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We investigate relations between Uhlmann’s parallelism, monotone Riemannian
metrics and dual affine connections on the space of density matrices. ©2002
American Institute of Physics.@DOI: 10.1063/1.1467966#

I. INTRODUCTION

On the space of density operators, several differential geometrical structures were defi
finite dimensional case, the class of monotone Riemannian metrics was specified by Petz
1, using the set of real symmetric operator monotone functions. These metrics are the qu
generalizations of the classical Fisher metric, which is, together with the class of
a-connections, the basic structure of the classical information geometry.

The quantum counterpart of the classical exponential and mixture connections was defi
Nagaoka in Ref. 2 and this definition was generalized toa-connections foraP@23,3# in Ref. 3.

In Ref. 4, the geometric phase of curves of pure states was extended to mixed states
purifying lifts of curves of density matrices. Among such lifts, the one with the least Hilbert s
length is used to define the phase. As it turns out, this defines a connection formageo in the space
W of Hilbert–Schmidt operators, which is theU(n) –principal bundle over the space of no
normalized density operatorsM, heren is the dimension of the underlying Hilbert spaceH. Later,
in Ref. 5 a class of such connection forms was introduced, containing the above formageo.

It is natural to ask what the relations between the above structures are. In Ref. 6 it was
that the connection forms are naturally linked with some Riemannian or Hermitian metrics o
purifying spaceW. Such metrics can be projected ontoM and all the monotone metrics ar
obtained in this way. Further, in Ref. 7, a parallel transport, respecting the connection formageo

was defined onW, such that, if projected ontoM, it coincides with Nagaoka’s~e!-connection. The
aim of the present paper is to obtain all the affinea-connections and their duals in a similar wa
For the sake of simplicity, we will assume that the underlying Hilbert space is finite dimens
and the density operators are invertible.

Section II below gives a brief description of purification and some formulas to be used
In Sec. III, we define the class of connection forms and Riemannian metrics onW and relate them
to the class of monotone metrics onM as in Ref. 6. In Secs. IV and V, we use the duality of tw
real subspaces in the tangent space toW to define two dual parallel transports, induced from t
trivial affine connection onB5B(H). We show that the projections of such parallel transpo
ontoM coincide with thea-connection and its dual. Finally, we define a natural notion of dua
of Riemannian metrics onM.

II. THE PURIFICATION PROCEDURE

Let H be Hilbert space~not necessarily of finite dimension! and letB5B(H) be the algebra
of bounded operators acting onH. Let K be another Hilbert space, with dim(H)<dim(K) and let

A5B~H^ K!.

a!Electronic mail: jenca@mat.savba.sk
21870022-2488/2002/43(5)/2187/15/$19.00 © 2002 American Institute of Physics
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Let us consider the*-representationf:B→A, given by b°b^ 1K . Let r be a positive linear
functional onB. The vectorjPH^ K is said to be a purification ofr if for eachbPB

r~b!5Trrb5^j,f~b!j&5Trb^ 1Pj ,

here the density operator was also denoted byr and Pj is the orthogonal projector onto th
subspace spanned byj. It is clear thatj is a purification ofr if

r5Tr2Pj ,

where Tr2 is the partial trace overK.
In the sequel, we will use the choiceK5H* . The Hilbert spaceH^ H* can be identified with

the space of Hilbert–Schmidt operators overH, with the Hilbert–Schmidt inner product

^w1 ,w2&5Trw1* w2 .

This identification is easily seen if we use Dirac’s notations, then the product vectors are ide
with

w ^ c* °uw&^cu,

wherec* (w)5^c,w&. The operationw°w* on W corresponds to the anti-unitary operatorJ on
H^ H* , given by

J~w ^ c* !5c ^ w* .

The representationf is equivalent tob°Lb , whereLb(w)5bw is the left multiplication operator
on W. ThenwPW is a purification ofr if

r~b!5Trbr5^w,Lbw&5Trw* bw5Trbp~w!,

for eachbPB, wherep(w)5ww* .
In a similar way, we may represent the algebraB* 5B(H* ) in A by

f8:b°1^ b°Rb* .

Here,bPB* is the linear operator given bybw* 5(bw)* andRb(w)5wb is the right multipli-
cation operator onW. Thenf8(B* ) is the commutant off(B). If s is a positive linear functiona
on B* , the vectorj purifiess if

s5Tr1Pj5Tr2PJj ,

where Tr1 is the partial trace overH. This is equivalent to

s5p8~w!, p8~w!5w* w

wherew is the Hilbert–Schmidt operator corresponding to the vectorj.
Let wPW be invertible,p(w)5r, p8(w)5s and letw5r1/2u5us1/2 be the polar decom-

position ofw. Then

r5(
i

l i uw i&^w i u, s5(
i

l i uc i&^c i u,

l i.0 for all i are the spectral decompositions ofr and s and w5( il i
1/2uw i&^c i u, whereuc i

5w i .
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Following Ref. 6, we will use a certain class of operators fromB(W) to introduce a Riemann
ian structure inW. Let us denoteL5Lr , R5Rr , L̃5Ls and R̃5Rs and letD be the modular
operatorD5LR̃21. Then the spectral decomposition ofD is

D5(
i

l i

l j
~Pw i

^ Pc
j*
!,

so that if f is a smooth function andxPW, we have

f ~D!~x!5(
i

f S l i

l j
D uw i&^w i uxc j&^c j u.

Similar expressions are obtained forf (LR21), f (L̃R̃21), etc.

III. CONNECTION FORMS AND MONOTONE METRICS

Let dim(H)5n. Let W0,W be the open subset of invertible operators, then it can be vie
as a real 2n2-dimensional differentiable manifold. LetTw denote the tangent space atw, thenTw

can be identified withW with the structure of a real linear space. Throughout the text, the ca
lettersX, Y, etc. denote the elements ofTw as differential operators, whereas small letters refe
their representationsx5X(w).

Let M,W0 be the submanifold of~non-normalized! density matrices, i.e., the positive com
plex matrices. ThenW0 can be realized as the principal bundle with base spaceM and structure
groupU(n). The projectionp:W0→M,p(w)5ww* is the canonical projection. LetTr(M) be
the tangent space ofM at r. The canonical projection induces a linear mapTw→Tp(w)(M) ~also
denoted byp!

p~x!5xw* 1wx* .

The vertical subspaceVw,Tw is given by the condition

xPVw⇔p~x!50.

It is easy to see that

Vw5$wa:a1a* 50%.

We will describe the class of connections defined in Refs. 5 and 6. If a connection is de
in W0 , the tangent spaceTw is decomposed as the direct sum ofVw and a horizontal subspac
Hw . For each vectorxPTw there is a unique decompositionx5xh1xv into its horizontal and
vertical part. We introduce a Riemannian structure inW0 as follows. Let (•,•) denote the real par
of the Hilbert–Schmidt inner product, i.e.,

~x,y!5R^x,y&5 1
2Tr~x* y1y* x!.

Let k:R1→R1 be a smooth function such thatk(1)51 and letD be the modular operator. Let u
define

~x,y!w5~x,k~D!21~y!!, x,yPTw .

The horizontal subspaceHw is defined as the orthogonal complement ofVw with respect to
(•,•)w . A tangent vectorx is then horizontal iff it has the form

x5k~D!~gw!5k~L/R!~g!w, g5g* .
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The corresponding connection form is given by

v5r ~ L̃/R̃!~w21dw!2r ~R̃/L̃ !~w21dw!* ~1!

5w21dw2~w21dw!* 1w21~F~L/R!dr!~w21!* , ~2!

wherer is a smooth positive function withr (t)1r (t21)51 andF(t)5r (t)2r (t21). The func-
tions r andk are connected by

r ~ t !5
tk~ t21!

k~ t !1tk~ t21!
.

The above Riemannian structure can be projected onto the base spaceM via the projectionp :
Let p(w)5r and lethPTr(M). Then there exists a unique vectorĥPTw such thatĥ is hori-
zontal andp(ĥ)5h, it is called the horizontal lift ofh to w. We have

ĥ5 1
2 R21~12F~L/R!!~h!w5r ~R/L !~h!~w* !21.

Let us define

^h,k&r54~ ĥ,k̂!w h,kPTr~M!. ~3!

It is easy to see that the right-hand side depends only onww* 5r, so that this defines a Riemann
ian structure onM. We are particularly interested in Riemannian metrics that are monotone
respect to completely positive, trace preserving maps. It was proved by Petz in Ref. 1, tha
metrics are of the form

^h,k&r5TrhJr~k! Jr5R21f ~L/R!21, ~4!

wheref is an operator monotone function which is symmetric, i.e., it satisfiesf (t)5t f (t21). If we
require that this metric coincides with the Fisher information metric on commutative subm
folds, we need an additional conditionf (1)51. The last requirement also gives rise to the m
tiplication factor 4 in~3!.

If the induced Riemannian metric onM is of the form~4! for some smooth positive function
f , then we have

k~ t !5 f ~ t !~12F~ t !!, f ~ t !5 1
2 ~k~ t !1tk~ t21!!. ~5!

It is easy to see that given a monotone Riemannian metric, the connection that induces i
unique. On the other hand, as the connection depends only fromk(t)/k(t21), the induced Rie-
mannian metric is again not unique. To get uniqueness, one more condition is needed. A
requirement is that the inner product (•,•)w in Tw coincides with the real part of the Hilbert
Schmidt inner product, if restricted to horizontal vectors. It was proved in Ref. 6 that for
operator monotone functionf there is a unique positive functionk such that the above conditio
is satisfied. Let us put

p~ t !5
k~ t !

k~ t21!
,

then k(t)5Ap(t)q(t), where the functionq(t)5q(t21) is uniquely given by the condition
(x,k(D)21y)5(x,y) for x,yPHw . Thus we have

Theorem 3.1:For each monotone metriĉ•,•&r on M, there exists a unique smooth functio
p:R1→R1 satisfying p(t21)5(p(t))21, such that
 16 Sep 2003 to 130.232.104.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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(i) if

r~t!5
t

p~t!1t
,

then the corresponding connection form induces the given monotone metric;
(ii) if

k~t!5p~t!
p~t!1t

p~t!21t
, ~6!

then p(t)5 k(t)/k(t21) and the corresponding connection is the same as in( i ). Moreover,
(x,y)w5(x,y) for all horizontal vectors x, y;

(iii) the corresponding operator monotone function is of the form

2 f~t!5
~p~t!1t!2

p~t!21t
.

In the sequel, we will always suppose thatk andp are smooth functions related by Eq.~6!.
Example 3.1:Let p(t)51. Then f (t)5 (11t)/2 is the largest symmetric operator monoto

function. It is related to the Bures metric,Jr is the symmetric logarithmic derivative~SLD!. Here,
k(t)51 andr (t)5 t/(11t). The horizontal subspaceHw consists of vectors of formx5gw, g
5g* . See Refs. 8 and 9.

Example 3.2:For the smallest symmetric operator monotone functionf (t)5 2t/(11t), we
have p(t)5t, k(t)5 2t/(11t) and r (t)5 1

2. The vector xPHw if and only if x5 2L/(L
1R) (g)w for g5g* . This is equivalent tox5wh for some h5h* . In this case,Jr(h)
5 1

2(hr211r21h) and the monotone metric is called the metric of the right logarithmic deriva
~RLD!. The connection form given byr is the canonical connection form on the bund
GL(n)/U(n).10

Example 3.3:For p(t)5At, we obtain the operator monotone functionf (t)5 (11At)2/4. The
corresponding monotone metric is the smallest in a special class of monotone metrics, defi
Refs. 11 and 12. This class is important in the context of quantum information geometry, se
13. It contains also the monotone metric from the previous example. Here,k(t)5 (11At)/2 and
r (t)5 At/(11At). The horizontal vectors forw5Aww* u are of the formx5gu, g5g* .

IV. DUAL AFFINE CONNECTIONS

For the Riemannian manifoldM with a monotone metric, Nagaoka in Ref. 2 defined t
quantum version of the exponential and mixture connections of the classical information g
etry. There, the mixture connection~(m)-connection! coincides with the trivial affine structure o
M and the exponential (e)-connection is its dual with respect to the given Riemannian struct
The corresponding parallel transports of a vectorhPTr0

(M) along a curverPM, with r(0)
5r0 , r(1)5r1 , are given by

Pr
(m)~h!5h,

Jr1
~Pr

(e)~h!!5Jr0
~h!.

The aim of this section is to show that this structure onM appears naturally in the context of Se
III.

Let us fix a monotone metric onM and letk be as in theorem 3.1. To define the two du
connections, it is convenient to use a different characterization of the horizontal subspace, g
Ref. 6. Let us consider the space

Tw5$gw : gPB%5$wg : gPB%,
 16 Sep 2003 to 130.232.104.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Downloaded
with the complex Hilbert space structure,^x,y&w5^x,k(D)21(y)&, (^•,•& is the Hilbert–Schmidt
inner product.! Let S andF be the conjugate linear operators of the Tomita–Takesaki theory, g
by S(gw)5g* w, F(wg)5wg* , S5JD1/25D21/2J and F5D1/2J5JD21/2, where J is the
modular conjugation. LetSk be the modification ofS given by

Sk~k~D!~gw!!5k~D!~g* w!.

ThenHw is the fix point set ofSk.
Lemma 4.1:

(i) Sk5Sp(D)215p(D)S;
(ii) The adjoint of Sk with respect tô •,•&w is F;
(iii) The polar decomposition of Sk is Sk5Jk(Dk)1/2, where

Jk5Jp~D!2 1/25p~D!1/2J Dk5p~D!21D,
(iv) let Hw* be the fix point set of the operator F. Then for xPHw , yPHw* we have^x,y&w

PR.

Proof: ~i! Observe first, thatk(D)(gw)5Ap(D)(q(L/R)(g)w) with q(t)5q(t21), so that
Sk5SAp. Obviously

SAp5p~D!1/2Sp~D!2 1/25p~D!S5Sp~D!21.

The statements~ii ! and ~iii ! are easy to prove. To prove~iv!, let xPHw andyPHw* . Then

^x,y&w5^Sk~x!,y&w

5^F~y!,x&w5^y,x&w5^x,y&w
2PR.

h

Let us introduce a linear operatorJ:Hw→Hw* , such that forxPHw , p(x)5p(J(x)). Then
J is well defined and invertible. Indeed, note that the real vector subspaceHw* 5$wg,g5g* %
coincides with the horizontal subspaceHw from Example 3.2, so that bothpuHw

and puH
w*

are

isomorphisms.
Further, letL w

k , Kw be two linear mapsTw→B, given by

L w
k ~x!w5k~D!21~x!, Kw~x!5xw* .

The operatorsL w
k andKw are invertible andL w

k (Hw)5Bh , Kw(Hw* )5Bh , whereBh is the subset
of hermitian operators inB. For x,yPTw , we have

^x,y&w5^L w
k ~x!,Kw~y!&. ~7!

Let hPTr(M). The horizontal lift ofh to w satisfies

L w
k ~ ĥ!5 1

2 Jr~h!, ~8!

y5J~ ĥ!⇔Kw~y!5 1
2 h. ~9!

Proposition 4.1: Let us define the bilinear form(•,•)w
; on Hw by

~x,y!w
;5^x,J~y!&w ,

then we have(x,y)w
;5(x,y)w . Moreover, the operatorJ coincides with the restriction of

1
2 ~11Dk!5 1

2 ~11p~D!21D!,
 16 Sep 2003 to 130.232.104.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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to Hw .
Proof: Let x,yPHw and letp(x)5h, p(y)5k. ThenKw(J(y))5 1

2k andL w
k (x)5 1

2Jr(h). It
follows from ~7! that

~x,y!w
;5^x,J~y!&w5 1

4 ^Jr~h!,k&

5 1
4 ^h,k&r5~x,y!w .

Let now xPHw , then

F~11Dk!~x!5F~11F !~x!5~11Dk!~x!,

so that1
2(11Dk)(x)PHw* . From

^x,Dk~y!&w5^x,FSk~y!&w5^Sk~y!,Sk~x!&w5^y,x&w

we have that

^x, 1
2 ~11Dk!~y!&w5~x,y!w5~x,y!w

; .

h

From the above Proposition, we see that we may extendJ to a positive operator onTw . The
inner product (•,•)w

; on Tw , given by

~x,y!w
;5^x,J~y!&w ,

corresponds to the complexification of the real Hilbert spaceHw with the inner product (•,•)w .
Example 4.1:Let k51. Let r(u), uPQ#RN be a smooth parametrization of the manifo

M. Let us denote

hi~u!5
]

]u i
r~u!.

For simplicity, we will omit the indication of the pointu in the sequel.
In Ref. 14, Holevo introduced the symmetric logarithmic derivativeLi

S by

hi5
1
2 ~Li

Sr1rLi
S!,

and the right and left logarithmic derivatives

hi5rLi
R , Li

L5~Li
R!* .

It is easy to see that in our setting, the horizontal subspaceHw is spanned by the vectors

l i
S5Li

Sw52ĥi , i 51, . . . ,N

and

J~ l i
S!5 l i

L5Li
Lw,

so thatHw* is the real linear span of$ l i
L , i 51, . . . ,N%, note that this is true for allk. We also have

l i
R5Li

Rw5D21~ l i
L!.

Further, Holevo defined the sesquilinear forms ina,bPB

^a,b&r5 1
2Tr ~a* rb1a* br!5~aw,bw!;,
 16 Sep 2003 to 130.232.104.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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^a,b&r
15Tr a* br5^aw,bw&,

@a,b#r5 iTr ~ra* b2rba* !5^aw,i ~12D!~bw!&.

Another important notion is the commutation operatorDr , given by

^a,Dr~b!&r5@a,b#r .

It is easy to see that the operatoraw°Dr(a)w is equal to

iJ 21~12D!52i
12D

11D
522iF ~D!.

Example 4.2:Let k(t)5 2t/(11t), thenp(t)5t, so thatDk51. The horizontal subspaceHw

coincides withHw* and the operatorJ is the identity. Clearly,ĥi5
1
2l i

L , i 51, . . . ,N. Let us denote
by J S the operator12(11D) from the previous example, thenk(D)5(J S)21D and we get

~ l i
L ,l j

L!w5^ l i
L ,l j

L&w5^ l i
L ,J S~ l j

R!&5~ l i
L ,l j

R!;,

where (x,y);5^x,J S(y)&.
We can also describe the horizontal and vertical part of a vector inTw , using the operatorsF,

Sk, and J as follows. Let P be the orthogonal projector fromTw onto Hw with respect to
(•,•)w , then

P5 1
2J 21~11F !.

Indeed, for eachxPTw , we have1
2(11F)(x)PHw* and p( 1

2(11F)(x))5p(x)5p(xh). It fol-
lows that:

1
2J 21~11F !~x!5xh5Px.

From this, we have

xv5x2xh5 1
2J 21~Dk2F !~x!5 1

2J 21F~Sk21!~x!.

We will now define dual affine connections inW0 . The spaceB is a differentiable manifold
andW0 is an open submanifold inB. Let us consider the trivial affine connection inB. The maps
L w

k :Tw→Tw(B) and Kw :Tw→Tw(B) induce affine connections inW0 . Let P* and P be the
corresponding parallel transports and letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 . Then
for XPTw ,

Kw1
~Pg~X!!5Kw0

~X!,

L w1

k ~Pg* ~X!!5L w0

k ~X!.

The corresponding covariant derivatives¹ and¹* are given by

Kw~¹XY!5XKw~Y!5Kw~XY!1yx* ,

L w
k ~¹X* Y!5XL w

k ~Y!,

whereX,Y are smooth vector fields onW0 .
It is clear from~7! that ^X,Y&w0

5^Pg(X),Pg* (Y)&w1
so that the connections¹ and¹* are

dual with respect tô•,•&w .
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As we are interested in the projections ontoM, we restrict the parallel transports to horizont
vectors. FromL w

k (Hw)5Bh , we see that the restriction ofP* to the bundleø$(w,Hw), w
PW0% is induced from the trivial parallel transport restricted toø$(b,Bh), bPB%. It means that
the parallel transport of a horizontal vector stays horizontal. This is not necessarily true forP. On
the other hand, the above restriction of the trivial connection onB induces the restriction ofP to
the bundleø$(w,Hw* ), wPW0%. We may therefore define the parallel transportPh for xPHw by

Ph~x!5J 21~P~J~x!!!.

Then the parallel transportsP* andPh are dual with respect to (•,•)w . Indeed, ifx,yPHw ,

~Pg* ~x!,Pg
h~y!!w1

5^Pg* ~x!,Pg~J~y!!&w1

5^x,J~y!&w0
5~x,y!w0

.

Note also thatPh coincides with the horizontal part ofP.
Proposition 4.2: Letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 , where w0 and w1 are

any elements ofW0 , satisfyingp(w0)5r0 and p(w1)5r1 . Let hPTr0
(M) and let ĥ be the

horizontal lift to w0 . Then

Pp(g)
(m) ~h!5p~Pg~ ĥ!!5p~Pg

h~ ĥ!!,

Pp(g)
(e) ~h!5p~Pg* ~ ĥ!!.

Proof: Follows easily from~8! and ~9!. h

Let H,K be vector fields onM and letĤ,K̂ be horizontal lifts. From the above Propositio
it also follows thatp(¹

Ĥ
* K̂)5¹H

(e)K, so that¹
Ĥ
* K̂ is a horizontal lift of¹H

(e)K. Similarly, ¹
Ĥ

h
K̂ is

the horizontal lift of¹H
(m)K.

V. THE a - CONNECTIONS

In Ref. 3, the a-connections onM were defined as generalizations of the (e) and
(m)-connections foraP@23,3#. There, thea-connection was given by the trivial affine structu
on ga(M), where

ga~ t !5H 2

12a
t ~12a!/2 aÞ1

log t a51

.

The connection was determined using the differentiation operatorsLa@r#:Tr(M)→Tga(r)(M),
given by

La@r#~H !5
d

dt
ga~r1tH !u t50 .

The correspondinga-parallel transport fromr0 to r1 along a curver is

La@r1#~Pr
(a)~X!!5La@r0#~X!, XPTr0

~M!.

The parallel transportPr
(a)* , dual with respect to the given monotone metric is given by

La
21@r1#Jr1

~Pr
(a)* ~X!!5La

21@r0#Jr0
~X!.
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Again, we will show that the above affine connections are closely related to the cla
connection forms from Sec. III. To this end, we define the projectionpa from W0 to M by

pa~w!5ga~ww* !.

Let r5ww* . The induced linear mappa:Tw→Tpa(w)(M) is

pa~x!5La@r#~xw* 1wx* !.

The operatorLa@r# is invertible, therefore,

pa~x!50⇔p~x!50,

so that we have the same vertical subspaceVw . Hence we have the horizontal subspaceHw and
the dual spaceHw* as in the previous section. LetkPTga(r)(M) and let us denotek̂a the hori-

zontal lift of k with respect topa, i.e. a horizontal vector such thatpa( k̂a)5k. Let h
PTr(M). The horizontal lifts with respect top andpa are connected by

ĥ5 k̂a⇔k5La@r#~h!. ~10!

In the sequel, we extend the differential operatorLa@r# to all of B. We define the two maps
L w

a ,K w
a :Tw→B by

L w
a~X!5La

21@r#~Lw~X!!,

K w
a~X!5La@r#~Kw~X!!.

The operatorsK w
a andL w

a have similar properties asKw andLw . We also have

^x,y&w5^Lw~X!,Kw~Y!&5^L w
a~X!,K w

a~Y!&. ~11!

The horizontal liftĥa of a vectorhPTpa(w)(M) satisfies the conditions

L w
a~ ĥa!5 1

2 La
21@r#JrLa

21@r#~h!5 .. 1
2 Ka~h!, ~12!

y5J~ ĥa!⇔K w
a~y!5 1

2 h. ~13!

The induced inner product inTpa(w)(M) is then

4~ ĥa,k̂a!w54^ĥa,J~ k̂a!&w

54^L w
a~ ĥa!,K w

a~J~ k̂a!!&5^Ka~h!,k&.

This coincides with the inner product, induced from^•,•&r in the a-representation of the cotan
gent space, see Ref. 3.

As in the previous section, we use the trivial affine connection onB and the mapsK w
a andL w

a

to obtain the parallel transportsPa and Pa* on W0 . From Eq.~11! it follows that the parallel
transports are dual. The parallel transportsPa and Pa* can again be restricted to the bundl
ø$(w,Hw* ), wPW0% andø$(w,Hw), wPW0%, respectively. We put

Pah~x!5J 21Pa~J~x!!,

for xPHw . As before, this corresponds to the horizontal part ofPa and the parallel transport
Pa* andPah are dual with respect to (•,•)w .

In the next Proposition, we show how these connections are projected ontoM.
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Proposition 5.1: Letg be a smooth curve inW0 , g(0)5w0 , g(1)5w1 , where w0 and w1 are
any elements ofW0 , satisfyingp(w0)5r0 and p(w1)5r1 . Let hPTr0

(M). Then

Pp(g)
(a) ~h!5p~Pg

a~ ĥ!!5p~Pg
ah~ ĥ!!,

Pp(g)
(a* )~h!5p~Pg

a* ~ ĥ!!.

Proof: The proof follows from~10!, ~12!, ~13! and the definition of the~a!- and (a* )-parallel
transports. h

From the above Proposition, it also follows that¹
Ĥ

ah
K̂ and¹

Ĥ

a* K̂ are thep-horizontal lifts of
¹H

(a)K and¹H
(a* )K, respectively.

Let us now compute the Riemannian curvature of thea-connections.
Proposition 5.2: Let Ra and Ra* be the Riemannian curvature tensor of¹a and ¹a* . Then

Ra5Ra* 50.

Proof: We have for smooth vector fieldsX,Y,Z on W

L a~Ra* ~X,Y!Z!5L a~¹X
a¹Y

aZ2¹Y
a¹X

aZ2¹ [X,Y]
a Z!

5XL a~¹Y
aZ!2YL a~¹X

aZ!2@X,Y#L a~Z!

5~XY2YX2@X,Y# !L a~Z!50.

The statement forRa can be proved similarly. It follows also from duality of the correspond
parallel transports.

h

VI. THE CURVATURE FORM

In this section, we compute the curvature form of the connectionv and show the relation
between the curvature form and the torsion of thea-connections.

Let us choose a connection formv from Sec. III 1. We will compute its curvature form. From
the structure equation

dv52 1
2 @v,v#1V,

it follows that:

v@X,Y#522V~X,Y!, ~14!

for horizontal vector fieldsX,Y, see Ref. 10, pp. 81.
Let wPW0 and letp(w)5r. Let us define the operatorCr :B→B, given by

Cr~a!5R21r ~R/L !~a!

Proposition 6.1: Let H,K be smooth vector fields onM, such that@H,K#50. Then

Vw~Ĥ,K̂ !52 1
2 w21~HCr~k!

2KCr~h!2@Cr~h!,Cr~k!#B!w,

where@a,b#B5ab2ba is the usual commutator on matrices.
Proof: From p(@Ĥ,K̂#)5@H,K#50 and Eq.~14!, it follows that:

@Ĥ,K̂#5@Ĥ,K̂#v5wv~@Ĥ,K̂# !522wV~Ĥ,K̂ !.
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Further, the horizontal lift ofH is given by the condition

Ĥ~w!5r ~R/L !~H~r!!~w* !215Cr~H~r!!w,

so that

ĤK̂~w!5Ĥ@Cr~k!#w1Cr~k!Ĥ~w!5~HCr~k!1Cr~k!Cr~h!!w

It is now easy to finish the proof.
h

Example 6.1:Let k51. Thenr (t)5t/(11t) andCr5 1
2Jr . Let H,K be vector fields onM,

such that@H,K#50. Let us denoteLH
S5Jr(h). Then

22wV~Ĥ,K̂ !w215 1
2 ~HLK

S2KLH
S !2 1

4 @LH
S ,LK

S#B .

Let T* be the torsion of the (e)-connection onM, then

T* ~H,K !5Jr
21~HLK

S2KLH
S !5 1

4 @@LH
S ,LK

S#B ,r#B ,

see Refs. 2 and 6. We compute

V~Ĥ,K̂ !5 1
8 w* Jr~@LH

S ,LK
S#B!w.

We see that the curvature formV(H,K)50 if and only if the symmetric logarithmic derivative
commute. In this case also the torsionT* (H,K) vanishes.

Example 6.2:Let v5vcan be the connection form of the canonical connection~Example 3.2!.
Then r 5 1

2 andCr5 1
2R

21. Let us denoteLH
L 5hr2152Cr . The curvature form is

Vcan~H,K !5 1
8 w21@LK

L ,LH
L #Bw

5 1
8 @w21k~w* !21,w21h~w* !21#B .

Again, the curvature form is zero iff the left~or, equivalently, the right! logarithmic derivatives
commute. We haveT* (H,K)5R@LH

L ,LK
L #B , so that the torsion also vanishes.

We see that in both examples, there is a close relation between the curvature form ofv and the
exponential connection onM: Vanishing of the curvature form implies vanishing of the torsion
the (e)-connection. As we shall see next, this is not always true.

Example 6.3:Let v be the connection form from Example 3.3. LetuPU(n) and let us define

s:M→W0 by s(r)5r
1
2u. Thens is a global horizontal section. It follows that the curvatu

form of V vanishes. On the other hand, the torsion of the (e)-connection is not always zero, se
Ref. 13.

Let now Ta andTa* be the torsion of the connection¹ah and¹a* on W0 .
Proposition 6.2: Let H,K be vector fields onM and let T(a* ) be the torsion of the connectio

¹ (a* ) on M. Then the horizontal part of Ta* (Ĥ,K̂) is the horizontal lift of T(a* )(H,K) and

v~Ta* ~Ĥ,K̂ !!52V~Ĥ,K̂ !,

whereV is the curvature form ofv.
Proof: The vector fields¹

Ĥ

a* K̂ and¹
K̂

a* Ĥ are horizontal lifts of¹H
(a* )K and¹K

(a* )H, so that

~Ta* ~Ĥ,K̂ !!h5¹
Ĥ

a* K̂2¹
Ĥ

a* K̂2@Ĥ,K̂#h.

But @Ĥ,K̂#h is the horizontal lift of@H,K#, so that
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p~Ta* ~Ĥ,K̂ !!5T(a* )~H,K !.

It also follows that

v~Ta* ~Ĥ,K̂ !!52v~@Ĥ,K̂# !52V~Ĥ,K̂ !.

h

Proposition 6.3: Let H, K be as above and let T(a) be the torsion of the connection¹ (a) on

M. Then Ta(Ĥ,K̂) is vertical, with

v~Ta~Ĥ,K̂ !!52V~Ĥ,K̂ !.

Proof: The proof is analogical to the previous proof, using the fact that the connection¹ (a) on
M is torsion-free.

h

Proposition 6.4: Let x,yPHw* and let T̄a be the torsion of the connection¹a. Then T̄a(X,Y)
is vertical and

T̄a~X,Y!52wVcan~X,Y!

Proof: Let the horizontal subspace be given by the cannonical connection, thenHw5Hw* and
J is the identity map. It follows that¹a5¹ah. The vectorsX,YPHw* can be extended to vecto
fields on W0 , such thatp(X) and p(Y) are smooth vector fields onM. The statement now
follows from the previous Proposition.

h

Remark 6.1:If a521, i.e.,¹a5¹, it is easy to compute that

Kw~ T̄~X,Y!!5yx* 2xy* ,

and T̄(X,Y) is, therefore, vertical for all smooth vector fieldsX,Y.

VII. DUAL RIEMANNIAN METRICS

It follows from symmetry of the representationB^ 1 and its commutant 1̂B that we may
equally well use the projectionp8:W0→M,

p8:w°w* w,

instead ofp. In this case, the induced linear mapTw→Tw* w(M) is

p8~x!5x* w1w* x.

It is easy to show thatp8(x)50 if xw21 is anti-Hermitian, so that the vertical subspace is giv
by

Vw8 5$aw:a1a* 50%.

Let the horizontal subspaceHw8 be the orthogonal complement ofVw8 with respect to

~x,y!w8 5~x,k~D21!21~y!!,

for a positive functionk. It is quite clear that given a functionk, we obtain the same Riemannia
structure onM from (•,•)w8 and p8 as from (•,•)w and p. Moreover, (•,•)w coincides with
(•,•) on Hw if and only if the same is true for (•,•)w8 andHw8 .

Let Fk be the modification of the Tomita–Takesaki operatorF, given by
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Fk~k~D21!~wg!!5k~D21!~wg* !.

Lemma 7.1:

(i) F k5Fp(D)5p(D)21F;
(ii) The horizontal subspace Hw8 is the fix point space of Fk;
(iii) F k is the adjoint operator of Sk with respect tô •,•&;
(iv) The polar decomposition of Sk with respect tô •,•& is Sk5JD;k1/2, where

D;k5Dp~D!225
p̃~D!

p~D!
5p̃~D!p~D21!,

(v) FAp5SAp̃, where p̃5tp(t21)5t/p(t)

Proof: ~i! is proved similarly as Lemma 4.1~i!, the statements~ii !–~iv! are easy to prove. To
get ~v!, write

FAp5Fp~D!5JD21/2p~D!5JD1/2p̃~D!215SAp̃.

h

Let the functionsf and f̃ be obtained fromp and p̃ as in Theorem 3.1~iii !. Then we will say
that the corresponding Riemannian metrics onM are dual.

From the above Lemma, we see that the horizontal subspaceHw8 , given by the functionp,
coincides with the subspaceHw , obtained fromp̃. It means that a pair of dual Riemannia
structures onM is obtained from the real part of Hilbert–Schmidt inner product on a horizo
subspace~Hw or Hw8 !, using the projectionsp andp8. Another way to do it is to use the sam
projection~p or p8! on two dual subspacesHw andHw8 .

Example 7.1:It is easy to see that ifk51, the dual subspaceHw8 coincides withHw* from Sec.
IV. Moreover,Hw andHw* are the SLD and RLD subspaces from Examples 3.1 and 3.2. It foll
that SLD and RLD are dual Riemannian metrics. The metric from Example 3.3 is the u
self-dual Riemannian metric.

Let Hw andHw8 be two dual horizontal subspaces given by the functionk, i.e.,Hw andHw8 are
the fix point space ofSk andFk, respectively. LetJ k be the operatorHw→Hw8 , satisfying

^x,J k~y!&5~x,y!w , x,yPHw .

Then

J k5 1
2 ~11D;k!uHw

.

Indeed, letx,yPHw , then

~11D;k!~x!5x1Fk~x!PHw8

and

1
2 ^x,~11D;k!~y!&5 1

2 ~^x,y&1^x,FkSk~y!&!5~x,y!5~x,y!w .

Let now h1 ,h2PTr(M) and let ^•,•&r be the inner product, given by the functionf
5 1

2(k(t)1tk(t21)). Then it can be realized onHw* as

^h1 ,h2&r5^ l 1
L ,J 21J kJ 21~ l 2

L!&

5^ l 1
L,2~11 p̃~D!!21@11 p̃~D!p~D21!#

3~11 p̃~D!!21~L2
L!&,
 16 Sep 2003 to 130.232.104.27. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



n

et of all

an

put-

2201J. Math. Phys., Vol. 43, No. 5, May 2002 Quantum information geometry and standard

Downloaded
wherel i
L5hi(w* )21, i 51,2. Note that this corresponds to the decomposition of the functiof

f ~ t !5
1

2

~11 p̃~ t !!2

11 p̃~ t !p~ t21!
,

from Theorem 3.1~iii !.
We conclude with two natural questions:

~1! From Theorem 3.1, we see that there is a one-to-one correspondence between the s
operator monotone functions and a subset of

$p:R1→R1, p is smooth, p~ t21!5p~ t !21%.
How is this subset characterized?

~2! Let the Riemannian metriĉ•,•&r be monotone. Does it follow that the dual Riemanni
metric is monotone?
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