abstract to QSA2006 Malta
LOGICS of J-PROJECTIONS of TYPE (B).
Marjan Matvejchuk ${ }^{1}$ and Anna Ionova ${ }^{2}$
Let H be a complex Hilbert space. Fix a selfadjoint symmetry operator J $\left(J=J^{*}=J^{-1}, J \neq \pm I\right)$. The operator $A^{\#}:=J A^{*} J$ is called to be J-adjoint to A. Note, A is J-self-adjoint (J-positive, J-negative) iff $J A$-self-adjoint (positive, negative, respectively). Let $\mathcal{P}:=\left\{p \in B(H): p^{2}=p=p^{\#}\right\}$. Any $p \in \mathcal{P}$ is said to be J-projection. Let $\mathcal{P}^{+}\left(\mathcal{P}^{-}\right)$be the set of all J-positive (J-negative, respectively) J-projections. Assume that there are orthogonal projections P, Q such that $P+Q=I, Q^{\#}=P$. Put $\mathcal{J}:=P-Q$. A von Neumann algebra \mathcal{A} in H is said to be a von Neumann J-algebra of type (B) if $A \in \mathcal{A}$ implies $A^{\#} \in \mathcal{A}$ and if P, Q are central projections in \mathcal{A}. The logic $\mathcal{P}^{\mathcal{A}}:=\mathcal{A} \cap \mathcal{P}$ is called to be the logic of type (B) and any J-projection from $\mathcal{P}^{\mathcal{A}}$ is said to be a J-projection of type (B). A J-projection $R \in \mathcal{P}^{+}$is said to be a generator to a J-projection \mathcal{R} if $\mathcal{R}=R+\mathcal{J} R \mathcal{J}$ and subspaces $R H$, $\mathcal{J} R H$ are mutually orthogonal. Let F^{+}be the cover projection of $P^{+} R P^{+}$. Here $P^{+}:=(1 / 2)(I+J)$ and $P^{-}:=I-P^{+}$.

The aim of the report J-projections from \mathcal{A} are studied for the first time.
Let \mathcal{A} be a von Neumann J-algebra of type (B). Then $\mathcal{P}^{\mathcal{A}} \cap \mathcal{P}^{+}=\{0\}=$ $\mathcal{P}^{\mathcal{A}} \cap \mathcal{P}^{-}$. By analogy with \mathcal{P} if $\operatorname{dim} H=\infty$ then the logic $\mathcal{P}^{\mathcal{A}}$ is not a σ-logic. The function $\sigma(P):=\mathcal{J} P \mathcal{J}$ is an outomorphism of \mathcal{P}, for wich $\mathcal{J}^{+}{ }^{+} \mathcal{J}=$ \mathcal{P}^{-}. In particular, $\mathcal{J} P^{+} \mathcal{J}=P^{-}$. Let $\mathcal{L}_{P}^{\mathcal{A}}$ be the set of all projections from $P \mathcal{A} P$. Then $\mathcal{P}^{\mathcal{A}}=\left\{q+J q^{*} J: q \in \mathcal{L}_{P}^{\mathcal{A}}\right\}$. Let $q, p \in \mathcal{P}$ and let q be a J-projection of type (B). Then $p \leq q$ iff $\mathcal{J} p \mathcal{J} \leq q$.

Theorem 1. Let R be a J-projection. The following conditions are equivalent: 1) R has type (B; ; 2) there exists a (unique!) generator to R; 3) $R=\mathcal{J} R \mathcal{J} ; 4) Q R P=P R Q=0$.

Remark 1. 1) From $R \in \mathcal{P}^{+}\left(\in \mathcal{P}^{-}\right)$and $P R Q=0(Q R P=0)$ it is $R=0$ hold. 2) Let $\operatorname{dim} H \geq 4$. Then there is $R \in \mathcal{P}$ such that $P R Q=0$, $Q R P \neq 0.3)$ If $R \in \mathcal{P}$ and $P R Q=0$, then $P R P$ and $Q R Q$ are projections.

Theorem 2. Let $R \in \mathcal{P}^{+}$and let $P^{-} R P^{+}=U\left|P^{-} R P^{+}\right|$be the polar decomposition for $P^{-} R P^{+}$. Then R is a generator iff subspaces $\mathcal{J} F^{+} H$ and UH are mutually orthogonal.

[^0]
[^0]: ${ }^{1}$ Kazan State University, 420043, Kazan, Czehov str, 31, Apartm. 109, Russia; E-mail: Marjan.Matvejchuk@ksu.ru
 ${ }^{2}$ Ulyanovsk State Pedagogik University, 432063, Ulyanovsk, Tolstogo str. 87, Apartm. 33, Russia

