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We study the specific role played by superposition and entangled states in a quantum computation,
by elaborating an entangled spin model developed within the hidden measurement approach of quantum
mechanics [1, 2, 3]. For the individual qubits we use a sphere model representation, which is a gener-
alization of the Bloch sphere representation, such that also the collapse and noncollapse measurements
are represented [4]. Using the Schmidt diagonal form [5], we show that an arbitrary tensor product state
representing two entangled qubits can be described in a complete way by a specific internal constraint
between the ray or density states of the two qubits, which describes the behavior of the state of one of
the spins if measurements are executed on the other spin. Since any n-qubit unitary operation can be
decomposed in two-qubit gates and unary operations [6], ‘understanding’ two qubit entanglement con-
tributes to understanding the role of n-qubit entanglement in quantum computation. We illustrate our
approach on Deutsch’s quantum algorithm for two qubits which determines in a single run whether a
two-valued function on a domain containing two points is balanced or constant [7]. One of the advantages
of the two qubit case besides its relative simplicity is that it allows for a nice geometrical representa-
tion of entanglement [8], resulting in a more intuitive grasp of what’s going on in a two-qubit quantum
computation.
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