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A HELLY TYPE THEOREM IN THE SETTING OF BANACH
SPACES

MILOSLAV DUCHON

ABSTRACT. There is given an extension of the classical Helly and Helly-
Bray theorems to functions with values in Banach spaces. An application
is given to a moment problem. From this, a representation theorem for
compact mappings of the space of continuous functions into a Banach
space is derived.

1. INTRODUCTION

Helly’s theorem had been of some importance a long time above all in the
probability theory in connection with a problem of moments of distributions.
Recall that in this connection, real-valued nondecreasing functions f on the
interval [a,b] of the real line are considered and that the following facts are
true.

o (1) (First Helly’s theorem) Given a uniformly bounded sequence (f,,) of
real-valued nondecreasing functions, there exists a subsequence (fn,)
of (f») converging to a real-valued nondecreasing function f on [a, b].

o (2) (Second Helly’s theorem) Given a sequence ( f,,) of real-valued non-
decreasing functions on [a, b], converging to a real-valued nondecreasing
function f, then, for every continuous function g on [a, b], we have

b

b
tim [ g(t) dfa(t) = / o(t) df (1),

n— oo a

We extend these theorems to normed space valued functions satisfying some
compactness conditions. Then an application to a certain moment problem
in Banach spaces is given. From this, as an application, we obtain a well-
known representation theorem for compact mappings of the space of continuous
functions into a Banach space. It can be shown that moment problem theorem
is equivalent to a representation theorem.

2. HELLY AND HELLY-BRAY THEOREMS

Let X be a Banach space and ¢ a function on an interval [a, b] with values in
X. We denote by X’ the topological dual of X. We recall now some definitions

and facts (see [5]),(see also [2]).
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Definition 1. We will say that g has bounded semi-variation if the set
Vo=1{> ajlg(t;) —g(t;1) | k€N a=ty <ty <...<tp=bloy| <1}

is a bounded set in X.

Proposition 1. A function g has bounded semi-variation if and only
if elements of the set {z' o g | 2’ € X' ||2'|| < 1} have uniformly bounded
variations.

Proof. a) Let us suppose that g has bounded semi-variation and let ||2/|] < 1.
For any division a =ty < t; < ... < t;; = b of interval [a, b] and for any j, there
exists a; such that o] = 1 and |2'(g(t; — g(tj—1))| = o2’ (g(t; — g(tj—1)). It
follows that

ZW (t; —g(tj-1))| =2’ ZO‘J g(tj-1))

< |’ HKSK

where K is a bound for the norm of elements of V,. b) We now suppose that
the elements of the set {2/ o g | 2’ € X', ||2’|| < 1} have uniformly bounded
variations. We have

k k
> ai(g(t;) = g(ti-1)| = sup | | Y a;lgt;) —g(t;-1))
j=1 [l=’]|<1 j=1
and
Z% gti-)) || =D ey’ (g(t;) — g(tj-1))
j=1
k
<3 2 (g(t) — glt,-0))]
j=1
and the last sum is bounded by a constant independent of z’. O

The following definitions are rather classical. We recall them for sake of
completeness.

Definition 2. We will say that a real-valued function f defined on interval
[a, b] has a Riemann-Stieltjes integral with respect to g if there exists an element
A € X such that for any € > 0, there exists a § > 0 such that for any division
{to,t1,...,tx},a = to < t1 < ... < tx, = b of the interval [a,b] such that
|t; —t;—1| < 0, and for any choice of s; with t;_; < s; < t; we have

k
=D Fs)(aty) — ()| < e

In that case, the element A will be unique and denoted by [ f dg. We will
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denote by ¢(D) the maximum of |t; —¢;_4].

Definition 3. We will call a repartition of points in the interval [a,b] a
division {tg,t1,...,t,} with
a=tog<t;<...<tp=b
and a choice of points (s;) such that ¢t,_1 < s; <t;for 0 < j<k. IfDisa

repartition of points in the interval [a, b], then we define
k
sp =Y F(s;)alt) — alt;1).
j=1

Proposition 2. If f is a continuous real-valued function defined on [a, ]
and if g : [a,b] — X has bounded semi-variation, then the Riemann-Stieltjes
integral [ f dg exists.

Proof. (see [5]) By continuity of f, for fixed € > 0, there exists § > 0 such
that [t —t'| <d=|f(t) — fF(t)] <e.

Let D and D’ be two repartitions of points in the interval [a,b] such that
D is a refinement of D" and ¢(D) < §. If D is defined by points ¢;,s; and D’
by points t,., s]., for each j, the interval [t;_1,¢;] is included in some interval

[t _q,t0]. II:’t}:E;t case we let s = s;.. We have
k
sp =Y fs;)(g(t;) — g(tj-1))
j=1

and

K k

spr = f(s)g(t) = g(ti_1)) = D F(s])(a(t;) = g(tj-1))-
r=1 j=1

It follows that
k
Isp = sprll = 1Y _(f(s;) = F(s])(g(t;) — g(ti—1))|| < eK
j=1

which shows that the net (sp)pep is Cauchy in X. Its limit obviously satisfies
the condition of the Riemann-Stieltjes integral. (|

Definition 4. We will say that g has compact semi-variation if ¢ has
bounded semi-variation and if the set Vj is included in a compact set W of X.

It is clear that, when g has compact semi-variation, the compact set W may
be supposed to be absolutely convex.

Moreover, for any continuous function f : [a,b] — R, the net (sp)pep
defined in the proof of the Proposition 2 is such that sp € ||f||V;. It follows
that [ fdge|f| WifV, CW.

Proposition 3. IfV, C W, then ¢([a,b]) C W + g(a).
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Proof. Clear. O

Definition 5. A sequence (g, )nen is uniformly of bounded (resp. compact)
semi-variation if there exists a bounded (resp. compact) set containing Vj, for
any n.

The following proposition is proved in the same way as Proposition 1.

Proposition 4. Elements of the sequence (g, )nen are uniformly of bounded
semi-variation if and only if the elements of the set {2’ o g, | ||2'|| < 1,n € N}
have uniformly bounded variations.

Theorem 6. Let X be a Banach space and (g, )nen a sequence of functions
from [a,b] into X such that

a) the sequence (gn(a))nen Is relatively compact,

b) (gn)nen is uniformly of compact semi-variation.

Then there exists a subsequence of the sequence (g,)nen converging to a
function g : [a,b] — X of compact semi-variation with the same compact
subset as the sequence (gn)nen-

Proof. As each function of the sequence (g )nen is of compact semivariation,
by Proposition 3, these functions have separable range. So, we may suppose,
without lost of generality, that the space X is separable. In that case, we can
choose a total sequence (z})ren in the dual space X’'. By the classical Helly’s
first theorem (see [8],[9]), and using the classical diagonal process, we can pick
a subsequence (gy,)ien of the sequence (gp)nen such that for all k& € N, the
sequence (7, © gn, (t))ien converges to some g, (t) for every ¢ € [a, b].

For each t € [a, b], the sequence (gn, (t))ien is relatively compact, so it has a
subsequence converging to some element. Let us denote such an element by g;.

As the sequence (27, 0gn, (t))ien converges to g, (t), we have g, (t) = x}.(g¢)-
Since the sequence (z})ren is total, the sequence (gy,(t))ien converges to g:
which we shall write g(¢). This defines the limit function g. Let us denote by
W a compact set containing V;, for each n. As 22:1 a;(g(t;) —g(tj—1)) is the

limit of (22:1 @ (gn; (t5) = gn, (tjfl))) AL have V;, C W which shows that
i€

g is of compact semivariation with the same compact subset as the sequence

(9n)nen- O

Theorem 7 (Helly-Bray Theorem). If the sequence (g, )nen is uniformly of
compact semi-variation, then there exists a subsequence (gn, ) of (gn) converg-
ing on a given dense subset D of [a, b] to a function g of compact semi-variation,
such that for any continuous function f : [a,b] — R, we have

ti [ 1 dgn, = [ 1dg
n— 00
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Proof. Without lost of generality, we may suppose that g,(a) = 0. From
theorem 6, there exists a subsequence (g, ) of (¢gn) converging on D to a func-
tion g of compact semi-variation. By Proposition 3, [ f dg,, and [ f dg exist
and are elements of || f||W for some compact set W. It follows that the sequence
( Ir dgnk)k; en has a converging subsequence. As

kllngox’(/f dgn,) :x’(/fdg)

by the classical Helly-Bray theorem, the subsequence of

(from)..,

has to converge to [ f dg.

3. APPLICATION TO MOMENT PROBLEM

Definition 8. A sequence (ai)ren in a Banach space X is a moment
sequence if there exists a function f :[0,1] — X, with bounded semivariation,
such that for all k£, we have :

1
ar, :/ tk df (t).
0

Definition 9. We say that a sequence (ay)ken in a Banach space X is
completely compact if there exists a compact set W in X such that

Z Crap A" Fap e W n=0,1,...

k=0

where |a}| <1 are complex numbers.

In that case, it is obvious that there exists a constant M such that

n
1> ChapA"Fay|| < M, forn € N.
k=0

Theorem 10. (Moment theorem)

A sequence (ay)ren in a Banach space X is the moment sequence of a func-
tion f of a compact semivariation if and only if the sequence (ar)ken 1S com-
pletely compact.

Proof. Let us suppose that f is of compact semivariation, and denote by W
the compact set associated to f. If the sequence (ay) is the moment sequence of
f, then the sequence (ay) is completely compact. In fact, if we define z(™ (t) =
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S h_o CRath (1 —¢)"=* for a fixed family of complex numbers (af) such that
laf] < 1 then by the remark after definition 4, we have

| _| Zokantk t)nfk'| <1

and
n

1
> CrapArFay = / " (t)df (t) € W.
0

k=0

Conversely, for n = 1,2, ..., let us define a function f, :[0,1] = X by the

formulas :
el m—1 m
n A" for ¢ ,—
falt Z ( > a; orte ( - n)

Jj=

m

m n ,
n\— )= AT '7nO:07n1: .
A =3 (1) A0, £u(0) =0, (1) = ag
=0
The functions f,, are uniformly of compact semivariation. This is an easy

consequence of the fact that the sequence (ay)ren is completely compact. If
we define the operator A on the space of polynomials by

A(Z Cjtj) = Z Cja;
7=0 j=0

it is clear that the Bernstein polynomials

Bn(t) = z::o (;L) (i)k (1 — )i

J

verify
1
A(B,L,k):/ th df,(t).
0

Using Theorem 6, we can choose a subsequence (fn,)ien of (f,) and a function
f of compact semivariation such that (fy,(t))ien converges to f(t) at each
continuity point ¢ €]0, 1 of f and for ¢ = 0 and ¢ = 1. By Theorem 7, for every
k, we have :

1 1
lim [ t*df,,(t) = / thdar),  for o(X, X).
0 0

i—00

We now show that lim,_, . A(Bg,») = aj for the norm topology of X, and
the conclusion will follow. By classical algebraic computations (see [10]), it is
easy to show that agp = A(By,,) and that

a = Z 2 (21]2111))( )An a;.
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Consequently, we obtain :

=) =3 (R (1)) (1) s

Let y = 4 and observe that

n

GG —-1) ... (G —k+1) (j)k_kl—[lny—'i v

nin—1)...(n—k+1) \n

It follows that, given £ > 0, there exists ng such that

G- G-k+1) ()"
nn—1)...(n—k+1) < )

<eg

n

for n > ng and

S (- () ()

j=k
k k
< <f) laol.
n

Now, it is easy to conclude that if n is large enough we have

<e

for n > ng It is also clear that

SHIORS

=0

llar. = A(Br.n)|| < 2¢llacl],

which proves the theorem. O

We obtained our moment theorem only with the help of an “Helly’s theo-
rem”, not a representation theorem of a compact operator, see, e. g., ([11]). We
conclude this paper by deducing a representation theorem for compact operator
on C[0,1] into X from our moment problem theorem.

Theorem 11 (Representation theorem). Every compact linear operator L
on C([a, B],R), with values in a Banach space X, is representable in the form

B
L(g) = / olt) df (1),

where f is a function of compact semivariation from [a, (] into X.
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Proof. 1t is clear that it suffices to prove the result for the interval [0, 1]. The
sequence (ax)ren defined by the formula ap = L(t*) is completely compact. In
fact, we have

n

Y ChapAnFay = Z (?) alL(tF(1 — )"k

n
k=0 =0

=I(

=

(;‘) alth(1—t)" k) e w

<.
(=}

W being a compact set. By Theorem 7, there exists a f of compact semivari-
ation such that

L(tF) = /01 t* df (t)

and, by Weierstrass theorem, this equality extends to every continuous func-
tion. We recall that a compact mapping from a Banach space into a normed
vector space is automatically continuous. (|

4. EXAMPLE

The following example shows that we may not omit in Helly theorem the
first condition concerning (weak) compactness. Take X = ¢*, [a,b] = [0, 1]. Let

e, denote the n-th unit vector and define g,(t) = te,. Clearly g, (0) = 0 for
all n. Also the variation of each g, is 1. For each n the set V, is contained in
the unit ball of ¢! which is not (weakly) compact. Now clearly no subsequence
of gn(t) converges if ¢t > 0. Define the linear function linjy 1) as lingq)(t) =t
for t € [0,1]. Then g, (t) = linj1)(t)en = te, for t € [0,1], so gn = linjgqjen :
[0,1] — £

We have

lgn@®]ler =t,n=1,2,...,

for every t € [0, 1].

Using the following well-known result ([7], p. 282) stating that a bounded
subset C of ¢! is strongly relatively compact if and only if

lim sup D | =0,

N0 e=(g;)CC

i=n
it is easy to see that the set C' = {g,,(t) | t € [0,1],n = 1,2, ...} is not strongly
relatively compact. and

9n(t) = gni(t),i=1,2,...
But
gll(t) = (t70707~.-)ag22(t) = (O,t,O,.. )7933(t) = (0,0,t,. )7
Further

Z gnz(t) =t
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oo
Z g(n+k),i(t) =t
i=n+k
Hence

oo
Jim sup D gni(1)] =t
=n
Take now ¢ > 0.
As the n-th component is the only non zero component of g, (t) which is

equal to t, we have

oo
lim Sgp;n |gni(t)] = t.

For t > 0 the required condition is not satisfied. (see [7]).
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