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[. INTRODUCTION

On the space of density operators, several differential geometrical structures were defined. In
finite dimensional case, the class of monotone Riemannian metrics was specified by Petz in Ref.
1, using the set of real symmetric operator monotone functions. These metrics are the quantum
generalizations of the classical Fisher metric, which is, together with the class of dual
a-connections, the basic structure of the classical information geometry.

The quantum counterpart of the classical exponential and mixture connections was defined by
Nagaoka in Ref. 2 and this definition was generalized-wonnections fow e[ — 3,3] in Ref. 3.

In Ref. 4, the geometric phase of curves of pure states was extended to mixed states, using
purifying lifts of curves of density matrices. Among such lifts, the one with the least Hilbert space
length is used to define the phase. As it turns out, this defines a connectioa®rim the space
W of Hilbert—Schmidt operators, which is thé(n)—principal bundle over the space of non-
normalized density operatosst, heren is the dimension of the underlying Hilbert spakie Later,
in Ref. 5 a class of such connection forms was introduced, containing the above$8tm

It is natural to ask what the relations between the above structures are. In Ref. 6 it was shown
that the connection forms are naturally linked with some Riemannian or Hermitian metrics on the
purifying spaceW. Such metrics can be projected ontd and all the monotone metrics are
obtained in this way. Further, in Ref. 7, a parallel transport, respecting the connectiom9%rm
was defined oV, such that, if projected ont#1, it coincides with Nagaoka'&)-connection. The
aim of the present paper is to obtain all the affireonnections and their duals in a similar way.

For the sake of simplicity, we will assume that the underlying Hilbert space is finite dimensional
and the density operators are invertible.

Section Il below gives a brief description of purification and some formulas to be used later.
In Sec. lll, we define the class of connection forms and Riemannian metrizg amd relate them
to the class of monotone metrics @A as in Ref. 6. In Secs. IV and V, we use the duality of two
real subspaces in the tangent spac@tdo define two dual parallel transports, induced from the
trivial affine connection o3=B(H). We show that the projections of such parallel transports
onto M coincide with thea-connection and its dual. Finally, we define a natural notion of duality
of Riemannian metrics oM.

II. THE PURIFICATION PROCEDURE

Let H be Hilbert spacénot necessarily of finite dimensipand let5= B(H) be the algebra
of bounded operators acting @6 Let X be another Hilbert space, with dif)<dim(K) and let

A=B(H®K).
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Let us consider thé-representationp: B— A, given byb—b® 1. Let p be a positive linear
functional onB. The vectoré e H® K is said to be a purification gf if for eachbe B

p(b)=Trpb=(¢&,¢(b)€)=Trb® 1P,

here the density operator was also denotedpbgnd P, is the orthogonal projector onto the
subspace spanned Kyt is clear thaté is a purification ofp if

pP= Trz Pg y
where Tg is the partial trace ovek.
In the sequel, we will use the choiéé=H*. The Hilbert spac&{® H* can be identified with
the space of Hilbert—Schmidt operators o¢érwith the Hilbert—Schmidt inner product

(W, Wo)=Trwi w,.

This identification is easily seen if we use Dirac’s notations, then the product vectors are identified
with

e@ ¢ | o) (Y],

wherey* (¢) =(4,¢). The operatiorw—w* on )}V corresponds to the anti-unitary operafoon
H®H*, given by

Je@Y*) =y ¢*.

The representatiot is equivalent tdo—L,, whereL,(w)=bw is the left multiplication operator
on W. Thenwe W is a purification ofp if

p(b)=Trbp=(w,L,w)=Trw*bw=Trbm(w),

for eachb e B, wheren(w)=ww*.
In a similar way, we may represent the algeba= B(H*) in A by

¢":b—1@b—Ryx .
Here,be B* is the linear operator given bye* =(be)* andRy(w)=wb is the right multipli-
cation operator oV. Then¢' (18*) is the commutant of(B). If o is a positive linear functional
on B*, the vectoré purifies o if

0'=TI'1P§=TI‘2PJ§,
where Ty is the partial trace ovel. This is equivalent to

o=m'(w), 7' (w)=w*w

wherew is the Hilbert—Schmidt operator corresponding to the veétor

Letwe W be invertible,m(w)=p, 7' (w)= 0o and letw= p*’?u=uc''? be the polar decom-
position ofw. Then

P:Z Nl @il U:Z il (il
N;>0 for all i are the spectral decompositions mfand o and W=Ei)\i1/2|goi><(//i|, whereuy;

= Pi-
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Following Ref. 6, we will use a certain class of operators fils{#) to introduce a Riemann-
ian structure inW. Let us denotd. =L ,, R=R,, L=L, andR=R, and letA be the modular
operatorA=LR ™. Then the spectral decomposition &fis

)\.
A= —(P,@Px),
i )\J 1 j
so that iff is a smooth function ange VW, we have
A
Q)00 =2 1| = |leideibxu v,
]

Similar expressions are obtained fifLR™ %), f(LR™1Y), etc.

[lI. CONNECTION FORMS AND MONOTONE METRICS

Let dim(H)=n. Let W,C W be the open subset of invertible operators, then it can be viewed
as a real 2%-dimensional differentiable manifold. L&, denote the tangent spacevatthenT,,
can be identified withV with the structure of a real linear space. Throughout the text, the capital
lettersX, Y, etc. denote the elementsBf, as differential operators, whereas small letters refer to
their representations= X(w).

Let MCW, be the submanifold ofnon-normalizegldensity matrices, i.e., the positive com-
plex matrices. ThemV, can be realized as the principal bundle with base spacand structure
groupU(n). The projectionm: Wy— M, 7(w) =ww* is the canonical projection. L&t (M) be
the tangent space d¥1 at p. The canonical projection induces a linear nigp—T ) (M) (also
denoted bym)

(X) =XW* +wx*.
The vertical subspac¥,CT,, is given by the condition
xe V& m(x)=0.
It is easy to see that
V,={wa:a+a*=0}.

We will describe the class of connections defined in Refs. 5 and 6. If a connection is defined
in W, the tangent spacg,, is decomposed as the direct sum\§f and a horizontal subspace
H,,. For each vectoke T, there is a unique decompositiorx"+x" into its horizontal and
vertical part. We introduce a Riemannian structur@\ip as follows. Let ¢, -) denote the real part
of the Hilbert—Schmidt inner product, i.e.,

(X,¥) =R(X,y)= sTr(x*y+y*x).

Letk:R*—R™ be a smooth function such thiet1)=1 and letA be the modular operator. Let us
define

(X Y)w=(x.k(A)Hy)), xyeTy.

The horizontal subspacH,, is defined as the orthogonal complement\§f with respect to
(-,-)w- Atangent vectox is then horizontal iff it has the form

x=k(A)(gw)=k(L/R)(g)w, g=g*.
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The corresponding connection form is given by
w=r(L/R)(w~tdw)—r(R/L)(w tdw)* (1)
=w tdw—(w tdw)* +w {(F(L/R)dp)(w™1)*, 2)

wherer is a smooth positive function with(t)+r(t"*)=1 andF(t)=r(t)—r(t" ). The func-
tionsr andk are connected by

o tk(tTh
U=kt O

The above Riemannian structure can be projected onto the base/speaieethe projectionr:
Let m(w)=p and lethe T ,(M). Then there exists a unique vectioe T, such thath is hori-
zontal andm(h) =h, it is called the horizontal lift oh to w. We have

h= IR Y(1-F(L/R))(hyw=r(R/L)(h)(w*)~ L.
Let us define

(hky,=4(h,k)y hkeT, (M). )

It is easy to see that the right-hand side depends onlywh=p, so that this defines a Riemann-

ian structure onM. We are particularly interested in Riemannian metrics that are monotone with
respect to completely positive, trace preserving maps. It was proved by Petz in Ref. 1, that such
metrics are of the form

(h,k),=TrhJ, (k) J,=R™*(L/R)"*, (4)

wheref is an operator monotone function which is symmetric, i.e., it sati§figs=tf(t ). If we
require that this metric coincides with the Fisher information metric on commutative submani-
folds, we need an additional conditidii1)=1. The last requirement also gives rise to the mul-
tiplication factor 4 in(3).

If the induced Riemannian metric okt is of the form(4) for some smooth positive function
f, then we have

k() =F(OL-F(1), (= 3(kt)+tk(t™). ©)

It is easy to see that given a monotone Riemannian metric, the connection that induces it is not
unique. On the other hand, as the connection depends only Ktoyrk(t 1), the induced Rie-
mannian metric is again not unique. To get uniqueness, one more condition is needed. A natural
requirement is that the inner product, (),, in T,, coincides with the real part of the Hilbert—
Schmidt inner product, if restricted to horizontal vectors. It was proved in Ref. 6 that for each
operator monotone functiohthere is a unique positive functidosuch that the above condition
is satisfied. Let us put

K(t)
p(t)= KD

then k(t)=p(t)q(t), where the functionq(t)=q(t™ 1) is uniquely given by the condition
(x,k(A) " ty)=(x,y) for x,y e H,,. Thus we have

Theorem 3.1:For each monotone metric, - ), on M, there exists a unique smooth function
p:R*—R* satisfying ft~)=(p(t)) %, such that
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@)y if
N t
r(t)= FJ(TH’
then the corresponding connection form induces the given monotone ;metric
(i) if
o p+
k(t)=p(t) DO (6)

then p(t) = k(t)/k(t 1) and the corresponding connection is the same &8 )inMoreove
(X,¥Y)w=(x,y) for all horizontal vectors xy;
(iii) the corresponding operator monotone function is of the form
(p()+1)
2f(t)= O
In the sequel, we will always suppose thkaand p are smooth functions related by E®).
Example 3.1Let p(t)=1. Thenf(t)= (1+1t)/2 is the largest symmetric operator monotone
function. It is related to the Bures metrit, is the symmetric logarithmic derivati&LD). Here,
k(t)=1 andr(t)=t/(1+t). The horizontal subspadd,, consists of vectors of forre=gw, g
=g*. See Refs. 8 and 9.
Example 3.2:For the smallest symmetric operator monotone funcfiff)= 2t/(1+t), we
have p(t)=t, k(t)=2t/(1+t) and r(t)=3. The vectorxeH,, if and only if x=2L/(L
+R) (g)w for g=g*. This is equivalent tox=wh for some h=h*. In this case,J,(h)
=1(hp 1+ p~'h) and the monotone metric is called the metric of the right logarithmic derivative
(RLD). The connection form given by is the canonical connection form on the bundle
GL(n)/U(n).*°
Example 3.3For p(t) = \t, we obtain the operator monotone functiift) = (1+ vt)%/4. The
corresponding monotone metric is the smallest in a special class of monotone metrics, defined in
Refs. 11 and 12. This class is important in the context of quantum information geometry, see Ref.
13. It contains also the monotone metric from the previous example. Kgdes (1+ t)/2 and
r(t)= Vt/(1++t). The horizontal vectors fow=ww* u are of the formx=gu, g=g*.

IV. DUAL AFFINE CONNECTIONS

For the Riemannian manifold with a monotone metric, Nagaoka in Ref. 2 defined the
quantum version of the exponential and mixture connections of the classical information geom-
etry. There, the mixture connectigfm)-connection coincides with the trivial affine structure on
M and the exponentiale]-connection is its dual with respect to the given Riemannian structure.
The corresponding parallel transports of a ve¢t@"TPO(M) along a curvep e M, with p(0)

=po, p(1)=py, are given by

M (h)=h,

3, (P (h)=13, (h).

The aim of this section is to show that this structure/anappears naturally in the context of Sec.
Il

Let us fix a monotone metric oM and letk be as in theorem 3.1. To define the two dual
connections, it is convenient to use a different characterization of the horizontal subspace, given in
Ref. 6. Let us consider the space

To={gw : geB}={wg : geB},
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with the complex Hilbert space structue, y),, = (x,k(A) "1(y)), ((-,-) is the Hilbert—Schmidt
inner produch. Let S andF be the conjugate linear operators of the Tomita—Takesaki theory, given
by S(gw)=g*w, F(wg)=wg*, S=JAY?=A"123 and F=AY23=JA"1?, whereJ is the
modular conjugation. Le8* be the modification of given by

SH(k(A)(gw)) =k(A)(g*w).

ThenH,, is the fix point set ofS.
Lemma 4.1:

() S*=spa) '=p(a)s
(i) The adjoint of & with respect tq(-, - ), is F;
(i) The polar decomposition of*'Ss S‘=JX(AX)'/2, where

J=3p(a)” P=p(a)"3 Ak=p(a) A,
(iv) let Hy, be the fix point set of the operator. Fhen for xe H,,, ye H}, we have(x,y),,
eR.

Proof: (i) Observe first, thak(A)(gw)=Vp(A)(q(L/R)(g)w) with q(t)=q(t™ 1), so that
S=s'. Obviously

SP=p(4)"’SpA)” P=p(A)S=SpAa) .
The statement§i) and (iii) are easy to prove. To prov&), letxe H,, andy e H}, . Then
(XY )w=(S(X).Y)w
=(F(Y).X)w=(Y.X)w=(X.Y)y € R.

O

Let us introduce a linear operatgtH,,—H2, , such that fox e H,,, m(x)=m(J(x)). Then

J is well defined and invertible. Indeed, note that the real vector subdpiee{wg,g=g*}
coincides with the horizontal subspakk, from Example 3.2, so that both|HW and ’7T|H‘*;v are

isomorphisms.
Further, Ietﬁ\'fv, K, be two linear mapg,,— B, given by

LEOW=K(A)THX),  Ky(X)=xw*.

The operatori\‘fv andC,, are invertible andi\'fv(HW) =By, Kw(Hy) =By, whereB,, is the subset
of hermitian operators i#8. Forx,yeT,,, we have

(XY w= (LX), K(¥))- 7

LetheT,(M). The horizontal lift ofh to w satisfies
Li(h)=33,(h), ®)
y=J(h)eKu(y)= 3h. 9
Proposition 4.1: Let us define the bilinear forfw,-),, on H,, by

O Y)w =G TY))w s

then we havéx,y),, = (x,y) . Moreover, the operato/ coincides with the restriction of

3(1+AM=3(1+p(a)~*A),
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to Hy,.
Proof: Letx,y € H,, and letm(x) =h, 7(y) =k. Thenk,(J(y)) =3k and £ {(x)=3J,(h). It
follows from (7) that

(V) = TY))w=7(I,(h) k)
=3(hk),=(XY)w-
Let nowxeH,,, then
F(1+A%(X)=F(1+F)(x)=(1+ A" (x),
so that3(1+ AK)(x) e HY . From
(% AKY) )= (X F S Y w=(S(¥), S0 w= (¥, X)w
we have that
(% 2 (LA (Y)w=(XY)w= (%) -

O
From the above Proposition, we see that we may extéta a positive operator om,,. The
inner product (,-),, onT,, given by

X Y)w =G TY))ws

corresponds to the complexification of the real Hilbert spdgewith the inner product {;-),, .
Example 4.1.Let k=1. Let p(6), 6 ® CRN be a smooth parametrization of the manifold
M. Let us denote

d
hi(9)=&—9ip(9)-

For simplicity, we will omit the indication of the poirnt in the sequel.
In Ref. 14, Holevo introduced the symmetric logarithmic derivatb?eby

hi=3(L7p+pLd),
and the right and left logarithmic derivatives
hi=pLT, Li=(LD*.
It is easy to see that in our setting, the horizontal subsphgés spanned by the vectors
I°=L3w=2h;, i=1,...N
and
J1¥)=1F=Lw,
so thatH? is the real linear span df}-, i=1,... N}, note that this is true for ak. We also have
IR=LRw=A"2(1}).
Further, Holevo defined the sesquilinear formsib e 5

(a,by,=3Tr(a*pb+a*bp)=(aw,bw)",
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(a,b), =Tra*bp=(aw,bw),
[a,b],=iTr(pa*b—pba*)=(aw,i(1—A)(bw)).
Another important notion is the commutation operalyy, given by
(a,D,(b)),=[a,b],.

It is easy to see that the operamw— D, (a)w is equal to

ij*l(l—A)zzimz—ziF(A).

Example 4.21et k(t)= 2t/(1+t), thenp(t)=t, so thatA*=1. The horizontal subspa¢¢,,

coincides withH, and the operata# is the identity. Clearlyh, = %IiL, i=1,...N. Let us denote
by 7° the operatoi(1+ A) from the previous example, thégA)= (75 A and we get

(FIDw=(E DW= TN =517,
where &,y) ™ =(x,7(y)).
We can also describe the horizontal and vertical part of a vectdy, inusing the operators,

S, and J as follows. LetP be the orthogonal projector froffi, onto H,, with respect to
(,)w, then

P=37 Y1+F).

Indeed, for eactxe T,,, we have3(1+F)(x) e HY and 7w(3(1+F)(x))=m(x)=m(x"). It fol-
lows that:

3T H1+F)(x)=x"=Px.
From this, we have
X’ =x=x"=37"HAK=F)(x) =37 (S~ 1)(x).

We will now define dual affine connections v,. The space3 is a differentiable manifold
andW, is an open submanifold i8. Let us consider the trivial affine connection/th The maps
£\'fV:TW—>TW(B) and K,,: T,,— Tw(B) induce affine connections in,. Let IT* andII be the
corresponding parallel transports anddie a smooth curve in,, y(0)=wgy, y(1)=w;. Then
for XeT,,

Ko, (IT,(X)) = Ky (X),
LY (IT5(X) =L, (X).
The corresponding covariant derivativesand V* are given by
K VxY) = XKy (Y) = Ky (XY) +yx*,
LUVEY)=XLY(Y),

whereX,Y are smooth vector fields on,.
It is clear from(7) that (X, Y}, =(I1(X),I1}(Y))w, so that the connectior& andV* are

dual with respect td-, - ), .
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As we are interested in the projections ort6, we restrict the parallel transports to horizontal
vectors. From.c\'fv(HW):Bh, we see that the restriction di* to the bundleu{(w,H,), w
e Wy} is induced from the trivial parallel transport restricteddé(b,B;,), be B}. It means that
the parallel transport of a horizontal vector stays horizontal. This is not necessarily tile Gor
the other hand, the above restriction of the trivial connectiof8anduces the restriction dfl to
the bundleu{(w,H}), we W,}. We may therefore define the parallel transgéftfor x e H,, by

I"(x) =7~ HIL(J(X))).
Then the parallel transporid* andII" are dual with respect to-(-),,. Indeed, ifx,y e H,,,
(I 00, TV = (T 00, TL(TY)
= (%, T = 6wy

Note also thafl" coincides with the horizontal part ¢1.
Proposition 4.2: Lety be a smooth curve iy, y(0)=wg, v(1)=w,, where wy and w; are

any elements of\,, satisfyingm(wo)=po and m(w;)=p;. Let heT, (M) and let hbe the
horizontal lift to wg. Then

4, (h) = (11 (h)) = w(IT}(h)),

()

1149, (hy = =(I1% (h)).

Proof: Follows easily from(8) and (9). O

Let H,K be vector fields on\ and letH,K be horizontal lifts. From the above Proposition,
it also follows thatmr(V5K)=V{PK, so thatV:K is a horizontal lift ofV{PK. Similarly, VK is
the horizontal lift of VK.

V. THE a- CONNECTIONS

In Ref. 3, the a-connections onM were defined as generalizations of the) (and
(m)-connections fow e [ — 3,3]. There, then-connection was given by the trivial affine structure
ong,(M), where

2 jaen g
gu(t)=1 17« :
logt a=1
The connection was determined using the differentiation operatgr/s]:TP(M)HTga(p)(M),
given by

Lo[pl(H)= %ga(p_'—tH)lt:O-
The correspondinge-parallel transport fromp, to p; along a curvep is
Lalpa(TS(X) =Ll pol(X), XeT,(M).
The parallel transporﬂff‘)* , dual with respect to the given monotone metric is given by

Lo '[pa3,,(TT0* (X)) =L, [ pold,(X).
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Again, we will show that the above affine connections are closely related to the class of
connection forms from Sec. lll. To this end, we define the projectirfrom )V, to M by

W) = ga(WW*).
Let p=ww*. The induced linear map®:Ty,— T ;o) (M) is
7T(X) =L [ p](XW* +wWx*).
The operatoLt [ p] is invertible, therefore,
74(X)=0em7(X)=0,

so that we have the same vertical subspdge Hence we have the horizontal subspétgand
the dual spacéd}, as in the previous section. L&te Tg (M) and let us denot&” the hori-

zontal lift of k with respect tow“, i.e. a horizontal vector such that“(R“):k. Let h
e T,(M). The horizontal lifts with respect ta- and =* are connected by

h=k*ek=L_p](h). (10

In the sequel, we extend the differential operdtgfp] to all of 5. We define the two maps
Lo Ky:Ty—B by

LyX)=L, [pI(La(X)),
Ku(X)=Lalpl(Ku(X)).
The operatordC,, and L, have similar properties a§,, and £,,. We also have
XY w= (LX), (V) = (L 5(X), L 3(Y)). (1)
The horizontal lifth® of a vectorh e T zawy(M) satisfies the conditions

L£ahy= 3L p1d,L  [pl(h)=: 3K, (h), (12)

y=Jh)=K5(y)= 3h. (13
The induced inner product ifi .« (M) is then
4(h*k*)y=4(h*, J(k*))y,
= 4(L5(h), K a(T(k*)))=(K(h) k).

This coincides with the inner product, induced frgm-), in the a-representation of the cotan-
gent space, see Ref. 3.

As in the previous section, we use the trivial affine connectioff @amd the map«_y, andL |,
to obtain the parallel transpori$® and [1“* on W,. From Eq.(11) it follows that the parallel
transports are dual. The parallel transpdit$ and I1** can again be restricted to the bundles
U{(w,H3), we Wy} andU{(w,H,), we W}, respectively. We put

" (x) = T~ HI¥(J(x)),

for xe H,,. As before, this corresponds to the horizontal parllsf and the parallel transports
[1** andIT*" are dual with respect to- (-),, .
In the next Proposition, we show how these connections are projected\dnto
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Proposition 5.1: Lety be a smooth curve iy, y(0)=wg, v(1)=w,, where wy and w; are
any elements o¥V,, satisfyingm(wg) =po and w(w,)=p,. Let he Tpo(/\/l). Then

1188 (hy = =(115(h)) = w(113"(h)),

w(y
) (h) = 7(I12* (R)).

Proof: The proof follows from(10), (12), (13) and the definition of théa)- and (a*)-parallel
transports. Cl

From the above Proposition, it also follows tlﬁzhk andV:*K are ther-horizontal lifts of
VK andV{**)K, respectively.

Let us now compute the Riemannian curvature of dh@onnections.

Proposition 5.2: Let R and R** be the Riemannian curvature tensor¥of and V**. Then

R*=R**=0.
Proof: We have for smooth vector field§,Y,Z on W
LAR™(X,Y)Z)=LHVIVIZ=VIVIZ=V [ \Z)
=XLYVYZ)=YLAVYZ)—[X,Y]LXZ)
=(XY=YX-[X,Y])L%Z)=0.

The statement foR* can be proved similarly. It follows also from duality of the corresponding
parallel transports.

O

VI. THE CURVATURE FORM

In this section, we compute the curvature form of the conneaticend show the relation
between the curvature form and the torsion of theonnections.

Let us choose a connection foranfrom Sec. Il 1. We will compute its curvature form. From
the structure equation

do=-3w,0]+Q,
it follows that:
o[ X,Y]=—-2Q(X,Y), (14)

for horizontal vector fields(,Y, see Ref. 10, pp. 81.
Letwe W, and letm(w)=p. Let us define the operat@,:5— B, given by

C,(a)=R7'r(R/L)(a)
Proposition 6.1: Let HK be smooth vector fields oM, such thaf H,K]=0. Then
Qu(H,K)=— 3w Y(HC,(k)
—KC,(h)=[C,(h),C,(k)]pW,

where[a,b]z=ab—Dba is the usual commutator on matrices
Proof: From 7([H,K])=[H,K]=0 and Eq.(14), it follows that:

[A,K]=[A,K]*=wo([A,K])=—2wQ(H,K).
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Further, the horizontal lift oH is given by the condition
H(w)=r(RIL)(H(p))(W*) *=C,(H(p))W,
so that
HK (w)=H[C,(k)Jw+C,(k)H(w)=(HC (k) + C,(k)C,(h))w

It is now easy to finish the proof.
O
Example 6.11etk=1. Thenr(t)=t/(1+t) andC,= %Jp. Let H,K be vector fields on\,
such tha{H,K]=0. Let us denoté.;=J,(h). Then

—2WwQ(H,K)w =3 (HLF—KL3)— 3[L3 ,LR]s-
Let T* be the torsion of thed)-connection onM, then
T (H,K)=3, *(HLR =KL =[[L{ LR]s.pls,
see Refs. 2 and 6. We compute
Q(H,K)= w*J,([LF LR]pW.

We see that the curvature forta(H,K)=0 if and only if the symmetric logarithmic derivatives
commute. In this case also the torsi®fi(H,K) vanishes.

Example 6.21 et o= 0" be the connection form of the canonical connectigrample 3.2
Thenr=3 andC,=3R*. Let us denotd;=hp~*=2C,. The curvature form is

Q%H,K) = gw Lk, Lilsw
= 5lw k(W) hw T th(w*) " .

Again, the curvature form is zero iff the lefor, equivalently, the rightlogarithmic derivatives
commute. We hav@™* (H,K)=R[L} ,Lk]g, so that the torsion also vanishes.

We see that in both examples, there is a close relation between the curvature foamathe
exponential connection aiv: Vanishing of the curvature form implies vanishing of the torsion of
the (e)-connection. As we shall see next, this is not always true.

Example 6.3Let w be the connection form from Example 3.3. luet U(n) and let us define

o M—W, by 0'(p)=p%u. Theno is a global horizontal section. It follows that the curvature
form of Q) vanishes. On the other hand, the torsion of tp¢onnection is not always zero, see
Ref. 13.

Let now T® and T** be the torsion of the connectidh®" andV** on W.

Proposition 6.2: Let HK be vector fields oM and let T8*) be the torsion of the connection

V(@*) on M. Then the horizontal part of T (H,K) is the horizontal lift of T**)(H,K) and
o(T* (H,K))=2Q(H,K),

where() is the curvature form ob.
Proof: The vector fieldsV 2" K andV ;" H are horizontal lifts ofV {{*’K andV{*'H, so that
(T*(H,K)"=V* K-V K—[H,K]".

¢ @
H H

But [H,K]" is the horizontal lift of{H,K], so that
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(T (A,K))=T@*)(H,K).
It also follows that
o(T** (H,K))=—w([A,K])=2Q(H,K).

O
Proposition 6.3: Let H K be as above and let™ be the torsion of the connectidf(® on

M. Then T(H,K) is vertical, with
o(T*(H,K))=2Q(H,K).

Proof: The proof is analogical to the previous proof, using the fact that the connéttfdmn
M is torsion-free.
O

Proposition 6.4 Let x,y e H}, and let T* be the torsion of the connectidf®. Then T(X,Y)
is vertical and

TYX,Y)=2wQX,Y)

Proof: Let the horizontal subspace be given by the cannonical connectionHtfet, and
Jis the identity map. It follows thal *=V ", The vectorsX,Y e H}, can be extended to vector
fields onW,, such that7(X) and w(Y) are smooth vector fields oM. The statement now
follows from the previous Proposition.

O

Remark 6.11f «=—1, i.e.,V*=V, it is easy to compute that

Ku(T(X,Y))=yx* —xy*,

andﬂX,Y) is, therefore, vertical for all smooth vector fieldsY.

VIl. DUAL RIEMANNIAN METRICS

It follows from symmetry of the representatid®® 1 and its commutant @53 that we may
equally well use the projection’: Wy— M,

W wrw,
instead of7. In this case, the induced linear mag— T x (M) is
7' (X) =xX*w+w*X.

It is easy to show thatr’' (x)=0 if xw™ ! is anti-Hermitian, so that the vertical subspace is given
by

Vv, ={aw:a+a* =0}.
Let the horizontal subspads,, be the orthogonal complement &f, with respect to
(% Y)w=(xk(A™H 7H(y)),

for a positive functiork. It is quite clear that given a functidn we obtain the same Riemannian
structure onM from (-,-),, and =’ as from (,-),, and . Moreover, ¢,-),, coincides with
(-,+) onH,, if and only if the same is true for-(-),, andH,,.

Let FX be the modification of the Tomita—Takesaki operdtorgiven by
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FE(k(A™1)(wg)) =k(A™ 1) (wg*).
Lemma 7.1:

() F*=Fp(A)=p(a)~'F;

(i)  The horizontal subspace His the fix point space of

(i) FXis the adjoint operator of ‘Swith respect tq( -, - );

(iv) The polar decomposition of‘Swith respect to( -, - ) is S'=JA~ Y2, where

_, P) _
Ak =Ap(A) Z=—= =P(A)p(A7Y),
o p(A) o(d) P(A)p(A™T)
(v) FP=S" wherep=tp(t~1)=t/p(t)
Proof: (i) is proved similarly as Lemma 4(1), the statement6i)—(iv) are easy to prove. To
get(v), write

FP=Fp(a)=Ja""?p(4)=3a"2p(4) *=SF,

O

Let the functionsf andf be obtained fronp andp as in Theorem 3.1iii ). Then we will say
that the corresponding Riemannian metrics/ohare dual.

From the above Lemma, we see that the horizontal subdpgcegiven by the functiorp,
coincides with the subspadd,,, obtained fromp. It means that a pair of dual Riemannian
structures onM is obtained from the real part of Hilbert—Schmidt inner product on a horizontal
subspacéH,, or H;), using the projectionsr and 7'. Another way to do it is to use the same
projection( or «') on two dual subspacéds,, andH,,.

Example 7.11t is easy to see that K= 1, the dual subspade, coincides withH} from Sec.

IV. Moreover,H,, andH}, are the SLD and RLD subspaces from Examples 3.1 and 3.2. It follows
that SLD and RLD are dual Riemannian metrics. The metric from Example 3.3 is the unique
self-dual Riemannian metric.

LetH,, andH,, be two dual horizontal subspaces given by the fundtione.,H,, andH,, are
the fix point space o8¢ andF¥, respectively. Let7* be the operatoH,,—H),, satisfying

X TW)=(XY)w:  XyeHy.
Then
T =3(1+AH]y, .
Indeed, letx,y e H,,, then
(L+AR)(x)=x+FXx) e H,,

and

2,1+ A7) = 3((GY) H(FS ) =06y) = (XY ).

Let now hy,h,e T, (M) and let(-,-), be the inner product, given by the functidn
=3(k(t)+tk(t™1)). Then it can be realized od}, as

<h1!h2>p:<|& ij—ljkj_l(llé)>
=(15,2(1+P(A) " [1+P(A)p(A~H)]
X (1+P(4) " H(L3)),
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wherel-=h;(w*) "%, i=1,2. Note that this corresponds to the decomposition of the funétion

1 (1+PW)?

M= 2 T pwp D

from Theorem 3.Xii).
We conclude with two natural questions:

(1) From Theorem 3.1, we see that there is a one-to-one correspondence between the set of all
operator monotone functions and a subset of
{p:R*—=R*, p is smooth, p(t~1)=p(t) "1}
How is this subset characterized?

(2) Let the Riemannian metri(:',->p be monotone. Does it follow that the dual Riemannian
metric is monotone?
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