Covariance and quantum logic

Alexander Wilce

Department of Mathematics Susquehanna University

Abstract

Considering the fundamental role symmetry plays throughout physics, it is remarkable how little attention has been paid to it in the quantum-logical literature (exceptions include [1] and [2]). In this talk, I'll discuss G-test spaces – that is, test spaces hosting an action by a group G – and their logics. In particular, we'll look at G-test spaces having the property that (i) all tests have a common cardinality, and (ii) any bijection between two tests is implemented by an element of G. Example: the frame manual of a Hilbert space, with Gthe corresponding unitary group. After stating some general results and exhibiting various specimens (some of them exotic), I'll present a canonical construction whereby a test space, symmetric under the action of a group H, can be enlarged to support an action by a larger group. This construction includes, as a special case, the induced test spaces constructed in [1] and [3], and also, in the case where the initial test space is classical, the construction of symmetric test spaces discussed in [4].

References

- Foulis, D. J., and Randall, C. H., The operational approach to quantum mechanics, in C. A. Hooker (ed.), *Physical theory as logico-algebraic structure*, D. Reidel, 1979.
- [2] Gudder, S., Representations of Groups as Automorphisms of Orthomodular Lattices and Posets, *Canadian Journal of Mathematics* 23 (1971), 650-673.
- [3] Wilce, A., Test spaces and orthoalgebras, in Coecke et al. (eds.), *Current Research in Operational Quantum Logic*, Kluwer, 2000.
- [4] Wilce, A., Symmetry and Topology in Quantum Logic, Int. J. Theor. Physics 2005.