Loop Lemma in MV-algebra Pastings

Ferdinand CHOVANEC and Mária JUREČKOVÁ
Department of Natural Sciences, Academy of Armed Forces
P. O. BOX 45, SK-031 01 Liptovský Mikuláš
Slovakia
E-mail: chovanec@aoslm.sk; jureckova@aoslm.sk

A method of a construction of quantum logics (orthomodular posets and orthomodular lattices) making use of the pasting of Boolean algebras was originally suggested by Greechie in 1971 [4]. These quantum logics are called Greechie logics. In Greechie logics, Boolean algebras generate blocks with the intersection of each pair of blocks containing at most one atom. Such system of Boolean algebras is called almost disjoint. One of useful tools in order to construct interesting orthomodular posets and orthomodular lattices is Greechie's Loop Lemma. Loop Lemma gives the necessary and sufficient conditions for a Boolean algebra pasting to be an orthomodular lattice.

Later the method of the pasting of Boolean algebras was generalized by Dichtl [3]. Dichtl has succeeded in obtaining characterizations of orthomodular posets and orthomodular lattices under assumptions more general than those of the Loop Lemma.

Riečanová [5] proved that every difference lattice is a set-theoretical union of maximal sub-D-lattices of pairwise compatible elements, i. e. maximal sub-MV-algebras, called blocks.

In [1] was suggested a method of a construction of difference posets [2] by the MValgebra pasting. In the present paper we give some re-formulations of the basic notions introduced in [1] and we give a considerable generalization of the Loop Lemma.

References

[1] CHOVANEC, F., JUREČKOVÁ, M.: MV-algebra Pasting, Inter. J. Theor. Phys. 42 (2003), 1913 - 1926.
[2] KÔPKA, F., CHOVANEC, F.: D-posets. Mathematica Slovaca, 44 (1994), 21-34.
[3] DICHTL, M.: Astroids and pastings, Algebra Universalis 18 (1984), $380-385$.
[4] GREECHIE, R.J.: Orthomodular lattices admitting no states, J. Combinat. Theory 10 (1971), 119 - 132.
[5] RIEČANOVÁ, Z: Generalization of blocks for D-lattices and lattice ordered effect algebras, Inter. J. Theor. Phys. 39 (2000), 231 - 237.

