Notes on elliptic curves and Weierstrass form transformations

Marek Hyčko

June 9, 2017

The problem: Find three positive integer numbers, x, y, z such that

$$\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4.$$

After reading some internet articles, e.g., [1] I have stumbled across that the problem is equivalent to finding certain rational solutions of elliptic curve

$$y^2 = x^3 + 109x^2 + 224x$$

leading to the original solutions with the same sign.

Now, I would like to take a detailed look, how this transformation has been performed.

First we reduce the equation to polynomial form

$$F(x,y,z) = x^3 + y^3 + z^3 - 3x^2(y+z) - 3y^2(x+z) - 3z^3(x+y) - 5xyz = 0.$$

Now we find the inflex/saddle point on the curve.
$$\frac{\partial F}{\partial x} = 3x^2 - 3y^2 - 3z^2 - 6xy - 6xz - 5yz;$$

$$\frac{\partial F}{\partial y} = 3y^2 - 3x^2 - 3z^2 - 6xy - 5xz - 6yz;$$

$$\frac{\partial F}{\partial z} = 3z^2 - 3x^2 - 3y^2 - 5xy - 6xz - 6yz;$$
 After computing Hessian

$$H = \begin{vmatrix} 6x - 6y - 6z & -6x - 6y - 5z & -6x - 5y - 6z \\ -6x - 6y - 5z & -6x + 6y - 6z & -5x - 6y - 6z \\ -6x - 5y - 6z & -5x - 6y - 6z & -6x - 6y + 6z \end{vmatrix} = 138(x^3 + y^3 + z^3) - 726(x^2(y+z) + y^2(x+z) + z^2(x+y) - 898xyz$$

We see that point [x, -x, 0] is the solution of both F, G and

$$H(x, -x, 0) = \begin{pmatrix} 12x & 0 & -x \\ 0 & -12x & x \\ -x & x & 0 \end{pmatrix}$$

with eigenvalues equal to $-\sqrt{146}x$, $\sqrt{146}x$ and 0. Thus the point [x, -x, 0]is saddle point, for any $x \neq 0$.

Next we consider x = 1, i.e. point $Q \equiv [1, -1, 0]$.

The tangent to F at this point is equal to

$$\frac{\partial F}{\partial x}(1,-1,0)\cdot(x-1) + \frac{\partial F}{\partial y}(1,-1,0)(y+1) + \frac{\partial F}{\partial z}(1,-1,0)\cdot z = 0,$$

i.e.

$$6(x-1) + 6(y+1) + (-1)z = 0 = 6x + 6y - z$$

Next step is to find transformation of the variables sending Q to the point [0,1,0] such that z_1 is transformed along tangent, i.e. $z_1 = 6x+6y-z$. $x_1 = x+y$ and $y_1 = -y$ is one such transformation. Thus old variables are $x = x_1 + y_1$, $y = -y_1$ and $z = z_1 - 6x - 6y = z_1 - 6(x_1 + y_1) - 6(-y_1) = 6x_1 - z_1$. Another way to see this is to compute inverse of the transformation. Namely,

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 6 & 6 & -1 \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} x_1 \\ y_1 \\ z_1 \end{array}\right)$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 6 & 6 & -1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 6 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$$

Substituting the variables into F we get that

$$F(x_1, y_1, z_1) = 91x_1^3 - 69x_1^2 z_1 + x_1 y_1 z_1 + 15x_1 z_1^2 - z_1^3 + y_1^2 z_1.$$

We need to multiply the equation by certain value in order to find easy transformation that subsequently transforms to x_2^3 and $-y_2^2$. Such multiple is 91^2 to get

$$91^3x^3 - 69 \cdot 91^2x_1^2z_1 + 91^2x_1y_1z_1 + 91^2 \cdot 15x_1z_1^2 - 91^2z_1^3 + 91^2z_1y_1^2$$

We immediately see that $x_2=91x_1, y_2=91y_1$ and $z_2=-z_1$ (to get opposite sign). Thus $x_1=\frac{1}{91}x_2, y_1=\frac{1}{91}y_2$ and $z_1=-z_2$.

$$91^{2}F(x_{2}, y_{2}, z_{2}) = x_{2}^{3} + 69x_{2}^{2}z_{2} + 1365x_{2}z_{2}^{2} + 8281z_{2}^{3} - (y_{2}^{2}z_{2} + x_{2}y_{2}z_{2}).$$

We eliminate $x_2y_2z_2$ term by completing to square (" + half of the coefficient"), i.e. transformation $x_3=x_2$, $y_3=y_2+x_2/2$, $z_3=z_2$. Or $x_2=x_3$, $y_2=y_3-\frac{x_3}{2}$, $z_3=y_2$. We get:

$$91^{2}F(x_{3}, y_{3}, z_{3}) = x_{3}^{2} + \frac{277}{4}x_{3}^{2}z_{3} + 1365x_{3}z_{3}^{2} + 8281z_{3}^{3} - y_{3}^{2}z_{3}.$$

Finally, we eliminate $x_3^2z_3$ term by completing to cube (+ "third of the coefficient"), i.e. $x_4=x_3+\frac{277}{12}z_3$, $y_4=y_3$, $z_4=z_3$, i.e. $x_3=x_4-\frac{277}{12}y_4$, $y_4=y_3$ and $z_4=z_3$. We get:

$$91^{2}F(x_{4}, y_{4}, z_{4}) = x_{4}^{3} - \frac{11209}{48}x_{4}z_{4}^{2} + \frac{1185157}{864}z_{4}^{3} - y_{4}^{2}z_{2}.$$

We have the following transformation of variables:

$$\begin{pmatrix} x_4 \\ y_4 \\ z_4 \end{pmatrix} = \begin{pmatrix} -\frac{95}{2} & -\frac{95}{2} & \frac{277}{12} \\ \frac{91}{2} & -\frac{91}{2} & 0 \\ -6 & -6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{182} & \frac{1}{91} & -\frac{277}{2184} \\ \frac{1}{182} & -\frac{1}{91} & -\frac{277}{2184} \\ \frac{6}{91} & 0 & -\frac{95}{182} \end{pmatrix} \begin{pmatrix} x_4 \\ y_4 \\ z_4 \end{pmatrix}$$

After setting $z_4 = 1$, we've got equivalent Weierstrass form

$$y^2 = x^3 - \frac{11209}{48}x + \frac{1185157}{864}.$$

To obtain this transformation in **sagemath** program we could use the following commands:

R.
$$\langle x,y,z \rangle = QQ[];$$

F = x^3 + y^3 + z^3 - 3*x^2*(y+z) -3*y^2*(x+y) - 3*z^2*(x+y)-5*x*y*z;
WeierstrassForm(F)

The outcome is

(-11209/48, 1185157/864)

Next we are trying to find another coefficient to transform this form to the so called minimal form, i.e. $y^2 + Axy + By = y^3 + Cx + D$. The used transformation is the following $x = u^2x' + r$, $y = su^2x' + u^3y' + t$, with certain values of (u, r, s, t). After substitution we get:

$$u^{6}x^{3} + (3r - s^{2})u^{4}x^{2} + (-2st + 3r^{2} - \frac{11209}{48})u^{2}x + (r^{3} - \frac{11209}{48}r + \frac{1185157}{864}) = u^{6}y^{2} + 2su^{5}xy + 2tu^{3}y - t^{2}.$$
(1)

After choosing u=1, $s=\frac{1}{2}$, r=1/12 (to zero coefficient by u^4x^2), we get

$$y^{2} + xy + 2ty = x^{3} - (\frac{467}{2} + t)x + \frac{5409}{4} - t^{2}$$

Substituting $t = \frac{1}{2}$ we get the form:

$$y^2 + xy + y = x^3 - 234x + 1352.$$

It is the minimal form obtained by sagemath program:

H = EllipticCurve(-11209/48, 1185157/864);
H.minimal_model()

With result

Elliptic Curve defined by $y^2 + x*y + y = x^3 - 234*x + 1352$ over Rational Field

Another possibility.

Equation $r^3 - \frac{11209}{48}r + \frac{1185157}{864} = 0$ has a rational solution $r = \frac{109}{12}$. Substituting r = 109/12 in (1) we get

$$u^{6}x^{3} - s^{2}u^{4}x^{2} + \frac{109}{4}u^{4}x^{2} - 2stu^{2}x + 14u^{2}x - t^{2} = u^{6}y^{2} + 2su^{5}xy + 2tu^{3}y.$$

Dividing equation by u^6 we get

$$x^3 - \frac{s^2}{u^2}x^2 + \frac{109}{4u^2}x^2 - \frac{2st}{u^4}x + \frac{14}{u^4}x - \frac{t^2}{u^6} = y^2 + 2\frac{s}{u}xy + \frac{2t}{u^3}y.$$

In order to get rid of xy and y terms, we have s = t = 0.

$$x^3 + \frac{109}{4u^2}x^2 + \frac{14}{u^4}x = y^2.$$

In order to get integer coefficients we put $u = \frac{1}{2}$ and obtain the final form:

$$y^2 = x^3 + 109x^2 + 224x. (2)$$

Lastly we turn into finding the solution to the original equation.

Checking small negative values of x reveals that (x, y) = (-4, 28) is the point on the curve (2). Such point is transformed to $(x_4, y_4, z_4) = (\frac{1}{4}x + \frac{109}{12}, 1/8y, 1) =$ (97/12,7/2,1). Finally, transforming to original coordinates we get that

$$(-4/91, -11/91, 1/91)$$

is the solution. Since the original equation is homogeneous also (4,11,-1) is the solution (we have chosen "the most positive" one).

Point
$$2P = (\frac{676}{49}, \frac{55796}{3433}) \mapsto (5165, -8784, 9499).$$

Point $3P = (\frac{-731025}{11881}, \frac{527529870}{1295029}) \mapsto (-375326521, 679733219, 883659076)$
Point $4P = (\frac{102131236}{9534155449}, \frac{1445821255910884}{930943540506707})$
 $x = 6696085890501216$

Point
$$4P = (\frac{102131236}{2524155440}, -\frac{1445821255910884}{222042540506707})$$

x = 6696085890501216

y = 6334630576523495

z = -6531563383962071

Point $5P = \left(-\frac{97524655611626884}{1922978696871961}, -\frac{31388186331916061221894348}{84326040682894618812541}\right)$

x = 5048384306267455380784631

y = -2798662276711559924688956

z = 5824662475191962424632819

Point $6P = (x_6, y_6)$, where

 $x_6 = \frac{252785840525963937198721}{13225347684085115955600},$ $y_6 = -\frac{343764653760831645784970282294394569}{1520934975898868459000385442296000}$

The solution

x = -399866258624438737232493646244383709

y = 287663048897224554337446918344405429,

z = 434021404091091140782000234591618320.

Point $7P = (x_7, y_7)$, where $x_7 = -\frac{161904348049109286887944618711684}{48593717397294424684495546259881}$, $y_7 = -\frac{6997202095803130584882425702634268473752217830612}{338742887727223793004631514525485363345632563221}$

The solution:

x = 3386928246329327259763849184510185031406211324804

y = 1637627722378544613543242758851617912968156867151,

z = -678266970930133923578916161648350398206354101381.

Point $8P = (x_8, y_8)$, where

The solution:

x = 2110760649231325855047088974560468667532616164397520142622104465

y = -2054217703980198940765993621567260834791816664149006217306067776,

z = 343258303254635343211175484588572430575289938927656972201563791.

Point $9P = (x_9, y_9)$, where $x_9 = -\frac{66202368404229585264842409883878874707453676645038225}{13514400292716288512070907945002943352692578000406921}$

 $y_9 = \frac{58800835157308083307376751727347181330085672850296730351871748713307988700611210}{1571068668597978434556364707291896268838086945430031322196754390420280407346469}$

Which corresponds to solution (the desired one with positive coefficients):

x = 36875131794129999827197811565225474825492979968971970996283137471637224634055579

y = 154476802108746166441951315019919837485664325669565431700026634898253202035277999.

z = 4373612677928697257861252602371390152816537558161613618621437993378423467772036.

Note 1: Computing 2P, where $P \equiv [-4, 28]$:

$$y^2 = x^3 + 109x^2 + 224x \mapsto T(x, y) = x^3 + 109x^2 + 224x - y^2.$$

We are computing the tangent at the point P, thus we need partial deriva-

$$\frac{\partial T}{\partial x} = 3x^2 + 218x + 224;$$

$$\frac{\partial T}{\partial y} = -2y$$

$$\frac{\partial \tilde{T}}{\partial x}(-4,28) = -600, \frac{\partial T}{\partial y}(-4,28) = -56$$
, thus the tanget line at P is $-600(x+3)$

tions of T. $\frac{\partial T}{\partial x} = 3x^2 + 218x + 224;$ $\frac{\partial T}{\partial y} = -2y.$ $\frac{\partial T}{\partial x}(-4, 28) = -600, \frac{\partial T}{\partial y}(-4, 28) = -56, \text{ thus the tanget line at } P \text{ is } -600(x+4) - 56(y-28) = 0, \text{ which by dividing } -\gcd(600, 56, 832) = -8 \text{ is equivalent}$

$$75x + 7y + 104 = 0.$$

Thus $y = \frac{-104 - 75x}{7}$, we get equation:

$$x^3 - \frac{284}{49}x^2 - \frac{4624}{49}x - \frac{10816}{49} = 0.$$

We know that -4 is double root of this equation, thus $(-4)+(-4)+x_3=\frac{284}{49}$.

Thus $x_3=676/49$. $y_3=\frac{-104-75x}{7}=-\frac{55796}{343}$. In order to get 2P we need to flip obtained point around x axis.

$$2P = \left[\frac{676}{49}, \frac{55796}{343}\right].$$

Note 2: Computing 3P = P + 2P, where $P \equiv [-4, 28]$

We need to find intersection of the line going through P and 2P with the elliptic curve.

The line is $y = y_P + \frac{y_{2P} - y_P}{x_{2P} - x_P}(x - x_P)$. $y = \frac{5774}{763}x + \frac{44460}{763}$. After substitution into T we get:

$$x^3 + \frac{30117345}{582169}x^2 - \frac{383018224}{582169}x - \frac{1976691600}{582169} = 0.$$

```
Again x_P and x_{2P} are roots of this equation thus the third root is x_3=-\frac{30117345}{582169}-x_P-x_{2P}=-\frac{731025}{11881}. y_3=-\frac{527529870}{1295029}. Thus (after flip over axis x)
```

$$P+2P=\left(-\frac{731025}{11881},\frac{527529870}{1295029}\right).$$

Note 3: Commands in sagemath:

```
// (a1, a2, a3, a4,a5) -> y^2 + a1*xy +a3*y = x^3 + a2*x^2 + a4*x + a5
E = EllipticCurve([0, 109, 0, 224, 0]);
E
P = E(-4,28);
P
2*P
3*P
P + 2*P
```

The output is

```
Elliptic Curve defined by y^2 = x^3 + 109*x^2 + 224*x over Rational Field (-4:28:1) (676/49:55796/343:1) (-731025/11881:527529870/1295029:1) (-731025/11881:527529870/1295029:1)
```

References

- [1] https://www.quora.com/How-do-you-find-the-integer-solutions-to-frac-x-y+z-+-frac-y-z+x-+-frac-z-x+y-4
- [2] http://www.sagemath.org/