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Abstract: It is shown that a class of symmetric solutions of scalar non-linear functional differential
equations can be investigated by using the theory of boundary value problems. We reduce the question
to a two-point boundary value problem on a bounded interval and present several conditions ensuring
the existence of a unique symmetric solution.
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1. Introduction and Problem Formulation

The purpose of this note is to present several conditions ensuring that a functional differential
equation possessing a certain symmetry-invariance property has a symmetric solution. The motivation
comes partly from previous studies on antiperiodic and more general classes of solutions (e.g., [1–4] and
references therein). On the other hand, it is interesting to obtain meaningful solvability conditions in
cases where the techniques specific for ordinary differential equations either cannot be easily applied or
are not relevant at all. Equations with functional perturbations are interesting from many points of view
(see, e.g., [5–9] and references therein).

The class of equations we deal with includes, in particular, equations with variable argument
deviations and integro-differential equations. More precisely, we consider the general functional
differential equation

u′(t) = ( f u)(t), t ∈ J, (1)

where J is the closure of an unbounded interval and f : Č(J)→ Lloc(J) is a mapping (generally speaking,
non-linear). We choose Č(J) to be either L∞

loc(J) or PCσ(J) with a specific σ (see (13) in the next section);
the reasoning to follow is common for both versions.

In the sequel, the following notation is used: PCσ(J) is the Fréchet space of piece-wise continuous
functions J → R with possible jump discontinuities at points of a given countable set σ = {tk : k ∈ Z}
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endowed with the system of seminorms νk(u) := max−k≤j≤k supt∈(tj−1,tj)
|u(t)|, u ∈ PCσ(J), k ≥ 1; C(J) is

the Fréchet space of continuous functions on J with the sequence of seminorms |u|k = maxt∈[−k,k]∩J |u(t)|,
k ≥ 1, u ∈ C(J); Lloc(J) is the Fréchet space of functions that are Lebesgue integrable over every bounded
interval contained in J, with the seminorms ‖u‖k =

∫
[−k,k]∩J |u(t)|dt, k ≥ 1, u ∈ Lloc(J); L∞

loc(J) is the
Fréchet space of locally essentially bounded functions with the seminorms ‖u‖∞; k = ess supt∈[−k,k]∩J |u(t)|,
k ≥ 1, u ∈ L∞

loc(J); C(J0) and L(J0) are, respectively, the Banach spaces of continuous and integrable
functions on a bounded interval J0 ⊂ J endowed with the standard norms.

A solution of (1) is an absolutely continuous function satisfying equality (1) almost everywhere.
In what follows, we consider the case where the restriction f |PCσ(J) (or directly f if Č(J) = PCσ(J)) is
continuous as a mapping from PCσ(J) to Lloc( J̃) with some J̃ strictly containing J (singularities on the
boundary are excluded).

We study the problem of the existence of solutions u : J → R of Equation (1) possessing the
symmetry property

µu(ψ(t)) = u(t), t ∈ J, (2)

where µ ∈ R \ {0} is a given constant and ψ : J → J is a monotone increasing, absolutely continuous
function. Due to the nature of property (2), we impose throughout the paper the following symmetry
condition on the operator f :

µψ′(t)( f u)(ψ(t)) = ( f u)(t), t ∈ J, (3)

for any function u ∈ Č(J) possessing property (2). We also assume that J is invariant with respect to the
action of ψ, i.e.,

ψ(J) ⊂ J. (4)

Typically, J is either (−∞, ∞) or one of the intervals (−∞, 0], [0, ∞).
In (1), (3), and all similar relations below, we assume that the corresponding relations between

integrable functions are satisfied almost everywhere and do not always indicate this fact explicitly.
Condition (2) describes a class of properties of solutions such as evenness, oddness, periodicity, and

antiperiodicity. For example, ψ may have the form ψ(t) = εt + T, t ∈ (−∞, ∞), where T is fixed and
ε ∈ {−1, 1}; then condition (2) defines a Floquet-type solution with ε = 1 (for many-dimensional systems,
solutions with this and more general properties are investigated in [1–4]), while for ε = −1, (2) describes
the solutions studied in [2,10]. For more complicated functions ψ, the “symmetric” character of property (2)
is less obvious compared to, e.g., periodicity or antiperiodicity. For example, with ψ(t) = 2t − 1 and
µ = 2−n, property (2) holds for the function u(t) = (t− 1)n, t ∈ R.

Note that condition (3) naturally arises in the context of the study of solutions with property (2).
For example, if (1) is an ordinary differential equation of the form

u′(t) = h(t, u(t)), t ∈ (−∞, ∞), (5)

then assumption (3) is satisfied when the function h : R2 → R is such that

µψ′(t) h(ψ(t), µ−1z) = h(t, z) (6)

for a. e. t ∈ (−∞, ∞) and all z ∈ R. Relation (6) is a particular case of the property considered in [3]
(see also the references therein for more details) for weakly non-linear systems of ordinary differential
equations; it ensures the invariance of Equation (5) under the transformation t→ ψ(t), u→ µu. The proof
of the existence of symmetric solutions in [3] involves a small parameter argument.

In this note, we focus on a general functional differential Equation (1) and formulate several conditions
guaranteeing the existence of solutions with property (1). The method is different from that employed
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in [3]; here, we use results from the theory of boundary value problems. Note also that (1) may involve
various kinds of argument deviations, in contrast to the most frequently studied delay equations (see,
e.g., [11]).

2. Extension by Symmetry

It is convenient to work with the restriction of (1) to suitable bounded intervals. Although such
restrictions are, generally speaking, impossible for general equations (1) without specifying additional
initial data, it turns out that, in our case, this can be done in a straightforward way due to the symmetry
assumption (3). Let us fix some value t0 ∈ J with ψ(t0) 6= t0. For definiteness, assume that ψ(t0) > t0. It is
clear from the problem formulation that the restriction v = u|[t0,ψ(t0)]

of every solution u of (1), (2) to the
interval [t0, ψ(t0)] satisfies the two-point boundary condition

v(t0) = µv(ψ(t0)). (7)

Moreover, a converse statement, in a sense, is true under condition (3). To formulate it in a rigorous
way, we introduce some notation and make the equation setting more specific.

The conditions assumed on the function ψ imply that the inverse function ψ−1 is well defined and the
sequence of numbers . . . < ψ−2(t0) < ψ−1(t0) < t0 < ψ(t0) < ψ2(t0) < . . . is strictly increasing. At this
point, it is natural to make more precise the choice of the interval J on which Equation (1) is studied under
the symmetry condition (3). Namely, we assume that t0 is chosen so that

lim
k→∞

ψ−k(t0) = α−, (8)

lim
k→∞

ψk(t0) = α+ (9)

with |α−|+ |α+| = ∞ and take
J := 〈α−, α+〉, (10)

where “〈” means, respectively, “[” or “(”, depending on whether the corresponding value at the bracket is
finite or not. For example, if ψ : t 7→ t/2 and t0 = −1, then (10) gives J = (−∞, 0].

Thus, we consider Equation (1) on the unbounded interval J of form (10). Due to the properties
mentioned above, J can be represented as the union of the half-open intervals

Ik := [ψk(t0), ψk+1(t0)), k ∈ Z, (11)

if α+ = ∞ and
Ik := (ψk(t0), ψk+1(t0)], k ∈ Z, (12)

if α− = −∞. It is obvious that in both cases, these intervals are mutually disjoint, which justifies the
following notation: for every t ∈ J, put j(t) to be equal to j, where j is such that t ∈ Ij.

In case the domain Č(J) for f in the problem formulation is chosen to be PCσ(J), from now on, we put

σ := {ψk(t0) : k ∈ Z} (13)

in the definition of PCσ(J) appearing in the problem formulation.

Lemma 1. If a continuous function v : Ī0 → R satisfies the two-point boundary condition (7), then the function

v∗(t) := µ−j(t) v
(
ψ−j(t)(t)

)
, t ∈ J, (14)



Symmetry 2019, 11, 1456 4 of 13

has property (2).

Proof. Let v∗ : J → R be defined by (14). Since ψ is increasing, it is clear from (11) that

ψ(Ik) ⊂ Ik+1 (15)

for any k, and hence, for t ∈ I1, (14) yields

v∗(t) = µ−1v(ψ−1(t)) = µ−1v∗(ψ−1(t)).

Arguing by induction, we easily obtain that v∗ satisfies the equality

v∗(t) = µ−k v∗
(
ψ−k(t)

)
, t ∈ Ik, (16)

for every integer k. It follows immediately from (16) that

µv∗(ψ(t)) = µ1−k v∗
(
ψ1−k(t)

)
= v∗(t), t ∈ Ik,

for all k. Since
⋃

k∈Z Ik = J, this means that v∗ satisfies (2) on J.

For any v ∈ C( Ī0), let v∗ : J → R stand for the corresponding function (14). Let C0( Ī0) be the subspace
of C( Ī0) constituted by the functions satisfying condition (7) (here and below, Īk denotes the closure of Ik,
k ∈ Z). The following statement is an immediate consequence of formula (14).

Lemma 2. Let v ∈ C( Ī0). Then v∗ is continuous if and only if v ∈ C0( Ī0). For v ∈ C( Ī0) \ C0( Ī0), the function
v∗ ∈ Č(J) has countably many discontinuities of the first kind at points of set (13).

Lemma 1 is a natural generalization of the corresponding well-known statements for ordinary
differential equations (in particular, on the extension of a periodic solution of an equation with the
right-hand-side periodic in time). The function v∗ extends v : Ī0 → R to J by symmetry and, by Lemma 2,
v∗ is always continuous if v satisfies condition (7). For example, if µ = 1/2, ψ : t 7→ 2t, J = [0, ∞), and
t0 = 1, v∗ is continuous for v(t) = t3 − 2t2 + 2, t ∈ [1, 2) (Figure 1a) and has a jump at each of the points
{2k : k = 0,±1, . . . } for v(t) = t3 − 2t2 + 1, t ∈ [1, 2) (Figure 1b).

(a) (b)

Figure 1. An example of a symmetric extension.
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3. Equation on a Bounded Interval

Define the operator f̃ : C( Ī0)→ L( Ī0) by putting

( f̃ v)(t) := ( f v∗)(t), t ∈ Ī0, (17)

for any v ∈ C( Ī0). Note that since f is well defined on Č(J), the expression in the right-hand side of (17)
makes sense not only for v ∈ C0( Ī0), for which v∗ is continuous, but for any v ∈ C( Ī0).

Lemma 3. If a function v : Ī0 → R is a solution of the equation

v′(t) = ( f̃ v)(t), t ∈ Ī0, (18)

satisfying condition (7), then the function v∗ : J → R is a solution of (1) possessing property (2).

Proof. Let v satisfy (7) and (18). By Lemma 1, the function v∗ is the extension of v to J with the preservation
of symmetry, i.e.,

v∗(t) = µv∗(ψ(t)), t ∈ J. (19)

Let t ∈ I−1. Then formula (14) yields v∗(t) = µv(ψ(t)), and therefore,

v′∗(t) = µψ′(t)v′(ψ(t)). (20)

By (15), ψ(t) ∈ I0 for t from I−1, and it follows from (18) that

v′(ψ(t)) = ( f v∗)(ψ(t)), (21)

whence, by (20),
v′∗(t) = µψ′(t)( f v∗)(ψ(t)), t ∈ I−1. (22)

Since v∗ has property (19), using assumption (3) we obtain from (22) that

v′∗(t) = ( f v∗)(t) (23)

for t ∈ I−1.
Now let t ∈ I1. Then, by (14), we have v∗(t) = µ−1v(ψ−1(t)) and

v′∗(t) =
v′(ψ−1(t))

µψ′(ψ−1(t))
, t ∈ I1. (24)

The denominator in (24) is non-zero almost everywhere because ψ is increasing. Using (15), (18), we find
that ψ−1(t) ∈ I0 and v′(ψ−1(t)) = ( f v∗)(ψ−1(t)), whence, by (24),

µψ′(ψ−1(t)) v′∗(t) = ( f v∗)(ψ−1(t)), t ∈ I1. (25)

On the other hand, in view of assumption (3), we have

( f v∗)(ψ−1(t)) = µψ′(ψ−1(t)) ( f v∗)(t), t ∈ I1. (26)
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Combining (25) with (26), we conclude that (23) holds for t ∈ I1. In a similar manner, by induction with
respect to negative and positive values of k, we show that equality (23) is true for t ∈ Ik for any k, i.e., v∗ is
a solution of (1).

It is worth pointing out that the formulation of Equation (18) on the bounded interval Ī0 is correct and
no initial functions are needed: all the operations with values of u that may appear in the right-hand side
of (18) are well defined since the function is extended by symmetry. For example, if µ = 1/2, ψ : t 7→ 2t,
J = [0, ∞), the operator f appearing in (1) has the form

( f u)(t) = u(τ(t)), t ∈ J, (27)

with a certain τ : J → J, and one needs to compute the values {( f̃ v)(t) : t ∈ [1, 2]} on the function
v(t) = t2 + 2, t ∈ [1, 2], then we substitute into (27) the corresponding function v∗ the graph of which
is presented on Figure 2. We see, in particular, that v∗ is continuous because v satisfies (7). An easy
computation shows that in this case,

( f̃ v)(t) =

{
(τ(t))2 + 2 if τ(t) ∈ I0,

2−3k(τ(t))2 + 21−k if τ(t) ∈ Ik, k = ±1,±2, . . . .

Figure 2. The graph of v∗ for v from the example.

Lemma 4. If f |PCσ(J) is continuous as a mapping from PCσ(J) to Lloc( J̃), f̃ is continuous as a mapping from
C( Ī0) to L( Ī0).

Proof. Let Č(J) = PCσ(J) with σ of form (13). Let {vm : m ≥ 1} ⊂ C( Ī0) and vm → v, m → ∞, in C( Ī0).
Construct the functions v∗ : J → R and vm∗ : J → R, m ≥ 1, according to (14). If t ∈ I−1, then by (15),
ψ(t) ∈ I0 and (14) yields

|vm∗(t)− v∗(t)| = |µ||vm(ψ(t))− vm(ψ(t))| ≤ |µ|max
s∈ Ī0

|vm(s)− v(s)|

for all t ∈ I−1 and m ≥ 1. Similarly, for t ∈ I1, we have ψ−1(t) ∈ I0, and by (14),

|vm∗(t)− v∗(t)| = |µ|−1|vm(ψ
−1(t))− vm(ψ

−1(t))| ≤ |µ|−1 max
s∈ Ī0

|vm(s)− v(s)|
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for all t ∈ I1, m ≥ 1. Continuing by analogy, we find that

sup
t∈Ij

|vm∗(t)− v∗(t)| ≤ |µ|j max
t∈ Ī0

|vm(t)− v(t)| (28)

for all j ∈ Z and m ≥ 1. Therefore,

max
−k≤j≤k

sup
t∈(ψ(t0)

j ,ψ(t0))
j+1

|vm∗(t)− v∗(t)| ≤ max
−k≤j≤k

|µ|j max
t∈ Ī0

|vm(t)− v(t)|

= |µ|k sign(|µ|−1) max
t∈ Ī0

|vm(t)− v(t)| → 0 (29)

as m → ∞ for every k ≥ 1, i.e., limm→∞ vm∗ = v∗ in PCσ(J). The continuity of f : PCσ(J) → Lloc( J̃)
and definition (17) imply that f̃ (vm) = f (vm∗) → f (v∗) = f̃ (v), m → ∞, in Lloc( J̃). Since J̃ is an open
neighborhood of the interval J, it follows that f̃ (v) has no non-integrable singularities on Ī0, and hence
f̃ (v) ∈ C( Ī0).

If Č(J) = L∞
loc(J) and {v, v1, v2, . . . } ⊂ C( Ī0) are as above, then ess supt∈Ik

|vm∗(t)− v∗(t)| can be
estimated using (29), and the same argument can be applied.

Lemmata 1 and 3 allow us to replace the problem of finding a solution u : J → R of (1) with
property (2) by the two-point problem (7) and (18) on the bounded interval Ī0. Lemma 4 ensures that
we are under standard assumptions concerning boundary value problems for first-order functional
differential equations.

The above-mentioned facts are true in particular for the operators involving inner superpositions,
which may have the form

( f u)(t) = h(t, u(τ1(t)), . . . , u(τm(t))), t ∈ J, (30)

where h : J → R is a Carathéodory function and τi : J → J, i = 1, 2, . . . , m, are measurable. In this case, (1)
is an equation with argument deviations, and the procedure of restriction of Equation (1) to the bounded
interval Ī0, in fact, corresponds to the well-known techniques from [5]. The symmetry condition (3) for
operator (30) can be verified, e.g., using the following simple lemma.

Lemma 5. Let there exist integers k1, k2, . . . , km such that

τi ◦ ψ = ψki ◦ τi, i = 1, 2, . . . , m, (31)

and
ψ′(t) h(ψ(t), µ−k1 z1, µ−k2 z2, . . . , µ−km zm) = µ−1h(t, z1, z2, . . . , zm) (32)

for all real z1, . . . , zm and almost every t ∈ J. Then the operator f : Č(J) → Lloc(J) given by (30) satisfies
condition (3).

Proof. The proof is based on assumption (31). Indeed, let u ∈ C(J) be such that (2) holds. Then u(ψ(t)) =
µ−1u(t), t ∈ J, and (31) yields

u(ψki (τi(t))) = µ−1u(ψki−1(τi(t))) = · · · = µ−ki u(τi(t)), t ∈ J, i = 1, 2, . . . , m.
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By virtue of (32),

µ ψ′(t) h(ψ(t), µ−k1 u(τ1(t)), . . . , µ−km u(τm(t))) = h(t, u(τ1(t)), . . . , u(τm(t))),

which in view of the arbitrariness of u with property (2), proves (3).

Lemma 5 allows us to check condition (3) for a class of equations with argument deviations and carry
out the transition from (1) and (2) to (7) and (18). For example, consider the problem

u′(t) = b(t) +
(u(τ1(t)))2ν+1

a(t) + (u(τ2(t)))2ν
, (33)

u(t) = µu(t + µ), t ∈ (−∞, ∞), (34)

where ν > 0 and µ > 0 are constants, a, b are functions integrable on every bounded interval, and such
that a is positive,

a(t + µ) = µ−2νa(t), (35)

b(t + µ) = µ−1b(t) (36)

for all t ∈ (−∞, ∞), and
τi(t) := nit + βi, t ∈ (−∞, ∞), i = 1, 2, (37)

with {n1, n2} ⊂ Z and {β1, β2} ⊂ R.
Define f by (30) with m = 2, h : (t, z1, z2) 7→ b(t) + z2ν+1

1 /(a(t) + z2ν
2 ). Then problem (33) and (34) is

a particular case of (1) and (2) with ψ : t→ t + µ on J = (−∞, ∞) (it is obvious that α− = −∞ and α+ = ∞
in (10) for this case). It is easy to see that functions (37) satisfy condition (31), which means here that

τi(t + µ) = τi(t) + niµ, t ∈ (−∞, ∞),

where n1, n2 are integers. Furthermore, by (35) and (36),

µh(t + µ, µ−1z1, µ−1z2) = µb(t + µ) + µ
z2ν+1

1 µ−2ν−1

a(t + µ) + z2ν
2 µ−2ν

= b(t) + µ
z2ν+1

1 µ−2ν−1

µ−2νa(t) + z2ν
2 µ−2ν

= h(t, z1, z2)

for any t and z1, z2, i.e., h satisfies condition (32) with the given ψ and k1 = 1, k2 = 1. Consequently,
the problem of finding solutions u : R → R of (33) possessing property (34) can be replaced by the
corresponding two-point problem (7) and (18) on a bounded interval of length µ.

4. Existence of a Unique Symmetric Solution

We formulate conditions in terms of the “restriction” operator f̃ given by (17). Consider the case
where the operator f̃ admits the estimate

|( f̃ u)(t)− ( f̃ v)(t) + g1(u− v)(t)| ≤ g0(u− v)(t), t ∈ Ī0, (38)

for all u, v from C( Ī0), where gi : C( Ī0)→ L( Ī0), i = 0, 1, are certain positive linear operators. By a positive
operator, we mean an operator p : C( Ī0) → L( Ī0) such that ess inft∈ Ī0

(pu)(t) ≥ 0 for all u ∈ C( Ī0) such
that mint∈ Ī0

u(t) ≥ 0.
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Theorem 1. Let there exist positive linear operators gi : C( Ī0)→ L( Ī0), i = 0, 1, such that (38) holds for all u, v
from C( Ī0). Let |µ| ≤ 1 and

1− |µ|
|µ| < θ‖g1(1)‖ ≤ |µ| (39)

with a certain θ ∈ (0, 1). In addition, assume that

‖g0(1)‖+ (1− 2θ)‖g1(1)‖ < 1− |µ| (40)

if 0 < θ ≤ 1/2 or

‖g0(1)‖ < 1,
‖g0(1)‖

1− ‖g0(1)‖
− 1− |µ|
|µ| < (2θ − 1)‖g1(1)‖ ≤ |µ| (41)

if 1/2 < θ < 1. Then Equation (1) has a unique solution possessing property (2).

In (39)–(41) and similar relations below, gi(1) stands for the value of gi on the constant function equal
to 1, and ‖·‖ is the norm in L( Ī0).

Theorem 2. Let there exist positive linear operators gi : C( Ī0)→ L( Ī0), i = 0, 1, such that (38) holds for all u, v
from C( Ī0). Let |µ| ≥ 1 and

|µ| − 1 < θ‖g1(1)‖ ≤ 1 (42)

with some θ ∈ (0, 1). In addition, assume that

‖g0(1) + (1− 2θ)g1(1)‖ <
1
|µ| (43)

if 0 < θ ≤ 1/2 or

‖g0(1)‖ <
1
|µ| ,

|µ|
1− |µ|‖g0(1)‖

− 1 < (2θ − 1)‖g1(1)‖ ≤ 1 (44)

if 1/2 < θ < 1. Then Equation (1) has a unique solution possessing property (2).

Condition (38) is satisfied, in particular, if (1) is a linear equation of the form

u′(t) = (p0u)(t)− (p1u)(t) + r(t), t ∈ J, (45)

where pi : Č(J) → Lloc( J̃), i = 0, 1, are positive linear operators such that their restrictions to C(J) are
continuous mappings from C(J) to Lloc( J̃) with some J̃ strictly containing J. In this case, the symmetry
condition holds if r ∈ Lloc( J̃) is such that

µψ′(t)r(ψ(t)) = r(t), t ∈ J, (46)

and
µψ′(t)(piu)(ψ(t)) = (piu)(t), t ∈ J, i = 0, 1, (47)

for any absolutely continuous function u possessing property (2), and Theorems 1 and 2 can be applied
(in fact, p0 = g̃0 and p1 = g̃1 in this case). Other conditions for the existence of symmetric solutions of (45)
are given by the next two statements.
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Theorem 3. Assume (47). If |µ| ≤ 1 and

‖ p̃0(1)‖ < 2, (48)

‖ p̃0(1)‖
2− ‖ p̃0(1)‖

− 1− |µ|
|µ| <

1
2
‖ p̃1(1)‖ ≤ |µ|, (49)

then Equation (45) has a unique solution possessing property (2).

In (48) and (49) and relations (50) and (51) below, p̃i : C( Ī0) → L( Ī0), i = 0, 1, are bounded linear
operators constructed according to (17), and ‖·‖ denotes the norm in L( Ī0).

Theorem 4. Assume (47). If |µ| ≥ 1 and

‖ p̃0(1)‖ <
2
|µ| , (50)

2|µ|
2− |µ|‖ p̃0(1)‖

− 1 <
1
2
‖ p̃1(1)‖ ≤ 1, (51)

then Equation (45) has a unique solution possessing property (2).

Although all the conditions involve the “tilde” versions of the operators, they are verified, due to the
symmetry, essentially in the same way as if the operators were given on C([a, b]) with −∞ < a < b < ∞.
In particular, if (45) is the equation with two measurable argument deviations τi : Jc → Jc, i = 0, 1, with
Jc = [c, ∞), c ∈ R,

u′(t) = a0(t)u(τ0(t))− a1(t)u(τ1(t)) + r(t), t ∈ Jc, (52)

then by Lemma 5, conditions (47) hold when there exist integers k0, k1 such that

τi ◦ ψ = ψki ◦ τi, i = 0, 1, (53)

the function r ∈ Lloc(Jc−ε) (ε > 0) satisfies (46), and the functions ai ∈ Lloc(Jc−ε), i = 0, 1 are such that

ψ′(t) ai(ψ(t)) = µki−1ai(t), t ∈ Jc, i = 0, 1. (54)

Let us choose t0 and c so that t0 ≥ c and limk→∞ ψ−k(t0) = c, limk→∞ ψk(t0) = ∞ (e.g., if ψ : t 7→ αt, where
α > 1, then c = 0 with any t0 > 0). By virtue of Theorems 3 and 4, if ai ≥ 0, i = 0, 1 and assumptions (46),
(53) and (54) hold, then Equation (52) has a unique solution with property (2) provided that the integrals
of a0, a1 over [t0, ψ(t0)] lie within the bounds

∫ ψ(t0)

t0

a0(t)dt < 2,

∫ ψ(t0)
t0

a0(t)dt

2−
∫ ψ(t0)

t0
a0(t)dt

− 1− |µ|
|µ| <

1
2

∫ ψ(t0)

t0

a1(t)dt ≤ |µ|

if |µ| ≤ 1 and

∫ ψ(t0)

t0

a0(t)dt <
2
|µ| ,

2|µ|
2− |µ|

∫ ψ(t0)
t0

a1(t)dt
− 1 <

1
2

∫ ψ(t0)

t0

a1(t)dt ≤ 1

if |µ| > 1. For example, when ψ : t 7→ αt (α > 1), conditions (54) are satisfied if 1 6∈ {k0, k1}, µ > 1, and
ai : t 7→ citmi , mi = (ki − 1) ln µ

ln α − 1, ci ≥ 0, i = 0, 1.
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5. Proofs

We need auxiliary propositions based on the results of [8,12,13]. Consider the two-point boundary
value problem

v′(t) = ( f̃ v)(t), t ∈ Ī0, (55)

v(t0) = µv(ψ(t0)), (56)

where f̃ is defined according to (17) and Ī0 is as in (11) and (12).
A solution of Equation (55) is defined as an absolutely continuous function satisfying (55) almost

everywhere on Ī0.
Fix the value of t0, and let the set S be defined as follows: p ∈ S if and only if p : C( Ī0)→ L( Ī0) is a

bounded linear operator such that the equation

v′(t) = (pv)(t) + q(t), t ∈ Ī0, (57)

v(t0) = µv(ψ(t0)) (58)

has a unique solution v in C( Ī0) for any q ∈ L( Ī0), and mint∈ Ī0
v(t) ≥ 0 whenever ess inft∈ Ī0

q(t) ≥ 0.

Proposition 1 ([12]). Let there exist positive linear operators gi : C( Ī0)→ L( Ī0), i = 0, 1, such that (38) holds for
all u, v from C( Ī0). If, in addition, the inclusions

g0 + (1− 2θ)g1 ∈ S , −θg1 ∈ S (59)

hold with some constant θ ∈ (0, 1), then problem (55) and (56) is uniquely solvable.

Proposition 2 ([13]). Assume that p : C( Ī0)→ L( Ī0) is a linear operator of the form

p = p0 − p1, (60)

where pi : C( Ī0)→ L( Ī0), i = 0, 1, are positive linear operators such that

p0 ∈ S ,
1
2
(p0 − p1) ∈ S . (61)

Then problem (57) and (58) is uniquely solvable for any q ∈ L( Ī0).

We also need the following statements that are obtained from results of the work [8].

Proposition 3. Let gi : C( Ī0) → L( Ī0), i = 0, 1, be positive linear operators. Let |µ| ≤ 1 and (39) holds with
some θ ∈ (0, 1). In addition, assume (40) if 0 < θ ≤ 1/2 or (41) in the case where 1/2 < θ < 1. Then
inclusions (59) hold.

Proposition 4. Let gi : C( Ī0)→ L( Ī0), i = 0, 1, be positive linear operators. Let |µ| ≥ 1 and (42) holds with some
θ ∈ (0, 1). In addition, assume (43) if 0 < θ ≤ 1/2 or (44) if 1/2 < θ < 1. Then inclusions (59) hold.
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Propositions 3 and 4 are consequences of Theorems 2.4 and 2.8 from [8], which provide conditions
guaranteeing the positivity of the corresponding Green’s operator for the two-point problem

u′(t) = (l0u)(t)− (l1u)(t) + q(t), t ∈ [a, b], (62)

λu(a) + µu(b) = c, (63)

with q ∈ L([a, b]), positive li : C([a, b]) → L([a, b]), i = 0, 1, and −∞ < a < b < ∞. In our case, the set S
corresponds to V+

t0,ψ(t0)
(1, µ) from [8].

Let |µ| ≤ 1. Then, according to [8] (Theorem 2.4), l0 − l1 ∈ S provided that ‖l0(1)‖ < 1 and
‖l0(1)‖/(1− ‖l0(1)‖)− |µ|−1(1− |µ|) < ‖l1(1)‖ ≤ |µ|. The first operator in (59) is positive if θ ∈ (0, 1/2],
and the above formulae with zero l1 yield ‖g0(1) + (1− 2θ)g1(1)‖ < 1 and

‖g0(1) + (1− 2θ)g1(1)‖
1− ‖g0(1) + (1− 2θ)g1(1)‖

<
1− |µ|
|µ| ,

which means that ‖g0(1) + (1− 2θ)g1(1)‖ < 1− |µ|. Since the norm in L( Ī0) is additive on non-negative
functions, we get (43). For θ ∈ (1/2, 1), representing the first mapping from (59) in the form g0 + (1−
2θ)g1 = g0 − |1− 2θ|g1, we apply the formulae mentioned with l0 = g0, l1 = |1− 2θ|g1, and get (44).
Finally, condition (42) follows from the above inequalities with l0 = 0, l1 = θg1 and ensures the second
inclusion in (59). Proposition 4 is obtained from [8] (Theorem 2.8) in a similar way.

In order to prove Theorem 1, we note that the assumptions made on f (and the continuity of g0

and g1 from condition (38) guarantee that f̃ : C( Ī0) → L( Ī0) is continuous. It is sufficient to establish
the solvability of the two-point problem (55) and (56). Let |µ| ≤ 1. By Proposition 1 and (55) and (56)
is solvable if one can specify some θ, 0 < θ < 1, such that g0 and g1 from (38) satisfy conditions (59).
According to Proposition 3, their fulfillment is a consequence of assumptions (40) and (42). The case
|µ| ≥ 1 is treated similarly using Propositions 1 and 4.

Theorems 3 and 4 are obtained from the following statement.

Proposition 5. Let pi : C( Ī0)→ L( Ī0), i = 0, 1, be positive linear operators. Assume that either |µ| ≤ 1 and (48)
and (49) hold or |µ| ≥ 1 and (50) and (51) hold. Then inclusions (61) are true.

Proposition 5 is proved by applying the above-mentioned Theorems 2.4 and 2.8 of [8] to the operator
(1/2) p̃0 − (1/2) p̃1 on C([t0, ψ(t0)]). Note that under our assumptions, p̃0 and p̃1 constructed according to
(17) are bounded linear operators acting from C( Ī0) to L( Ī0). When the validity of (61) is established, the
assertions of Theorems 3 and 4 follow from Proposition 2.
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