A CHARACTERIZATION OF QUANTIC QUANTIFIERS IN SEVERAL LATTICES

LEOPOLDO ROMÁN

Definition 1. A bounded lattice $L = (L, \lor, \land, 0, 1)$ is an ortholattice if there exists a unary operation $\bot : L \to L$ satisfying the conditions:

- (1) $a^{\perp\perp} = a$.
 - (2) $a, b \in L$: $(a \lor b)^{\perp} = a^{\perp} \land b^{\perp}$.

(3)
$$a \lor a^{\perp} = 1.$$

a, b being arbitrary elements of L.

If L is an ortholattice, we shall say L is an orthomodular lattice if it satisfies the following weak modularity property: Given any $a, b \in L$ with $a \leq b$ we have: $b = a \lor (a^{\perp} \land b)$ (equivalently, $a = (a \lor b^{\perp}) \land b$).

Definition 2. Let L be an arbitrary orthomodular lattice. By a quantic quantifier F on L we understand a function $F: L \to L$ satisfying the following conditions:

- (1) F(0) = 0.
- (2) For any $a \in L$, we have: $a \leq F(a)$.
- (3) If $a, b \in L$ then F(a&F(b)) = F(a)&F(b).

Theorem 1. Let L be an arbitrary orthomodular lattice and F a quantic quantifier on L. Then F and F(L) satisfy:

- (1) F(1) = 1.
- (2) F is idempotent.
- (3) F is a functor.
- (4) $F((F(a))^{\perp}) = F(a)^{\perp}$.
- (5) F is a projection in S(L).
- (6) For every $a \in L$ the set $[a, -) \cap F(L)$ has a least element. Namely, F(a). In particular, F(L) is reflective in L; i.e., the inclusion $I : F(L) \to L$ has a left adjoint, denoted by R.
- (7) F(L), the set of the fixed points of L is a suborthomodular lattice of L.

Definition 3. An orthoposet $(L, \bot, 0, 1)$ is a bounded poset satisfying:

- (1) For any $a \in L$ we have: $a^{\perp \perp} = a$.
- (2) If $a \leq b$ in L then $b^{\perp} \leq a^{\perp}$.
- (3) For any $a \in L$ $a \wedge a^{\perp} = 0$.
- (4) For any $a \in L$ $a \wedge a^{\perp} = 0$.
- (5) For any $a \in L$ $a \lor a^{\perp} = 1$.

We can formulate now the following:

Theorem 2. Let (L, 0, 1) be a bounded poset. Suppose we have two families of endofunctors $\{F(-, x) : L \to L\}_{x \in L}$, $\{H(x, -) : L \to L\}_{x \in L}$ satisfying the following conditions:

- (1) For any $a \in L$, F(-, a) is left adjoint to H(a, -).
- (2) If $x \le y$ then $F(-, y) \circ F(-, x) = F(-, x)$.
- (3) For any $x \in L$, if $H(x, 0) = x^{\perp}$ then $H(H(x, 0), 0) = x^{\perp \perp} \leq x$.
- (4) For any $x, y \in L$, $F(F(y, x)^{\perp}, x) \leq y^{\perp}$.
- (5) If $x \le y$ then $x = F(x, y), y = H(x^{\perp}, y)$.
- (6) For any $x \in L$ we have $F(1, x) \leq x$.

then L is an orthomodular lattice. Conversely, any orthomodular lattice, has two families of endofunctors satisfying the last six conditions.

Theorem 3. The category of orthomodular lattices, denoted by OML, is equivalent to the category of bounded posets (P, 0, 1) with two families of endofunctors, parametrized by elements $a \in P$. Denoted by PosAdj, satisfying the conditions of theorem 2.

Similar results can be proved for Heyting Algebras and right-sided, idempotent quantales.

INSTITUTO DE MATEMÁTICAS, UNAM, AREA DE LA INVESTIGACIÓN CIENTÍFICA, CIUDAD UNIVERSITARIA, 04510, MÉXICO, D.F. *E-mail address*: leopoldo@matem.unam.mx