0, µ, α) has eigenvalue

1 with corresponding eigenvector f+(x0), i.e. P̃ξ(x0, 0, µ, α)f+(x0) = f+(x0), where P̃ξ
denotes the partial derivative of P̃ with respect to ξ.

Proof. Let V be a sufficiently small neighbourhood of 0. Then

x+(0, x+(0, x0)(t, 0, µ, α))(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x+(0, x0)(t+ t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)
(1.7)

for any t ∈ V , where the left-hand side of (1.7) is from Ω0 and the right-hand side is
a point of γ(t). Thereafter t + t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) = t1, i.e. it is constant
for all t ∈ V . Similarly

x−(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x+(0, x+(0, x0)(t, 0, µ, α))(t1(0, x+(0, x0)

(t, 0, µ, α), 0, µ, α), 0, µ, α))(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x−(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x+(0, x0)(t1, 0, µ, α))

(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x−(t1 − t, x+(0, x0)(t1, 0, µ, α))(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)
= x−(t1, x1)(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t, 0, µ, α)

and we obtain t+ t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) = t2 for all t ∈ V .
With these results we can derive

P̃ (x+(0, x0)(t, 0, µ, α), 0, µ, α)

= x+(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x−(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α),

x+(0, x+(0, x0)(t, 0, µ, α))(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α))

(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α))(T, 0, µ, α)

= x+(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x2)(T, 0, µ, α)

= x+(t2 − t, x2)(T, 0, µ, α) = x+(t2, x2)(T + t, 0, µ, α)
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and finally

P̃ξ(x0, 0, µ, α)f(x0) = Dt

[
P̃ (x+(0, x0)(t, 0, µ, α), 0, µ, α)

]
t=0

= Dt [x+(t2, x2)(T + t, 0, µ, α)]t=0

= f(x+(t2, x2)(T + t, 0, µ, α))|t=0 = f(x0).

In the next step we construct the linearization P̃ξ(x0, 0, µ, α) which will be important
in further work.

Differentiating (1.4)+ with respect to ξ at the point (τ, ξ, ε) = (0, x0, 0) we get

ẋ+ξ(0, x0)(t, 0, µ, α) = Df+(γ(t))x+ξ(0, x0)(t, 0, µ, α)

x+ξ(0, x0)(0, 0, µ, α) = I

where I denotes n× n identity matrix. Denote by X1(t) the matrix solution satisfying
this linearized equation on [0, t1], i.e.

Ẋ1(t) = Df+(γ(t))X1(t)

X1(0) = I.
(1.8)

So x+ξ(0, x0)(t, 0, µ, α) = X1(t). By differentiation (1.4)+ with respect to τ at the same
point we get

ẋ+τ (0, x0)(t, 0, µ, α) = Df+(γ(t))x+τ (0, x0)(t, 0, µ, α)

x+τ (0, x0)(0, 0, µ, α) = −f+(x+(0, x0)(0, 0, µ, α)).
Hence

x+τ (0, x0)(t, 0, µ, α) = −X1(t)f+(x0)

for t ∈ [0, t1]. Also the derivative of (1.4)+ with respect to ε at (0, x0, 0) will be needed.
We obtain the initial value problem

ẋ+ε(0, x0)(t, 0, µ, α) = Df+(γ(t))x+ε(0, x0)(t, 0, µ, α) + g(γ(t), t+ α, 0, µ)

x+ε(0, x0)(0, 0, µ, α) = 0

which solved by variation of constants gives equality

x+ε(0, x0)(t, 0, µ, α) =

∫ t

0

X1(t)X
−1
1 (s)g(γ(s), s+ α, 0, µ)ds

holding on [0, t1].
First intersection point on Ω0 fulfils

h(x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α)) = 0

for all (τ, ξ, ε) sufficiently close to (0, x0, 0) and µ ∈ Rp, α ∈ R. Thus differentiating
the latter identity with respect to ξ, τ and ε at (τ, ξ, ε) = (0, x0, 0) yields

Dh(x1)(X1(t1) + f+(x1)t1ξ(0, x0, 0, µ, α)) = 0

t1ξ(0, x0, 0, µ, α) = −
Dh(x1)X1(t1)

Dh(x1)f+(x1)
,
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Dh(x1)(−X1(t1)f+(x0) + f+(x1)t1τ (0, x0, 0, µ, α)) = 0

t1τ (0, x0, 0, µ, α) =
Dh(x1)X1(t1)f+(x0)

Dh(x1)f+(x1)

and

Dh(x1)

(
f+(x1)t1ε(0, x0, 0, µ, α) +

∫ t1

0

X1(t1)X
−1
1 (s)g(γ(s), s+ α, 0, µ)ds

)
= 0

t1ε(0, x0, 0, µ, α) = −
Dh(x1)

∫ t1
0
X1(t1)X

−1
1 (s)g(γ(s), s+ α, 0, µ)ds

Dh(x1)f+(x1)
,

respectively.
Next, differentiating (1.4)− with respect to ξ, τ and ε at the point (τ, ξ, ε) =

(t1, x1, 0) we obtain

ẋ−ξ(t1, x1)(t, 0, µ, α) = Df−(γ(t))x−ξ(t1, x1)(t, 0, µ, α)

x−ξ(t1, x1)(t1, 0, µ, α) = I,

ẋ−τ (t1, x1)(t, 0, µ, α) = Df−(γ(t)))x−τ (t1, x1)(t, 0, µ, α)

x−τ (t1, x1)(t1, 0, µ, α) = −f−(x−(t1, x1)(t1, 0, µ, α))

and

ẋ−ε(t1, x1)(t, 0, µ, α) = Df−(γ(t))x−ε(t1, x1)(t, 0, µ, α) + g(γ(t), t+ α, 0, µ)

x−ε(t1, x1)(t1, 0, µ, α) = 0,

respectively, for t ∈ [t1, t2]. Using matrix solution X2(t) of the first equation satisfying

Ẋ2(t) = Df−(γ(t))X2(t)

X2(t1) = I,
(1.9)

i.e. x−ξ(t1, x1)(t, 0, µ, α) = X2(t), we can rewrite the other two solutions as

x−τ (t1, x1)(t, 0, µ, α) = −X2(t)f−(x1),

x−ε(t1, x1)(t, 0, µ, α) =

∫ t

t1

X2(t)X
−1
2 (s)g(γ(s), s+ α, 0, µ)ds

for t ∈ [t1, t2].
Second intersection point is characterized by

h(x−(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))(t2(τ, ξ, ε, µ, α), ε, µ, α)) = 0.

From that we derive

Dh(x2)(x−τ (t1, x1)(t2, 0, µ, α)t1ξ(0, x0, 0, µ, α) + x−ξ(t1, x1)(t2, 0, µ, α)

×[x+ξ(0, x0)(t1, 0, µ, α) + x+t(0, x0)(t1, 0, µ, α)t1ξ(0, x0, 0, µ, α)]

+x−t(t1, x1)(t2, 0, µ, α)t2ξ(0, x0, 0, µ, α)) = 0
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t2ξ(0, x0, 0, µ, α) = −
Dh(x2)X2(t2)S1X1(t1)

Dh(x2)f−(x2)
,

Dh(x2)(x−τ (t1, x1)(t2, 0, µ, α)t1τ(0, x0, 0, µ, α) + x−ξ(t1, x1)(t2, 0, µ, α)

×[x+τ (0, x0)(t1, 0, µ, α) + x+t(0, x0)(t1, 0, µ, α)t1τ(0, x0, 0, µ, α)]

+x−t(t1, x1)(t2, 0, µ, α)t2τ(0, x0, 0, µ, α)) = 0

t2τ (0, x0, 0, µ, α) =
Dh(x2)X2(t2)S1X1(t1)f+(x0)

Dh(x2)f−(x2)

and

Dh(x2)(x−τ (t1, x1)(t2, 0, µ, α)t1ε(0, x0, 0, µ, α) + x−ξ(t1, x1)(t2, 0, µ, α)

×[x+ε(0, x0)(t1, 0, µ, α) + x+t(0, x0)(t1, 0, µ, α)t1ε(0, x0, 0, µ, α)]

+x−t(t1, x1)(t2, 0, µ, α)t2ε(0, x0, 0, µ, α) + x−ε(t1, x1)(t2, 0, µ, α)) = 0

t2ε(0, x0, 0, µ, α) = −
Dh(x2)

Dh(x2)f−(x2)

(
X2(t2)S1

∫ t1

0

X1(t1)X
−1
1 (s)

×g(γ(s), s+ α, 0, µ)ds+

∫ t2

t1

X2(t2)X
−1
2 (s)g(γ(s), s+ α, 0, µ)ds

)
,

where

S1 = I+
(f−(x1)− f+(x1))Dh(x1)

Dh(x1)f+(x1)
(1.10)

is so-called saltation matrix [35, 42].
Finally, we count derivatives of (1.4)+ with respect to ξ, τ and ε at (τ, ξ, ε) =

(t2, x2, 0) to obtain

ẋ+ξ(t2, x2)(t, 0, µ, α) = Df+(γ(t))x+ξ(t2, x2)(t, 0, µ, α)

x+ξ(t2, x2)(t2, 0, µ, α) = I,

ẋ+τ (t2, x2)(t, 0, µ, α) = Df+(γ(t))x+τ (t2, x2)(t, 0, µ, α)

x+τ (t2, x2)(t2, 0, µ, α) = −f+(x+(t2, x2)(t2, 0, µ, α))
and

ẋ+ε(t2, x2)(t, 0, µ, α) = Df+(γ(t))x+ε(t2, x2)(t, 0, µ, α) + g(γ(t), t+ α, 0, µ)

x+ε(t2, x2)(t2, 0, µ, α) = 0,

respectively, on [t2, T ]. Matrix solution X3(t) for first equation that for t ∈ [t2, T ]
satisfies

Ẋ3(t) = Df+(γ(t))X3(t)

X3(t2) = I,
(1.11)

i.e. x+ξ(t2, x2)(t, 0, µ, α) = X3(t), simplifies expressions for the other two solutions:

x+τ (t2, x2)(t, 0, µ, α) = −X3(t)f+(x2),

x+ε(t2, x2)(t, 0, µ, α) =

∫ t

t2

X3(t)X
−1
3 (s)g(γ(s), s+ α, 0, µ)ds

for t ∈ [t2, T ]. Now we can state the following lemma.
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Lemma 1.4. Let P̃ (ξ, ε, µ, α) be defined by (1.6). Then

P̃ξ(x0, 0, µ, α) = X3(T )S2X2(t2)S1X1(t1), (1.12)

P̃ε(x0, 0, µ, α) =

∫ T

0

A(s)g(γ(s), s+ α, 0, µ)ds, (1.13)

where P̃ξ and P̃ε denote the partial derivatives of P̃ with respect to ξ and ε, respectively,
X1(t), X2(t) and X3(t) are matrix solutions of corresponding linearized equations (1.8),
(1.9) and (1.11), respectively, S1 is the saltation matrix given by (1.10), S2 is a second
saltation matrix given by

S2 = I+
(f+(x2)− f−(x2))Dh(x2)

Dh(x2)f−(x2)
(1.14)

and

A(t) =





X3(T )S2X2(t2)S1X1(t1)X
−1
1 (t) if t ∈ [0, t1),

X3(T )S2X2(t2)X
−1
2 (t) if t ∈ [t1, t2),

X3(T )X
−1
3 (t) if t ∈ [t2, T ].

(1.15)

Proof. Direct differentiation of (1.6) and the use of previous results give statement of
the lemma:

P̃ξ(x0, 0, µ, α) = x+τ (t2, x2)(T, 0, µ, α)t2ξ(0, x0, 0, µ, α) + x+ξ(t2, x2)(T, 0, µ, α)

×[x−τ (t1, x1)(t2, 0, µ, α)t1ξ(0, x0, 0, µ, α) + x−ξ(t1, x1)(t2, 0, µ, α)

×[x+ξ(0, x0)(t1, 0, µ, α) + x+t(0, x0)(t1, 0, µ, α)t1ξ(0, x0, 0, µ, α)]

+x−t(t1, x1)(t2, 0, µ, α)t2ξ(0, x0, 0, µ, α)]

= X3(T )f+(x2)
Dh(x2)X2(t2)S1X1(t1)

Dh(x2)f−(x2)
+X3(T )

[
X2(t2)f−(x1)

Dh(x1)X1(t1)

Dh(x1)f+(x1)

+ X2(t2)

[
X1(t1)− f+(x1)

Dh(x1)X1(t1)

Dh(x1)f+(x1)

]
− f−(x2)

Dh(x2)X2(t2)S1X1(t1)

Dh(x2)f−(x2)

]

= X3(T )S2X2(t2)S1X1(t1).

Equality (1.13) can be shown by the same way.

For the further work, we recall the following well-known result (cf. [33]).

Lemma 1.5. Let X(t) be a fundamental matrix solution of equation X ′ = UX. Then
X(t)−1∗ is a fundamental matrix solution of adjoint equation

(
X(t)−1∗)′ = −U∗X(t)−1∗.

We solve equation (1.5) via Lyapunov-Schmidt reduction. As it was already shown

in Lemma 1.3, dim N (I− P̃ξ(x0, 0, µ, α)) ≥ 1. From now on we suppose that

H3) dim N (I− P̃ξ(x0, 0, µ, α)) = 1
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and therefore codim R(I− P̃ξ(x0, 0, µ, α)) = 1. We denote

R1 = R(I − P̃ξ(x0, 0, µ, α)), R2 =
[
R(I− P̃ξ(x0, 0, µ, α))

]⊥
(1.16)

the image of the corresponding operator and its orthogonal complement in Rn. Then
two linear projections are considered P : Rn → R2 and Q : Rn → R1 defined by

Py =
〈y, ψ〉
‖ψ‖2 ψ, Qy = (I− P)y = y − 〈y, ψ〉‖ψ‖2 ψ

where ψ ∈ R2 is fixed. We assume that initial point ξ of perturbed periodic trajectory
is an element of Σ. Equation (1.5) for (ξ, α) ∈ Σ × R is equivalent to a couple of
equations

QF (ξ, ε, µ, α) = 0, PF (ξ, ε, µ, α) = 0

for (ξ, α) ∈ Σ × R with parameters (ε, µ) ∈ R × Rp. The first one can be solved via
IFT which implies the existence of r0, ε0 > 0 and a Cr-function

ξ : (−ε0, ε0)× Rp × R→ B(x0, r0) ∩ Σ

such that QF (ξ, ε, µ, α) = 0 for ε ∈ (−ε0, ε0), µ ∈ Rp, α ∈ R and ξ ∈ B(x0, r0) ∩ Σ if
and only if ξ = ξ(ε, µ, α). Moreover ξ(0, µ, α) = x0.

Then the second equation has the form

〈ξ(ε, µ, α)− P̃ (ξ(ε, µ, α), ε, µ, α), ψ〉 = 0. (1.17)

Again, if ε = 0 this equation is satisfied for any (µ, α) ∈ Rp × R. Differentiation with
respect to ε at 0 gives

〈
ξε(0, µ, α)− P̃ξ(x0, 0, µ, α)ξε(0, µ, α)− P̃ε(x0, 0, µ, α), ψ

〉

=
〈
(I− P̃ξ(x0, 0, µ, α))ξε(0, µ, α)− P̃ε(x0, 0, µ, α), ψ

〉

=
〈
(I− P̃ξ(x0, 0, µ, α))ξε(0, µ, α), ψ

〉
−
〈
P̃ε(x0, 0, µ, α), ψ

〉

= −
〈∫ T

0

A(s)g(γ(s), s+ α, 0, µ)ds, ψ

〉

= −
∫ T

0

〈A(s)g(γ(s), s+ α, 0, µ), ψ〉ds

= −
∫ T

0

〈g(γ(s), s+ α, 0, µ), A∗(s)ψ〉ds

where

A∗(t) =





X−1∗
1 (t)X∗

1 (t1)S
∗
1X

∗
2 (t2)S

∗
2X

∗
3 (T ) if t ∈ [0, t1),

X−1∗
2 (t)X∗

2 (t2)S
∗
2X

∗
3 (T ) if t ∈ [t1, t2),

X−1∗
3 (t)X∗

3 (T ) if t ∈ [t2, T ].

(1.18)

Note that by Lemma 1.5, A∗(t) solves the adjoint variational equation

X ′ = −Df ∗
+(γ(t))X if 0 < t < t1,

X ′ = −Df ∗
−(γ(t))X if t1 < t < t2,

X ′ = −Df ∗
+(γ(t))X if t2 < t < T

(1.19)
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of (1.1). Differentiation of the left-hand side of (1.17) with respect to ε and α at ε = 0
gives

−
∫ T

0

〈Dtg(γ(s), s+ α, 0, µ), A∗(s)ψ〉ds.

In conclusion, we obtain the next result.

Theorem 1.6. Let conditions H1), H2), H3) hold, γ(t), R2 and A∗(t) be defined
by (1.2), (1.16) and (1.18), respectively, and ψ ∈ R2 be arbitrary and fixed. If α0 ∈ R
is a simple root of function Mµ0(α) given by

Mµ(α) =

∫ T

0

〈g(γ(t), t+ α, 0, µ), A∗(t)ψ〉dt, (1.20)

i.e. Mµ0(α0) = 0, DMµ0(α0) 6= 0 then there exists a neighbourhood U of the point
(0, µ0) in R × Rp and a Cr−1-function α(ε, µ), with α(0, µ0) = α0, such that equa-
tion (1.1) with α = α(ε, µ) possesses a unique T -periodic piecewise C1-smooth solution
for each (ε, µ) ∈ U .

Proof. Let us denote

D(ε, µ, α) =
{

1
ε
〈ξ(ε, µ, α)− P̃ (ξ(ε, µ, α), ε, µ, α), ψ〉 for ε 6= 0,

Dε〈ξ(ε, µ, α)− P̃ (ξ(ε, µ, α), ε, µ, α), ψ〉 for ε = 0.

Then D is Cr−1-smooth and the assumptions on Mµ0 are fulfilled if and only if

D(0, µ0, α0) = 0, DαD(0, µ0, α0) 6= 0.

IFT implies the existence of the function α(ε, µ) from the statement of the theorem.

Function Mµ(α) is a Poincaré-Andronov-Melnikov function for system (1.1).

Remark 1.7.

1. If g is discontinuous in x, i.e.

g(x, t, ε, µ) =

{
g+(x, t, ε, µ) if x ∈ Ω+,

g−(x, t, ε, µ) if x ∈ Ω−,

it is possible to show that Theorem 1.6 still holds. Of course, g has to be T -
periodic in t.

2. It can be shown that in Theorem 1.6 we can take any other solution of the
adjoint variational system consisting of the adjoint variational equation (1.19)
and corresponding impulsive and boundary conditions (see Lemma 2.4).
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1.1 Geometric interpretation of condition H3)

Consider the linearization of unperturbed problem of (1.1) along γ(t), given by

ẋ = Df±(γ(t))x. (1.21)

Then (1.21) splits into two unperturbed equations

ẋ = Df+(γ(t))x if t ∈ [0, t1] ∪ [t2, T ],

ẋ = Df−(γ(t))x if t ∈ (t1, t2)

with impulsive conditions [35, 36, 42]

x(t1+) = S1x(t1−), x(t2+) = S2x(t2−)

where x(t±) = lims→t± x(s). We already know (from (1.8), (1.9), (1.11)) that they have
the fundamental matrices X1(t) resp. X3(t) and X2(t) satisfying X1(0) = X2(t1) =
X3(t2) = I. Consequently, the fundamental matrix solution of discontinuous variational
equation (1.21) is given by

X(t) =





X1(t) if t ∈ [0, t1),

X2(t)S1X1(t1) if t ∈ [t1, t2),

X3(t)S2X2(t2)S1X1(t1) if t ∈ [t2, T ].

Then a T -periodic solution of (1.21) with an initial point ξ fulfils ξ = X(T )ξ or
equivalently (I−X(T ))ξ = 0. Now one can easily conclude the following result.

Proposition 1.8. Condition H3) is equivalent to say that discontinuous variational
equation (1.21) has a unique T -periodic solution up to a scalar multiple.

1.2 Nonlinear planar applications

Here we consider the following piecewise nonlinear problem

ẋ = ω1(y − δ) + εg1(x, y, t+ α, ε, µ)

ẏ = −ω1x+ εg2(x, y, t+ α, ε, µ)
if y > 0,

ẋ = ηx+ ω2(y + δ)

+
[
x2 + (y + δ)2

]
[−ax − b(y + δ)] + εg1(x, y, t+ α, ε, µ)

ẏ = −ω2x+ η(y + δ)

+
[
x2 + (y + δ)2

]
[bx − a(y + δ)] + εg2(x, y, t+ α, ε, µ)

if y < 0

(1.22)ε

with assumptions

η, δ, ω1, ω2, ω, a > 0, b ∈ R, ω2 −
ηb

a
> 0,

η

a
> δ2. (1.23)

Note the dependence on ε in the notation (1.22)ε. Hence (1.22)0 refers to the unper-
turbed system.
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Due to linearity, the first part of (1.22)0 can be easily solved, e.g. via matrix
exponential. For starting point (x0, y0) = (0, δ +

√
η
a
) and t ∈ [0, t1] the solution is

γ1(t) =

(√
η

a
sinω1t, δ +

√
η

a
cosω1t

)
. (1.24)

Time t1 of the first intersection with discontinuity boundary Ω0 = {(x, y) ∈ R2 | y = 0}
and the point (x1, y1) of this intersection are obtained from relations h(γ1(t1)) = 0 for
h(x, y) = y and (x1, y1) = γ1(t1), respectively:

t1 =
1

ω1

arccos

(
−
√
a

η
δ

)
, (x1, y1) =

(√
η

a
− δ2, 0

)
.

After transformation x = r cos θ, y + δ = r sin θ in the second part of (1.22)0, we get

ṙ = ηr − ar3

θ̇ = −ω2 + br2

from which, one can see that the second part of (1.22)0 possesses a stable limit cy-
cle/circle with the center at (0,−δ) and radius

√
η
a
, which intersects boundary Ω0.

Now it is obvious that (x1, y1) is a point of this cycle and the direction of rotation
remains the same as in Ω+ = {(x, y) ∈ R2 | y > 0}. Therefore γ2(t) is a part of the
circle, given by

γ2(t) = (x1 cosω3(t− t1) + δ sinω3(t− t1),
−δ − x1 sinω3(t− t1) + δ cosω3(t− t1))

(1.25)

for t ∈ [t1, t2], where ω3 = ω2 − ηb
a
. Equation h(γ2(t2)) = 0 together with symmetry of

γ2(t) give the couple of equations

x1 cosω3(t2 − t1) + δ sinω3(t2 − t1) = −x1,
−δ − x1 sinω3(t2 − t1) + δ cosω3(t2 − t1) = 0.

From these them we obtain

t2 =
1

ω3

(
π + arccot

−δ2 + x21
2δx1

)
+ t1.

Point (x2, y2) is a second intersection point of the limit cycle and Ω0, i.e.

(x2, y2) = γ2(t2) =

(
−
√
η

a
− δ2, 0

)
.

Next, solution γ(t) continues in Ω+ following the solution of the first part of (1.22)0.
Thus we have

γ3(t) = (x2 cosω1(t− t2)− δ sinω1(t− t2),
δ − x2 sinω1(t− t2)− δ cosω1(t− t2))

(1.26)

for t ∈ [t2, T ]. Period T obtained from identity γ3(T ) = (x0, y0) is

T =
1

ω1

arccos

(
−
√
a

η
δ

)
+ t2.

The next theorem is due to Diliberto (cf. [12, 46]) and we shall use it to find the
fundamental matrix solution of the variational equation.
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Theorem 1.9. Let γ(t) be a solution of the differential equation ẋ = f(x), x ∈ R2. If
γ(0) = p, f(p) 6= 0 then the variational equation along γ(t)

V̇ = Df(γ(t))V

has the fundamental matrix solution Φ(t) satisfying det Φ(0) = ‖f(p)‖2, given by

Φ(t) = [f(γ(t)), V (t)]

where [λ1, λ2] stands for a matrix with columns λ1 and λ2 and

V (t) = a(t)f(γ(t)) + b(t)f⊥(γ(t)),

a(t) =

∫ t

0

[
2κ(γ(s))‖f(γ(s))‖+ div f⊥(γ(s))

]
b(s)ds,

b(s) =
‖f(p)‖2
‖f(γ(t))‖2 e

∫ t
0 div f(γ(s))ds,

div f(x) =
∂f1(x)

∂x1
+
∂f2(x)

∂x2
, div f⊥(x) = −∂f2(x)

∂x1
+
∂f1(x)

∂x2
,

κ(γ(t)) =
1

‖f(γ(t))‖3
[
f1(γ(t))ḟ2(γ(t))− f2(γ(t))ḟ1(γ(t))

]
.

Lemma 1.10. Assuming (1.23), unperturbed system (1.22)0 has fundamental matrices
X1, X2 and X3 satisfying (1.8), (1.9) and (1.11), respectively, given by

X1(t) =

(
cosω1t sinω1t
− sinω1t cosω1t

)
,

X2(t) =
a

η
[λ1, λ2] , X3(t) = X1(t− t2)

where

λ1 =

(
U(−δx1 + δx1W + x21W̃ ) + V (δ2 + x21W − δx1W̃ )

U(−δ2 − x21W + δx1W̃ ) + V (−δx1 + δx1W + x21W̃ )

)
,

λ2 =

(
U(x21 + δ2W + δx1W̃ ) + V (−δx1 + δx1W − δ2W̃ )

U(δx1 − δx1W + δ2W̃ ) + V (x21 + δ2W + δx1W̃ )

)
,

U = sinω3(t− t1), V = cosω3(t− t1),

W = e−2η(t−t1), W̃ =
b

a
(1−W ),

and saltation matrices

S1 =

(
1 − δ(ω1+ω3)

ω1x1

0 ω3

ω1

)
, S2 =

(
1 − δ(ω1+ω3)

ω3x1

0 ω1

ω3

)

defined by (1.10), (1.14), respectively.
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Proof. Matrices X1(t) and X3(t) are derived easily because of the linearity of function
f+(x, y). Using

f+(x1, y1) =

(
−ω1δ

−ω1

√
η
a
− δ2

)
, f−(x1, y1) =

(
ω3δ

−ω3

√
η
a
− δ2

)
,

f+(x2, y2) =

(
−ω1δ

ω1

√
η
a
− δ2

)
, f−(x2, y2) =

(
ω3δ

ω3

√
η
a
− δ2

)
,

(1.27)

saltation matrices are obtained directly from their definitions. Since (1.22)0 is 2-
dimensional and one solution of the second part is already known – the limit cycle, we
can apply Theorem 1.9 to derive the fundamental solution of this part. So we get a
matrix

X̃2(t) = ω3

(
−x1U + δV U(δW + x1W̃ ) + V (x1W − δW̃ )

−δU − x1V U(−x1W + δW̃ ) + V (δW + x1W̃ )

)

such that

X̃−1
2 (t1) =

a

ηω3

(
δ −x1
x1 δ

)

and det X̃2(t1) = ‖f−(x1, y1)‖2 = η
a
ω2
3. If X2(t) has to satisfy (1.9) then X2(t) =

X̃2(t)X̃
−1
2 (t1).

Now, we can verify the basic assumptions.

Proposition 1.11. Assuming (1.23), unperturbed system (1.22)0 has a T -periodic so-
lution with initial point (x0, y0) = (0, δ +

√
η
a
) defined by (1.2) with branches γ1(t),

γ2(t) and γ3(t) given by (1.24), (1.25) and (1.26), respectively. Moreover, conditions
H1), H2) and H3) are satisfied.

Proof. Condition H1) was already verified. Since ∇h(x, y) = (0, 1) for all (x, y) ∈ R2

and (1.27) holds, also condition H2) is fulfilled.

Now suppose that dim N (I − P̃ξ(x0, 0, µ, α)) > 1. We recall that f+(x0, y0) ∈
N (I− P̃ξ(x0, 0, µ, α)). Since N (I− P̃ξ(x0, 0, µ, α)) is linear, there is a vector

v̄ ∈ N (I− P̃ξ(x0, 0, µ, α))

such that 〈v̄, f+(x0, y0)〉 = 0. Then we can write v̄ = (0, v)∗. Using formula (1.12) for

P̃ξ we look for the image of v̄ by mapping P̃ξ(x0, 0, µ, α). We subsequently obtain

S1X1(t1)v̄ =
v

ω1

√
a

η

(
ω1x1 +

δ2(ω1+ω3)
x1

−δω3

)
,

X2(t2)S1X1(t1)v̄ =
v

ω1

√
a

η

(
δ2

x1
(ω1 + ω3)− x1ω1Z − δω1Z̃

δ(ω1 + ω3) + δω1Z − x1ω1Z̃

)

where Z = e−2η(t2−t1) and Z̃ = b
a
(1− Z) are values of W and W̃ at t = t2,

S2X2(t2)S1X1(t1)v̄ =
v

ω3

√
a

η

(
− δ2

x1
(ω1 + ω3)− ( δ

2ω1

x1
+ ηω3

ax1
)Z + δω1Z̃

δ(ω1 + ω3) + δω1Z − x1ω1Z̃

)
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and finally

X3(T )S2X2(t2)S1X1(t1)v̄ = v

(
δ
x1

ω1+ω3

ω3
+ δ

x1
ω1+ω3

ω3
Z − ω1

ω3
Z̃

Z

)
.

Since Z ≤ exp
{
− 2η
ω3
π
}
< 1, it is obvious that v̄ = P̃ξ(x0, 0, µ, α)v̄ if and only if

v̄ = (0, 0)∗. Hence the verification of condition H3) is finished.

Because, in general, the formula for A(t) is rather awkward, we move to examples
with concrete parameters.

Example 1.12. Consider system (1.22)ε with

a = b = δ = 1, η = 2, ω1 = 1, ω2 = 5,

g(x, y, t, ε, µ) =

{
(sinωt, 0)∗ if y > 0,

(0, 0)∗ if y < 0.

(1.28)

Then we have ω3 = 3, T = 2π, initial point (x0, y0) = (0, 1+
√
2), saltation matrices

S1 =

(
1 −4
0 3

)
, S2 =

(
1 −4

3

0 1
3

)

and

P̃ξ(x0, y0, 0, µ, α) =

(
1 1 + 5

3
e−2π

0 e−2π

)
.

Therefore R1 =
[(
1 + 5

3
e−2π, e−2π − 1

)∗]
and ψ =

(
1− e−2π, 1 + 5

3
e−2π

)
∈ R2. After

some algebra we obtain

M(α) =
1

3

e−2π

ω2 − 1
[(ωA+B) sinωα+ (ωC +D) cosωα]

for M(α) =Mω(α) of (1.20), where

A = 4
√
2 sin

(
3

4
πω

)
+
(
3e2π
√
2 +
√
2
)
sin

(
5

4
πω

)
+
(
3e2π − 3

)
sin (2πω) ,

B = −5− 3e2π −
(√

2 + 3
√
2e2π

)
cos

(
3

4
πω

)
+ 4
√
2 cos

(
5

4
πω

)
+
(
5 + 3e2π

)
cos (2πω) ,

C = 3e2π − 3− 4
√
2 cos

(
3

4
πω

)
−
(√

2 + 3
√
2e2π

)
cos

(
5

4
πω

)
+
(
3− 3e2π

)
cos (2πω) ,

D = −
(√

2 + 3
√
2e2π

)
sin

(
3

4
πω

)
+ 4
√
2 sin

(
5

4
πω

)
+
(
5 + 3e2π

)
sin (2πω) .

(1.29)
For ω > 0, ω 6= 1, M(α) has a simple root if and only if (ωA+B)2 + (ωC +D)2 > 0.
Since A and C are 8-periodic functions,

√
B2 +D2 ≤

((
5 + 3e2π +

√
2 + 3

√
2e2π + 4

√
2 + 5 + 3e2π

)2

+
(
5 + 3e2π +

√
2 + 3

√
2e2π + 4

√
2
)2) 1

2

=
√
3
(
1 +
√
2
)√

9e4π + 30e2π + 25 ≤ 6739,
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and according to Fig. 1.2 we have the estimate
√

(ωA+B)2 + (ωC +D)2 ≥ ω
√
A2 + C2 −

√
B2 +D2 ≥ 400ω − 6739

and one can see that for ω ≥ 17, T -periodic orbit in perturbed system (1.22)ε persists
for all ε 6= 0 small. It can be proved numerically (see Fig. 1.2) that

1

|ω2 − 1|
√

(ωA+B)2 + (ωC +D)2 > 0 (1.30)

for ω ∈ (0, 17). We conclude

Corollary 1.13. Consider (1.22)ε with parameters (1.28). Then 2π-periodic orbit
persists for all ω > 0 and ε 6= 0 small.

Fig. 1.2: Graphs of the functions
√
A2 + C2 and the left-hand side of (1.30)

Example 1.14. Consider system (1.22)ε with

a = b = δ = 1, η = 2, ω1 = 1, ω2 = 5,

g(x, y, t, ε, µ) =

{
µ1(sinωt, 0)

∗ if y > 0,

µ2(x+ y, 0)∗ if y < 0.

(1.31)

Consequently, Poincaré-Andronov-Melnikov function of (1.20) is

M(α) = µ1
1

3

e−2π

ω2 − 1
[(ωA+B) sinωα+ (ωC +D) cosωα] + µ2E

where A, B, C, D are given by (1.29) and

E =

√
2

975

(
739− 223e−2π

)
.

Function M(α) possesses a simple root if and only if

|µ2| <
1

3

e−2π

|ω2 − 1|

√
(ωA+B)2 + (ωC +D)2

E
|µ1|. (1.32)

Applying Theorem 1.6 we obtain the next result.
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Corollary 1.15. Consider (1.22)ε with parameters (1.31). If µ1, µ2 and ω sat-
isfy (1.32) then 2π-periodic orbit persists for ε 6= 0 small.

Remark 1.16. Inequality (1.32) means that if the periodic perturbation is sufficiently
large (with respect to non-periodic part of perturbation) then the T -periodic trajectory
persists. Note that the right-hand side of (1.32) can be estimated from above by

√
c1ω2 + c2ω + c3
|ω2 − 1|

for appropriate constants c1, c2, c3, which tends to 0, if ω tends to +∞. Hence the
bigger frequency ω, the bigger |µ1| is needed for fixed µ2 6= 0 for persistence of the
T -periodic orbit after Theorem 1.6.

1.3 Piecewise linear planar application

Now we consider the system

ẋ = b1 + εµ1 sinωt

ẏ = −2a1b1x+ εµ2 cosωt
if y > 0,

ẋ = −b2 + εµ1 sinωt

ẏ = −2a2b2x+ εµ2 cosωt
if y < 0

(1.33)ε

where all constants ai, bi for i = 1, 2 are assumed to be positive and (µ1, µ2) 6= (0, 0),
ω > 0.

The starting point can be chosen in the form (x0, y0) = (0, y0) with y0 > 0. Then
with h(x, y) = y we obtain results similar to those of the nonlinear previous case.

First, one can easily find the periodic trajectory starting at (0, y0) ∈ Ω+ = {(x, y) ∈
R2 | y > 0}, intersecting transversally Ω0 = {(x, y) ∈ R2 | y = 0} to Ω− = {(x, y) ∈
R2 | y < 0} and returning back to Ω+ transversally through Ω0.

Lemma 1.17. For any y0 > 0, unperturbed system (1.33)0 possesses a unique periodic
solution starting at (0, y0) given by

γ(t) =





γ1(t) = (b1t,−a1b21t2 + y0) if t ∈ [0, t1],

γ2(t) = (x1 − b2(t− t1), a2(x1 − b2(t− t1))2 − a2x21) if t ∈ [t1, t2],

γ3(t) = (x2 + b1(t− t2),−a1(x2 + b1(t− t2))2 + a1x
2
2) if t ∈ [t2, T ]

where

t1 =
1

b1

√
y0
a1
, (x1, y1) =

(√
y0
a1
, 0

)
, t2 =

2

b2

√
y0
a1

+ t1,

(x2, y2) = (−x1, 0), T =
1

b1

√
y0
a1

+ t2.

Fundamental and saltation matrices are described in the next lemma.
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Lemma 1.18. Unperturbed system (1.33)0 has the corresponding fundamental matrices

X1(t) =

(
1 0

−2a1b1t 1

)
, X2(t) =

(
1 0

−2a2b2(t− t1) 1

)
,

X3(t) =

(
1 0

−2a1b1(t− t2) 1

)

and saltation matrices

S1 =

(
1

√
a1(b1+b2)

2a1b1
√
y0

0 a2b2
a1b1

)
, S2 =

(
1

√
a1(b1+b2)

2a2b2
√
y0

0 a1b1
a2b2

)
.

Proof. Because of the linearity of this case, fundamental matrices are obtained from
equalities

X1(t) = eAt, X2(t) = eB(t−t1), X3(t) = eA(t−t2)

where

A =

(
0 0

−2a1b1 0

)
, B =

(
0 0

−2a2b2 0

)

are Jacobi matrices of the functions f+(x, y) and f−(x, y), respectively. Saltation ma-
trices are given by their definitions in (1.10) and (1.14) where ∇h(x, y) = (0, 1) in Ω
and

f+(x1, y1) =

(
b1

−2a1b1
√

y0
a1

)
, f−(x1, y1) =

(
−b2

−2a2b2
√

y0
a1

)
,

f+(x2, y2) =

(
b1

2a1b1
√

y0
a1

)
, f−(x2, y2) =

( −b2
2a2b2

√
y0
a1

)
.

(1.34)

In this case, the corresponding matrices can be easily multiplied to derive the
following result.

Lemma 1.19. Function A(t) of (1.15) for the system (1.33)ε possesses the form

A(t) =





(
1− 2

√
a1b1t(b1+b2)

b2
√
y0

− b1+b2
b2
√
a1y0

2a1b1t 1

)
if t ∈ [0, t1),

(
−1− 2b1

b2
+

√
a1(t−t1)(b1+b2)√

y0

√
a1(b1+b2)

2a2b2
√
y0

2(
√
a1y0 − a1b2(t− t1)) −a1

a2

)
if t ∈ [t1, t2),

(
1 0

2(a1b1(t− t2)−√a1y0) 1

)
if t ∈ [t2, T ].

(1.35)

It remains to verify the basic assumptions.

Proposition 1.20. Conditions H1), H2) and H3) are satisfied.
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Proof. From Lemma 1.17 and using (1.34), conditions H1) and H2) are immediately
satisfied.

Now let dim N (I− P̃ξ(x0, y0, 0, µ, α)) > 1. Then there exists

v̄ ∈ N (I− P̃ξ(x0, y0, 0, µ, α))

such that 〈v̄, f+(x0, y0)〉 = 0 and we can write v̄ = (0, v)∗. Since

P̃ξ(x0, y0, 0, µ, α)v̄ = A(0)v̄ =

(
−v(b1+b2)
b2
√
a1y0

v

)

then v = 0, dim N (I − P̃ξ(x0, y0, 0, µ, α)) = 1 and the condition H3) is verified as
well.

Note that there is a lot of periodic trajectories in the neighbourhood of γ(t) but

none of them has the same period, because the period T = 2
√

y0
a1

(
1
b1
+ 1

b2

)
depends

on the initial point (x0, y0).
We have

R(I − P̃ξ(x0, y0, 0, µ, α)) = R(I− A(0)) = R× {0}.

Accordingly, we set ψ = (0, 1)∗ and A∗(t)ψ =
(
a21(t)
a22(t)

)
, i.e. the second column of matrix

A(t). The assumptions of the Theorem 1.6 are equivalent to say that

M(α) = sinωα

(
µ1

∫ T

0

a21(t) cosωtdt− µ2

∫ T

0

a22(t) sinωtdt

)

+cosωα

(
µ1

∫ T

0

a21(t) sinωtdt+ µ2

∫ T

0

a22(t) cosωtdt

)

has a simple root. It is easy to see, that this happens if and only if

Φ(ω) =

∫ T

0

e−ıωt(µ1a21(t)− ıµ2a22(t))dt 6= 0 (1.36)

where ı =
√
−1.

Similarly to [7], function Φ(ω) is analytic for ω > 0 and hence the following theorem
holds (see [7, Theorem 4.2] and [49]).

Theorem 1.21. When Φ(ω) is not identically equal to zero, then there is at most a
countable set {ωj} ⊂ (0,∞) with possible accumulating point at +∞ such that for any
ω ∈ (0,∞)\{ωj}, the T -periodic orbit γ(t) persists for (1.33)ε under perturbations for
ε 6= 0 small.

Because for general parameters, conditions on µ1 and µ2, so we could decide when
Φ(ω) is identically zero, or the set of roots is finite or countable, are too complicated,
we rather provide an example with concrete numerical values of parameters.

Example 1.22. Consider system (1.33)ε with parameters

a1 = a2 = b1 = b2 = y0 = 1. (1.37)
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Now, from (1.36) we have

Φ(ω) = −4ıe
−2ıω

ω2
(2µ1 + ωµ2) sinω(cosω − 1).

Thence for ω ∈ (0,∞) it holds: if ω = kπ for some k ∈ N or ω = −2µ1
µ2

> 0 then

Φ(ω) = 0. Applying Theorem 1.6 we arrive at the following result.

Corollary 1.23. Consider (1.33)ε with parameters (1.37). If ω > 0 is such that
ω 6= kπ for all k ∈ N and ω 6= −2µ1

µ2
with µ2 6= 0 then T -periodic orbit γ(t) persists

under perturbations for ε 6= 0 small.

Finally, if Φ(ω) is identically zero then higher order Poincaré-Andronov-Melnikov
function must be derived [8]. We omit those computations in our case, because they
are very awkward.
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2 Bifurcation from family of periodic orbits in au-

tonomous systems

In the previous section, we studied the discontinuous systems with time-periodic per-
turbation. Now, we move our attention to the case of autonomous perturbation. In
this section, we investigate the persistence of a single periodic solution from a bunch of
transverse periodic solutions of unperturbed system. In comparison to Section 1, here
we seek the periodic solution with period close to the period of the original trajectory.

Let Ω ⊂ Rn be an open set in Rn and h(x) be a Cr-function on Ω, with r ≥ 3.
We set Ω± := {x ∈ Ω | ±h(x) > 0}, Ω0 := {x ∈ Ω | h(x) = 0}. Let f± ∈ Cr

b (Ω),
g ∈ Cr

b (Ω × R × Rp) and h ∈ Cr
b (Ω,R). Let ε ∈ R and µ ∈ Rp, p ≥ 1 be parameters.

Furthermore, we suppose that 0 is a regular value of h.
We say that a function x(t) is a solution of equation

ẋ = f±(x) + εg(x, ε, µ), x ∈ Ω±, (2.1)

if it is a solution of this equation in the sense analogical to Definition 1.1.
Let us assume

H1) For ε = 0 equation (2.1) has a smooth family of T β-periodic orbits {γ(β, t)}
parametrized by β ∈ V ⊂ Rk, 0 < k < n, V is an open set in Rk. Each of
the orbits is uniquely determined by its initial point x0(β) ∈ Ω+, x0 ∈ Cr

b , and
consists of three branches

γ(β, t) =





γ1(β, t) if t ∈ [0, tβ1 ],

γ2(β, t) if t ∈ [tβ1 , t
β
2 ],

γ3(β, t) if t ∈ [tβ2 , T
β],

(2.2)

where 0 < tβ1 < tβ2 < T β, γ1(β, t) ∈ Ω+ for t ∈ [0, tβ1 ), γ2(β, t) ∈ Ω− for t ∈ (tβ1 , t
β
2 )

and γ3(β, t) ∈ Ω+ for t ∈ (tβ2 , T
β] and

x1(β) := γ1(β, t
β
1 ) = γ2(β, t

β
1) ∈ Ω0,

x2(β) := γ2(β, t
β
2 ) = γ3(β, t

β
2) ∈ Ω0,

x0(β) := γ3(β, T
β) = γ1(β, 0) ∈ Ω+.

(2.3)

We suppose in addition that vectors

∂x0(β)

∂β1
, . . . ,

∂x0(β)

∂βk
, f+(x0(β))

are linearly independent whenever β ∈ V .

H2) Moreover, we also assume that

Dh(x1(β))f±(x1(β)) < 0 and Dh(x2(β))f±(x2(β)) > 0, β ∈ V.

Note by H1), H2) and implicit function theorem (IFT) it can be shown that tβ1 , t
β
2

and T β are Cr
b -functions of β [1].
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Now we study local bifurcations for γ(β, t), so we fix β0 ∈ V and set x00 = x0(β0),
t01 = tβ01 , etc. Note by H1) x0(V ) is an immersed Cr-submanifold of Rn.

Let x+(τ, ξ)(t, ε, µ) and x−(τ, ξ)(t, ε, µ) denote the solution of initial value problem

ẋ = f±(x) + εg(x, ε, µ)

x(τ) = ξ
(2.4)

with corresponding sign.
As in Lemma 1.2, conditions H1) and H2) establish the existence of a Poincaré

mapping.

Lemma 2.1. Assume H1) and H2). Then there exist ε0, r0 > 0, a neighbourhood
W ⊂ V of β0 in Rk and a Poincaré mapping (cf. Fig. 2.1)

P (·, β, ε, µ) : B(x00, r0)→ Σβ

for all fixed β ∈ W , ε ∈ (−ε0, ε0), µ ∈ Rp, where

Σβ = {y ∈ Rn | 〈y − x0(β), f+(x0(β))〉 = 0}.

Moreover, P : B(x00, r0)×W × (−ε0, ε0)×Rp → Rn is Cr-smooth in all arguments and
x0(W ) ⊂ B(x00, r0) ⊂ Ω+.

Proof. IFT implies the existence of positive constants τ1, r1, δ1, ε1 and Cr-function

t1(·, ·, ·, ·) : (−τ1, τ1)× B(x00, r1)× (−ε1, ε1)× Rp → (t01 − δ1, t01 + δ1)

such that h(x+(τ, ξ)(t, ε, µ)) = 0 for τ ∈ (−τ1, τ1), ξ ∈ B(x00, r1) ⊂ Ω+, ε ∈ (−ε1, ε1),
µ ∈ Rp and t ∈ (t01−δ1, t01+δ1) if and only if t = t1(τ, ξ, ε, µ). Moreover, t1(0, x

0
0, 0, µ) =

t01 and
x+(0, x0(β))(t1(0, x0(β), 0, µ), 0, µ) ∈ Ω0 ∩ {γ(β, t) | t ∈ R},

thus t1(0, x0(β), 0, µ) = tβ1 . Similarly, we derive functions t2 and t3 satisfying, respec-
tively,

h(x−(t1(τ, ξ, ε, µ), x+(τ, ξ)(t1(τ, ξ, ε, µ), ε, µ))(t2(τ, ξ, ε, µ), ε, µ)) = 0,

〈x+(t2(τ, ξ, ε, µ), x−(t1(τ, ξ, ε, µ), x+(τ, ξ)(t1(τ, ξ, ε, µ), ε, µ))
(t2(τ, ξ, ε, µ), ε, µ))(t3(τ, ξ, β, ε, µ), ε, µ)− x0(β), f+(x0(β))〉 = 0.

Moreover, we have t2(0, x0(β), 0, µ) = tβ2 and t3(0, x0(β), β, 0, µ) = T β. Poincaré map-
ping is then defined as

P (ξ, β, ε, µ) = x+(t2(0, ξ, ε, µ), x−(t1(0, ξ, ε, µ), x+(0, ξ)(t1(0, ξ, ε, µ), ε, µ))

(t2(0, ξ, ε, µ), ε, µ))(t3(0, ξ, β, ε, µ), ε, µ).
(2.5)

The next lemma describes some properties of derived Poincaré mapping.
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Fig. 2.1: Discontinuous Poincaré mapping

Lemma 2.2. Let P (ξ, β, ε, µ) be defined by (2.5). Then

Pξ(x0(β), β, 0, µ) = (I− Sβ)A(β, 0), (2.6)

Pβ(x0(β), β, 0, µ) = SβDx0(β), (2.7)

Pε(x0(β), β, 0, µ) = (I− Sβ)
(∫ Tβ

0

A(β, s)g(γ(β, s), 0, µ)ds

)
, (2.8)

where Pξ, Pβ, Pε are partial derivatives of P with respect to ξ, β, ε, respectively.
Here Sβ is the orthogonal projection onto the 1-dimensional space [f+(x0(β))] de-

fined by

Sβu =
〈u, f+(x0(β))〉f+(x0(β))

‖f+(x0(β))‖2
(2.9)

and A(β, t) is given by

A(β, t) =





X3(β, T
β)S2(β)X2(β, t

β
2)S1(β)X1(β, t

β
1)X

−1
1 (β, t) if t ∈ [0, tβ1 ),

X3(β, T
β)S2(β)X2(β, t

β
2)X

−1
2 (β, t) if t ∈ [tβ1 , t

β
2 ),

X3(β, T
β)X−1

3 (β, t) if t ∈ [tβ2 , T
β],

(2.10)

where

S1(β) = I+
(f−(x1(β))− f+(x1(β)))Dh(x1(β))

Dh(x1(β))f+(x1(β))
, (2.11)

S2(β) = I+
(f+(x2(β))− f−(x2(β)))Dh(x2(β))

Dh(x2(β))f−(x2(β))
, (2.12)

and finally, X1(β, t), X2(β, t) and X3(β, t) solve the following linear initial value prob-
lems

Ẋ1(β, t) = Df+(γ(β, t))X1(β, t)

X1(β, 0) = I,
(2.13)

Ẋ2(β, t) = Df−(γ(β, t))X2(β, t)

X2(β, t
β
1) = I,

(2.14)

Ẋ3(β, t) = Df+(γ(β, t))X3(β, t)

X3(β, t
β
2) = I,

(2.15)

respectively.
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Note saltation matrices S1(β), S2(β) are invertible (cf. [35]) with

S−1
1 (β) = I+

(f+(x1(β))− f−(x1(β)))Dh(x1(β))
Dh(x1(β))f−(x1(β))

,

S−1
2 (β) = I+

(f−(x2(β))− f+(x2(β)))Dh(x2(β))
Dh(x2(β))f+(x2(β))

.

Considering the inner product 〈a, b〉 = b∗a, it is possible to introduce matrix notation
for operator Sβ of (2.9):

Sβu =
f+(x0(β))(f+(x0(β)))

∗

‖f+(x0(β))‖2
u (2.16)

which is symmetric, i.e. S∗
β = Sβ. The derivative of mapping (2.5) has an important

property:

Lemma 2.3. For any ξ ∈ B(x00, r0), β ∈ W , ε ∈ (−ε0, ε0) and µ ∈ Rp Pξ(ξ, β, ε, µ)
has eigenvalue 0 with corresponding eigenvector f+(ξ) + εg(ξ, ε, µ), i.e.

Pξ(ξ, β, ε, µ)[f+(ξ) + εg(ξ, ε, µ)] = 0.

Proof. Similarly to unperturbed case in Lemma 1.3 (see also [35]) we have

x+(0, x+(0, ξ)(t, ε, µ))(t1(0, x+(0, ξ)(t, ε, µ), ε, µ), ε, µ)

= x+(0, ξ)(t1(0, x+(0, ξ)(t, ε, µ), ε, µ) + t, ε, µ)

as the first intersection point of the trajectory of perturbed system (2.1) and disconti-
nuity boundary Ω0. Hence

t1(0, x+(0, ξ)(t, ε, µ), ε, µ) + t = t1(0, ξ, ε, µ)

for any t sufficiently close to 0. Analogically we get

t2(0, x+(0, ξ)(t, ε, µ), ε, µ) + t = t2(0, ξ, ε, µ).

Next,
P (x+(0, ξ)(t, ε, µ), β, ε, µ) = x+(t2(0, x+(0, ξ)(t, ε, µ), ε, µ),

x−(t1(0, x+(0, ξ)(t, ε, µ), ε, µ), x+(0, x+(0, ξ)(t, ε, µ))

(t1(0, x+(0, ξ)(t, ε, µ), ε, µ), ε, µ))(t2(0, x+(0, ξ)(t, ε, µ), ε, µ), ε, µ))

(t3(0, x+(0, ξ)(t, ε, µ), β, ε, µ), ε, µ)

= x+(t2(0, ξ, ε, µ), x−(t1(0, ξ, ε, µ), x+(0, ξ)(t1(0, ξ, ε, µ), ε, µ))

(t2(0, ξ, ε, µ), ε, µ))(t3(0, x+(0, ξ)(t, ε, µ), β, ε, µ) + t, ε, µ)

for any t close to 0. The most left-hand side of the latter equation is from Σβ and
the most right-hand side is a point of a trajectory of (2.1) with given ε starting at ξ,
therefore it is a fixed point ζ ∈ Σβ and t3(0, x+(0, ξ)(t, ε, µ), β, ε, µ) + t is constant.
Consequently,

Pξ(ξ, β, ε, µ)[f+(ξ) + εg(ξ, ε, µ)] = DtP (x+(0, ξ)(t, ε, µ), β, ε, µ)
∣∣
t=0

= Dtζ
∣∣
t=0

= 0.
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Note if we take ξ = x0(β) and ε = 0 in the above lemma then ζ = x0(β) and
t3(0, x+(0, x0(β))(t, 0, µ), β, 0, µ) + t = T β.

For any ξ ∈ Rn we define orthogonal projection S̃β onto Σβ

S̃β : ξ 7→ ξ − Sβ(ξ − x0(β)).

Denoting F (ξ, β, ε, µ) := S̃β(ξ)− P (ξ, β, ε, µ), ξ is an initial point from Σβ of periodic
orbit of perturbed system (2.1) if and only if it satisfies

F (ξ, β, ε, µ) = 0, ξ ∈ Σβ . (2.17)

For ξ ∈ Rn

Fξ(x0(β), β, 0, µ)ξ = (I− Sβ)ξ − Pξ(x0(β), β, 0, µ)ξ,
thus from Lemma 2.3

Fξ(x0(β), β, 0, µ)f+(x0(β)) = 0, (2.18)

where Fξ is the partial derivative of F with respect to ξ. On the other side,

F (x0(β), β, 0, µ) = x0(β)− P (x0(β), β, 0, µ) = 0, ∀β ∈ W,

hence from (2.7)
Pξ(x0(β), β, 0, µ)Dx0(β) = (I− Sβ)Dx0(β)

and therefore
Fξ(x0(β), β, 0, µ)Dx0(β) = 0, ∀β ∈ W.

Here we state the third condition:

H3) The set {
∂x0(β)

∂β1
, . . . ,

∂x0(β)

∂βk
, f+(x0(β))

}

spans the null space of the operator Fξ(x0(β), β, 0, µ).

Note Σβ = [f+(x0(β))]
⊥ + x0(β). Let us denote

Zβ = NFξ(x0(β), β, 0, µ)∩ [f+(x0(β))]
⊥, Yβ = RFξ(x0(β), β, 0, µ) (2.19)

the restricted null space and the range of the corresponding operator, respectively.
Now from condition H3) we have

Zβ =

[
∂x0(β0)

∂β1
, . . . ,

∂x0(β0)

∂βk
, f+(x0(β))

]
∩ [f+(x0(β))]

⊥ = (I− Sβ)Dx0(β).

Using Gram-Schmidt orthogonalization we find an orthonormal basis {y1, . . . , yn−k−1}
for vector space Z⊥

β such that Zβ⊥Z⊥
β and Zβ ⊕ Z⊥

β = [f+(x0(β))]
⊥.

We can define orthogonal projections

Qβ : Σβ → Yβ, Pβ : Σβ → Y ⊥
β , (2.20)
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where Y ⊥
β is an orthogonal complement to Yβ in [f+(x0(β))]

⊥, and the decomposition
for any z sufficiently close to manifold x0(W )

z = x0(β) + ξ for β ∈ W, ξ ∈
[
∂x0(β)

∂β1
, . . . ,

∂x0(β)

∂βk

]⊥
.

The second condition of (2.17) gives another restriction on ξ, i.e.

ξ ∈
[
∂x0(β)

∂β1
, . . . ,

∂x0(β)

∂βk
, f+(x0(β))

]⊥
,

therefore
z = x0(β) + ξ, β ∈ W, ξ ∈ Z⊥

β . (2.21)

Note Zβ, Qβ and Pβ are Cr−1-smooth with respect to β. Consequently, applying
Lyapunov-Schmidt reduction, equation (2.17) is equivalent to the next couple of equa-
tions

QβF (x0(β) + ξ, β, ε, µ) = 0, (2.22)

PβF (x0(β) + ξ, β, ε, µ) = 0. (2.23)

Considering the first one as the equation for ξ ∈ Z⊥
β , it can be solved via IFT, since

QβF (x0(β), β, 0, µ) = 0 and

DξQβF (x0(β) + ξ, β, 0, µ)
∣∣
ξ=0

= QβFξ(x0(β), β, 0, µ)
∣∣
Z⊥
β

,

where
∣∣
Z⊥
β

denotes the restriction on Z⊥
β , is an isomorphism Z⊥

β onto Yβ for all µ ∈ Rp.

So there exist positive constants ε2, r2 and Cr−1-function

ξ(·, ·, ·) : B(β0, r2)× (−ε2, ε2)× Rp → Z⊥
β

such that QβF (x0(β) + ξ, β, ε, µ) = 0 for β ∈ B(β0, r2), ε ∈ (−ε2, ε2) and µ ∈ Rp if
and only if ξ = ξ(β, ε, µ). Moreover ξ(β, 0, µ) = 0, since QβF (x0(β), β, 0, µ) = 0.

Equation (2.23) now has the form

G(β, ε, µ) := PβF (x0(β) + ξ(β, ε, µ), β, ε, µ) = 0 (2.24)

for β close to β0, ε to 0 and µ ∈ Rp. In unperturbed case, this is easily solved, i.e.
G(β, 0, µ) = 0. In order to have a persisting periodic orbit, equation (2.24) has to be
satisfied for all ε sufficiently close to 0. The next condition follows

0 = Gε(β, 0, µ) = PβDεF (x0(β) + ξ(β, ε, µ), β, ε, µ)|ε=0

= Pβ [Fξ(x0(β), β, 0, µ)ξε(β, 0, µ) + Fε(x0(β), β, 0, µ)]

= PβFε(x0(β), β, 0, µ) = −PβPε(x0(β), β, 0, µ) ,
(2.25)

where Gε, Fε are the partial derivatives of G, F with respect to ε, respectively.
We note [31] that there exists an orthogonal basis {ψ1(β), . . . , ψk(β)} of Y ⊥

β , i.e.
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Y ⊥
β = [ψ1(β), . . . , ψk(β)] for each β ∈ W and ψi are C

r−1-smooth. Then projection Pβ
of (2.20) can be written in form

Pβy =
k∑

i=1

〈y, ψi(β)〉ψi(β)
‖ψi(β)‖2

.

Equation (2.25) can be rewritten as follows

k∑

i=1

〈Pε(x0(β), β, 0, µ), ψi(β)〉ψi(β)
‖ψi(β)‖2

= 0. (2.26)

Using linear independence of ψ1(β), . . . , ψk(β) and Lemma 2.2 together with (2.26), we
arrive at

Mµ(β) = 0 if and only if Gε(β, 0, µ) = 0, (2.27)

where
Mµ(β) = (Mµ

1 (β), . . . ,M
µ
k (β)),

Mµ
i (β) =

∫ Tβ

0

〈g(γ(β, t), 0, µ), A∗(β, t)ψi(β)〉dt, i = 1, . . . , k.
(2.28)

Note by (2.10), we have

A∗(β, t) =





X−1∗
1 (β, t)X∗

1 (β, t
β
1 )S

∗
1(β)X

∗
2(β, t

β
2 )S

∗
2(β)X

∗
3 (β, T

β) if t ∈ [0, tβ1),

X−1∗
2 (β, t)X∗

2 (β, t
β
2 )S

∗
2(β)X

∗
3(β, T

β) if t ∈ [tβ1 , t
β
2 ),

X−1∗
3 (β, t)X∗

3 (β, T
β) if t ∈ [tβ2 , T

β].

(2.29)
We shall call the function Mµ defined by (2.28) as a Poincaré-Andronov-Melnikov
function for discontinuous system (2.1) (see Remark 2.6 below).

We know [35] that the linearization of (2.1) with ε = 0 along T β–periodic solution
γ(β, t) is given by

ẋ = Df±(γ(β, t))x (2.30)

which splits into two unperturbed equations

ẋ = Df+(γ(β, t))x if t ∈ [0, tβ1 ) ∪ [tβ2 , T
β],

ẋ = Df−(γ(β, t))x if t ∈ [tβ1 , t
β
2 )

satisfying impulsive conditions

x(tβ1+) = S1(β)x(t
β
1−), x(tβ2+) = S2(β)x(t

β
2−) (2.31)

and periodic condition
(I− Sβ)(x(T β)− x(0)) = 0 (2.32)

as well, where x(t±) = lims→t± x(s). Corresponding fundamental matrices areX1(β, t),
X3(β, t) to plus-equation and X2(β, t) to minus-equation (cf. Lemma 2.2). It follows
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that the fundamental matrix solution of unperturbed variational equation (2.30) is
given by

X(β, t) =





X1(β, t) if t ∈ [0, tβ1 ),

X2(β, t)S1(β)X1(β, t
β
1 ) if t ∈ [tβ1 , t

β
2 ),

X3(β, t)S2(β)X2(β, t
β
2 )S1(β)X1(β, t

β
1 ) if t ∈ [tβ2 , T

β].

(2.33)

Especially, X(β, T β) = A(β, 0). To proceed, we need the following Fredholm like result
for linear impulsive boundary value problems of the form (2.30), (2.31) and (2.32).

Lemma 2.4. Let A(t) ∈ C([0, T ], L(Rn)), B1, B2, B3 ∈ L(Rn), 0 < t1 < t2 < T and
h ∈ C := C([0, t1],Rn) ∩ C([t1, t2],Rn) ∩ C([t2, T ],Rn). Then the nonhomogeneous
problem

ẋ = A(t)x+ h(t),

x(ti+) = Bix(ti−), i = 1, 2,

B3(x(T )− x(0)) = 0

(2.34)

has a solution x ∈ C1 := C1([0, t1],Rn) ∩ C1([t1, t2],Rn) ∩ C1([t2, T ],Rn) if and only if∫ T
0
〈h(t), v(t)〉dt = 0 for any solution v ∈ C1 of the adjoint system given by

v̇ = −A∗(t)v,

v(ti−) = B∗
i v(ti+), i = 1, 2,

v(T ) = v(0) ∈ NB⊥
3 .

(2.35)

Proof. If h ∈ C satisfies (2.34) for a x ∈ C1 then for any v ∈ C1 fulfilling (2.35), we
derive

∫ T

0

〈h(t), v(t)〉dt =
∫ T

0

〈ẋ(t)− A(t)x(t), v(t)〉dt

= 〈x(T ), v(T )〉 − 〈x(t2+), v(t2+)〉+ 〈x(t2−), v(t2−)〉

−〈x(t1+), v(t1+)〉+ 〈x(t1−), v(t1−)〉 − 〈x(0), v(0)〉 −
∫ T

0

〈x(t), v̇(t) + A∗(t)v(t)〉dt

= 〈x(T )− x(0), v(T )〉+ 〈x(0), v(T )− v(0)〉+ 〈x(t1−), v(t1−)−B∗
1v(t1+)〉

+〈x(t2−), v(t2−)− B∗
2v(t2+)〉 −

∫ T

0

〈x(t), v̇(t) + A∗(t)v(t)〉dt = 0.

Reversely, we suppose that h ∈ C satisfies
∫ T
0
〈h(t), v(t)〉dt = 0 for any v ∈ C1 ful-

filling (2.35). Let X(t) be the fundamental solution of ẋ = A(t)x with X(0) = I.
Then

v(t) =





X−1∗(t)X∗(t1)B∗
1X

−1∗(t1)X∗(t2)B∗
2X

−1∗(t2)X∗(T )v(T ) if t ∈ [0, t1),

X−1∗(t)X∗(t2)B∗
2X

−1∗(t2)X∗(T )v(T ) if t ∈ [t1, t2),

X−1∗(t)X∗(T )v(T ) if t ∈ [t2, T ]

and

X∗(t1)B
∗
1X

−1∗(t1)X
∗(t2)B

∗
2X

−1∗(t2)X
∗(T )v(T ) = v(T ) ∈ NB⊥

3 = RB∗
3 . (2.36)
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So

0 =

∫ T

0

〈h(t), v(t)〉dt =
〈∫ T

t2

X(T )X−1(s)h(s)ds

+

∫ t2

t1

X(T )X−1(t2)B2X(t2)X
−1(s)h(s)ds

+

∫ t1

0

X(T )X−1(t2)B2X(t2)X
−1(t1)B1X(t1)X

−1(s)h(s)ds, v(T )

〉
.

(2.37)

Next, by (2.36) and (2.37), we obtain v(T ) = B∗
3w for a w ∈ Rn satisfying

(
X∗(t1)B

∗
1X

−1∗(t1)X
∗(t2)B

∗
2X

−1∗(t2)X
∗(T )− I

)
B∗

3w = 0 (2.38)

along with

0 = 〈B3u, w〉,

u :=

∫ T

t2

X(T )X−1(s)h(s)ds+

∫ t2

t1

X(T )X−1(t2)B2X(t2)X
−1(s)h(s)ds

+

∫ t1

0

X(T )X−1(t2)B2X(t2)X
−1(t1)B1X(t1)X

−1(s)h(s)ds.

(2.39)

But (2.38) and (2.39) imply the existence of x0 ∈ Rn such that

B3

(
X(T )X−1(t2)B2X(t2)X

−1(t1)B1X(t1)x0 + u− x0
)
= 0. (2.40)

Then using (2.40), we see that the function

x(t) =





X(t)x0 +
∫ t
0
X(t)X−1(s)h(s)ds if t ∈ [0, t1),

X(t)X−1(t1)B1

(
X(t1)x0 +

∫ t1
0
X(t1)X

−1(s)h(s)ds
)

+
∫ t
t1
X(t)X−1(s)h(s)ds if t ∈ [t1, t2),

X(t)X−1(t2)B2

(
X(t2)X

−1(t1)B1

(
X(t1)x0

+
∫ t1
0
X(t1)X

−1(s)h(s)ds
)
+
∫ t2
t1
X(t2)X

−1(s)h(s)ds

)

+
∫ t
t2
X(t)X−1(s)h(s)ds if t ∈ [t2, T ]

is a solution of (2.34). The proof is finished.

Applying the above lemma to (2.30), (2.31) and (2.32) we see that the adjoint
variational system of (2.1) is given by the following linear impulsive boundary value
problem

Ẋ = −Df ∗
+(γ(β, t))X if t ∈ [0, tβ1 ],

Ẋ = −Df ∗
−(γ(β, t))X if t ∈ [tβ1 , t

β
2 ],

Ẋ = −Df ∗
+(γ(β, t))X if t ∈ [tβ2 , T

β],

X(tβi +) = S∗
i (β)

−1X(tβi−), i = 1, 2,

X(T β) = X(0) ∈ [f+(x0(β))]
⊥.

(2.41)
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Note for each i = 1, . . . , k and for any ξ ∈ [f+(x0(β))]
⊥ we have Sβψi(β) = 0 and

0 = 〈Fξ(x0(β), β, 0, µ)ξ, ψi(β)〉 = 〈(I− Pξ(x0(β), β, 0, µ))ξ, ψi(β)〉
= 〈ξ, ψi(β)−A∗(β, 0)(I− Sβ)ψi(β)〉 = 〈ξ, (I− A∗(β, 0))ψi(β)〉

and for ξ ∈ [f+(x0(β))] (cf. (2.18))

0 = 〈Fξ(x0(β), β, 0, µ)ξ, ψi(β)〉 = 〈(I− Sβ − Pξ(x0(β), β, 0, µ))ξ, ψi(β)〉
= 〈ξ, (I− A∗(β, 0))(I− Sβ)ψi(β)〉 = 〈ξ, (I−A∗(β, 0))ψi(β)〉.

Hence A∗(β, 0)ψi(β) = ψi(β).
Next, from Lemma 1.5 it is easy to see that for each i = 1, . . . , k, A∗(β, t)ψi(β) is

the solution of (2.41).
Consequently, we can take in (2.28) any basis of T β-periodic solutions of the adjoint

variational equation.
Note, the condition Mµ(β) = 0 is a necessary one for the persistence of periodic

orbit.
The following theorem states the sufficient condition for the existence of a unique

periodic solution of equation (2.1) with ε 6= 0:

Theorem 2.5. Let conditions H1), H2), H3) be satisfied andMµ(β) be defined by (2.28).
If β0 ∈ V is a simple root of Mµ0 , i.e.

Mµ0(β0) = 0, det DMµ0(β0) 6= 0,

then there exist a neighbourhood U of the point (0, µ0) in R× Rp and a Cr−2-function
β(ε, µ), with β(0, µ0) = β0, such that perturbed equation (2.1) possesses a unique per-
sisting closed trajectory. Moreover, it contains a point

x∗(ε, µ) := x0(β(ε, µ)) + ξ(β(ε, µ), ε, µ) ∈ Σβ(ε,µ) (2.42)

and it has a period t3(0, x
∗(ε, µ), β(ε, µ), ε, µ).

Proof. We introduce the function

H(β, ε, µ) =

{
1
ε
G(β, ε, µ) if ε 6= 0,

Gε(β, ε, µ) if ε = 0.

We recall that Gε is the partial derivative of G with respect to ε. Clearly, H is Cr−2-
smooth and H(β, ε, µ) = 0 gives the desired periodic solution. Note that H(β, 0, µ) =

−Ψ(β)Mµ(β), where Ψ(β) is n× k matrix with i-th column ψi(β)
〈ψi(β),ψi(β)〉 . Next, for the

partial derivative Hβ of H with respect to β, we derive

Hβ(β0, 0, µ0) = −DΨ(β0)M
µ0(β0)−Ψ(β0)DM

µ0(β0) = −Ψ(β0)DM
µ0(β0),

thus Hβ(β0, 0, µ0) is an isomorphism, and from (2.27), IFT implies the existence of
neighbourhood U and function β(ε, µ) from the statement of the theorem. Results on x∗

and the period of the persisting orbit follow immediately from preceding arguments.
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Let us denote the persisting periodic trajectory from the latter theorem by γ∗(ε, µ, t).
Then clearly γ∗(0, µ, t) = γ(β0, t).

Note that if function g is discontinuous in x, the above theorem remains true.

Remark 2.6. If (2.1) is smooth, i.e. f± = f , then Si(β) = I, i = 1, 2 and (2.41) has the
form

Ẋ = −Df ∗(γ(β, t))X if t ∈ [0, T β],

X(T β) = X(0) ∈ [f+(x0(β))]
⊥.

(2.43)

So the Poincaré-Andronov-Melnikov function (2.28) possesses the form

Mµ(β) = (Mµ
1 (β), . . . ,M

µ
k (β)),

Mµ
i (β) =

∫ Tβ

0

〈g(γ(β, t), 0, µ), ψi(β, t)〉dt, i = 1, . . . , k
(2.44)

for any smooth basis {ψi(β, t)}ki=1 of solutions of the adjoint periodic linear prob-
lem (2.43). Note (2.44) is the usual Poincaré-Andronov-Melnikov function [12, 14] for
bifurcation of periodic orbits for NDS. This is a reason why we name (2.28) again as
Poincaré-Andronov-Melnikov function for PPSNDS (2.1).

2.1 Geometric interpretation

In this section, we look at the investigated problem from a geometric point of view.
For any β, β̃ ∈ W , we can solve t(β, β̃) from

〈γ(β̃, t(β, β̃))− x0(β), f+(x0(β))〉 = 0

t(β, β) = 0.

Note
∂t(β, β)

∂β̃
= −〈Dx0(β), f+(x0(β))〉‖f+(x0(β))‖2

. (2.45)

Set x̃β(β̃) = γ(β̃, t(β, β̃)), γβ(β̃, t) = γ(β̃, t(β, β̃) + t). So γβ(β̃, 0) = x̃β(β̃), x̃β(β) =
x0(β), γβ(β, t) = γ(β, t) and

F (x̃β(β̃), β, 0, µ) = 0. (2.46)

Indeed, analogically to proof of Lemma 2.3 ti(0, x̃β(β̃), 0, µ) + t(β, β̃) = tβ̃i for i = 1, 2,
therefore

P (x̃β(β̃), β, 0, µ) = x+(t
β̃
2 , x2(β̃))(t3(0, x̃β(β̃), β, 0, µ) + t(β, β̃), 0, µ).

Since x̃β(β̃) ∈ Σβ, we obtain t3(0, x̃β(β̃), β, 0, µ) + t(β, β̃) = T β̃ + t(β, β̃) and conse-
quently

F (x̃β(β̃), β, 0, µ) = x̃β(β̃)− P (x̃β(β̃), β, 0, µ)
= x̃β(β̃)− x+(tβ̃2 , x2(β̃))(T β̃ + t(β, β̃), 0, µ) = x̃β(β̃)− γ(β̃, T β̃ + t(β, β̃)) = 0.
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Equation (2.46) implies Fξ(x0(β), β, 0, µ)Dx̃β(β) = 0. Note by (2.45) Dx̃β(β) = (I −
Sβ)Dx0(β) and hence Fξ(x0(β), β, 0, µ)(I− Sβ)Dx0(β) = 0 what by (2.6) is equivalent
to

(I− Sβ)Dx0(β) = (I− Sβ)A(β, 0)(I− Sβ)Dx0(β).
Note (I− Sβ)Dx0(β) is k-dimensional.

Some solutions of (2.30) are described in the next lemma.

Lemma 2.7. Vectors ∂γ(β,t)
∂β1

, . . . , ∂γ(β,t)
∂βk

, ∂γ(β,t)
∂t

satisfy equation (2.30) as well as condi-

tions (2.31) and (2.32).

Proof. Using notation from (2.2) we obtain

γ(β, t) =





x+(0, x0(β))(t, 0, µ) if t ∈ [0, tβ1 ],

x−(t
β
1 , x+(0, x0(β))(t

β
1 , 0, µ))(t, 0, µ) if t ∈ [tβ1 , t

β
2 ],

x+(t
β
2 , x−(t

β
1 , x+(0, x0(β))(t

β
1 , 0, µ))(t

β
2 , 0, µ))(t, 0, µ) if t ∈ [tβ2 , T

β].

(2.47)

Direct differentiation of (2.47) gives equation (2.30) with x = ∂γ(β,t)
∂βi

for i = 1, . . . , k or

x = ∂γ(β,t)
∂t

. Relations (2.31) are also easily obtained from (2.47). Next, differentiating
γ(β, t+ T β) = γ(β, t) for any t ∈ R we derive γ̇(β, t+ T β) = γ̇(β, t) and

∂γ(β, t + T β)

∂βi
+
∂T β

∂βi
γ̇(β, t+ T β) =

∂γ(β, t)

∂βi

what implies

(I− Sβ)γ̇(β, T β) = (I− Sβ)γ̇(β, 0) = (I− Sβ)f+(x0(β)) = 0

and

(I− Sβ)
[
∂γ(β, T β)

∂βi
− ∂γ(β, 0)

∂βi

]
= −∂T

β

∂βi
(I− Sβ)f+(x0(β)) = 0.

Consequently, (2.32) holds as well. The proof is finished.

We get the following equivalence to condition H3):

Proposition 2.8. Condition H3) is equivalent to say that the set
{
∂γ(β, t)

∂β1
, . . . ,

∂γ(β, t)

∂βk
,
∂γ(β, t)

∂t

}

is a basis of linearly independent solutions of (2.30), (2.31) and (2.32).

2.2 On the hyperbolicity of persisting orbit

Here we state the sufficient condition for the hyperbolicity of trajectory γ∗(ε, µ, t) with
ε 6= 0. First, we recall the result from [17] (see also [48]):

Lemma 2.9. Let E(ε) =

(
Aε 0
0 Bε

)
and D(ε) be continuous matrix functions Rk → Rk

for ε ≥ 0 such that ‖Aε‖ ≤ 1− cε, ‖B−1
ε ‖ ≤ 1− cε, where c is a positive constant, Aε

and Bε are k1 × k1 and (k − k1) × (k − k1) blocks, respectively, i.e. E(ε) is strongly
1-hyperbolic. Then E(ε)+ε2D(ε) has no eigenvalues on S1 for ε 6= 0 sufficiently small.
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We shall also need the following lemma.

Lemma 2.10. Let U be a neighbourhood of 0 in R and M ∈ C1(U, L(Rn)), i.e. M(ε)
is a real matrix of the form n× n with an eigenvalue λ(ε) = exp(α(ε) + ıβ(ε)) and the
corresponding eigenvector u(ε). Suppose that λ(0) 6= 0 is simple. Then

α′(0) = <(M
′(0)u(0), u(0))M
λ(0)‖u(0)‖2M

, β ′(0) = =(M
′(0)u(0), u(0))M
λ(0)‖u(0)‖2M

,

where (·, ·)M is an inner product in Cn such that (M(0)q, u(0))M = 0 whenever (q, u(0))M =
0, and ‖q‖2M = (q, q)M .

Proof. If we denote

v(ε) =
u(ε)‖u(0)‖M
(u(ε), u(0))M

for each ε sufficiently small then (v(ε), v(0))M = 1 and therefore (v′(ε), v(0))M = 0.
Differentiation of the identity M(ε)v(ε) = λ(ε)v(ε) at ε = 0 gives

M ′(0)v(0) +M(0)v′(0) = λ(0)[α′(0) + ıβ ′(0)]v(0) + λ(0)v′(0).

Applying inner product in form (·, v(0))M on the above equality gives

(M ′(0)v(0), v(0))M = λ(0)[α′(0) + ıβ ′(0)].

When one returns to u(0) the proof is finished.

Let (β0, µ0) determine the persisting trajectory γ∗(ε, µ, t) (see Theorem 2.5). We
shall study the hyperbolicity of the orbit on the fixed hyperplane Σβ0 instead of chang-
ing Σβ with β = β(ε, µ). Take w0(ε, µ) = x+(0, x

∗(ε, µ))(t4(ε, µ), ε, µ) where t4(ε, µ) is
the nearest return time (|t4(ε, µ)| is small) such that w0(ε, µ) ∈ Σβ0 . Note t4(0, µ) = 0
and w0(0, µ) = x0(β0). Moreover, x+(0, w0(ε, µ))(·, ε, µ) is a unique persisting solution
of (2.1) with ε 6= 0 small and µ close to µ0, which is in a neighbourhood of γ(β0, ·).
More precisely,

x+(0, w0(ε, µ))(t, ε, µ) = γ∗(ε, µ, t4(ε, µ) + t).

Theorem 2.11. Let (β0, µ0) be as in Theorem 2.5, ξ ∈ Rn and C be a regular n × n
matrix such that

C−1Pξ(x0(β0), β0, 0, µ0)C =

(
Ik 0
0 B

)
=: A,

where Ik is the k× k identity matrix and B has simple eigenvalues λ1, . . . , λl ∈ S1\{1}
with corresponding eigenvectors v1, . . . , vl and none of other eigenvalues on S1. Suppose
that if we denote

C−1Dε Pξ(w0(ε, µ0), β0, ε, µ0)|ε=0C =: A1 =

(
A11 A12

A21 A22

)
,

where A11 is a k × k block then A11 has no eigenvalues on imaginary axis. Moreover,
let

<(A22vi, vi)B
λi‖vi‖2B

6= 0, ∀i = 1, . . . , l,

where (·, ·)B is an inner product in Cn such that (Bq, vi)B = 0 whenever (q, vi)B = 0 for
each i = 1, . . . , l, and ‖q‖2B = (q, q)B. Then the persisting orbit γ∗(ε, µ, t) is hyperbolic.
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Proof. Let us denote Aµ(ε) = C−1Pξ(w0(ε, µ), β0, ε, µ), ε, µ)C for ε small. Now from
Taylor expansion we have Aµ(ε) = A+εAµ1+O(ε

2), where Aµ01 = A1 and the same for its
parts (note if ε = 0, the dependency on µ is lost). If we take P µ(ε) = I+εBµ

1 +ε
2Bµ

2 (ε)
with continuous matrix function Bµ

2 ,

Bµ
1 =

(
0 Bµ

12

Bµ
21 0

)
, Bµ

12 = Aµ12(I− B)−1, Bµ
21 = (B − I)−1Aµ21

then

Ãµ(ε) := P µ(ε)Aµ(ε)P µ−1(ε) =

(
Ik 0
0 B

)
+ ε

(
Aµ11 0
0 Aµ22

)
+O(ε2).

Similarly, without the change of eigenvalues, we could transform Aµ11 into form

(
Aµ111 0
0 Aµ112

)
,

where Aµ111 is k1 × k1 with 0 ≤ k1 ≤ k, <σ(Aµ111) ⊂ (0,∞) and <σ(Aµ112) ⊂ (−∞, 0),
hence we shall suppose that Aµ11 is already in this form. Consequently,

Ãµ(ε) =



Ik1 + εAµ111 0 0

0 Ik−k1 + εAµ112 0
0 0 B + εAµ22


+O(ε2)

=

(
Eµ(ε) 0
0 B + εAµ22

)
+O(ε2).

It can be shown [17,48] that Eµ(ε) is strongly 1-hyperbolic for ε > 0 sufficiently small.

Next, Lemma 2.10 applied on matrix function Ãµ22(ε) = B + εAµ22 with eigenvalues
λµ1(ε), . . . , λ

µ
l (ε) such that λµ1(0) = λ1, . . . , λ

µ
l (0) = λl ∈ S1, and eigenvectors v1, . . . , vl

corresponding to Ãµ22(0) and λ1, . . . , λl, respectively, implies that Ãµ22(ε) is also strongly

1-hyperbolic for ε > 0 sufficiently small. Consequently,

(
Eµ(ε) 0
0 B + εAµ22

)
is strongly

1-hyperbolic and Lemma 2.9 applies to Ãµ(ε).
Note from Lemma 2.3 Aµ(ε) has eigenvalue 0 with eigenvector f+(w0(ε, µ)) +

εg(w0(ε, µ), ε, µ). In conclusion by Lemma 2.9, Aµ(ε) has no eigenvalues on S1 for
ε > 0 sufficiently small. Analogical result can be proved for ε < 0. That means that
for |ε| > 0 sufficiently small perturbed trajectory γ∗(ε, µ, t) is hyperbolic.

By special assumptions, the sufficient condition for stability of persisting periodic
orbit may be easily obtained from the above-stated theorem.

Corollary 2.12. Let the assumptions of Theorem 2.11 be fulfilled. Furthermore, let B
have no eigenvalues outside the unit circle, A11 have all eigenvalues with negative real
part and

<(A22vi, vi)B
λi‖vi‖2B

< 0, ∀i = 1, . . . , l.

Then γ∗(ε, µ, t) is stable (repeller) for ε > 0 (ε < 0) small.
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Generally, the formula for Dε Pξ(w0(ε, µ), β0, ε, µ)|ε=0 is really complicated. How-
ever, in concrete examples it may be much easier found using computer software. Now
we describe how to do that.

Differentiating expansion

P (w, β0, ε, µ0) = P (w, β0, 0, µ0) + εP1(w, β0, 0, µ0) +O(ε2)

for any w ∈ Σβ0 gives

Pξ(w, β0, ε, µ0) = Pξ(w, β0, 0, µ0) + εP1ξ(w, β0, 0, µ0) +O(ε2),

thence
Dε Pξ(w0(ε, µ0), ε, µ0)|ε=0

= P1ξ(x0(β0), β0, 0, µ0) + Pξξ(x0(β0), β0, 0, µ0)
∂w0(0, µ0)

∂ε
,

(2.48)

where P1ξ is the partial derivative of P1 with respect to ξ, while Pξξ is the second
partial derivative of P with respect to ξ.

Now we note that P1(ξ, β, 0, µ) can be obtained by linearization of (2.4) as follows:
For the sense of simplicity, we shall omit some arguments. Let us denote y1(s),

y2(s) and y3(s) the solutions of equations

ẏ1 = f+(y1) + εg(y1, ε, µ) on [0, s1] ẏ2 = f−(y2) + εg(y2, ε, µ) on [s1, s2]
y1(0) = ξ, y2(s1) = y1(s1),

ẏ3 = f+(y3) + εg(y3, ε, µ) on [s2,∞)
y3(s2) = y2(s2),

respectively, where the first one has a general initial condition ξ ∈ Σβ and s1 < s2
satisfy h(y1(s1)) = h(y2(s2)) = 0. Moreover, let s3 > s2 be such that

〈y3(s3)− x0(β), f+(x0(β))〉 = 0.

Taylor expansions with respect to ε

yi(t) = y0i (t) + εy1i (t) +O(ε2), i = 1, 2, 3,

si = s0i + εs1i +O(ε2), i = 1, 2, 3

imply

ẏ01 = f+(y
0
1) ẏ11 = Df+(y

0
1)y

1
1 + g(y01, 0, µ)

y01(0) = ξ ∈ Σβ, y11(0) = 0,

h(y01(s
0
1)) = 0, s11 = − Dh(y01(s

0
1))y

1
1(s

0
1)

Dh(y01(s
0
1))f+(y01(s

0
1))
,

ẏ02 = f−(y02) ẏ12 = Df−(y02)y
1
2 + g(y02, 0, µ)

y02(s
0
1) = y01(s

0
1), y12(s

0
1) =

[
I+ (f−(y01(s

0
1))−f+(y01(s

0
1)))Dh(y

0
1(s

0
1))

Dh(y01(s
0
1))f+(y01(s

0
1))

]
y11(s

0
1),

h(y02(s
0
2)) = 0, s12 = − Dh(y02(s

0
2))y

1
2(s

0
2)

Dh(y02(s
0
2))f−(y02(s

0
2))
,
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ẏ03 = f+(y
0
3) ẏ13 = Df+(y

0
3)y

1
3 + g(y03, 0, µ)

y03(s
0
2) = y02(s

0
2), y13(s

0
2) =

[
I+ (f+(y02(s

0
2))−f−(y02(s

0
2)))Dh(y

0
2(s

0
2))

Dh(y02(s
0
2))f−(y02(s

0
2))

]
y12(s

0
2),

y03(s
0
3) ∈ Σβ , s13 = − 〈y13(s03),f+(x0(β))〉

〈f+(y03(s
0
3)),f+(x0(β))〉 .

Note that all yji and s
j
i depend on ξ. Since

P (ξ, β, ε, µ) = y3(s3) = y03(s
0
3) + ε

[
ẏ03(s

0
3)s

1
3 + y13(s

0
3)
]
+O(ε2),

we get
P1(ξ, β, 0, µ) = f+(y

0
3(s

0
3))s

1
3 + y13(s

0
3). (2.49)

Remark 2.13. If ξ = x0(β) then s01 = tβ1 , s
0
2 = tβ2 , s

0
3 = T β, y01(s

0
1) = x1(β), y

0
2(s

0
2) =

x2(β), y
0
3(s

0
3) = x0(β) and P1(x0(β), β, 0, µ) = Pε(x0(β), β, 0, µ) (see (2.8)).

Hence the algorithm consists of subsequent computation of y01, y
1
1, s

0
1, s

1
1, y

0
2, y

1
2, s

0
2,

s12, y
0
3, y

1
3, s

0
3, s

1
3, applying formula (2.49) and computing left over terms in (2.48).

2.3 The particular case of initial manifold

Here we consider special case of the manifold of initial points when k = n−1, i.e. x0(V )
is immersed submanifold of codimension 1. Related problems have been studied in [47]
for smooth dynamical systems. Then we can suppose that x0(β) = (β1, . . . , βn−1, 0) =
(β, 0). Let us denote ξ̄ = (ξ, 0) for ξ ∈ V . We take Σ = Rn−1 × {0} ∩ Ω+ and a new

Poincaré mapping P̃ : V × (−ε0, ε0)× Rp → Σ defined as

P̃ (ξ, ε, µ) = x+(t2(0, ξ̄, ε, µ), x−(t1(0, ξ̄, ε, µ), x+(0, ξ̄)(t1(0, ξ̄, ε, µ), ε, µ))

(t2(0, ξ̄, ε, µ), ε, µ))(t3(0, ξ, ε, µ), ε, µ),

where t3(·, ·, ·, ·) is a solution close to T ξ of equation

〈x+(t2(0, ξ̄, ε, µ), x−(t1(0, ξ̄, ε, µ), x+(0, ξ̄)
(t1(0, ξ̄, ε, µ), ε, µ))(t2(0, ξ̄, ε, µ), ε, µ))(t, ε, µ), en〉 = 0

with en = (0, . . . , 0, 1) ∈ Rn. Moreover t3(0, ξ, 0, µ) = T ξ. Then one can easily derive

for the partial derivatives P̃ξ, P̃ε of P̃ with respect to ξ and ε, respectively, the following
formulae

P̃ξ(ξ, 0, µ) = (I− Tξ)A(ξ, 0),

P̃ε(ξ, 0, µ) = (I− Tξ)
(∫ T ξ

0

A(ξ, s)g(γ(ξ, s), 0, µ)ds

)

with Tξu = 〈u,en〉f+(ξ̄)

〈f+(ξ̄),en〉 and A given by (2.10). Note P̃ (ξ, 0, µ) = ξ̄ ∈ Σ and

P̃ (ξ, ε, µ) = ξ̄ + ε(I− Tξ)
∫ T ξ

0

A(ξ, t)g(γ(ξ, t), 0, µ)dt+O(ε2).

Consequently, we have the following theorem [17]:
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Theorem 2.14. Let conditions H1), H2) be satisfied and k = n − 1. Let there be
(ξ0, µ0) ∈ V × Rp such that Mµ0(ξ0) = 0 and detDMµ0(ξ0) 6= 0, where

Mµ(ξ) =

[
(I− Tξ)

∫ T ξ

0

A(ξ, t)g(γ(ξ, t), 0, µ)dt

]

Rn−1

and the lower index Rn−1 denotes the restriction on first n−1 coordinates. Then there
is a unique periodic solution x∗(ε, µ, t) near γ(ξ0, t) of (2.1) with µ close to µ0 and
ε 6= 0 small. Moreover, for ε > 0 small

1. if <σ(DMµ0(ξ0)) ⊂ (−∞, 0) then x∗(ε, µ, t) is stable,

2. if <σ(DMµ0(ξ0)) ∩ (0,∞) 6= ∅ then x∗(ε, µ, t) is unstable,

3. if 0 /∈ <σ(DMµ0(ξ0)) then x
∗(ε, µ, t) is hyperbolic with the same hyperbolicity type

as DMµ0(ξ0).

Proof. The existence part for x∗(ε, µ, t) follows like above. The local asymptotic prop-
erties for x∗(ε, µ, t) are derived from standard arguments of [17, 48].

2.4 3-dimensional piecewise-linear application

We shall consider the following problem

ẋ = ε(z − xn)
ẏ = b1

ż = −2a1b1y + ε(µ1 − µ2y
2)z

if z > 0,

ẋ = 0

ẏ = −b2
ż = −2a2b2y

if z < 0

(2.50)ε

with positive constants a1, a2, b1, b2; n ∈ N and vector µ = (µ1, µ2) of real parameters.
Here we have Ω± = {(x, y, z) ∈ R3 | ±z > 0}, Ω0 = {(x, y, 0) ∈ R3} and h(x, y, z) =

z. Let x0(β) = (β1, 0, β2), β = (β1, β2), β2 > 0 be an initial point. Then we have
Σ = {(x, 0, z) ∈ R3 | z > 0}. Due to linearity of problem (2.50)0 some results may be
easily obtained. These are concluded in the following lemma.

Lemma 2.15. Unperturbed system (2.50)0 possesses a 2-parametrized system {γ(β, t) |
β2 > 0} of periodic orbits starting at (β1, 0, β2) and given by (cf. (2.2)):

γ1(β, t) = (β1, b1t,−a1b21t2 + β2),

γ2(β, t) = (β1, x12(β)− b2(t− tβ1 ), a2(x12(β)− b2(t− tβ1 ))2 − a2x212(β)),
γ3(β, t) = (β1, x22(β) + b1(t− tβ2 ),−a1(x22(β) + b1(t− tβ2 ))2 + a1x

2
22(β)),
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where

tβ1 =
1

b1

√
β2
a1
, tβ2 =

2

b2

√
β2
a1

+ tβ1 , T β =
1

b1

√
β2
a1

+ tβ2 ,

xi(β) = (xi1(β), xi2(β), xi3(β)), i = 1, 2,

x1(β) =

(
β1,

√
β2
a1
, 0

)
, x2(β) =

(
β1,−

√
β2
a1
, 0

)
.

The corresponding fundamental matrices of (2.13), (2.14) and (2.15) have now the
forms

X1(β, t) =



1 0 0
0 1 0
0 −2a1b1t 1


 , X2(β, t) =



1 0 0
0 1 0

0 −2a2b2(t− tβ1 ) 1


 ,

X3(β, t) =



1 0 0
0 1 0

0 −2a1b1(t− tβ2 ) 1




and saltation matrices of (2.11) and (2.12) are given by

S1(β) =



1 0 0

0 1
√
a1(b1+b2)

2a1b1
√
β2

0 0 a2b2
a1b1


 , S2(β) =



1 0 0

0 1
√
a1(b1+b2)

2a2b2
√
β2

0 0 a1b1
a2b2


 .

Proof. The lemma can be proved exactly as Lemma 1.18.

Another lemma shows that the derived theory can be applied to system (2.50)0:

Lemma 2.16. System (2.50)0 satisfies conditions H1) and H2).

Proof. Since ∂x0(β)
∂β1

= (1, 0, 0)∗, ∂x0(β)
∂β2

= (0, 0, 1)∗, f+(x0(β)) = (0, b1, 0)
∗ and using

Lemma 2.15, H1) follows immediately. Since Dh(x, y, z) = (0, 0, 1) and

f+(x1(β)) =

(
0, b1,−2a1b1

√
β2
a1

)∗

, f−(x1(β)) =

(
0,−b2,−2a2b2

√
β2
a1

)∗

,

f+(x2(β)) =

(
0, b1, 2a1b1

√
β2
a1

)∗

, f−(x2(β)) =

(
0,−b2, 2a2b2

√
β2
a1

)∗

,

H2) is also fulfilled.
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Using Lemma 2.15 we get

A(β, t) =







1 0 0

0 1− 2
√
a1b1t(b1+b2)

b2
√
β2

− b1+b2
b2
√
a1β2

0 2a1b1t 1


 if t ∈ [0, tβ1 ),



1 0 0

0 −1 − 2b1
b2

+
√
a1(t−tβ1 )(b1+b2)√

β2

√
a1(b1+b2)

2a2b2
√
β2

0 2(
√
a1β2 − a1b2(t− tβ1 )) −a1

a2


 if t ∈ [tβ1 , t

β
2 ),



1 0 0

0 1 0

0 2(a1b1(t− tβ2 )−
√
a1β2) 1


 if t ∈ [tβ2 , T

β]

(2.51)

from (2.10). Consequently, the mapping Mµ(β) from Section 2.3 has the form

Mµ(β) =

(
−2
3

√
β2(3β

n
1 − 2β2)√
a1b1

,
4

15

β
3/2
2 (5µ1a1 − µ2β2)

a
3/2
1 b1

)
. (2.52)

From Theorem 2.14 we obtain the following result.

Proposition 2.17. For µ ∈ R2 such that µ1µ2 ≤ 0, (µ1, µ2) 6= 0 no periodic orbit
persists. For µ1µ2 > 0 if ε > 0 and

1. n is odd, the only persisting periodic trajectory γ(β0, t) of system (2.50)0 is de-

termined by β0 = (β01, β02) with β01 =
(
2
3
β02
)1/n

, β02 = 5µ1a1
µ2

. Moreover, this

trajectory is stable – it is a sink – for µ1 > 0 and unstable/hyperbolic for µ1 < 0,

2. n is even, there are exactly two persisting orbits γ+, γ− given by β01 = ±
(
2
3
β02
)1/n

,

β02 =
5µ1a1
µ2

with corresponding sign in β01. Moreover, if

(a) µ1 > 0, then γ+ is stable – it is a sink – and γ− is unstable/hyperbolic,

(b) µ1 < 0, then γ+ is unstable/hyperbolic and γ− is unstable – it is a source.

If ε < 0, the above statements remain true with sinks instead of sources and vice versa.

Proof. From (2.52) one can see that for (µ1, µ2) 6= (0, 0) the positive solution β2 of

4

15

β
3/2
2 (5µ1a1 − µ2β2)

a
3/2
1 b1

= 0

exists if and only if β2 = 5µ1a1
µ2

and µ1µ2 > 0. Then with respect to n we get one or
two solutions β1 of

−2
3

√
β2(3β

n
1 − 2β2)√
a1b1

= 0.

For arbitrary n ∈ N we have β02 =
5µ1a1
µ2

and

DMµ

((
2

3
β02

)1/n

, β02

)
=


−

2
√
5( 10

3 )
n−1
n a

3n−2
2n

1 n
(

µ1
µ2

) 3n−2
2n

√
a1b1

4
√
5

3b1

√
µ1
µ2

0 −4
√
5µ1

3b1

√
µ1
µ2


 .
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Therefore, this orbit persists. If n is even then

DMµ

(
−
(
2

3
β02

)1/n

, β02

)
=




2
√
5( 10

3 )
n−1
n a

3n−2
2n

1 n
(

µ1
µ2

) 3n−2
2n

√
a1b1

4
√
5

3b1

√
µ1
µ2

0 −4
√
5µ1

3b1

√
µ1
µ2


 .

Hence it also persists. The statements on the stability of persisting trajectories follow
directly from DMµ(β).

Fig. 2.2: Numerically computed trajectory projected onto xy-, yz- and xz-plane and
the Poincaré mapping of the orbit of (2.50)ε with a1 = a2 = b1 = b2 = 1, µ1 = 1,
µ2 = 2, n = 2, ε = 0.05, β = (1.6, 1). Asterisk corresponds to persisting periodic

orbit/stable limit cycle, denoted dark in previous figures

42



Remark 2.18. If (µ1, µ2) = (0, 0) it is not possible to determine the persisting orbit via
Theorem 2.14 since

M (0,0)(β) =

(
−2
3

√
β2(3β

n
1 − 2β2)√
a1b1

, 0

)
.

However, we know that if there is a persisting trajectory, then there exists β2 > 0
such that the trajectory contains

((
2
3
β2
)n
, 0, β2

)
∈ R3 if n is odd and

((
2
3
β2
)n
, 0, β2

)

or
(
−
(
2
3
β2
)n
, 0, β2

)
if n is even. To find the persisting orbit, higher order Melnikov

function has to be computed (cf. [8]).

2.5 Coupled Van der Pol and harmonic oscillators at 1-1 res-

onance

In this section we shall consider two weakly coupled oscillators at resonance, one of
which is Van der Pol oscillator and the other harmonic oscillator, given by equations

ẍ+ ε(1− x2)ẋ+ a2±x+ εµ(x− y) = 0

ÿ + εẏ + ω2y − εµ(x− y) = 0
for ± x > 0 (2.53)ε

with positive constants a+, a−, ω such that

2

ω
=

1

a+
+

1

a−
, (2.54)

where µ > 0 is a fixed parameter and ε 6= 0 is small. After transforming (2.53)ε into a
4-dimensional system we get

ẋ1 = a±x2

ẋ2 = −a±x1 − ε(1− x21)x2 − ε
µ

a±
(x1 − y1)

ẏ1 = ωy2

ẏ2 = −ωy1 − εy2 + ε
µ

ω
(x1 − y1)

for ± x1 > 0 (2.55)ε

and h(x1, x2, y1, y2) = x1. Thus we have Ω± = {(x1, x2, y1, y2) ∈ R4 | ±x1 > 0},
Ω0 = {0} × R3 and we take Σ = {(x1, 0, y1, y2) ∈ R4 | x1 > 0} with initial point
x0(β) = (β1, 0, β2, β3), β1 > 0. From linearity of unperturbed system (2.55)0 the
next result follows immediately and can be proved using matrix exponential (see e.g.
Section 1.2).

Lemma 2.19. System (2.55)0 has a 3-parametrized family {γ(β, t) | β1 > 0} of periodic
solutions such that γ(β, 0) = (β1, 0, β2, β3) given by (cf. (2.2)):

γ1(β, t) = (β1 cos a+t,−β1 sin a+t, β2 cosωt+ β3 sinωt,−β2 sinωt+ β3 cosωt),

γ2(β, t) =
(
− β1 sin a−(t− tβ1 ),−β1 cos a−(t− tβ1 ), β2 cosωt+ β3 sinωt,

−β2 sinωt+ β3 cosωt
)
,

γ3(β, t) =
(
β1 sin a+(t− tβ2 ), β1 cos a+(t− tβ2 ), β2 cosωt+ β3 sinωt,

−β2 sinωt+ β3 cosωt
)
,
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where
tβ1 =

π

2a+
, tβ2 =

π

a−
+ tβ1 , T β =

π

2a+
+ tβ2

and (cf. (2.3))

x̄i(β) = (x̄i1(β), . . . , x̄i4(β)), i = 1, 2,

x̄1(β) =
(
0,−β1, β2 cosωtβ1 + β3 sinωt

β
1 ,−β2 sinωtβ1 + β3 cosωt

β
1

)
,

x̄2(β) =
(
0, β1, β2 cosωt

β
2 + β3 sinωt

β
2 ,−β2 sinωtβ2 + β3 cosωt

β
2

)
.

Using notation

X±(t) =




cos a±t sin a±t 0 0
− sin a±t cos a±t 0 0

0 0 cosωt sinωt
0 0 − sinωt cosωt




the corresponding fundamental matrices of (2.13), (2.14) and (2.15) are X1(t) = X+(t),
X2(t) = X−(t− tβ1 ) and X3(t) = X+(t− tβ2 ), respectively. Saltation matrices of (2.11)
and (2.12) are diagonal:

S1(β) = diag{a−/a+, 1, 1, 1}, S2(β) = diag{a+/a−, 1, 1, 1}.

Note that the assumed relation (2.54) between a+, a− and ω means ωT β = 2π.
That explains the name 1-1 resonance in (2.53)ε.

Lemma 2.20. System (2.55)0 satisfies conditions H1) and H2).

Proof. Since x0(β) = (β1, 0, β2, β3), Dh(x, y, z) = (1, 0, 0, 0) and

f+(x0(β)) = (0,−a+β1, ωβ3,−ωβ2)∗,
f±(x̄1(β)) = (−a±β1, 0, ωx̄14(β),−ωx̄13(β))∗,
f±(x̄2(β)) = (a±β1, 0, ωx̄24(β),−ωx̄23(β))∗

both conditions are easy to verify.

Of course, it is possible to continue with general values of a± and ω, but resulting
formulae are rather awkward. Therefore we set a+ = 2, a− = 6, ω = 3. Then
following the procedure of Section 2.3 we derive the discontinuous Melnikov function
Mµ(β) = (Mµ

1 (β),M
µ
2 (β),M

µ
3 (β)) with

Mµ
1 (β) =

π

12
(β2

1 − 4)β1 −
43
√
2

135
µβ3,

Mµ
2 (β) = −

π

3
β2 +

43
√
2

135
µ
β2β3
β1
− π

12
µβ3,

Mµ
3 (β) =

π

12
µβ2 −

π

3
β3 −

43
√
2

135
µ
β2
2

β1
+

28
√
2

135
µβ1.

(2.56)
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Equation Mµ
1 (β) = 0 has a simple root

β3(µ, β1) =
45
√
2

344

π(β2
1 − 4)β1
µ

. (2.57)

Similarly

β2(µ, β1) =
45
√
2

344

π(β2
1 − 4)β1
β2
1 − 8

(2.58)

is a simple root of equation Mµ
2 (β1, β2, β3(µ, β1)) = 0. Third equation Mµ

3 (β) = 0 now
has the form

√
2β1

(β2
1 − 8)2µ

(
− 15

344
π2β6

1 +

(
75

86
π2 +

28

135
µ2

)
β4
1

−
(
240

43
π2 +

15

344
π2µ2 +

448

135
µ2

)
β2
1 +

480

43
π2 +

15

86
π2µ2 +

1792

135
µ2

)
= 0.

(2.59)

It is not possible to find solutions β1 of the last equation analytically. Nevertheless, we
can derive µ2 as a rational function of β1 given by

µ2(β1) = F (β1) =
p1(β1)

p2(β2)
,

p1(β1) = 2025π2(β2
1 − 4)(β2

1 − 8)2 ,

p2(β2) = 9632β4
1 − (2025π2 + 154112)β2

1 + 8100π2 + 616448 ,

(2.60)

which is plotted in Fig. 2.3.

Fig. 2.3: The graph of the function µ2(β1) with respect to β1. Asymptotes intersect
β1-axis at β1−

.
= 2.445 and β1+

.
= 3.478. The bifurcation point

(β̄1, F (β̄1))
.
= (4.097, 40.423) is denoted by a circle

Note p2(β1) = (β1 − β1−)(β1 + β1−)(β1 − β1+)(β1 + β1+) for

β1± =
1

8

√
1

301

(
154112 + 2025π2 ± 45π

√
154112 + 2025π2

)
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with β1−
.
= 2.445 and β1+

.
= 3.478. Clearly, only for positive values of µ2 a periodic

orbit can persist, which is determined by the equation µ2 = F (β1), β1 > 0. Thus from
now on we assume β1 > 2. Moreover, from Fig. 2.3 one can see that for all µ > 0
a periodic orbit can persist and for µ2 > F (β̄1)

.
= 40.423 there exist three possible

persisting periodic solutions. Here β̄1
.
= 4.097 is a unique solution of F ′(β1) = 0

greater than 2
√
2
.
= 2.828. Note F (2

√
2) = F ′(2

√
2) = 0. Since

µ(β1) =
√
F (β1) > 0

for all
β1 ∈ I := I1 ∪ I2 ∪ I3,

I1 = (2, β1−)
.
= (2, 2.445),

I2 = (β1+, β̄1)
.
= (3.478, 4.097),

I3 = (β̄1,∞)
.
= (4.097,∞)

(2.61)

is a simple root of equation (2.59) we know (see [20, Lemma 3.5.5]) even without
calculating DMµ(β) that (β1, β2(µ(β1), β1), β3(µ(β1), β1)) is a simple root of Mµ(β1)(β)
for all β1 ∈ I. Hence using the first part of Theorem 2.14 we have just proved the
following statement.

Proposition 2.21. Let β2(µ, β1), β3(µ, β1) be defined by (2.58), (2.57) and I by (2.61),

respectively. For µ ∈ (0,
√
F (β̄1))

.
= (0, 6.358) there is a unique persisting periodic

solution x∗(ε, µ, t) of system (2.55)ε for any ε 6= 0 small. Moreover

x∗(0, µ, 0) = (β∗, 0, β2(µ, β
∗), β3(µ, β

∗)), β∗ ∈ I1

for β∗ = β∗(µ) being a unique positive solution of equation (2.59).

For µ ∈ (
√
F (β̄1),∞)

.
= (6.358,∞) system (2.55)ε possesses three persisting peri-

odic solutions x∗i (ε, µ, t), i = 1, 2, 3 for any ε 6= 0 small. In addition,

x∗i (0, µ, 0) = (β∗
i , 0, β2(µ, β

∗
i ), β3(µ, β

∗
i )), β∗

i ∈ Ii, i = 1, 2, 3

for positive solutions β∗
1 = β∗

1(µ), β
∗
2 = β∗

2(µ) and β
∗
3 = β∗

3(µ) of equation (2.59).

To study asymptotic properties of these periodic solutions, we need the following
result.

Lemma 2.22. The next statements hold for a cubic equation λ3+a2λ
2+a1λ+a0 = 0:

(i) Its all roots have negative real parts if and only if a2 > 0 and a1a2 > a0 > 0.

(ii) Its all roots have positive real parts if and only if a2 < 0 and a1a2 < a0 < 0.

(iii) It has a zero root if and only if a0 = 0, and this root is simple if a1 6= 0.

(iv) It has a nonzero pure imaginary root if and only if a1 > 0 and a1a2 = a0, and
then it is given by ±√a1ı.

Proof. (i) follows from the Routh-Hurwitz criterion [30]. (ii) follows from (i) by ex-
changing λ↔ −λ. (iii) and (v) are elementary to prove.
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The Jacobian matrix of function Mµ(β) of (2.56) at β2 = β2(µ, β1), β3 = β3(µ, β1)
is given by

DMµ(β) =




π
4
β2
1 − π

3
0 −43

√
2

135
µ

−15
√
2π2

1376

(β2
1−4)2

β2
1−8

π
12
(β2

1 − 8) π
3

µ
β2
1−8

A − π
12

µβ2
1

β2
1−8

−π
3


 ,

A =

√
2

185760

µ((2025π2 + 38528)β4
1 − (16200π2 + 616448)β2

1 + 32400π2 + 2465792)

(β2
1 − 8)2

.

(2.62)

Fig. 2.4: Illustration of coefficients a0(β1), a1(β1) with respect to β1 and the
combination a1(β1)a2(β1)− a0(β1) with detail in the neighbourhood of the asymptote
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Consequently, the characteristic polynomial of matrix (2.62) has the form

P (λ) = λ3 + a2λ
2 + a1λ+ a0,

a0(β1) =
π3

108B

(
4816β8

1 − (2025π2 + 115584)β6
1 + (16200π2 + 924672)β4

1

−(32400π2 + 2465792)β2
1

)
,

a1(β1) =
π2

72B

(
14448β8

1 − (2025π2 + 423808)β6
1 + (48600π2 + 4315136)β4

−(226800π2 + 17260544)β2
1 + 259200π2 + 19726336

)
,

a2(β1) =
4π

3
− π

3
β2
1 ,

B = 9632β4
1 − (2025π2 + 154112)β2

1 + 8100π2 + 616448.

(2.63)

Dependence of a0(β1), a1(β1) and a1(β1)a2(β1)− a0(β1) on β1 is illustrated in Fig. 2.4.
Now, a result on stability of persisting trajectories follows.

Proposition 2.23. Let x∗(ε, µ, t), x∗i (ε, µ, t), i = 1, 2, 3 be as in Proposition 2.21.
Then for any ε 6= 0 small all of these solutions of system (2.55)ε are hyperbolic and for
ε > 0 small none of them is stable and the only repeller is x∗2(ε, µ, t).

Proof. Using Theorem 2.14 and Lemma 2.22 applied on characteristic polynomial (2.63)
we directly obtain the statement. The sign of a2(β1) is obvious and those of a0(β1),
a1(β1) and a1(β1)a2(β1)−a0(β1) can be seen from Fig. 2.4 or computed from definitions
in (2.63).

Note, that from Lemma 2.22 in bifurcation point (cf. Fig. 2.4) β̄1
.
= 4.097, µ̄ =√

F (β̄1)
.
= 6.358 the matrix DMµ(β) of (2.62) has an eigenvalue 0 of multiplicity 1. In

this case we can not apply Theorem 2.14 and higher order Melnikov function (cf. [8])
has to be used to determine if the solution γ(β̄1, β2(µ̄, β̄1), β3(µ̄, β̄1), t) even persists.
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3 Bifurcation from single periodic orbit in autono-

mous systems

In this section, we consider degenerated case of the manifold of initial points from
previous section, i.e. we shall assume, that the unperturbed equation possesses one
isolated transverse periodic solution of period T and we look for sufficient condition on
the perturbation such that the perturbed system has a periodic solution close to the
original one with period close to T .

Let Ω ⊂ Rn be an open set in Rn and h(x) be a Cr-function on Ω, with r ≥ 3.
We set Ω± := {x ∈ Ω | ±h(x) > 0}, Ω0 := {x ∈ Ω | h(x) = 0}. Let f± ∈ Cr

b (Ω),
g ∈ Cr

b (Ω × R × Rp) and h ∈ Cr
b (Ω,R). Let ε ∈ R and µ ∈ Rp, p ≥ 1 be parameters.

Furthermore, we suppose that 0 is a regular value of h.
We say that a function x(t) is a solution of the equation

ẋ = f±(x) + εg(x, ε, µ), x ∈ Ω±, (3.1)

if it is a solution of this equation in the sense analogical to Definition 1.1.
Let us assume

H1) For ε = 0 equation (3.1) has a unique periodic orbit γ(t) of period T . The orbit
is given by its initial point x0 ∈ Ω+ and consists of three branches

γ(t) =





γ1(t) if t ∈ [0, t1],

γ2(t) if t ∈ [t1, t2],

γ3(t) if t ∈ [t2, T ],

(3.2)

where 0 < t1 < t2 < T , γ1(t) ∈ Ω+ for t ∈ [0, t1), γ2(t) ∈ Ω− for t ∈ (t1, t2) and
γ3(t) ∈ Ω+ for t ∈ (t2, T ] and

x1 := γ1(t1) = γ2(t1) ∈ Ω0,

x2 := γ2(t2) = γ3(t2) ∈ Ω0,

x0 := γ3(T ) = γ1(0) ∈ Ω+.

(3.3)

H2) Moreover, we also assume that

Dh(x1)f±(x1) < 0 and Dh(x2)f±(x2) > 0.

Let x+(τ, ξ)(t, ε, µ) and x−(τ, ξ)(t, ε, µ) denote the solution of initial value problem

ẋ = f±(x) + εg(x, ε, µ)

x(τ) = ξ
(3.4)

with corresponding sign. Note

x±(τ, ξ)(t, ε, µ) = x±(0, ξ)(t− τ, ε, µ). (3.5)

First, we slightly modify Lemma 1.2 for autonomous case.
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Lemma 3.1. Assume H1) and H2). Then there exist ε0, r0 > 0 and a Poincaré map-
ping (cf. Fig. 3.1)

P (·, ε, µ) : B(x0, r0)→ Σ

for all fixed ε ∈ (−ε0, ε0), µ ∈ Rp, where

Σ = {y ∈ Rn | 〈y − x0, f+(x0)〉 = 0}.

Moreover, P : B(x0, r0) × (−ε0, ε0) × Rp → Rn is Cr-smooth in all arguments and
B(x0, r0) ⊂ Ω+.

Proof. The lemma can be easily proved as Lemma 1.2 using implicit function theorem
(IFT). We obtain the existence of Cr-functions t1, t2 and t3 satisfying, respectively,

h(x+(τ, ξ)(t1(τ, ξ, ε, µ), ε, µ)) = 0,

h(x−(t1(τ, ξ, ε, µ), x+(τ, ξ)(t1(τ, ξ, ε, µ), ε, µ))(t2(τ, ξ, ε, µ), ε, µ)) = 0

and
〈x+(t2(τ, ξ, ε, µ), x−(t1(τ, ξ, ε, µ), x+(τ, ξ)(t1(τ, ξ, ε, µ), ε, µ))
(t2(τ, ξ, ε, µ), ε, µ))(t3(τ, ξ, , ε, µ), ε, µ)− x0, f+(x0)〉 = 0

for (τ, ξ, ε) close to (0, x0, 0) and µ ∈ Rp. Moreover, we have t1(0, x0, 0, µ) = t1,
t2(0, x0, 0, µ) = t2 and t3(0, x0, 0, µ) = T . Poincaré mapping is then defined as

P (ξ, ε, µ) = x+(t2(0, ξ, ε, µ), x−(t1(0, ξ, ε, µ), x+(0, ξ)(t1(0, ξ, ε, µ), ε, µ))

(t2(0, ξ, ε, µ), ε, µ))(t3(0, ξ, ε, µ), ε, µ).
(3.6)

b

b

b

b

Ω+

Ω0

Ω−

Σ

Fig. 3.1: Discontinuous Poincaré mapping

In contrast to Section 1 and Section 2, here we shall need to calculate second order
derivative of Poincaré mapping with respect to ξ. In order to do this, we construct
linearization of P at general point (ξ, 0, µ) with ξ sufficiently close to x0. Note that in
each of the next steps, dependence on µ is lost, since we set ε = 0 and µ occurred only
as a parameter of g. Therefore we omit the dependence on ε and µ in the following
linearizations and denote x±(τ, ξ, t) the solution of unperturbed system

ẋ = f±(x)

x(τ) = ξ.
(3.7)
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For this time ti(ξ) = ti(0, ξ, 0, µ) for i = 1, 2, 3 and

x1(ξ) = x+(0, ξ, t1(ξ)),

x2(ξ) = x−(t1(ξ), x1(ξ), t2(ξ)),

x3(ξ) = x+(t2(ξ), x2(ξ), t3(ξ)).

(3.8)

Differentiating of (3.7) with respect to ξ we get

ẋ±ξ(τ, ξ, t) = Df±(x±(τ, ξ, t))x±ξ(τ, ξ, t)

x±ξ(τ, ξ, τ) = I
(3.9)

where the lower index ξ denotes the partial derivative with respect to ξ and I the
(n× n)-identity matrix. Let us denote

Xξ
1(t) = x+ξ(0, ξ, t), (3.10)

Xξ
2(t) = x−ξ(t1(ξ), x1(ξ), t), (3.11)

Xξ
3(t) = x+ξ(t2(ξ), x2(ξ), t). (3.12)

From identities

h(x1(ξ)) = 0, h(x2(ξ)) = 0, 〈x3(ξ)− x0, f+(x0)〉 = 0

using relations (3.8) we derive, respectively,

t1ξ(ξ) = −
Dh(x1(ξ))X

ξ
1(t1(ξ))

Dh(x1(ξ))f+(x1(ξ))
, t2ξ(ξ) = −

Dh(x2(ξ))X
ξ
2(t2(ξ))S

ξ
1X

ξ
1(t1(ξ))

Dh(x2(ξ))f−(x2(ξ))
,

t3ξ(ξ) = −
〈Xξ

3(t3(ξ))S
ξ
2X

ξ
2(t2(ξ))S

ξ
1X

ξ
1(t1(ξ))·, f+(x0)〉

〈f+(x3(ξ)), f+(x0)〉
,

where

Sξ1 = I+
(f−(x1(ξ))− f+(x1(ξ)))Dh(x1(ξ))

Dh(x1(ξ))f+(x1(ξ))
, (3.13)

Sξ2 = I+
(f+(x2(ξ))− f−(x2(ξ)))Dh(x2(ξ))

Dh(x2(ξ))f−(x2(ξ))
(3.14)

are saltation matrices taken at general initial point ξ. Considering the inner product
〈a, b〉 = b∗a, we can write

t3ξ(ξ) = −
f+(x0)

∗Xξ
3(t3(ξ))S

ξ
2X

ξ
2(t2(ξ))S

ξ
1X

ξ
1(t1(ξ))

〈f+(x3(ξ)), f+(x0)〉
.

In view of these facts, we can state the lemma concluding some properties of Poincaré
mapping.

Lemma 3.2. Let P (ξ, ε, µ) be defined by (3.6). Then for ξ sufficiently close to x0

Pξ(ξ, 0, µ) = (I− Sξ)A(ξ, 0), (3.15)

Pε(x0, 0, µ) = (I− Sx0)
(∫ T

0

A(x0, s)g(γ(s), 0, µ)ds

)
, (3.16)
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where Pξ, Pε are partial derivatives of P with respect to ξ, ε, respectively. Here

Sξ =
f+(x3(ξ))f+(x0)

∗

〈f+(x3(ξ)), f+(x0)〉
(3.17)

is the projection onto [f+(x3(ξ))] in the direction orthogonal to f+(x0) (i.e. S
ξy = 0 if

and only if 〈y, f+(x0)〉 = 0) and A(ξ, t) is given by

A(ξ, t) =





Xξ
3(t3(ξ))S

ξ
2X

ξ
2(t2(ξ))S

ξ
1X

ξ
1(t1(ξ))X

ξ
1(t)

−1 if t ∈ [0, t1(ξ)),

Xξ
3(t3(ξ))S

ξ
2X

ξ
2(t2(ξ))X

ξ
2(t)

−1 if t ∈ [t1(ξ), t2(ξ)),

Xξ
3(t3(ξ))X

ξ
3(t)

−1 if t ∈ [t2(ξ), t3(ξ)]

(3.18)

with saltation matrices Sξ1 of (3.13) and Sξ2 of (3.14) and Xξ
1 , X

ξ
2 , X

ξ
3 being defined by

(3.10), (3.11), (3.12), respectively. In addition, Pξ(x0, 0, µ) has an eigenvalue 0 with
corresponding eigenvector f+(x0), i.e.

Pξ(x0, 0, µ)f+(x0) = 0.

Proof. Since P (ξ, 0, µ) = x3(ξ) where x3(ξ) is given by (3.8), result on Pξ(ξ, 0, µ) follows
from preceding discussion. Pε(x0, 0, µ) is obtained by differentiating (3.4) with respect
to ε (cf. Lemma 1.4). Statement on the eigenvalue is proved in more general form in
Lemma 2.3.

For simplicity, we shall drop the upper index ξ when ξ = x0, i.e. Xi(t) = Xx0
i (t) for

i = 1, 2, 3, Si = Sx0i for i = 1, 2, S = Sx0 . Clearly t1(x0) = t1, t2(x0) = t2, t3(x0) = T ,
x1(x0) = x1, x2(x0) = x2, x3(x0) = x0 and S is the orthogonal projection onto [f+(x0)].

Now we want to find a persisting periodic solution of (3.1) for ε 6= 0, i.e. we are
looking for periodic solution of perturbed equation in the neighbourhood of γ(·) such
that if ε tends to 0 then the new solution tends to γ(·). This problem is equivalent to
solve the next equation

F (x, ε, µ) := x− P (x, ε, µ) = 0 (3.19)

for (x, ε) ∈ Σ× R close to (x0, 0). Thus

F : (B(x0, r0) ∩ Σ)× (−ε0, ε0)× Rp → [f+(x0)]
⊥ ⊂ Rn

and F (x0, 0, µ) = 0. If we denote

Z = NFξ(x0, 0, µ), Y = RFξ(x0, 0, µ) (3.20)

the null space and the range of the operator Fξ(x0, 0, µ), then we take the orthogonal
decomposition

[f+(x0)]
⊥ = Z ⊕ Z⊥, [f+(x0)]

⊥ = Y ⊕ Y ⊥

with the orthogonal projections Q : [f+(x0)]
⊥ → Y , P : [f+(x0)]

⊥ → Y ⊥. Note
Σ = x0 + [f+(x0)]

⊥ and dimZ = dimY ⊥. For ξ1 ∈ Z, ξ2 ∈ Z⊥ we consider Taylor
expansion

F (x0 + ξ1 + ξ2, ε, µ) = DξF (x0, 0, µ)ξ2 + εDεF (x0, 0, µ)

+
1

2
DξξF (x0, 0, µ)[ξ1 + ξ2]

2 + εDεξF (x0, 0, µ)[ξ1 + ξ2] +
1

2
ε2DεεF (x0, 0, µ)

+O(|ξ1|3 + |ξ2|3 + |ε|3).
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Equation (3.19) has the form F (x0 + ξ1 + ξ2, ε, µ) = 0 for ξ1 ∈ Z and ξ2 ∈ Z⊥ small.
To solve it we apply Lyapunov-Schmidt decomposition

QF (x0 + ξ1 + ξ2, ε, µ) = 0, (3.21)

PF (x0 + ξ1 + ξ2, ε, µ) = 0. (3.22)

First of these equations solved via IFT gives the existence of a unique Cr-function
ξ2(ξ1, ε, µ) for ξ1, ε small such that equation (3.21) is satisfied for ξ1, ξ2, ε small
if and only if ξ2 = ξ2(ξ1, ε, µ). Moreover ξ2(0, 0, µ) = 0. Differentiating (3.21) for
ξ2 = ξ2(ξ1, ε, µ) with respect to ξ1 at (ξ1, ε) = (0, 0) we derive Dξ1ξ2(0, 0, µ) = 0.
Therefore ξ2 = O(ξ21) +O(ε). So we scale

ξ1 ←→ εξ1, ε←→ ±ε2.

Then we get

0 =
1

ε2
PF (x0 + εξ1 + ξ2(εξ1,±ε2, µ),±ε2, µ)

= ±PDεF (x0, 0, µ) +
1

2
PDξξF (x0, 0, µ)ξ

2
1 +O(ε)

(3.23)

as an equivalent problem to equation (3.22). Let dimZ = k > 0 and {ψ1, . . . , ψk} be
an orthogonal basis of Y ⊥. Then applying Lemma 3.2 equation (3.23) is

0 =
k∑

i=1

ψi
‖ψi‖2

[
±
∫ T

0

〈g(γ(s)), 0, µ), A∗(x0, s)ψi〉ds

+
1

2
〈A−1(x0, 0)Dξ((I− Sξ)A(ξ, 0)ξ1)ξ=x0ξ1, A∗(x0, 0)ψi〉

]
+O(ε).

Linearization of equation (3.1) with ε = 0 along T -periodic solution γ(t) gives the
variational equation

ẋ(t) = Df±(γ(t))x(t) (3.24)

which splits into couple of equations

ẋ = Df+(γ(t))x if t ∈ [0, t1) ∪ [t2, T ],

ẋ = Df−(γ(t))x if t ∈ [t1, t2)

satisfying impulsive conditions

x(t1+) = S1x(t1−), x(t2+) = S2x(t2−) (3.25)

and periodic condition
(I− S)(x(T )− x(0)) = 0 (3.26)

as well, where x(t±) = lims→t± x(s). From definition of Xi(t),

X(t) =





X1(t) if t ∈ [0, t1),

X2(t)S1X1(t1) if t ∈ [t1, t2),

X3(t)S2X2(t2)S1X1(t1) if t ∈ [t2, T ]
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solves variational equation (3.24) and conditions (3.25). So does X(t)c for any c ∈ Rn.
Moreover, X(t)v is a solution of periodic condition (3.26) if and only if v ∈ [f+(x0), Z].
Indeed, from Lemma 3.2 and since (I− S)f+(x0) = 0 we get

(I− S)(I−A(x0, 0))f+(x0) = 0.

For w ∈ Z ⊂ [f+(x0)]
⊥

0 = DξF (x0, 0, µ)w = (I− (I− S)A(x0, 0))w = (I− S)(I− A(x0, 0))w

and for w ∈ Z⊥ ⊂ [f+(x0)]
⊥

0 6= DξF (x0, 0, µ)w = (I− S)(I− A(x0, 0))w.

From our result – Lemma 2.4 we know that the adjoint variational system of (3.1)
with ε = 0 is given by the following linear impulsive boundary value problem

Ẋ = −Df ∗
+(γ(t))X if t ∈ [0, t1],

Ẋ = −Df ∗
−(γ(t))X if t ∈ [t1, t2],

Ẋ = −Df ∗
+(γ(t))X if t ∈ [t2, T ],

X(ti−) = S∗
iX(ti+), i = 1, 2,

X(T ) = X(0) ∈ [f+(x0)]
⊥.

(3.27)

Since
A∗(x0, t) = X−1∗(t)X∗

1 (t1)S
∗
1X

∗
2 (t2)S

∗
2X

∗
3 (T ),

Lemma 1.5 implies that A∗(x0, t)ψ solves adjoint variational equation with impul-
sive conditions. If moreover ψ ∈ Y ⊥ then also boundary condition is satisfied, hence
A∗(x0, t)ψ is a solution of adjoint variational system (3.27) whenever ψ ∈ Y ⊥. To see
that A∗(x0, t)ψ satisfies boundary condition, we consider

0 = 〈DξF (x0, 0, µ)ξ, ψ〉 = 〈(I− (I− S)A(x0, 0))ξ, ψ〉
= 〈ξ, (I− A∗(x0, 0)(I− S∗))ψ〉 = 〈ξ, (I−A∗(x0, 0))ψ〉

for all ξ ∈ [f+(x0)]
⊥ and if ξ ∈ [f+(x0)], from Lemma 3.2 follows

0 = 〈(I− S)ξ − Pξ(x0, 0, µ)ξ, ψ〉 = 〈(I− S)(I− A(x0, 0))ξ, ψ〉
= 〈ξ, (I− A∗(x0, 0))ψ〉

taking Pξ as a partial derivative of P with respect to ξ. In conclusion, we get the
following theorem.

Theorem 3.3. Let {ψ1, . . . , ψk} be an orthogonal basis of Y ⊥ with Y given by (3.20)
and A(ξ, t) be defined by (3.18). If ξ01 is a simple root of function Mµ0

± (ξ1) where
Mµ

±(ξ1) = (Mµ
1±(ξ1), . . . ,M

µ
k±(ξ1)) and

Mµ
i±(ξ1) = ±

∫ T

0

〈g(γ(s), 0, µ), A∗(x0, s)ψi〉ds

+
1

2

〈
A−1(x0, 0)Dξ((I− Sξ)A(ξ, 0)ξ1)ξ=x0ξ1, A∗(x0, 0)ψi

〉
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for i = 1, . . . , k with “+” or “−” sign, i.e. Mµ0
+ (ξ01) = 0, detDξ1M

µ0
+ (ξ01) 6= 0 or

Mµ0
− (ξ01) = 0, detDξ1M

µ0
− (ξ01) 6= 0, then there exists a unique (for each sign) Cr-

function ξ1(ε, µ) with ε ∼ 0 small and µ ∼ µ0 such that there is a periodic solution of
equation (3.1) with ε = ±ε2 6= 0 sufficiently small and µ close to µ0. This solution has
an initial point

x∗ = x0 + εξ1(ε, µ) + ξ2(εξ1(ε, µ),±ε2, µ)
and period t3(0, x

∗,±ε2, µ). Note ξ1(0, µ0) = ξ01.

3.1 The special case – linear switching manifold

If the function h has the form h(x) = 〈a, x〉 + c for given a ∈ Rn, c ∈ R, some of our
results can be simplified. In this case we can take Σ ⊂ Ω0 and derive another Poincaré
mapping P (·, ε, µ) : B(x0, r0) ⊂ Σ→ Σ given by (cf. (3.6))

P (ξ, ε, µ) = x−(x+(ξ)(t1(ξ, ε, µ), ε, µ))(t2(ξ, ε, µ)− t1(ξ, ε, µ), ε, µ) (3.28)

where we omitted the dependence on τ , since we always assume τ = 0 and equa-
tion (3.1) is autonomous. This time

t2(ξ, ε, µ) = t3(ξ, ε, µ), x2(ξ) = x−(t1(ξ), x1(ξ), t2(ξ)) = x3(ξ)

(see (3.8)) and we have only one saltation matrix Sξ1. Hence the assumption H1) has
this time the form:

H1’) For ε = 0 equation (3.1) has a unique periodic orbit γ(t) of period T . The orbit
is given by its initial point x0 ∈ Σ ⊂ Ω0 and consists of two branches

γ(t) =

{
γ1(t) if t ∈ [0, t1],

γ2(t) if t ∈ [t1, T ],

where 0 < t1 < T , γ1(t) ∈ Ω+ for t ∈ (0, t1), γ2(t) ∈ Ω− for t ∈ (t1, T ) and

x1 := γ1(t1) = γ2(t1) ∈ Ω0,

x0 := γ2(T ) = γ1(0) ∈ Ω0.

The new Poincaré mapping has slightly different properties.

Lemma 3.4. Let h(x) = 〈a, x〉 + c for given a ∈ Rn, c ∈ R and P (ξ, ε, µ) be defined
by (3.28). Then for ξ ∈ Σ sufficiently close to x0

Pξ(ξ, 0, µ) = (I− Sξ)A(ξ, 0),

Pε(x0, 0, µ) = (I− Sx0)
(∫ T

0

A(x0, s)g(γ(s), 0, µ)ds

)
,

where Pξ, Pε are partial derivatives of P with respect to ξ, ε, respectively,

Sξw =
〈a, w〉

〈a, f−(x2(ξ))〉
f−(x2(ξ)) w ∈ Rn, (3.29)

A(ξ, t) =

{
Xξ

2(t2(ξ))S
ξ
1X

ξ
1(t1(ξ))X

ξ
1(t)

−1 if t ∈ [0, t1(ξ)),

Xξ
2(t2(ξ))X

ξ
2(t)

−1 if t ∈ [t1(ξ), t2(ξ)]
(3.30)
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with saltation matrix Sξ1 of (3.13) now given by

Sξ1w = w +
〈a, w〉

〈a, f+(x1(ξ))〉
(f−(x1(ξ))− f+(x1(ξ))) w ∈ Rn (3.31)

and Xξ
1 , X

ξ
2 being defined by (3.10), (3.11), respectively.

We consider equation (3.19) with P given by (3.28). By the procedure described in
the preceding section we derive Poincaré-Andronov-Melnikov function and the following
theorem analogical to Theorem 3.3.

Theorem 3.5. Let h(x) = 〈a, x〉 + c for given a ∈ Rn, c ∈ R, {ψ1, . . . , ψk} be an
orthogonal basis of Y ⊥ with Y given by (3.20) and A(ξ, t) be defined by (3.30) and Sξ

by (3.29). If ξ01 is a simple root of function Mµ0
± (ξ1) where

Mµ
±(ξ1) = (Mµ

1±(ξ1), . . . ,M
µ
k±(ξ1))

and

Mµ
i±(ξ1) = ±

∫ T

0

〈g(γ(s), 0, µ), A∗(x0, s)ψi〉ds

+
1

2

〈
A−1(x0, 0)Dξ((I− Sξ)A(ξ, 0)ξ1)ξ=x0ξ1, A∗(x0, 0)ψi

〉

for i = 1, . . . , k with “+” or “−” sign, i.e. Mµ0
+ (ξ01) = 0, detDξ1M

µ0
+ (ξ01) 6= 0 or

Mµ0
− (ξ01) = 0, detDξ1M

µ0
− (ξ01) 6= 0, then there exists a unique (for each sign) Cr-

function ξ1(ε, µ) with ε ∼ 0 and µ ∼ µ0 such that there is a periodic solution of
equation (3.1) with ε = ±ε2 6= 0 sufficiently small and µ close to µ0. This solution has
an initial point

x∗ = x0 + εξ1(ε, µ) + ξ2(εξ1(ε, µ),±ε2, µ)
and period t2(x

∗,±ε2, µ). Note ξ1(0, µ0) = ξ01.

The method of Poincaré mapping can be used to determine the hyperbolicity and
stability of the persisting orbit, similarly to Section 2.2. For the degenerate case when
dimZ = n− 1 for Z defined in (3.20), i.e. Y = {0} = Z⊥ and Y ⊥ = [ψ1, . . . , ψk] = Z,
we have the next result.

Theorem 3.6. Let µ0, ξ
0
1 be as in Theorem 3.5, h(x) = 〈a, x〉 + c for given a ∈ Rn,

c ∈ R and P be defined by (3.28). Assume that Dξξ P (x0, 0, µ0)ξ
0
1|[a]⊥ has no eigenvalues

on imaginary axis. Then the persisting trajectory is hyperbolic.

Proof. From Taylor expansion with respect to ε at ε = 0 for the derivative of Poincaré
mapping at general point x

DξP (x,±ε2, µ)v = DξP (x, 0, µ)v +O(ε2)

we have at x0 + εξ1(ε, µ)

Aµ(ε)v := DξP (x0 + εξ1(ε, µ),±ε2, µ)v = DξP (x0 + εξ1(ε, µ), 0, µ)v +O(ε2)

= DξP (x0, 0, µ)v + εDξξP (x0, 0, µ)ξ
0
1v +O(ε2) = v + εDξξP (x0, 0, µ)ξ

0
1v +O(ε2).
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Hence Aµ(ε) = I+εAµ1+O(ε2) where A
µ
1 = Dξξ P (x0, 0, µ)ξ

0
1|[a]⊥. Let k1 be the number

of all eigenvalues of Aµ1 with negative real parts and k2 := n − k1 − 1 with positive.
Then there exists a regular matrix P µ(ε) such that

Ãµ(ε) := P µ(ε)Aµ(ε)P µ−1(ε) = I+ ε

(
Aµ11 0
0 Aµ22

)
+O(ε2) = Eµ(ε) +O(ε2)

where Aµ11, A
µ
22 are (k1 × k1)-, (k2 × k2)-blocks, respectively, and <σ(Aµ11) ⊂ (−∞, 0),

<σ(Aµ22) ⊂ (0,∞). It can be shown [17, 48] that Eµ(ε) is strongly 1-hyperbolic. Con-
sequently, the statement follows from Lemma 2.9.

We can slightly modify the assumptions of the last theorem to obtain a stability
criterion.

Corollary 3.7. Let the assumptions of Theorem 3.6 be fulfilled and moreover all eigen-
values of Dξξ P (x0, 0, µ

0)ξ01 |[a]⊥ have negative real parts. Then the persisting periodic
orbit is stable (repeller) for ε > 0 (ε < 0) sufficiently small.

3.2 Planar application

In this section we consider the following system

ẋ = y + δ + εx(2− µ1x
2 − µ2y

2)

ẏ = −x+ ε(x+ y(x− y2)) if y > 0,

ẋ = x+ y − δ + (x2 + (y − δ)2)(−x− (y − δ))
+ (x2 + (y − δ)2)2(x/4 + (y − δ)/2)

ẏ = −x+ y − δ + (x2 + (y − δ)2)(x− (y − δ))
+ (x2 + (y − δ)2)2(−x/2 + (y − δ)/4)

if y < 0

(3.32)ε

with parameters µ1, µ2 ∈ R and constant 0 < δ <
√
2. We investigate the persistence

of periodic orbit under perturbation using the method described in Section 3.1. In this
case we have h(x, y) = y, Ω± = {(x, y) ∈ R2 | ±y > 0}, Ω0 = R × {0} and take Σ =
{(x, 0) ∈ R2 | x < 0}. Phase portrait of the first part of unperturbed problem (3.32)0
considered in whole plane consists of concentric circles with the common center at
(0,−δ). In affine polar coordinates x = ρ cos φ, y = ρ sin φ + δ, the second part
of (3.32)0 has the form

ρ̇ =
1

4
ρ(ρ2 − 2)2, φ̇ = −1 + ρ2 − ρ4

2
,

so it possesses only one periodic solution which is described in the next statement.

Lemma 3.8. Unperturbed system (3.32)0 possesses a unique periodic solution given by

γ(t) =





(−
√
2− δ2 cos t + δ sin t,−δ +

√
2− δ2 sin t+ δ cos t) if t ∈ [0, t1],

(
√
2− δ2 cos(t− t1)− δ sin(t− t1),
δ −
√
2− δ2 sin(t− t1)− δ cos(t− t1)) if t ∈ [t1, T ]

(3.33)
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with
t1 = arccos(δ2 − 1), T = 2t1

and
x̄0 = (−

√
2− δ2, 0), x̄1 = (

√
2− δ2, 0).

Now we should calculate fundamental matrices Xξ
1(t), X

ξ
2(t), saltation matrix S1(ξ)

and projection Sξ for general ξ ∈ Σ close to x̄0. However, it is sufficient to derive the
formula Dξ((I − Sξ)A(ξ, 0)ξ1)ξ1 at ξ = x̄0 and for ξ1 ∈ Σ. This formula is rather
awkward and can be found at the end of this section. We underline that it is enough
to derive X1(t), X2(t), S1, and S, i.e. the matrices evaluated at ξ = x̄0. Nevertheless,
Diliberto’s Theorem 1.9 has to be used to obtain fundamental matrix X2(t). Applying
this theorem we get the mentioned matrices.

Lemma 3.9. System (3.32)0 has fundamental matrices X1(t), X2(t) along γ(t) of
(3.33), satisfying (3.10), (3.11) for ξ = x̄0, respectively, given by

X1(t) =

(
cos t sin t
− sin t cos t

)
, X2(t) = X̃2(t)X̃

−1
2 (t1)

where

X̃2(t) =

(
−
√
2− δ2 sin(t− t1)− δ cos(t− t1) A sin(t− t1) +B cos(t− t1)

−
√
2− δ2 cos(t− t1) + δ sin(t− t1) A cos(t− t1)−B sin(t− t1)

)
,

A = −4
√
2− δ2(t− t1)− δ, B =

√
2− δ2 − 4δ(t− t1).

Saltation matrix S1 of (3.31) at ξ = x̄0 has the form

S1 =

(
1 2δ√

2−δ2
0 1

)
.

Projection S defined by (3.29) at ξ = x̄0 is

S =

(
0 − δ√

2−δ2
0 1

)
.

Proof. Matrices S1 and S are obtained directly from their definitions. Since the first
part of (3.32)0 is linear, X1(t) is the matrix solutions of this system. Using Theorem 1.9

we derive matrix X̃2(t) and consequently X2(t) which has to fulfil X2(t1) = I.

Using the above Lemma 3.9, we derive

(I− S x̄0)A(x̄0, 0) =
(
1 − δ√

2−δ2
0 0

)
, ψ1 = (1, 0)

so (cf. Lemma 3.4)

Pξ(x̄0, 0, µ) = (I− S x̄0)A(x̄0, 0)|Tx̄0Σ = 1

for the derivative of the Poincaré mapping and |Tx̄0Σ denoting the restriction onto the
tangent space to Σ at x̄0.
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For arbitrary 0 < δ <
√
2 the Poincaré-Andronov-Melnikov function is rather

awkward. Therefore, we fix parameter δ = 1, so after some algebra we get

Mµ
±(u) = ±G(µ)− πu2, µ = (µ1, µ2),

G(µ) =
68− 135π + 30π2

24
+

8− 19π + 6π2

8
µ1 +

28− 65π + 18π2

24
µ2.

(3.34)

For the simplicity we shortened

Mµ
± : Tx̄0Σ = R× {0} → Tx̄0Σ, ξ1 = (u, 0) 7→Mµ

±(ξ1)

to
Mµ

± : R→ R, u 7→ Mµ
±(u).

Theorem 3.5 implies the existence of periodic solutions after perturbation.

Proposition 3.10. Let µ0 = (µ0
1, µ

0
2) be such that G(µ0) 6= 0 for G given by (3.34).

Then equation (3.32)ε with δ = 1 has exactly two (zero) periodic solutions orbitally
close to γ for ε 6= 0 sufficiently small with G(µ0)ε > 0 (G(µ0)ε < 0) and µ close to µ0.

Proof. Let G(µ0) > 0. Then

u± = ±
√
G(µ0)

π

are simple roots of Mµ0

+ (u) = 0 for M given by (3.34). Similarly, if G(µ0) < 0 then

v± = ±
√
−G(µ

0)

π

are simple roots ofMµ0

− (u) = 0. Consequently, the statement follows from Theorem 3.5.

One can compute that in this case DξξP (x0, 0, µ)uv = −2πuv. So, from Corol-
lary 3.7 we get the result on stability of the persisting orbits (cf. Fig. 3.2). For
the simplicity, we denote γεu±(t) and γεv±(t) the persisting solutions containing points
x0 + ε(u±, 0) +O(ε2) and x0 + ε(v±, 0) +O(ε2), respectively.

Proposition 3.11. Let µ0 be such that G(µ0) > 0 (G(µ0) < 0). Then γεu+(t) is stable
and γεu−(t) is repelling (γεv+(t) is repelling and γεv−(t) is stable).

Formula for the second derivative

We calculate

Dξ((I− Sξ)A(ξ, 0)u)ξ=x0u
= Dξ

(
(I− Sξ)Xξ

3(t3(ξ))S
ξ
2X

ξ
2(t2(ξ))S

ξ
1X

ξ
1(t1(ξ))u

)
ξ=x0

u
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Fig. 3.2: Numerically computed trajectory of (3.32)ε with δ = 1, µ1 = 3, µ2 = 4 and
ε = 0 on the left, ε = 0.1 on the right. Periodic orbits are denoted with dark. In

perturbed case G(µ0)
.
= 0.563, u+

.
= −0.958, u− .

= −1.042

as the derivative of a product, where

Dξ

[
Xξ

1(t1(ξ))
]
x0
u = Y1(t1)u+Df+(x1)X1(t1)Dt1(x0)u,

Dξ

[
Xξ

2(t2(ξ))
]
x0
u = Y2(t2)S1X1(t1)u−X2(t2)Df−(x1)Dt1(x0)u

+Df−(x2)X2(t2)Dt2(x0)u,

Dξ

[
Xξ

3(t3(ξ))
]
x0
u = Y3(T )S2X2(t2)S1X1(t1)u−X3(T )Df+(x2)Dt2(x0)u

+Df+(x0)X3(T )Dt3(x0)u,

D Sξ1

∣∣∣
x0
u =

1

(Dh(x1)f+(x1))2
[
[(Df−(x1)−Df+(x1))Dx1(x0)uDh(x1)

+ (f−(x1)− f+(x1))D2h(x1)Dx1(x0)u]Dh(x1)f+(x1)

− (f−(x1)− f+(x1))Dh(x1)[D2h(x1)Dx1(x0)uf+(x1)

+ Dh(x1)Df+(x1)Dx1(x0)u]
]
,

D Sξ2

∣∣∣
x0
u =

1

(Dh(x2)f−(x2))2
[
[(Df+(x2)−Df−(x2))Dx2(x0)uDh(x2)

+ (f+(x2)− f−(x2))D2h(x2)Dx2(x0)u]Dh(x2)f−(x2)

− (f+(x2)− f−(x2))Dh(x2)[D2h(x2)Dx2(x0)uf−(x2)

+ Dh(x2)Df−(x2)Dx2(x0)u]
]
,

D Sξ
∣∣
x0
u =

(‖f+(x0)‖2I− f+(x0)f+(x0)∗)Df+(x0)Dx3(x0)uf+(x0)∗
‖f+(x0)‖4

,
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Dx1(x0)u = X1(t1)u+ f+(x1)Dt1(x0)u,

Dx2(x0)u = X2(t2)S1X1(t1)u+ f−(x2)Dt2(x0)u,

Dx3(x0)u = (I− S)A(x0, 0)u,

Dt1(x0)u = −Dh(x1)X1(t1)u

Dh(x1)f+(x1)
, Dt2(x0)u = −Dh(x2)X2(t2)S1X1(t1)u

Dh(x2)f−(x2)
,

Dt3(x0)u = −f+(x0)
∗X3(T )S2X2(t2)S1X1(t1)u

‖f+(x0)‖2
,

Y1(t)uv = X1(t)

∫ t

0

X−1
1 (s)D2f+(γ(s))X1(s)uX1(s)vds, t ∈ [0, t1],

Y2(t)uv = X2(t)

∫ t

t1

X−1
2 (s)D2f−(γ(s))X2(s)uX2(s)vds, t ∈ [t1, t2],

Y3(t)uv = X3(t)

∫ t

t2

X−1
3 (s)D2f+(γ(s))X3(s)uX3(s)vds, t ∈ [t2, T ].
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4 Sliding solution of periodically perturbed systems

Until now, we always assumed, that the periodic trajectory of unperturbed system
transversally crosses the discontinuity boundary and later returns back, again transver-
sally through the boundary. This time, we shall investigate the persistence of periodic
trajectories that after a transverse impact remain on the boundary for some time and
then return into the original region. We consider a discontinuous differential equation
with a time periodic nonautonomous perturbation as in Section 1.

Let Ω ⊂ Rn be an open set in Rn and h(x) be a Cr-function on Ω, with r ≥ 3. We
set Ω± := {x ∈ Ω | ±h(x) > 0}, Ω0 := {x ∈ Ω | h(x) = 0} for a regular value 0 of h.
Let f± ∈ Cr

b (Ω), g± ∈ Cr
b (Ω × R × R × Rp) and h ∈ Cr

b (Ω,R). Moreover, let g± be
T -periodic in t. Let ε ∈ R and µ ∈ Rp, p ≥ 1 be parameters.

Definition 4.1. We say that a function x(t) is a sliding solution of the equation

ẋ = f±(x) + εg±(x, t+ α, ε, µ), x ∈ Ω±, (4.1)

if it is continuous, piecewise C1, satisfies equation (4.1) on Ω±, equation

ẋ = F0(x, t+ α, ε, µ) (4.2)

on Ω0, where

F0(x, t, ε, µ) = (1− β(x, t, ε, µ))F−(x, t, ε, µ) + β(x, t, ε, µ)F+(x, t, ε, µ),

F±(x, t, ε, µ) = f±(x) + εg±(x, t, ε, µ),

β(x, t, ε, µ) =
Dh(x)F−(x, t, ε, µ)

Dh(x)(F−(x, t, ε, µ)− F+(x, t, ε, µ))

(see [27]) and, moreover, the following holds: if x(t0) ∈ Ω0 and there exists ρ1 > 0 such
that for any 0 < ρ < ρ1 we have x(t0 − ρ) ∈ Ω±, then there exists ρ2 > 0 such that
x(t0 + ρ) ∈ Ω0 for any 0 < ρ < ρ2 (the solution remains on Ω0 for some nonzero time).

Note that the “sliding” of a sliding solution is assured since Dh(x)F0(x, t+α, ε, µ) =
0 for x ∈ Ω0.

Let us assume

H1) For ε = 0 equation (4.1) has a T -periodic orbit γ(t). The orbit is given by its
initial point x0 ∈ Ω+ and consists of three branches

γ(t) =





γ1(t) if t ∈ [0, t1],

γ2(t) if t ∈ [t1, t2],

γ3(t) if t ∈ [t2, T ],

(4.3)

where 0 < t1 < t2 < T , γ1(t) ∈ Ω+ for t ∈ [0, t1), γ2(t) ∈ Ω0 for t ∈ [t1, t2],
γ3(t) ∈ Ω+ for t ∈ (t2, T ] and

x1 := γ1(t1) = γ2(t1) ∈ Ω0,

x2 := γ2(t2) = γ3(t2) ∈ Ω0,

x0 := γ3(T ) = γ1(0) ∈ Ω+.

(4.4)
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H2) Moreover, we also assume that

Dh(x)(f−(x)− f+(x)) > 0 if x ∈ Ω0,
Dh(γ(t))f+(γ(t)) < 0 if t ∈ [t1, t2),
Dh(γ(t))f−(γ(t)) > 0 if t ∈ [t1, t2],

Dh(x2)f+(x2) = 0, D2
s[h(γ(t2 + s))]s=0+ 6= 0.

Later, it will be seen that it is sufficient to assume the first inequality in H2) to be
satisfied only in the neighbourhood of {γ(t) | t ∈ [t1, t2]}. Next, from H2) it follows
that Dh(x)(F−(x, t, ε, µ)−F+(x, t, ε, µ)) > 0 for any ε 6= 0 sufficiently close to 0. Hence
F0(x, t, ε, µ) is well-defined and we get

F0(x, t, ε, µ) = f0(x) + εg0(x, t, ε, µ)

where

f0(x) =
f+(x)Dh(x)f−(x)− f−(x)Dh(x)f+(x)

Dh(x)(f−(x)− f+(x))
and

g0(x, t, ε, µ) =
1

[Dh(x)(f−(x)− f+(x))]2
[(f+(x)− f−(x))

×(Dh(x)g+(x, t, 0, µ)Dh(x)f−(x)−Dh(x)g−(x, t, 0, µ)Dh(x)f+(x))

+(g+(x, t, 0, µ)Dh(x)f−(x)− g−(x, t, 0, µ)Dh(x)f+(x))Dh(x)(f−(x)− f+(x))] +O(ε).

Denote
Kε,µ,α = {x ∈ Ω0 | x ∼ x2,Dh(x)F+(x, ε, µ, α) = 0}.

Remark 4.2.

1. We obtain that K = K0,µ,α is a Cr−1-submanifold of Ω0 of codimension 1 in a
neighbourhood of x2. So is Kε,µ,α for ε sufficiently small.

2. Since γ̇(t−2 ) = f0(x2) = f+(x2) = γ̇(t+2 ) where γ̇(t
±) = lims→t± γ̇(s), then γ(t) is

C1-smooth at t = t2.

3. From identity

D2
s[h(γ(t2 + s))]s=0+ = Ds[Dh(γ(t2 + s))f+(γ(t2 + s))]s=0+

= D2h(x2)f+(x2)f+(x2) + Dh(x2)Df+(x2)f+(x2) = Dx[Dh(x)f+(x)]x=x2f0(x2)

we get that γ(t) crosses K transversally. Then clearly the solution of perturbed
equation, which is close to γ(t) crosses Kε,µ,α transversally. Moreover, assump-
tions H1), H2) imply that

D2
s[h(γ(t2 + s))]s=0+ > 0.

Let xi(τ, ξ)(t, ε, µ, α) denote the solution of initial value problem

ẋ = fi(x) + εgi(x, t+ α, ε, µ)

x(τ) = ξ
(4.5)

with i being an element of a set of lower indices {+,−, 0}. First, we modify Lemma 1.2
for the case of a sliding trajectory and show the existence of a sliding Poincaré mapping.
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Lemma 4.3. Assume H1) and H2). Then there exist ε0, r0 > 0 and a Poincaré map-
ping (cf. Fig. 4.1)

P (·, ε, µ, α) : B(x0, r0)→ Σ

for all fixed ε ∈ (−ε0, ε0), µ ∈ Rp, α ∈ R, where

Σ = {y ∈ Rn | 〈y − x0, f+(x0)〉 = 0}.

Moreover, P : B(x0, r0) × (−ε0, ε0) × Rp × R → Rn is Cr−1-smooth in all arguments
and B(x0, r0) ⊂ Ω+.

Proof. Implicit function theorem (IFT) yields the existence of positive constants τ1,
r1, δ1, ε1 and Cr-function

t1(·, ·, ·, ·, ·) : (−τ1, τ1)× B(x0, r1)× (−ε1, ε1)× Rp × R→ (t1 − δ1, t1 + δ1)

such that h(x+(τ, ξ)(t, ε, µ, α)) = 0 for τ ∈ (−τ1, τ1), ξ ∈ B(x0, r1) ⊂ Ω+, ε ∈ (−ε1, ε1),
µ ∈ Rp, α ∈ R and t ∈ (t1 − δ1, t1 + δ1) if and only if t = t1(τ, ξ, ε, µ, α). Moreover,
t1(0, x0, 0, µ, α) = t1. Now, since

Dsh(x0(t1(0, x0, 0, µ, α), x+(0, x0)(t1(0, x0, 0, µ, α), 0, µ, α))(t2 + s, 0, µ, α))s=0+ = 0,

D2
sh(x0(t1(0, x0, 0, µ, α), x+(0, x0)(t1(0, x0, 0, µ, α), 0, µ, α))(t2 + s, 0, µ, α))s=0+ > 0,

IFT gives the existence of positive constants τ2, r2, δ2, ε2 and Cr−1-function

t2(·, ·, ·, ·, ·) : (−τ2, τ2)× B(x0, r2)× (−ε2, ε2)× Rp × R→ (t2 − δ2, t2 + δ2)

such that

x0(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))(t, ε, µ, α) ∈ Kε,µ,α,

i.e.

Dsh(x0(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))(t+ s, ε, µ, α))s=0+ = 0,

D2
sh(x0(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))(t+ s, ε, µ, α))s=0+ > 0

for τ ∈ (−τ2, τ2), ξ ∈ B(x0, r2) ⊂ B(x0, r1), ε ∈ (−ε2, ε2), µ ∈ Rp, α ∈ R and
t ∈ (t2 − δ2, t2 + δ2) if and only if t = t2(τ, ξ, ε, µ, α). Moreover, t2(0, x0, 0, µ, α) = t2.
Similarly to t1(τ, ξ, ε, µ, α), we obtain positive constants τ0, r0, δ0, ε0 and C

r−1-function

t3(·, ·, ·, ·, ·) : (−τ0, τ0)× B(x0, r0)× (−ε0, ε0)× Rp × R→ (T − δ0, T + δ0)

satisfying

〈x+(t2(τ, ξ, ε, µ, α), x0(t1(τ, ξ, ε, µ, α), x+(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))
(t2(τ, ξ, ε, µ, α), ε, µ, α))(t3(τ, ξ, ε, µ, α), ε, µ, α)− x0, f+(x0)〉 = 0

for any τ ∈ (−τ0, τ0), ξ ∈ B(x0, r0) ⊂ B(x0, r2), ε ∈ (−ε0, ε0), µ ∈ Rp, α ∈ R. In
addition, t3(0, x0, 0, µ, α) = T . Consequently, the Poincaré mapping is defined as

P (ξ, ε, µ, α) = x+(t2(0, ξ, ε, µ, α), x0(t1(0, ξ, ε, µ, α), x+(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

(t2(0, ξ, ε, µ, α), ε, µ, α))(t3(0, ξ, ε, µ, α), ε, µ, α).
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Fig. 4.1: Sliding Poincaré mapping

To find T -periodic solutions of perturbed equation (4.1) close to γ(·), we solve a
couple of equations

P (ξ, ε, µ, α) = ξ,

t3(0, ξ, ε, µ, α) = T.

We reduce this problem to a single equation

F (x, ε, µ, α) := x− P̃ (x, ε, µ, α) = 0 (4.6)

for (x, α) ∈ Σ×R, x ∼ x0 and parameters ε ∼ 0, µ ∈ Rp by introducing the stroboscopic
Poincaré mapping (cf. (1.6))

P̃ (ξ, ε, µ, α) = x+(t2(0, ξ, ε, µ, α), x0(t1(0, ξ, ε, µ, α), x+(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

(t2(0, ξ, ε, µ, α), ε, µ, α))(T, ε, µ, α).
(4.7)

Properties of the mapping are concluded in the following lemma.

Lemma 4.4. Let P̃ (ξ, ε, µ, α) be defined by (4.7). Then its derivatives fulfil

DξP̃ (x0, 0, µ, α) = A(0), (4.8)

DεP̃ (x0, 0, µ, α) =

∫ T

0

A(s)g(γ(s), s+ α, µ)ds, (4.9)

where

g(x, t, µ) =

{
g+(x, t, 0, µ) if x ∈ Ω+,

g0(x, t, 0, µ) if x ∈ Ω0,
(4.10)

A(t) is given by

A(t) =





X3(T )X2(t2)SX1(t1)X1(t)
−1 if t ∈ [0, t1),

X3(T )X2(t2)X2(t)
−1 if t ∈ [t1, t2),

X3(T )X3(t)
−1 if t ∈ [t2, T ]

(4.11)

with saltation matrix

S = I+
(f0(x1)− f+(x1))Dh(x1)

Dh(x1)f+(x1)
(4.12)
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and fundamental matrix solutions X1(t), X2(t), X3(t) satisfying, respectively,

Ẋ1(t) = Df+(γ(t))X1(t)

X1(0) = I,
Ẋ2(t) = Df0(γ(t))X2(t)

X2(t1) = I,
Ẋ3(t) = Df+(γ(t))X3(t)

X3(t2) = I.
(4.13)

In addition, DξP̃ (x0, 0, µ, α) has an eigenvalue 1 with corresponding eigenvector f+(x0),
i.e.

DξP̃ (x0, 0, µ, α)f+(x0) = f+(x0).

Proof. Analogically to Section 1 we derive the following identities

Dξx+(0, x0)(t, 0, µ, α) = X1(t),

Dεx+(0, x0)(t, 0, µ, α) =

∫ t

0

X1(t)X
−1
1 (s)g+(γ(s), s+ α, 0, µ)ds

for t ∈ [0, t1],

Dξx0(t1, x1)(t, 0, µ, α) = X2(t), Dτx0(t1, x1)(t, 0, µ, α) = −X2(t)f0(x1),

Dεx0(t1, x1)(t, 0, µ, α) =

∫ t

t1

X2(t)X
−1
2 (s)g0(γ(s), s+ α, 0, µ)ds

for t ∈ [t1, t2],

Dξx+(t2, x2)(t, 0, µ, α) = X3(t), Dτx+(t2, x2)(t, 0, µ, α) = −X3(t)f+(x2),

Dεx+(t2, x2)(t, 0, µ, α) =

∫ t

t2

X3(t)X
−1
3 (s)g+(γ(s), s+ α, 0, µ)ds

for t ∈ [t2, T ] and for times

Dξt1(0, x0, 0, µ, α) = −
Dh(x1)X1(t1)

Dh(x1)f+(x1)
,

Dεt1(0, x0, 0, µ, α) = −
Dh(x1)

∫ t1
0
X1(t1)X

−1
1 (s)g+(γ(s), s+ α, 0, µ)ds

Dh(x1)f+(x1)
,

Dξt2(0, x0, 0, µ, α) = −
(D2h(x2)f0(x2) + Dh(x2)Df0(x2))X2(t2)SX1(t1)

D2h(x2)f0(x2)f0(x2) + Dh(x2)Df0(x2)f0(x2)
,

Dεt2(0, x0, 0, µ, α) = −
1

D2h(x2)f0(x2)f0(x2) + Dh(x2)Df0(x2)f0(x2)

×
[
(D2h(x2)f0(x2) + Dh(x2)Df0(x2))

(∫ t2

t1

X2(t2)X
−1
2 (s)g0(γ(s), s+ α, 0, µ)ds

+

∫ t1

0

X2(t2)SX1(t1)X
−1
1 (s)g+(γ(s), s+ α, 0, µ)ds

)
+Dh(x2)g0(x2, t2 + α, 0, µ)

]
.

Differentiating (4.7) with respect to ξ, respectively ε, we get the statements on the
derivatives. Now let t be sufficiently small. Since

x+(0, x+(0, x0)(t, 0, µ, α))(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x+(0, x0)(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t, 0, µ, α)
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is an element of Ω0 and as well of {γ(t) | t ∼ t1} we have

t1(0, x(0, x0)(t, 0, µ, α), 0, µ, α) + t = t1

for all t close to 0. Consequently,

x+(0, x0)(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t, 0, µ, α) = x1.

Similarly, the left-hand side of the following identity is an element of K and the right-
hand side is from {γ(t) | t ∼ t2}

x0(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x+(0, x+(0, x0)(t, 0, µ, α))

(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α))(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x0(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x1)(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)

= x0(t1 − t, x1)(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α)
= x0(t1, x1)(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t, 0, µ, α).

Therefore,
t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t = t2

for all t close to 0 and

x0(t1, x1)(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α) + t, 0, µ, α) = x2.

Finally,

x+(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x0(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α),

x+(0, x+(0, x0)(t, 0, µ, α))(t1(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α))

(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), 0, µ, α))(T, 0, µ, α)

= x+(t2(0, x+(0, x0)(t, 0, µ, α), 0, µ, α), x2)(T, 0, µ, α)

= x+(t2 − t, x2)(T, 0, µ, α) = x+(t2, x2)(T + t, 0, µ, α).

Hence,

DξP̃ (x0, 0, µ, α)f+(x0) = Dt[P̃ (x+(0, x0)(t, 0, µ, α), 0, µ, α)]t=0

= Dt[x+(t2, x2)(T + t, 0, µ, α)]t=0 = f+(x0)

and the proof is finished.

Note that in the case of sliding the second saltation matrix (see (1.14), (2.12),
(3.14)) S2 has the form

S2 = I+
(f+(x2)− f0(x2))(D2h(x2)f0(x2) + Dh(x2)Df0(x2))

D2h(x2)f0(x2)f0(x2) + Dh(x2)Df0(x2)f0(x2)
= I

since f+(x2) = f0(x2). This corresponds to the regularity of γ(t) at t2 (see Remark 4.2).
Now, we solve equation (4.6) using Lyapunov-Schmidt reduction method. We de-

note
Z = NDξF (x0, 0, µ, α), Y = RDξF (x0, 0, µ, α) (4.14)
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the null space and the range of the operator DξF (x0, 0, µ, α) and

Q : Rn → Y, P : Rn → Y ⊥ (4.15)

orthogonal projections onto Y and Y ⊥, respectively, where Y ⊥ is the orthogonal com-
plement to Y in Rn. From Lemma 4.4 we know that f+(x0) ∈ Z. For the simplicity,
we take the third assumption, so-called non-degeneracy condition

H3) NDξF (x0, 0, µ, α) = [f+(x0)].

Using the orthogonal projections, we split equation (4.6) into couple of equations

QF (ξ, ε, µ, α) = 0,

PF (ξ, ε, µ, α) = 0.
(4.16)

The first one of these can be solved using IFT, since

QF (x0, 0, µ, α) = 0

and QDξF (x0, 0, µ, α) is an isomorphism [f+(x0)]
⊥ onto Y for all (µ, α) ∈ Rp × R.

Thus we get the existence of a unique Cr−1-function ξ = ξ(ε, µ, α) for ε close to 0
and (µ, α) ∈ Rp × R satisfying QF (ξ(ε, µ, α), ε, µ, α) = 0 for all such (ε, µ, α) and
ξ(0, µ, α) = x0. The second equation is so-called bifurcation equation for α ∈ R

PF (ξ(ε, µ, α), ε, µ, α) = 0. (4.17)

Let Y ⊥ = [ψ] for arbitrary and fixed ψ. Then we can write

Pu =
〈u, ψ〉ψ
‖ψ‖2

and bifurcation equation (4.17) gets the form

G(ε, µ, α) :=
〈F (ξ(ε, µ, α), ε, µ, α), ψ〉ψ

‖ψ‖2 = 0. (4.18)

Since ξ(0, µ, α) = x0 and x0 is a fixed point of P̃ (·, 0, µ, α), G(0, µ, α) = 0 for all
(µ, α) ∈ Rp × R. Next, we want the periodic orbit to persist for all ε 6= 0 small, so we
set DεG(0, µ, α) = 0, i.e.

DεG(0, µ, α) =
〈(DξF (x0, 0, µ, α)Dεξ(0, µ, α) + DεF (x0, 0, µ, α)), ψ〉ψ

‖ψ‖2

=
〈DεF (x0, 0, µ, α), ψ〉ψ

‖ψ‖2 = −〈DεP̃ (x0, 0, µ, α), ψ〉ψ
‖ψ‖2 = 0.

We define the sliding Poincaré-Andronov-Melnikov function as

Mµ(α) =

∫ T

0

〈g(γ(s), s+ α, µ), A∗(s)ψ〉ds (4.19)
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where g(x, t, µ) is given by (4.10) and

A∗(t) =





X−1∗
1 (t)X∗

1 (t1)S
∗X∗

2 (t2)X
∗
3 (T ) if t ∈ [0, t1),

X−1∗
2 (t)X∗

2 (t2)X
∗
3 (T ) if t ∈ [t1, t2),

X−1∗
3 (t)X∗

3 (T ) if t ∈ [t2, T ].

(4.20)

We note that A∗(t)ψ = X−1∗
1 (t)ψ for any t ∈ [0, t1) and DεG(0, µ, α) = −Mµ(α)ψ

‖ψ‖2 .

Linearization of equations (4.1), (4.2) with ε = 0 along γ(t) gives the variational
equation

ẋ(t) = Df+(γ(t))x(t)

ẋ(t) = Df0(γ(t))x(t)

if t ∈ [0, t1) ∪ [t2, T ],

if t ∈ [t1, t2)
(4.21)

with impulsive condition
x(t+1 ) = Sx(t−1 ) (4.22)

and periodic condition
B(x(0)− x(T )) = 0 (4.23)

where B = ψψ∗

‖ψ‖2 is the orthogonal projection onto Y ⊥. Note that C1-smoothness of

γ(t) at t2 corresponds to the second “impulsive” condition x(t+2 ) = Ix(t−2 ). Due to
definitions of X1(t), X2(t), X3(t) in (4.13), it is obvious that

X(t) =





X1(t) if t ∈ [0, t1),

X2(t)SX1(t1) if t ∈ [t1, t2),

X3(t)X2(t2)SX1(t1) if t ∈ [t2, T ]

satisfies variational equation (4.21) together with conditions (4.22), (4.23). Using the
classical result – Lemma 1.5 and our result – Lemma 2.4 we shall derive the adjoint
variational equation to (4.1), (4.2) with ε = 0 along γ(t). One can simply set B1 = S,
B2 = I, B3 = B in Lemma 2.4 to see, that the adjoint variational system is given by
the following linear impulsive boundary value problem

ẋ(t) = −Df ∗
+(γ(t))x(t)

ẋ(t) = −Df ∗
0 (γ(t))x(t)

if t ∈ [0, t1) ∪ [t2, T ],
if t ∈ [t1, t2),

x(t−1 ) = S∗x(t+1 ),

x(T ) = x(0) ∈ Y ⊥.

(4.24)

From definition of A(t) in (4.11) it is easy to see that A−1(t) solves the variational
equation (4.21) with the impulsive condition (4.22). Then Lemma 1.5 yields that
A∗(t)ψ solves the adjoint variational equation with corresponding impulsive condition.
In fact, it satisfies the boundary condition as well. Indeed, from Lemma 4.4 for any
ξ ∈ [f+(x0)]

0 = 〈(I− A(0))ξ, ψ〉 = 〈ξ, (I− A∗(0))ψ〉
and the same holds in the orthogonal complement to [f+(x0)], i.e. if ξ ∈ [f+(x0)]

⊥ then

0 = 〈DξF (x0, 0, µ, α)ξ, ψ〉 = 〈(I− A(0))ξ, ψ〉 = 〈ξ, (I− A∗(0))ψ〉.

Consequently, we can take in (4.19) any solution of the adjoint variational system (4.24)
instead of A∗(t)ψ. In conclusion, we get the main result.
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Theorem 4.5. Let Y , Mµ(α), g, A∗(t) be given by (4.14), (4.19), (4.10), (4.20),
respectively, and ψ ∈ Y ⊥ be arbitrary and fixed. If α0 is a simple root of Mµ0 , i.e.

∫ T

0

〈g(γ(s), s+ α0, µ0), A
∗(s)ψ〉ds = 0,

∫ T

0

〈Dtg(γ(s), s+ α0, µ0), A
∗(s)ψ〉ds 6= 0

then there exists a unique Cr−2-function α(ε, µ) for ε ∼ 0, µ ∼ µ0 such that α(0, µ0) =
α0 and there is a unique T -periodic solution x(ε, µ)(t) of equation (4.1) with parameters
ε, µ and α = α(ε, µ), which solves equation (4.2) on Ω0 and is orbitally close to γ(t),
i.e. |x(ε, µ)(t)− γ(t− α(ε, µ))| = O(ε) for any t ∈ R.

4.1 Piecewise linear application

In this section we shall consider the following three dimensional piecewise linear prob-
lem

ẋ = −δ3x+ ε cosµ1(t + α)

ẏ = δ2y − ω(z − δ1) + ε sinµ2(t+ α)

ż = ωy + δ2(z − δ1)
if z > 0,

ẋ = −δ3x+ u

ẏ = δ2(y + δ)

ż = ω(y + δ)

if z < 0

(4.25)ε

with constants δ1,2,3 > 0, δ > −y1 (y1 will be determined later, for this time we consider
δ sufficiently large), u ∈ R and parameters α ∈ R, µ1, µ2 > 0, ε ∼ 0. We shall shorten
the notation µ = (µ1, µ2) for vector of parameters.

Clearly, we have h(x, y, z) = z, Ω± = {(x, y, z) ∈ R3 | ±z > 0}, Ω0 = R2 × {0}.
Consequently, we obtain equation on Ω0

ẋ = Ax+By + C + εG cosµ1(t+ α)

ẏ = Dy + E + εG sinµ2(t+ α)

ż = 0

(4.26)ε

where

A = −δ3, B = − ωu

ωδ + δ1δ2
, C =

δ1δ2u

ωδ + δ1δ2
,

D =
δ1(δ

2
2 + ω2)

ωδ + δ1δ2
, E = δD, G =

ω(y + δ)

ωδ + δ1δ2
.

Since both equations – the first part of (4.25)0 and (4.26)0 are linear, one can easily
derive their flows in Ω+ and Ω0, respectively,

ϕ+(x, y, z, t) =
(
xe−δ3t, eδ2t(y cosωt− (z − δ1) sinωt),

eδ2t(y sinωt+ (z − δ1) cosωt) + δ1
)
,

ϕ0(x, y, 0, t) =

(
xeAt − (C − δB)(1− eAt)

A
+
B(y + δ)(eDt − eAt)

D −A ,−δ + (y + δ)eDt, 0

)
.
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Now we need to find points x̄i = (xi, yi, zi), i = 0, 1, 2 and then we set

γ1(t) = ϕ+(x̄0, t), γ2(t) = ϕ0(x̄1, t− t1), γ3(t) = ϕ+(x̄2, t− t2). (4.27)

At grazing point x̄2 two conditions are satisfied

z2 = 0 and ωy2 + δ2(z2 − δ1) = 0

due to the assumption H2). Thus we get K = R×
{
δ1δ2
ω

}
× {0} and x̄2 = (x2,

δ1δ2
ω
, 0).

Following γ3 we reach the point γ3(T ) = x̄0. If we set x̄0 = (x0, 0, z0), we get an
equation for the period T

eδ2(T−t2)
(
δ1δ2
ω

cosω(T − t2) + δ1 sinω(T − t2)
)

= 0.

Denoting c = arctan δ2
ω
∈ (0, π/2) we have T = t2 + (π − c)/ω as the time of first

intersection of {γ3(t) | t > t2} with R× {0} ×R. Then the other coordinates of x̄0 are

x0 = x2e
−δ3(π−c)/ω and z0 =

δ1
ω
eδ2(π−c)/ω

√
δ22 + ω2 + δ1.

Note that z0 > 2δ1. The relation γ1(t1) = x̄1 ∈ Ω0 yields the implicit equation for t1:

eδ2t1 cosωt1 = −
δ1

z0 − δ1
(4.28)

where we look for the smallest positive root. Note that the right-hand side of the last
identity is from (−1, 0). Therefore t1 ∈ (π/(2ω), π/ω). Next we obtain x1, y1 and,
finally, we connect x̄1 with x̄2 via γ2. In conclusion, we have the following lemma.

Lemma 4.6. Unperturbed system (4.25)0, (4.26)0 possesses a T -periodic sliding solu-
tion γ(t) of (4.3) given by (4.27). Moreover, x̄i = (xi, yi, zi), i = 0, 1, 2 where

x0 =
eδ3t2

eδ3(t2+(π−c)/ω) − 1

[
B(y1 + δ)(eD(t2−t1) − eA(t2−t1))

D − A − (C − δB)(1− eA(t2−t1))

A

]
,

y0 = 0, z0 =
δ1
ω
eδ2(π−c)/ω

√
δ22 + ω2 + δ1,

x̄1 =
(
x0e

−δ3t1 ,−eδ2t1(z0 − δ1) sinωt1, 0
)
, x̄2 =

(
x0e

δ3(π−c)/ω,
δ1δ2
ω
, 0

)
,

t1 is given by (4.28) and

t2 = t1 +
1

D
ln
y2 + δ

y1 + δ
, T = t2 + (π − c)/ω.

Fundamental matrices X1(t), X2(t), X3(t) of (4.13) have, respectively, the form

X1(t) =



e−δ3t 0 0
0 eδ2t cosωt −eδ2t sinωt
0 eδ2t sinωt eδ2t cosωt


 ,

X2(t) =



eA(t−t1)

B(eD(t−t1)−eA(t−t1))
D−A 0

0 eD(t−t1) 0
0 0 1


 , X3(t) = X1(t− t2)
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and the saltation matrix of (4.12) is

S =



1 0 − u

ωδ+δ1δ2

0 1 δ1ω−δδ2
ωδ+δ1δ2

0 0 0


 .

Proof. The statement on the periodic trajectory and the mentioned points follow from
the preceding discussion. The fundamental matrices are easily obtained due to linearity
of unperturbed systems (4.25)0 and (4.26)0, matrix S from its definition (4.12).

Now, we verify the basic assumptions of this section.

Lemma 4.7. System (4.25)0, (4.26)0 satisfies conditions H1), H2).

Proof. We have constructed γ(t) such that the first condition would be satisfied. To
verify the second one, we estimate

Dh(x̄)(f−(x̄)− f+(x̄)) = ωδ + δ1δ2 > 0

for x̄ ∈ Ω0,

Dh(γ(t))f+(γ(t)) = −δ1δ2 + ω
(
−δ + (y1 + δ)eD(t−t1))

< −δ1δ2 + ω
(
−δ + (y1 + δ)eD(t2−t1)) = 0

for t ∈ [t1, t2) and
Dh(x̄2)f+(x̄2) = ωy2 − δ1δ2 = 0.

Furthermore,

Dh(γ(t))f−(γ(t)) = ω(y1 + δ)eD(t−t1) ≥ ω(y1 + δ) > 0

for t ∈ [t1, t2] and

D2
s[h(γ(t2 + s))]s=0+ = Dh(x̄2)Df+(x̄2)f+(x̄2) = ω(δ2y2 + δ1ω) > 0.

Moreover, note that for t ∈ (t2, T ] we have

Dh(γ(t)) =
δ1(δ

2
2 + ω2)

ω
eδ2(t−t2) sinω(t− t2) > 0.

Hence h(γ(t)) > 0 for all t ∈ (t2, T ]. This completes the proof.

Since we can not express explicitly t1 from equation (4.28), we proceed numerically.
From now on, we consider fixed values of δ1,2,3, δ and ω. We set

δ1 = δ3 = 1, δ2 = 1/2, δ = 10, ω = 1. (4.29)

From Lemma 4.6 we get

x̄0
.
= (0.007u, 0, 5.265), t1

.
= 1.673,

x̄1
.
= (0.001u,−9.793, 0), t2

.
= 34.642,

x̄2
.
= (0.106u, 0.5, 0), T

.
= 37.320.

When parameters are fixed, we verify the third assumption.
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Lemma 4.8. System (4.25)ε, (4.26)ε with parameters (4.29) satisfies condition H3) if
u 6= 0.

Proof. From Lemma 4.4, dimZ ≥ 1 for Z given by (4.14). Let us suppose that
dimZ > 1. Then there exists a vector v ∈ Z such that 〈v, f+(x̄0)〉 = 0, i.e. there
exist constants a, b ∈ R such that |a|+ |b| > 0 and

v = a



δ2(z0 − δ1)

0
δ3x0


 + b



−ω(z0 − δ1)

δ3x0
0




since [f+(x̄0)]
⊥ = [(δ2(z0 − δ1), 0, δ3x0)∗, (−ω(z0 − δ1), δ3x0, 0)∗]. On substituting pa-

rameters (4.29) we obtain

v
.
= a




2.133
0

0.007u


 + b



−4.265
0.007u

0


 .

Consequently,

(I− A(0))v .
=



(−0.005a− 0.002b)u2 + 2.133a− 4.265b

(−2.787a− 1.394b)u
(1.401a+ 0.701b)u




what is equal to zero for u 6= 0 if and only if a = b = 0 and we get a contradiction with
the dimension of Z.

Note that in the case u = 0 the condition H3) is broken and the considered system
possesses a degenerate sliding periodic solution which remains in the yz-plane for all
the time.

Using Fredholm alternative we get

Y ⊥ = R(DξF (x̄0, 0, µ, α))
⊥ = N (DξF (x̄0, 0, µ, α))

∗ = [(0, 1, 1.98957)∗]

where the last equality was derived numerically. So we choose ψ = (0, 1, 1.98957)∗.
Then the Poincaré-Andronov-Melnikov function defined by (4.19) has the form

Mµ(α)
.
=

∫ t1

0

(cos s− 1.98957 sin s)e−s/2 sin µ2(s+ α)ds

−
∫ t2

t1

0.0178 sinµ2(s+ α)ds+

∫ T

t2

107(2.458 cos s− 28.186 sin s)e−s/2 sin µ2(s+ α)ds.

(4.30)
This can be easily transformed to

Mµ(α) = K sin µ2α + L cosµ2α
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Fig. 4.2: Sliding periodic orbit in unperturbed system (4.25)0, (4.26)0 with
parameters (4.29) and u = 10 projected onto yz-, xz- and xy-plane and the

3-dimensional overview

where

K =

∫ t1

0

(cos s− 1.98957 sin s)e−s/2 cosµ2sds−
∫ t2

t1

0.0178 cosµ2sds

+

∫ T

t2

107(2.458 cos s− 28.186 sin s)e−s/2 cosµ2sds,

L =

∫ t1

0

(cos s− 1.98957 sin s)e−s/2 sinµ2sds−
∫ t2

t1

0.0178 sinµ2sds

+

∫ T

t2

107(2.458 cos s− 28.186 sin s)e−s/2 sin µ2sds.

(4.31)
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Clearly, Mµ(α) has a simple root if and only if K2+L2 6= 0 or, alternatively, if function

Φ(µ2) =

∫ T

0

ϕ(s)eıµ2sds

with

ϕ(s) =





(cos s− 1.98957 sin s)e−s/2 if s ∈ [0, t1),

−0.0178 if s ∈ [t1, t2),

107(2.458 cos s− 28.186 sin s)e−s/2 if s ∈ [t2, T ]

and ı =
√
−1, is nonzero. After integrating we obtain

Φ(µ2) =
1

µ2(4µ2
2 + 4ıµ2 − 5)

[
5.958µ2 + 4ıµ2

2 + (0.089ı− 3.106µ2 + 3.536ıµ2
2)e

ıt1µ2

−(0.089ı+ 34.016µ2)e
ıt2µ2 − (5.958µ2 + 4ıµ2

2)e
ıTµ2
]
.

(4.32)
Since the denominator is nonzero for any µ2 > 0, function Φ(µ2) is well-defined and it
is enough to investigate the numerator. Now we apply the condition on the period of
the perturbation function, more precisely

(cosµ1T, sinµ2T, 0) = (1, 0, 0),

i.e. µ1 = 2k1π/T , µ2 = 2k2π/T for some k1, k2 ∈ N. For such µ2 the numerator
in (4.32) has the form

(0.089ı− 3.106µ2 + 3.536ıµ2
2)e

ıt1µ2 − (0.089ı+ 34.016µ2)e
ıt2µ2 .

For the simplicity, we denote it by ϕ(µ2). Then

|ϕ(µ2)| ≥ 3.536µ2
2 − 37.123µ2 − 0.178

what is greater than zero for µ2 positive if µ2 > 11. Hence the function Φ(µ2) is nonzero
for such µ2 ∈ (2π/T )N. Moreover, it can be numerically shown that ϕ(µ2) is nonzero
for µ2 ∈ (0, 11] as well (cf. Fig. 4.3). Consequently, Φ(2k2π/T ) is nonzero for each
k2 ∈ N and Theorem 4.5 can be applied.

Proposition 4.9. Let u 6= 0, µ1 = 2k1π/T , µ2 = 2k2π/T for given k1, k2 ∈ N. Then
for each k ∈ R where

R = {r ∈ Z | rπ − λ ∈ [0, 2k2π)}
and λ is such that

cosλ =
K√

K2 + L2
, sin λ =

L√
K2 + L2

for K, L defined by (4.31), there exists a unique T -periodic sliding solution xk(ε)(t) of
system (4.25)ε with ε 6= 0 sufficiently small and

α = αk(ε) =
kπ − λ
µ2

+O(ε)

such that
|xk(ε)(t)− γ(t− α)| = O(ε)

for any t ∈ R. So for each u 6= 0, k1, k2 ∈ N there are at least as many different
T -periodic sliding solutions as the number of elements of R.
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Fig. 4.3: The dependence of |ϕ(µ2)| on µ2. Diamonds depict the values at 2k2π/T for
k2 ∈ {1, . . . , 65}

Proof. First, the period matching condition T = 2k1π/µ1 = 2k2π/µ2 for k1, k2 ∈
N has to be satisfied. Next, for µ2 such that Φ(µ2) 6= 0, the root α0 of Poncaré-
Andronov-Melnikov function Mµ(α) of (4.30) satisfies sin(µ2α + λ) = 0. Therefore,
α0 = (kπ − λ)/µ2 for k ∈ Z. Moreover, the T -periodicity of functions g+, g− (and
consequently of function g0) in t means that only for α0 ∈ [0, T ), i.e. for k ∈ R we get
the different solutions. The rest follows from Theorem 4.5.
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Chapter II

Hybrid systems

Combination of differential and difference equation is known as hybrid system (cf. [9]).
In this system, a mapping given by the difference equation is applied on a solution x(t)
of the differential equation at appropriate times, which leads to time-switching system
or impacting hybrid system (hard-impact oscillator) where the switching depends on
the position x(t) not on time t. In this chapter we study the second case. For a better
imagination we introduce a motivation example.

Consider a motion of a single particle in one spatial dimension described by the
position x(t) and the velocity ẋ(t). We suppose that it is moving under a linear spring, it
is weakly damped and forced. So its position satisfies the ordinary differential equation

ẍ+ εζẋ+ x = εµ cosωt if x(t) < σ, (0.1)

where εζ measures the viscous damping, εµ is the magnitude of forcing, ε is a small
parameter, and we suppose that the motion is free to move in the region x < σ for
σ > 0, until some time t = t0 at which x = σ where there is an impact with a rigid
obstacle. Then, at t = t0, we suppose that (x(t−0 ), ẋ(t

−
0 )) is mapped in zero time via

an impact law to

x(t+0 ) = x(t−0 ) and ẋ(t+0 ) = −(1 + εr)ẋ(t−0 ),

where x(t±) = lims→t± x(s), ẋ(t
±) = lims→t± ẋ(s) and 0 < 1 + εr ≤ 1 is the Newton

coefficient of restriction [9]. Another well-known piecewise linear impact system is a
weakly damped and forced inverted pendulum given by equations [26]

ẍ+ εζẋ− x = εµ cosωt if |x(t)| < σ,

x(t+) = x(t−) and ẋ(t+) = −(1 + εr)ẋ(t−) if |x(t−)| = σ.
(0.2)

We can study coupled (0.1) and (0.2) to get higher dimensional impact system.
So a system for weakly forced impact oscillator consists of an ordinary differential

equation
ẍ = f1(x, ẋ) + εg1(x, ẋ, t, ε, µ) (0.3)

and an impact condition

ẋ(t+) = f2(ẋ(t
−)) + εg2(x(t

−), ẋ(t−), t, ε, µ) if h(x(t−)) = 0. (0.4)
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The above equation rewritten as an evolution system has a form

ẋ1 = x2

ẋ2 = f1(x1, x2) + εg1(x1, x2, t, ε, µ),

x2(t
+) = f2(x2(t

−)) + εg2(x1(t
−), x2(t−), t, ε, µ) if h(x1(t

−)) = 0.

In fact, we shall investigate a more general case (see (1.1), (1.2)).

1 Periodically forced impact systems

In this section we investigate the persistence of a single T -periodic orbit of autonomous
system with impact under nonautonomous perturbation and derive a sufficient condi-
tion.

Let Ω ⊂ Rn be an open set in Rn and h(x) be a Cr-function on Ω, with r ≥ 3.
We set Ω0 := {x ∈ Ω | h(x) = 0}, Ω1 := Ω\Ω0. Let f1 ∈ Cr

b (Ω), f2 ∈ Cr
b (Ω0,Ω0),

g1 ∈ Cr
b (Ω×R×R×Rp), g2 ∈ Cr

b (Ω0 ×R×R×Rp) and h ∈ Cr
b (Ω,R). Furthermore,

we suppose that g1,2 are T -periodic in t ∈ R and 0 is a regular value of h. Let ε, α ∈ R
and µ ∈ Rp, p ≥ 1 be parameters.

Definition 1.1. We say that a function x(t) is a solution of an impact system

ẋ = f1(x) + εg1(x, t, ε, µ), x ∈ Ω1, (1.1)

x(t+) = f2(x(t
−)) + εg2(x(t

−), t, ε, µ) if h(x(t−)) = 0, (1.2)

if it is piecewise C1-smooth satisfying equation (1.1) on Ω1, equation (1.2) on Ω0 and,
moreover, the following holds: if for some t0 we have x(t0) ∈ Ω0, then there exists ρ > 0
such that for any t ∈ (t0 − ρ, t0), s ∈ (t0, t0 + ρ) we have h(x(t))h(x(s)) > 0.

For modelling problem given by (1.1), (1.2) we assume

H1) The unperturbed equation
ẋ = f1(x) (1.3)

has a T -periodic orbit γ(t) which is discontinuous at t = t1 ∈ (0, T ) where it
satisfies impact condition

x(t+) = f2(x(t
−)) if h(x(t−)) = 0. (1.4)

The orbit is given by its initial point x0 ∈ Ω1 and consists of two branches

γ(t) =





γ1(t) if t ∈ [0, t1),

{x1, x2} if t = t1,

γ2(t) if t ∈ (t1, T ],

(1.5)

where 0 < t1 < T , γ(t) ∈ Ω1 for t ∈ [0, t1) ∪ (t1, T ], γ(t1) ⊂ Ω0 and

x1 := γ1(t
−
1 ) ∈ Ω0,

x2 := γ2(t
+
1 ) ∈ Ω0,

x0 := γ2(T ) = γ1(0) ∈ Ω1.

(1.6)
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H2) Moreover, we also assume that

Dh(x1)f1(x1)Dh(x2)f1(x2) < 0.

The geometric meaning of assumption H2) is that the impact periodic solution γ(t)
from H1) transversally hits and leaves the impact surface Ω0 at t

−
1 and t+1 , respectively.

Next, since impact system (1.3), (1.4) is autonomous, γ(t − α) is also its solution
for any α ∈ R. So we are looking for a forced T -periodic solution x(t) of the perturbed
impact system (1.1), (1.2) which is orbitally close to γ, i.e. x(t) ∼ γ(t− α) for some α
depending on ε 6= 0 small. For this reason, by shifting the time, we study a shifted (1.1),
(1.2) of the form

ẋ = f1(x) + εg1(x, t + α, ε, µ), x ∈ Ω1, (1.7)

x(t+) = f2(x(t
−)) + εg2(x(t

−), t+ α, ε, µ) if h(x(t−)) = 0 (1.8)

with additional parameter α ∈ R.
Let x(τ, ξ)(t, ε, µ, α) denote the solution of initial value problem

ẋ = f1(x) + εg1(x, t+ α, ε, µ)

x(τ) = ξ.
(1.9)

First, we modify Lemma 1.2 from Chapter I for impact system (1.7), (1.8).

Lemma 1.2. Assume H1) and H2). Then there exist ε0, r0 > 0 and a Poincaré map-
ping (cf. Fig. 1.1)

P (·, ε, µ, α) : B(x0, r0)→ Σ

for all fixed ε ∈ (−ε0, ε0), µ ∈ Rp, α ∈ R, where B(x, r) is a ball in Rn with center at
x and radius r, and

Σ = {y ∈ Rn | 〈y − x0, f1(x0)〉 = 0}.
Moreover, P : B(x0, r0)× (−ε0, ε0)×Rp ×R→ Rn is Cr-smooth in all arguments and
B(x0, r0) ⊂ Ω1.

Proof. The lemma follows from implicit function theorem (IFT) [16]. We obtain the
existence of positive constants τ1, r1, δ1, ε1 and Cr-function

t1(·, ·, ·, ·, ·) : (−τ1, τ1)× B(x0, r1)× (−ε1, ε1)× Rp × R→ (t1 − δ1, t1 + δ1)

such that h(x(τ, ξ)(t, ε, µ, α)) = 0 for τ ∈ (−τ1, τ1), ξ ∈ B(x0, r1) ⊂ Ω1, ε ∈ (−ε1, ε1),
µ ∈ Rp, α ∈ R and t ∈ (t1 − δ1, t1 + δ1) if and only if t = t1(τ, ξ, ε, µ, α). Moreover,
t1(0, x0, 0, µ, α) = t1.

Analogically, we derive function t2 satisfying

〈x(t1(τ, ξ, ε, µ, α), f2(x(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α))
+εg2(x(τ, ξ)(t1(τ, ξ, ε, µ, α), ε, µ, α), t1(τ, ξ, ε, µ, α) + α, ε, µ))

(t2(τ, ξ, ε, µ, α), ε, µ, α)− x0, f1(x0)〉 = 0.

Moreover, we have t2(0, x0, 0, µ, α) = T . Poincaré mapping is then defined as

P (ξ, ε, µ, α) = x(t1(0, ξ, ε, µ, α), f2(x(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

+εg2(x(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α), t1(0, ξ, ε, µ, α) + α, ε, µ))(t2(0, ξ, ε, µ, α), ε, µ, α).
(1.10)

The proof is finished.
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Fig. 1.1: Impact Poincaré mapping

Since we are looking for a persisting periodic orbit with fixed period T , we have to
solve a couple of equations

P (ξ, ε, µ, α) = ξ,

t2(0, ξ, ε, µ, α) = T.

Therefore, we define the stroboscopic Poincaré mapping (cf. (1.6), (4.7) in Chapter I)

P̃ (ξ, ε, µ, α) = x(t1(0, ξ, ε, µ, α), f2(x(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α))

+εg2(x(0, ξ)(t1(0, ξ, ε, µ, α), ε, µ, α), t1(0, ξ, ε, µ, α) + α, ε, µ))(T, ε, µ, α)
(1.11)

and solve a single equation

F (ξ, ε, µ, α) := ξ − P̃ (ξ, ε, µ, α) = 0 for ξ ∈ Σ. (1.12)

Now, we calculate the linearization of P̃ at (ξ, ε) = (x0, 0). We obtain the next result.

Lemma 1.3. Let P̃ (ξ, ε, µ, α) be defined by (1.11). Then for all µ ∈ Rp, α ∈ R

P̃ξ(x0, 0, µ, α) = A(0), (1.13)

P̃ε(x0, 0, µ, α) =

∫ T

0

A(s)g1(γ(s), s+ α, 0, µ)ds+X2(T )g2(x1, t1 + α, 0, µ), (1.14)

where P̃ξ, P̃ε are partial derivatives of P̃ with respect to ξ, ε, respectively. Here A(t) is
given by

A(t) =

{
X2(T )SX1(t1)X

−1
1 (t) if t ∈ [0, t1),

X2(T )X
−1
2 (t) if t ∈ [t1, T ]

(1.15)

with impact saltation matrix

S = Df2(x1) +
(f1(x2)−Df2(x1)f1(x1))Dh(x1)

Dh(x1)f1(x1)
(1.16)

and fundamental matrix solutions X1(t), X2(t) satisfying, respectively,

Ẋ1(t) = Df1(γ(t))X1(t)

X1(0) = I,
Ẋ2(t) = Df1(γ(t))X2(t)

X2(t1) = I.
(1.17)
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In addition, P̃ξ(x0, 0, µ, α) has an eigenvalue 1 with corresponding eigenvector f1(x0),
i.e.

P̃ξ(x0, 0, µ, α)f1(x0) = f1(x0).

Proof. The statement on the derivatives of P̃ follows from its definition with the aid
of the following identities

Dξx(0, x0)(t, 0, µ, α) = X1(t),

Dεx(0, x0)(t, 0, µ, α) =

∫ t

0

X1(t)X
−1
1 (s)g1(γ(s), s+ α, 0, µ)ds

for t ∈ [0, t1],

Dξx(t1, x2)(t, 0, µ, α) = X2(t), Dτx(t1, x2)(t, 0, µ, α) = −X2(t)f1(x2),

Dεx(t1, x2)(t, 0, µ, α) =

∫ t

t1

X2(t)X
−1
2 (s)g1(γ(s), s+ α, 0, µ)ds

for t ∈ [t1, T ] and

Dξt1(0, x0, 0, µ, α) = −
Dh(x1)X1(t1)

Dh(x1)f1(x1)
,

Dεt1(0, x0, 0, µ, α) = −
Dh(x1)

∫ t1
0
X1(t1)X

−1
1 (s)g1(γ(s), s+ α, 0, µ)ds

Dh(x1)f1(x1)
.

To proceed with the proof, we note ε = 0 results x(τ, ξ)(t, 0, µ, α) = x(τ, ξ)(t), the solu-
tion of ẋ = f1(x), x(τ) = ξ, and it is independent of (µ, α). Analogically t1(τ, ξ, 0, µ, α) =

t1(τ, ξ), t2(τ, ξ, 0, µ, α) = t2(τ, ξ), P (ξ, 0, µ, α) = P (ξ) and P̃ (ξ, 0, µ, α) = P̃ (ξ).
Now, since for all t > 0 small, it holds that

x(0, γ1(t))(t1(0, γ1(t))) = x(0, x0)(t+ t1(0, γ1(t))) = γ1(t+ t1(0, γ1(t)))

is an element of Ω0 and as well of {γ(t) | t ∈ R} we have

t + t1(0, γ1(t)) = t1.

Consequently
x(0, γ1(t))(t1(0, γ1(t))) = x1.

Then we obtain

P̃ (γ1(t)) = x(t1(0, γ1(t)), f2(x(0, γ1(t))(t1(0, γ1(t)))))(T )

= x(t1(0, γ1(t)), f2(x1))(T ) = x(t1 − t, x2)(T ) = x(t1, x2)(T + t) = γ1(t).

Hence
P̃ξ(x0, 0, µ, α)f1(x0) = Dt[P̃ (γ1(t))]t=0+ = Dt[γ1(t)]t=0+ = f1(x0).

The proof is finished.
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We solve equation (1.12) for (ξ, α) ∈ Σ× R with parameters ε, µ using Lyapunov-
Schmidt reduction method. Obviously F (x0, 0, µ, α) = 0 for all (µ, α) ∈ Rp × R. Let
us denote

Z = NDξF (x0, 0, µ, α), Y = RDξF (x0, 0, µ, α) (1.18)

the null space and the range of the corresponding operator and

Q : Rn → Y, P : Rn → Y ⊥ (1.19)

orthogonal projections onto Y and Y ⊥, respectively, where Y ⊥ is the orthogonal com-
plement to Y in Rn. Here we take the third assumption

H3) NDξF (x0, 0, µ, α) = [f1(x0)].

Equation (1.12) is split into couple of equations

QF (ξ, ε, µ, α) = 0,

PF (ξ, ε, µ, α) = 0
(1.20)

where the first one can be solved using IFT, since

QF (x0, 0, µ, α) = 0

and QDξF (x0, 0, µ, α) is an isomorphism from [f1(x0)]
⊥ onto Y for all (µ, α) ∈ Rp×R.

Thus we get the existence of a Cr-function ξ = ξ(ε, µ, α) for ε close to 0 and (µ, α) ∈
Rp × R such that QF (ξ(ε, µ, α), ε, µ, α) = 0 for all such (ε, µ, α) and ξ(0, µ, α) = x0.
The second equation is so-called persistence equation for α ∈ R

PF (ξ(ε, µ, α), ε, µ, α) = 0. (1.21)

Let ψ ∈ Y ⊥ be arbitrary and fixed. Then we can write

Pu =
〈u, ψ〉ψ
‖ψ‖2

and persistence equation (1.21) has the form

G(ε, µ, α) :=
〈F (ξ(ε, µ, α), ε, µ, α), ψ〉ψ

‖ψ‖2 = 0. (1.22)

Clearly, G(0, µ, α) = 0 for all (µ, α) ∈ Rp × R. Moreover, we want the periodic
orbit to persist, so we need to solve G(ε, µ, α) = 0 for ε 6= 0 small. But since
G(ε, µ, α) = DεG(0, µ, α)ε + o(ε), the equality DεG(0, µ0, α0) = 0 is a necessary con-
dition for a point (0, µ0, α0) to be a starting persistence value, this means if there is a
sequence {(εn, µn, αn)}n∈N such that εn 6= 0, (εn, µn, αn) → (0, µ0, α0) for n →∞ and
G(εn, µn, αn) = 0, then DεG(0, µ0, α0) = 0. So we derive

DεG(0, µ, α) =
〈(DξF (x0, 0, µ, α)Dεξ(0, µ, α) + DεF (x0, 0, µ, α)), ψ〉ψ

‖ψ‖2

=
〈DεF (x0, 0, µ, α), ψ〉ψ

‖ψ‖2 = −〈DεP̃ (x0, 0, µ, α), ψ〉ψ
‖ψ‖2 .
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We denote

Mµ(α) =

∫ T

0

〈g1(γ(s), s+ α, 0, µ), A∗(s)ψ〉ds+ 〈X2(T )g2(x1, t1 + α, 0, µ), ψ〉 (1.23)

the impact Poincaré-Andronov-Melnikov function, where

A∗(t) =

{
X−1∗

1 (t)X∗
1 (t1)S

∗X∗
2 (T ) if t ∈ [0, t1),

X−1∗
2 (t)X∗

2 (T ) if t ∈ [t1, T ].
(1.24)

Note that DεG(0, µ, α) = −Mµ(α)ψ
‖ψ‖2 .

Linearization of unperturbed impact system (1.3), (1.4) along T -periodic solution
γ(t) gives the variational equation

ẋ(t) = Df1(γ(t))x(t) (1.25)

with impulsive condition
x(t+1 ) = Sx(t−1 ) (1.26)

and periodic condition
B(x(0)− x(T )) = 0 (1.27)

where B = ψψ∗

‖ψ‖2 is the orthogonal projection onto Y ⊥. From definition of X1(t), X2(t),

X(t) =

{
X1(t) if t ∈ [0, t1),

X2(t)SX1(t1) if t ∈ [t1, T ]

solves variational equation (1.25) and conditions (1.26), (1.27).
Now, on letting B1 = S, B2 = I, B3 = B in Lemma 2.4 one can see that the adjoint

variational system of (1.3) and impact condition (1.4) (i.e. adjoint system of (1.25),
(1.26), (1.27)) is given by the following linear impulsive boundary value problem

ẋ(t) = −Df ∗
1 (γ(t))x(t), t ∈ [0, T ],

x(t−1 ) = S∗x(t+1 ),

x(T ) = x(0) ∈ Y ⊥.

(1.28)

From (1.24) we know that A∗(t)ψ solves adjoint variational equation with impulsive
condition. To see that it satisfies the boundary condition as well, we consider

0 = 〈DξF (x0, 0, µ, α)ξ, ψ〉 = 〈((I−A(0))ξ, ψ〉 = 〈ξ, (I− A∗(0))ψ〉

for all ξ ∈ [f1(x0)]
⊥ and if ξ ∈ [f1(x0)], from Lemma 1.3 follows

0 = 〈ξ − ξ, ψ〉 = 〈(I− A(0))ξ, ψ〉 = 〈ξ, (I−A∗(0))ψ〉.

As a consequence, we can take in (1.23) any solution of the adjoint variational sys-
tem (1.28). Summarizing, we get the main result.
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Theorem 1.4. Let ψ ∈ Y ⊥ be arbitrary and fixed, Y be given by (1.18) and A∗(t),
Mµ(α) be defined by (1.24), (1.23), respectively. If α0 is a simple root of function
Mµ0(α), i.e.

∫ T

0

〈g1(γ(s), s+ α0, 0, µ0), A
∗(s)ψ〉ds+ 〈X2(T )g2(x1, t1 + α0, 0, µ0), ψ〉 = 0,

∫ T

0

〈Dtg1(γ(s), s+ α0, 0, µ0), A
∗(s)ψ〉ds+ 〈X2(T )Dtg2(x1, t1 + α0, 0, µ0), ψ〉 6= 0

then there exists a unique Cr−1-function α(ε, µ) for ε ∼ 0 small and µ ∼ µ0 such that
α(0, µ0) = α0 and there is a unique T -periodic solution xε,µ(t) of equation (1.1) with
parameters ε 6= 0 sufficiently small, µ close to µ0 and α = α(ε, µ), which satisfies
condition (1.2) and |xε,µ(t)− γ(t− α(ε, µ))| = O(ε).

Proof. We set

H(ε, µ, α) =

{
DεG(0, µ, α) for ε = 0,

G(ε, µ, α)/ε for ε 6= 0.

Then H is Cr−1-smooth. Assumptions of our theorem imply H(0, µ0, α0) = 0 and
DαH(0, µ0, α0) 6= 0. By IFT there exists a unique Cr−1-function α(ε, µ) for ε ∼ 0 small
and µ ∼ µ0 such that α(0, µ0) = α0, and H(ε, µ, α(ε, µ)) = 0. But this means that
x(0, ξ(ε, µ, α(ε, µ)))(t, ε, µ, α(ε, µ)) is a solution of (1.7), (1.8) with α = α(ε, µ) and it
satisfies

|x(0, ξ(ε, µ, α(ε, µ)))(t, ε, µ, α(ε, µ))− γ(t)| = O(ε).

Then
xε,µ(t) = x(0, ξ(ε, µ, α(ε, µ)))(t− α(ε, µ), ε, µ, α(ε, µ))

is the desired solution of (1.1), (1.2). The proof is completed.

1.1 Pendulum hitting moving obstacle

Here we provide an application of derived theory to problem of mathematical pendulum
which impacts an oscillating wall (see Fig. 1.2). The horizontal distance between the
wall and the center of the pendulum is δ + εz(t, ε, µ) where z is periodic in t and δ is
a positive constant. We denote x the angle and l the length of the massless cord.

b

b

Fig. 1.2: Impacting pendulum
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Then x satisfies the dimensionless equation

ẍ = −ω2x

with a given frequency ω > 0 and impact condition

ẋ(t+) = −ẋ(t−) + εż(t−, ε, µ)

√
l2 − (δ + εz(t−, ε, µ))2

l

whenever

x(t−)− arcsin
δ + εz(t−, ε, µ)

l
= 0,

which follows from actual position of the wall and its speed projected onto tangent line
to the trajectory of bob. Writing as a system we get

ẋ = ωy

ẏ = −ωx
and

x(t+) = x(t−)

y(t+) = −y(t−) + εż(t−, ε, µ)

√
l2 − (δ + εz(t−, ε, µ))2

ωl

if

x(t−)− arcsin
δ + εz(t−, ε, µ)

l
= 0.

To obtain a problem in form of (1.7), (1.8) we introduce parameter α and transform
the variables

u = x− arcsin
δ + εz(t + α, ε, µ)

l
+ arcsin

δ

l
, v = y.

So we get

u̇(t) = ωv(t)− ε ż(t+ α, ε, µ)√
l2 − (δ + εz(t + α, ε, µ))2

v̇(t) = −ωu(t)− εωz(t+ α, 0, µ)√
l2 − δ2

+O(ε2)

(1.29)ε

with impact condition

u(t+) = u(t−)

v(t+) = −v(t−) + εż(t− + α, ε, µ)

√
l2 − (δ + εz(t− + α, ε, µ))2

ωl
if h(u(t−), v(t−)) = 0

(1.30)ε

where

h(u, v) = u− arcsin
δ

l
.

Note the dependence on ε in notation, i.e. (1.29)0, (1.30)0 denotes the unperturbed
system and the unperturbed impact condition, respectively. Moreover, we denote û =
arcsin δ

l
.

In this case we have Ω0 = {(u, v) ∈ R2 | u = û}, Σ = {(u, 0) ∈ R2 | u < −û} and
the following lemma describing the unperturbed problem.
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Lemma 1.5. System (1.29)0, (1.30)0 possesses a family of periodic orbits γu(t) para-
metrized by u < −û such that

γu(t) =





(u cosωt,−u sinωt) if t ∈ [0, t1),

{(u1, v1), (u2, v2)} if t = t1,

(u cosω(T − t), u sinω(T − t)) if t ∈ (t1, T ]

where

t1 =
1

ω
arccos

û

u
,

T = 2t1,

(u1, v1) = (u cosωt1,−u sinωt1) = (û,
√
u2 − û2),

(u2, v2) = (u1,−v1) = (û,−
√
u2 − û2).

The fundamental matrices defined by (1.17) and impact saltation matrix of (1.16) have
the form

X1(t) =

(
cosωt sinωt
− sinωt cosωt

)
, X2(t) = X1(t− t1), S =

( −1 0
−2u1

v1
−1

)
,

respectively.

Proof. Due to linearity of (1.29)0, taken (u, 0) ∈ Σ as an initial point of γu(t) one can
easily compute γu1 (t) (see (1.5)). Time of impact t1 is the first intersection point of
{γu1 (t) | t > 0} with Ω0 and is obtained from identity h(γu1 (t1)) = 0. Accordingly, we
get (u1, v1) = γu1 (t1) and (u2, v2) = f2(u1, v1) where f2(u, v) = (u,−v) is the right-hand
side of (1.30)0. Analogically to γu1 (t) we get

γu2 (t) = (u2 cosω(t− t1) + v2 sinω(t− t1),−u2 sinω(t− t1) + v2 cosω(t− t1)).

From periodicity of γu(t) we get T as a solution of equation

γu2 (T ) = (u, 0)

or equivalently of a couple of equations

u2 cosω(T − t1) + v2 sinω(T − t1) = u

−u2 sinω(T − t1) + v2 cosω(T − t1) = 0.

We have

T = t1 +
1

ω
arccot

u2
v2

= 2t1.

Therefore using trigonometric sum identities

γu2 (t) = (u cosω(T − t), u sinω(T − t)).

Matrices X1(t), X2(t) and S are obtained directly from their definitions since (1.29)0
is linear.

Now we verify the basic assumptions.

Lemma 1.6. System (1.29)0, (1.30)0 satisfies conditions H1), H2) and H3).
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Proof. From construction of γu(t), H1) is immediately verified. So is H2) since

Dh(u1, v1)f1(u1, v1) = ωv1 > 0, Dh(u2, v2)f1(u2, v2) = ωv2 < 0.

From Lemma 1.5 we get

DξF (u, 0, 0, µ, α) = I−X2(T )SX1(t1) =

(
0 0
2u1
v1

0

)
.

Hence, it is easy to see, that f1(u, 0) = (0,−ωu) ∈ Z for Z of (1.18). Suppose that
dimZ > 1. Then there exists w ∈ Z such that 〈w, f1(u, 0)〉 = 0, i.e. w = (ζ, 0). Next

DξF (u, 0, 0, µ, α)w =

(
0

2ζu1
v1

)
.

Thus ζ = 0 and the verification of the last condition is completed.

According to (1.15), by multiplying the corresponding matrices from Lemma 1.5
we derive

A(t) =





(
cosωt − sinωt

−2u1
v1

cosωt+ sinωt 2u1
v1

sinωt+ cosωt

)
if t ∈ [0, t1),

(
cos
(
ωt− 2 arccos û

u

)
− sin

(
ωt− 2 arccos û

u

)

sin
(
ωt− 2 arccos û

u

)
cos
(
ωt− 2 arccos û

u

)
)

if t ∈ [t1, T ].

Fredholm alternative yields

R(I− A(0))⊥ = N (I− A∗(0)) = N
(
0 2u1

v1

0 0

)
= [(1, 0)]

thus we take ψ = (1, 0)∗.
Let us consider z(t, ε, µ) = sin µt. It is sufficient to assume µ > 0 (the case µ < 0

is covered by parameter α ∈ R). Then Poincaré-Andronov-Melnikov function defined
by (1.23) has the form

Mµ(α) =
1

2
√
l2 − δ2

∫ t1

0

(ω − µ) cos(ωt− µ(t+ α))

−(ω + µ) cos(ωt+ µ(t+ α))dt

+
1

2
√
l2 − δ2

∫ T

t1

(ω − µ) cos
(
ωt− 2 arccos

û

u
− µ(t+ α)

)

−(ω + µ) cos

(
ωt− 2 arccos

û

u
+ µ(t+ α)

)
dt−

√
l2 − δ2
ωl

µv1
u

cosµ(t1 + α).

After some algebra we get

Mµ(α) =
ν(u) cosµ(t1 + α)√

l2 − δ2
where

ν(u) =
µ(l2 − δ2)

ωl

√
1−

(
û

u

)2

− 2 sinµt1.

Function Mµ(α) can be easily differentiated with respect to α and one can apply
Theorem 1.4.
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Proposition 1.7. Let 0 < ω, 0 < µ and k ∈ N be such that kω < µ < 2kω. Then
for each r ∈ {0, 1, · · · , 2k − 1}, there exists a unique 2kπ/µ-periodic solution xk,r,ε(t)
of system (1.29)ε, (1.30)ε with ε 6= 0 sufficiently small and

α = αk,r(ε) =
π(2r + 1)

2µ
+O(ε)

such that
|xk,r,ε(t)− γu(t− α)| = O(ε)

for any t ∈ R and u = u(k) = û
cos kωπ

µ

. So there are at least 2
∑

k∈( µ
2ω
, µ
ω )∩N

k different

impact periodic solutions.

Proof. Since the forcing sin µt has periods 2kπ/µ, k ∈ Z, we need the period matching
condition T = 2kπ/µ for some k ∈ N. This gives

2kπ/µ = T = 2t1 = 2
1

ω
arccos

û

u
.

Since arccos û
u
∈ (π/2, π) we get the assumption kω < µ < 2kω. Then

u = u(k) =
û

cos kωπ
µ

< −û.

Hence

ν(u(k)) =
µ(l2 − δ2)

ωl
sin

kωπ

µ
> 0.

So clearly, Mµ(α0) = 0 if and only if

α0 =
π(2s+ 1)

2µ
− t1 =

π(2(s− k) + 1)

2µ

for s ∈ Z. In the period interval [0, T ] = [0, 2kπ/µ], we have 2k different

α0 ∈
{
(2r + 1)π

2µ
, r ∈ {0, 1, · · · , 2k − 1}

}
.

Obviously, each α0 is a simple root of Mµ(α). The rest follows from Theorem 1.4.
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Conclusion

The aim of this thesis was to establish sufficient conditions for the bifurcation of a single
periodic solution under perturbation in discontinuous systems in general n-dimensional
space. This was done by the construction of a discontinuous Poincaré mapping and
the corresponding distance function which roots imply the existence of a periodic so-
lution close to the original one for perturbed system. Then the roots were found
by Lyapunov-Schmidt reduction method and the results were stated in the terms of
Poincaré-Andronov-Melnikov function. So the aim was successfully achieved in Chap-
ter I, more specifically in Section 1 for nonautonomous perturbation and in Sections 2
and 3 for autonomous perturbation assuming that the unperturbed autonomous system
possessed a nondegenerate family of periodic solutions or isolated periodic solution, re-
spectively. In the case of autonomous perturbation we also stated conditions for the
hyperbolicity, stability and instability of the persisting solution. These results can be
analogically shown for the other problems investigated in the work. Next, we have
studied the persistence of a forced sliding periodic solution in perturbed piecewise-
smooth nonlinear dynamical systems and impact periodic solution in impact systems,
in Section 4 and Section 1 of Chapter II, respectively. Moreover, after each theoreti-
cal part we provided one or more applications of the preceding results on planar and
more-dimensional examples. One can see that in concrete examples the computations
were nontrivial and sometimes the only possibility to finish them was with the aid of
computer. Of course, the solutions of nonlinear problems in illustrations were obtained
numerically.

Throughout the work, one of our basic assumption was the transversality condi-
tion. It means that the original solution hits and leaves the discontinuity boundary
transversally, except the sliding solution which always leaves the boundary tangen-
tially. Subsequently, this led to construction of discontinuous Poincaré mappings. In
further research, this assumption can be make weaker or even omitted, e.g. for the
study of grazing bifurcations where the solution of the unperturbed problem “touches”
the boundary and after perturbation it can transversally cross the boundary, again hit
it tangentially or stay in its original part of the phase space.
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[22] M. Fečkan, M. Posṕı̌sil, Bifurcation from family of periodic orbits in discontinuous
systems, Differential Equations and Dynamical Systems , 2011, in press.
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