abstract to QSA2006 Malta LOGICS of *J*-PROJECTIONS of TYPE (*B*). Marjan Matvejchuk ¹ and Anna Ionova ²

Let H be a complex Hilbert space. Fix a selfadjoint symmetry operator J $(J = J^* = J^{-1}, J \neq \pm I)$. The operator $A^{\#} := JA^*J$ is called to be J-adjoint to A. Note, A is J-self-adjoint (J-positive, J-negative) iff JA - self-adjoint (positive, negative, respectively). Let $\mathcal{P} := \{p \in B(H) : p^2 = p = p^{\#}\}$. Any $p \in \mathcal{P}$ is said to be J-projection. Let \mathcal{P}^+ (\mathcal{P}^-) be the set of all J-positive (J-negative, respectively) J-projections. Assume that there are orthogonal projections P, Q such that $P + Q = I, Q^{\#} = P$. Put $\mathcal{J} := P - Q$. A von Neumann algebra \mathcal{A} in H is said to be a von Neumann J-algebra of type (B) if $A \in \mathcal{A}$ implies $A^{\#} \in \mathcal{A}$ and if P, Q are central projections in \mathcal{A} . The logic $\mathcal{P}^{\mathcal{A}} := \mathcal{A} \cap \mathcal{P}$ is called to be the logic of type (B) and any J-projection from $\mathcal{P}^{\mathcal{A}}$ is said to be a J-projection \mathcal{R} if $\mathcal{R} = R + \mathcal{J}R\mathcal{J}$ and subspaces RH, $\mathcal{J}RH$ are mutually orthogonal. Let F^+ be the cover projection of P^+RP^+ . Here $P^+ := (1/2)(I + J)$ and $P^- := I - P^+$.

The aim of the report *J*-projections from \mathcal{A} are studied for the first time. Let \mathcal{A} be a von Neumann *J*-algebra of type (B). Then $\mathcal{P}^{\mathcal{A}} \cap \mathcal{P}^+ = \{0\} = \mathcal{P}^{\mathcal{A}} \cap \mathcal{P}^-$. By analogy with \mathcal{P} if dim $H = \infty$ then the logic $\mathcal{P}^{\mathcal{A}}$ is not a σ -logic. The function $\sigma(P) := \mathcal{J}P\mathcal{J}$ is an outomorphism of \mathcal{P} , for wich $\mathcal{J}\mathcal{P}^+\mathcal{J} = \mathcal{P}^-$. In particular, $\mathcal{J}P^+\mathcal{J} = P^-$. Let \mathcal{L}_P^A be the set of all projections from $\mathcal{P}\mathcal{A}P$. Then $\mathcal{P}^{\mathcal{A}} = \{q + Jq^*J : q \in \mathcal{L}_P^A\}$. Let $q, p \in \mathcal{P}$ and let q be a J-projection of type (B). Then $p \leq q$ iff $\mathcal{J}p\mathcal{J} \leq q$.

Theorem 1. Let R be a J-projection. The following conditions are equivalent: 1) R has type (B); 2) there exists a (unique!) generator to R; 3) $R = \mathcal{J}R\mathcal{J}$; 4) QRP = PRQ = 0.

Remark 1. 1) From $R \in \mathcal{P}^+$ ($\in \mathcal{P}^-$) and PRQ = 0 (QRP = 0) it is R = 0 hold. 2) Let dim $H \ge 4$. Then there is $R \in \mathcal{P}$ such that PRQ = 0, $QRP \ne 0$. 3) If $R \in \mathcal{P}$ and PRQ = 0, then PRP and QRQ are projections.

Theorem 2. Let $R \in \mathcal{P}^+$ and let $P^-RP^+ = U|P^-RP^+|$ be the polar decomposition for P^-RP^+ . Then R is a generator iff subspaces $\mathcal{J}F^+H$ and UH are mutually orthogonal.

¹Kazan State University, 420043, Kazan, Czehov str, 31, Apartm. 109, Russia; E-mail: Marjan.Matvejchuk@ksu.ru

²Ulyanovsk State Pedagogik University, 432063, Ulyanovsk, Tolstogo str. 87, Apartm. 33, Russia