Rényi relative entropies and sufficiency of quantum channels

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Beyond IID, Cambridge, July 2018

Dedicated to the memory of Dénes Petz

Classical Rényi relative entropies

For p, q probability measures over a finite set $X, 0 < \alpha \neq 1$: $D_{\alpha}(p||q) = \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$ In the limit $\alpha \to 1$: relative entropy $S(p||q) = \sum_{x} p(x) \log(p(x)/q(x))$

- introduced as the unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks

A. Rényi, Proc. Symp. on Math., Stat. and Probability, 1961.

Standard quantum Rényi relative entropies

For density matrices ρ, σ , $0 < \alpha \neq 1$,

$$D_{\alpha}(\rho \| \sigma) = rac{1}{lpha - 1} \log \operatorname{Tr}
ho^{lpha} \sigma^{1 - lpha}$$

In the limit $\alpha \rightarrow 1$: quantum (Umegaki) relative entropy

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma))$$

- fundamental in quantum information theory
- obtained from Petz quasi-entropies^{1,2}
- defined for normal states of a von Neumann algebra, using the relative modular operator

¹D. Petz, *Rep. Math. Phys., 1986* ²D. Petz, Publ. RIMS, Kyoto Univ., 1985

Standard quantum Rényi relative entropies

It follows from the properties of quasi-entropies that: if $\alpha \in (0,2]$

- strict positivity: $D_{\alpha}(\rho \| \sigma) \geq 0$ with equality iff $\rho = \sigma$;
- data processing inequality:

$$D_{\alpha}(\rho \| \sigma) \geq D_{\alpha}(\Phi(\rho) \| \Phi(\sigma))$$

for any quantum channel $\boldsymbol{\Phi}$

- joint lower semicontinuity
- joint (quasi)-convexity: the map

is jointly convex.

Standard quantum Rényi relative entropies

```
For \alpha \in (0, 1], D_{\alpha} have an operational significance:
as error exponents in quantum hypothesis testing
```

F. Hiai and D. Petz,

M. Hayashi

H. Nagaoka

They serve as parent quantities for other important information measures

Equality in DPI: sufficient quantum channels

Let the quantum states ρ,σ and a channel Φ be such that

$$S(\Phi(\rho) \| \Phi(\sigma)) = S(\rho \| \sigma) < \infty$$

This condition was introduced as a quantum extension of classical sufficient statistics:

A statistic T is sufficient with respect to a pair of probability distributons $\{p,q\}$ if

- ▶ the conditional expectation satisfies $E_p[\cdot|T] = E_q[\cdot|T]$
- an equivalent Kullback-Leibler characterization by the classical relative entropy:

$$S(p^T \| q^T) = S(p \| q) < \infty$$

Sufficient quantum channels

Let ρ, σ be quantum states (normal states of a von Neumann algebra), σ faithful. Assume that $S(\rho \| \sigma) < \infty$

The following are equivalent.

•
$$S(\rho \| \sigma) = S(\Phi(\rho) \| \Phi(\sigma));$$

• There is a quantum channel Ψ such that

$$\Psi \circ \Phi(\rho) = \rho, \qquad \Psi \circ \Phi(\sigma) = \sigma$$

We say in this case that Φ is sufficient with respect to $\{\rho, \sigma\}$.

D. Petz,

D. Petz,

Sufficient quantum channels: divergences

A divergence D characterizes sufficiency if

 $D(\Phi(
ho)\|\Phi(\sigma)) = D(
ho\|\sigma) < \infty$

implies that Φ is sufficient with respect to $\{\rho, \sigma\}$.

The following divergences characterize sufficiency:

- relative entropy
- D_{α} , with $\alpha \in (0,1)^{3,4}$
- ▶ a class of *f*-divergences (in finite dimension)^{5,6}

³D. Petz,
⁴AJ and D. Petz
⁵Hiai, Mosonyi, Petz, Bény
⁶F. Hiai, M. Mosonyi

Sufficient quantum channels: universal recovery channel

Assume that σ , $\Phi(\sigma)$ is faithful. The Petz recovery channel is defined as

$$\Phi_{\sigma}(Y) = \sigma^{1/2} \Phi^*(\Phi(\sigma)^{-1/2} Y \Phi(\sigma)^{-1/2}) \sigma^{1/2}$$

Note that we always have $\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$.

 Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sufficient quantum channels: a conditional expectation

Note that by the last condition, ρ (and σ) must be invariant states of the channel $\Phi_{\sigma} \circ \Phi$.

There is a conditional expectation E, $\sigma \circ E = \sigma$, such that Φ is sufficient with respect to $\{\rho, \sigma\}$ if and only if $\rho \circ E = \rho$.

Structure of the states: in finite dimensions (or on $B(\mathcal{H})$), there is a decomposition

$$\sigma = \bigoplus_{n} \lambda_n \sigma_n^L \otimes \sigma_n^R, \qquad \sigma_n^L, \sigma_n^R \text{ states, } \lambda_n \text{ probabilities}$$

such that Φ is sufficient with respect to $\{\rho, \sigma\}$ iff

$$\rho = \bigoplus_{n} \mu_{n} \rho_{n}^{L} \otimes \sigma_{n}^{R}, \qquad \rho_{n}^{L} \text{ states, } \mu_{n} \text{ probabilities}$$

Sufficient quantum channels: applications

Characterization of equality in various entropic inequalities:

- strong subadditivity: characterization of quantum Markov states⁷
- convexity of f-divergences, Minkowski-type inequalities
- monotonicity of quantum Fisher information, Holevo quantity, etc.

Approximate version^{8,9}:

$$S(
ho\|\sigma) - S(\Phi(
ho)\|\Phi(\sigma)) \geq d(
ho\| ilde{\Phi}_{\sigma}\circ\Phi(
ho))$$

d some "distence", $\tilde{\Phi}_{\sigma}$ a modification of Petz recovery channel

⁷Hayden, Josza, Petz, Winter
 ⁸O. Fawzi and R. Renner
 9