Incompatibility in GPTs, generalized spectrahedra and tensor norms

Andreas Bluhm ${ }^{1}$ Anna Jenčová ${ }^{2}$ Ion Nechita ${ }^{3}$
${ }^{1}$ Department of Mathematical Sciences, University of Copenhagen
${ }^{2}$ Mathematical Institute of SAS, Bratislava
${ }^{3}$ Laboratoire de Physique Théorique, Université de Toulouse \& CNRS

QPL 2021

Why incompatibility

- one of fundamental nonclassical features of quantum mechanics, still not fully understood
- recognized as a valuable resource in quantum information theory
- necessary to violate any Bell inequality
- important task: characterize, detect and quantify incompatibility

Why in GPTs

General probabilistic theories (GPTs):

- an operational framework for description of physical theories
- contains both classical and quantum theory
- incompatibility exists in any nonclassical GPT
- convenient tools (convexity, ordered vector spaces, tensor cones)
- relation of incompatibility to other problems in mathematics

Measurements

A g-tuple of measurements with $\mathbf{k}=\left(k_{1}, \ldots, k_{g}\right)$ outcomes:

Compatible measurements

The measurements are compatible if all can be obtained from a single joint measurement:

Quantum measurements: POVMs and effects

A quantum measurement is represented by a POVM:

$$
\left\{M_{1}, \ldots, M_{k}\right\}, \quad 0 \leq M_{i} \leq I, \quad \sum_{i} M_{i}=I
$$

Outcome probabilities - Born rule: for any state ρ

$$
\operatorname{Prob}(\text { outcome }=i \mid \rho)=\operatorname{Tr}\left[M_{i} \rho\right], \quad i=1, \ldots, k
$$

Binary measurements (two outcomes) are represented by effects:

$$
0 \leq A \leq I, \quad \text { POVM : }\{A, I-A\} .
$$

Characterization of compatible POVMs or effects?

Qubit effects

Qubit effects are of the form

$$
A=\frac{1}{2}(\alpha I+\boldsymbol{a} \cdot \boldsymbol{\sigma}), \quad\|\boldsymbol{a}\|_{2} \leq \alpha \leq 2-\|\boldsymbol{a}\|_{2}
$$

where

- $\boldsymbol{\sigma}=\left(\sigma_{X}, \sigma_{Y}, \sigma_{Z}\right)$ are the Pauli matrices
- $\boldsymbol{a} \in \mathbb{R}^{3},\|\boldsymbol{a}\|_{2}=\sqrt{\sum_{i} \boldsymbol{a}_{i}^{2}}$.

Compatible pairs of qubit effects

For qubit effects:

$$
A=\frac{1}{2}(\alpha I+\boldsymbol{a} \cdot \boldsymbol{\sigma}), \quad B=\frac{1}{2}(\beta I+\boldsymbol{b} \cdot \boldsymbol{\sigma})
$$

- If A and B are compatible, then

$$
\frac{1}{2}\left(\|\boldsymbol{a}+\boldsymbol{b}\|_{2}+\|\boldsymbol{a}-\boldsymbol{b}\|_{2}\right) \leq 1
$$

- If A and B are unbiased (i.e. $\alpha=\beta=1$), then also the converse holds.

Observation:

$$
\frac{1}{2}\left(\|\boldsymbol{a}+\boldsymbol{b}\|_{2}+\|\boldsymbol{a}-\boldsymbol{b}\|_{2}\right) \text { is a tensor cross norm. }
$$

Tensor cross norms in Banach spaces

Let X and Y be Banach spaces. A cross norm is a norm $\|\cdot\|$ on $X \otimes Y$ such that for all $x \in X, y \in Y, \varphi \in X^{*}, \psi \in Y^{*}$

$$
\|x \otimes y\|=\|x\|\|y\|, \quad\|\varphi \otimes \psi\|=\|\varphi\|\|\psi\|
$$

Injective cross norm:

$$
\|z\|_{\epsilon}=\sup \left\{|(\varphi \otimes \psi)(z)|, \varphi \in X^{*}, \psi \in Y^{*},\|\varphi\|=\|\psi\|=1\right\}
$$

Projective cross norm:

$$
\|z\|_{\pi}=\inf \left\{\sum_{i}\left\|x_{i}\right\|\left\|y_{i}\right\|, z=\sum_{i} x_{i} \otimes y_{i}\right\}
$$

For any cross norm we have

$$
\|\cdot\|_{\epsilon} \leq\|\cdot\| \leq\|\cdot\|_{\pi} .
$$

Pairs of qubit effects and cross norms

For e_{1}, e_{2} basis elements in \mathbb{R}^{2}, $\boldsymbol{a}, \boldsymbol{b} \in \ell_{2}^{3}$, put

$$
\varphi_{\mathbf{a}, \boldsymbol{b}}:=e_{1} \otimes \boldsymbol{a}+e_{2} \otimes \boldsymbol{b} \in \ell_{\infty}^{2} \otimes \ell_{2}^{3}
$$

The two cross norms are
$\left\|\varphi_{\mathbf{a}, \boldsymbol{b}}\right\|_{\epsilon}=\max \left\{\|\boldsymbol{a}\|_{2},\|\boldsymbol{b}\|_{2}\right\}, \quad\left\|\varphi_{\mathbf{a}, \boldsymbol{b}}\right\|_{\pi}=\frac{1}{2}\left(\|\boldsymbol{a}+\boldsymbol{b}\|_{2}+\|\boldsymbol{a}-\boldsymbol{b}\|_{2}\right)$

For $A=\frac{1}{2}(I+\boldsymbol{a} \cdot \boldsymbol{\sigma}), B=\frac{1}{2}(I+\boldsymbol{b} \cdot \boldsymbol{\sigma})$:

- A, B are (unbiased) effects $\Longleftrightarrow\left\|\varphi_{\mathbf{a}, \boldsymbol{b}}\right\|_{\epsilon} \leq 1$
- A, B are compatible effects $\Longleftrightarrow\left\|\varphi_{\mathbf{a}, \boldsymbol{b}}\right\|_{\pi} \leq 1$

The purpose of this talk

1. Compatibility of effects is characterized by a tensor cross norm for any (finite) number of any effects.
2. The cross norm is a compatibility degree.
3. We can bound the compatibility degree of g effects by the projective/injective ratio: (Aubrun et al., 2020)

$$
\rho\left(\ell_{\infty}^{g}, X\right):=\max _{\varphi \in \ell_{\infty}^{\mathrm{m}} \otimes X} \frac{\|\varphi\|_{\pi}}{\|\varphi\|_{\epsilon}}
$$

4. For measurements with more outcomes, we have to find other characterizations.

We will work in the setting of general probabilistic theories (GPT).

General Probabilistic Theories

General probabilistic theories: definition

A GPT: $\left(V, V^{+}, \mathbb{1}\right)$

- $\left(V, V^{+}\right)$an ordered vector space $(\operatorname{dim}(V)<\infty)$
- $\mathbb{1}$ unit effect: a strictly positive functional on $\left(V, V^{+}\right)$.

The set of states: base of V^{+} given by $\mathbb{1}$

$$
K=\left\{\rho \in V^{+},\langle\mathbb{1}, \rho\rangle=1\right\} .
$$

The base norm in V :

$$
\|v\|_{v}:=\inf \left\{\left\langle\mathbb{1}, v_{+}+v_{-}\right\rangle: v=v_{+}-v_{-}, v_{ \pm} \in V^{+}\right\}
$$

General probabilistic theories: the dual space

The dual ordered vector space: $\left(A, A^{+}\right)$

- $A=V^{*}$ dual vector space
- $A^{+}=\left(V^{+}\right)^{*}$ the dual cone of positive functionals

$$
\left(V^{+}\right)^{*}:=\left\{f \in A,\langle f, v\rangle \geq 0, \forall v \in V^{+}\right\}
$$

- $\mathbb{1} \in \operatorname{int}\left(A^{+}\right)$- order unit in A

Order unit norm in A :

$$
\|f\|_{A}:=\inf \{\lambda>0:-\lambda \mathbb{1} \leq f \leq \lambda \mathbb{1}\}
$$

the dual norm of the base norm $\|\cdot\|_{v}$.

Classical systems

- $V \simeq A \simeq \mathbb{R}^{d}$
- $V^{+} \simeq A^{+} \simeq \mathbb{R}_{+}^{d}=\left\{\left(x_{1}, \ldots, x_{d}\right), x_{i} \geq 0\right\}$ simplicial cone
- $\mathbb{1}=(1,1, \ldots, 1)$

Classical state space: probability simplex
$\Delta_{d}=\left\{\left(p_{1}, \ldots, p_{d}\right), p_{i} \geq 0, \sum_{i} p_{1}=1\right\}$
The norms:
$\|\cdot\| v=\|\cdot\|_{1}, \quad\|\cdot\|_{A}=\|\cdot\|_{\infty}$.

Quantum systems

- $V \simeq A \simeq M_{n}^{s a}$ self-adjoint complex $n \times n$ matrices
- $V^{+} \simeq A^{+} \simeq M_{n}^{+}$psd matrices
- $\mathbb{1}=l$ identity matrix

Quantum state space: set of density matrices

$$
\mathcal{S}_{n}=\left\{\rho \in M_{n}^{+}, \operatorname{Tr} \rho=1\right\}
$$

The norms:

$$
\|\cdot\| v=\|\cdot\|_{\operatorname{Tr}}, \quad\|\cdot\|_{A}=\|\cdot\| \text { (operator norm) }
$$

General probabilistic theories: measurements and effects

Effects: $f \in A, 0 \leq f \leq \mathbb{1}$

- map states to probabilities:

$$
K \ni \rho \mapsto\langle f, \rho\rangle \in[0,1]
$$

- binary measurements

Measurements with outcomes in $[k]=\{1, \ldots, k\}$:

- f_{1}, \ldots, f_{k} effects, $\sum_{i} f_{i}=\mathbb{1}$
- Born rule: for any state $\rho \in K$

$$
\operatorname{Prob}(\text { outcome }=i \mid \rho)=\left\langle f_{i}, \rho\right\rangle, \quad i \in[k]
$$

- map states to the probability simplex Δ_{k}

Compatibility in GPT

Let $f^{(1)}, \ldots, f^{(g)}$ be measurements in some GPT, with $\boldsymbol{k}=\left(k_{1}, \ldots, k_{g}\right)$ outcomes.
The measurements are compatible if all $f^{(i)}$ are marginals of a joint measurement h with outcomes in $\left[k_{1}\right] \times \cdots \times\left[k_{g}\right]$:

$$
f_{j}^{(i)}=\sum_{n_{1}, \ldots, n_{g}} h_{n_{1}, \ldots, j, \ldots, n_{g}}, \quad i \in[g], j \in\left[k_{i}\right] .
$$

All measurements are compatible \Longleftrightarrow the GPT is classical

Compatibility degree

A trivial measurement with k outcomes: $\tau^{k}=\left(\frac{1}{k} \mathbb{1}, \ldots, \frac{1}{k} \mathbb{1}\right)$:
For a tuple of measurements $f=\left(f^{(1)}, \ldots, f^{(g)}\right)$ and $s \in[0,1]$:

$$
f(s):=\left(f^{(1)}(s), \ldots, f^{(g)}(s)\right), \quad f^{(i)}(s): s f^{(i)}+(1-s) \tau^{k_{i}}
$$

Compatibility degree:

$$
\begin{aligned}
& \gamma(f)=\sup \{s \in[0,1]: \\
& \\
& \quad f(s) \text { is compatible }\}
\end{aligned}
$$

$$
\begin{aligned}
\gamma\left(\boldsymbol{k} ; V, V^{+}\right):=\inf \{\gamma(f), f= & \left(f^{(1)}, \ldots, f^{(g)}\right) \text { measurements } \\
& \text { on } \left.\left(V, V^{+}, \mathbb{1}\right) \text { with } \boldsymbol{k} \text { outcomes }\right\}
\end{aligned}
$$

Compatible effects in GPT and tensor norms

Compatible effects and cross norms

$f=\left(f_{1}, \ldots, f_{g}\right)$ a tuple of elements in $\left(A,\|\cdot\|_{A}\right):$

$$
\varphi^{f}:=\sum_{i} e_{i} \otimes\left(2 f_{i}-\mathbb{1}\right) \in \ell_{\infty}^{g} \otimes A
$$

Interpretation of $\|\cdot\|_{\epsilon}$ and $\|\cdot\|_{\pi}$ cross norms in $\ell_{\infty}^{g} \otimes A$?

- f_{1}, \ldots, f_{g} are effects if and only if

$$
\left\|\varphi^{f}\right\|_{\epsilon}=\max _{i}\left\|2 f_{i}-\mathbb{1}\right\|_{A} \leq 1
$$

- what about the projective cross norm?

$$
\left\|\varphi^{f}\right\|_{\pi}=\inf \left\{\sum_{i}\left\|h_{i}\right\|, \varphi^{f}=\sum_{j} z_{j} \otimes h_{j},\left\|z_{j}\right\|_{\infty}=1, h_{j} \in A\right\}
$$

Compatible effects and cross norms

We introduce another norm in $\ell_{\infty}^{g} \otimes A$:

$$
\|\varphi\|_{c}:=\inf \left\{\left\|\sum_{j} h_{j}\right\|_{A}, \varphi=\sum_{j} z_{j} \otimes h_{j},\left\|z_{j}\right\|_{\infty}=1, h_{j} \in A^{+}\right\}
$$

Then $\|\cdot\|_{c}$ is a crossnorm, in particular

$$
\|\cdot\|_{\epsilon} \leq\|\cdot\|_{c} \leq\|\cdot\|_{\pi}
$$

Characterization of compatibility
 f_{1}, \ldots, f_{g} are compatible effects if and only if $\left\|\varphi^{f}\right\|_{c} \leq 1$.

The norm $\|\cdot\|_{c}$ can be computed by a conic program.

Compatibility degree and cross norms

The compatibility degree:

$$
\gamma(f)=\sup \left\{s \in[0,1]: s\left\|\varphi^{f}\right\|_{c} \leq 1\right\}=\left\|\varphi^{f}\right\|_{c}^{-1}
$$

The smallest attainable compatibility degree:

$$
\begin{aligned}
\gamma\left(g ; V, V^{+}\right) & :=\inf \left\{\gamma(f): f=\left(f_{1}, \ldots, f_{g}\right), f_{i} \text { effects }\right\} \\
& =\min _{\varphi \in \ell_{\infty}^{g} \otimes A} \frac{\|\varphi\|_{\epsilon}}{\|\varphi\|_{c}} \\
& \geq \min _{\varphi \in \ell_{\infty}^{g} \otimes A} \frac{\|\varphi\|_{\epsilon}}{\|\varphi\|_{\pi}}=\rho\left(\ell_{\infty}^{g}, A\right)^{-1}
\end{aligned}
$$

Lower bounds for compatibility degree

1. A first lower bound (tight if $\operatorname{dim}(V) \geq g+1$):

$$
\gamma\left(g ; V, V^{+}\right) \geq \rho\left(\ell_{\infty}^{g}, A\right)^{-1} \geq \underset{\uparrow}{\max \left\{g^{-1}, \operatorname{dim}(V)^{-1}\right\}}
$$

(Aubrun et al., 2020)
2. A lower bound for all g :

$$
\gamma\left(g ; V, V^{+}\right) \geq \pi_{1}(V)^{-1}
$$

$\pi_{1}(V)$ is the 1 -summing constant: the least $c>0$ such that:

$$
\sum_{i=1}^{g}\left\|z_{i}\right\|_{V} \leq c \sup _{\|f\|_{A} \leq 1} \sum_{i=1}^{g}\left|\left\langle f, z_{i}\right\rangle\right|, \quad \forall g \in \mathbb{N}, z_{1}, \ldots, z_{g} \in V
$$

Centrally symmetric GPTs

$\left(V, V^{+}, \mathbb{1}\right)$ is centrally symmetric if:
K is isomorphic to the unit ball of some norm $\|\cdot\|$ in \mathbb{R}^{d}.
Then

- $V \simeq \mathbb{R} \mathbb{1} \times \mathbb{R}^{d}$
- $V^{+} \simeq\{(\lambda, x),\|x\| \leq \lambda\}$
- $\mathbb{1}=(1,0)$

The dual space: for $\|\cdot\|_{*}$ the dual norm to $\|\cdot\|$

- $A \simeq \mathbb{R} \mathbb{1} \times \mathbb{R}^{d}$
- $A^{+} \simeq\left\{(\alpha, \bar{f}),\|\bar{f}\|_{*} \leq \alpha\right\}$

Important example: qubits

The tensor norms in centrally symmetric GPTs
For $\varphi \in \ell_{\infty}^{g} \otimes A \simeq \ell_{\infty}^{g} \times\left(\ell_{\infty}^{g} \otimes \mathbb{R}^{d}\right)$:

$$
\varphi=(y, \bar{\varphi}) \quad \text { for some } y \in \ell_{\infty}^{g}, \bar{\varphi} \in \ell_{\infty}^{g} \otimes \mathbb{R}^{d}
$$

- the injective norm:

$$
\max \left\{\|y\|_{\infty},\|\bar{\varphi}\|_{\epsilon}\right\} \leq\|\varphi\|_{\epsilon} \leq\|y\|_{\infty}+\|\bar{\varphi}\|_{\epsilon}
$$

- the norm $\|\cdot\|_{c}$:

$$
\max \left\{\|y\|_{\infty},\|\bar{\varphi}\|_{\pi}\right\} \leq\|\varphi\|_{c} \leq\|y\|_{\infty}+\|\bar{\varphi}\|_{\pi}
$$

- if $y=0$ then

$$
\|\varphi\|_{\epsilon}=\|\bar{\varphi}\|_{\epsilon}, \quad\|\varphi\|_{c}=\|\bar{\varphi}\|_{\pi}
$$

Compatibility conditions in centrally symmetric GPTs

Let $f=\left(f_{1}, \ldots, f_{g}\right), f_{i}=\frac{1}{2}\left(\alpha_{i}, \bar{f}_{i}\right), i \in[g]$.

- f_{i} is an effect if and only if $\left\|\bar{f}_{i}\right\|_{*} \leq \alpha_{i} \leq 2-\left\|\bar{f}_{i}\right\|_{*}$
- f_{i} is unbiased if $\alpha_{i}=1$

The corresponding tensor $\varphi^{f} \in \ell_{\infty}^{g} \otimes A$:

$$
\varphi^{f}=\left(y_{f}, \bar{\varphi}^{f}\right), \quad y_{f}=\sum_{i}\left(\alpha_{i}-1\right) e_{i}, \quad \bar{\varphi}^{f}=\sum_{i} e_{i} \otimes \overline{\mathcal{F}}_{i}
$$

Compatibility conditions in centrally symmetric GPTs

Compatible effects in centrally symmetric GPTs:

- If f_{1}, \ldots, f_{g} are compatible, then

$$
\left\|\bar{\varphi}^{f}\right\|_{\pi} \leq 1
$$

- If all f_{i} are unbiased then also the converse holds.

Compatibility degree centrally symmetric GPTs

Minimal compatibility degree is attained at a g-tuple of unbiased effects:

$$
\gamma\left(g ; V, V^{+}\right)=\min _{\bar{\varphi} \in \ell_{\infty}^{g} \otimes \mathbb{R}^{d}} \frac{\|\bar{\varphi}\|_{\epsilon}}{\|\bar{\varphi}\|_{\pi}}=\rho\left(\ell_{\infty}^{g},\left(\mathbb{R}^{d},\|\cdot\|_{*}\right)\right)^{-1}
$$

From bounds on the π / ϵ-ratio: (Aubrun et al., 2020)

$$
2^{-1 / 2} \geq \gamma\left(g ; V, V^{+}\right) \geq \max \left\{g^{-1}, d^{-1}\right\}
$$

Minimal compatibility degree for $g \rightarrow \infty$:

$$
\gamma\left(g ; V, V^{+}\right) \downarrow \pi_{1}\left(\mathbb{R}^{d},\|\cdot\|\right)^{-1}
$$

Centrally symmetric GPTs: examples

Cubic GPTs:

- $\|\cdot\|=\|\cdot\|_{\infty}$
- the state space:

$$
K=[-1,1]^{d}
$$

- attains the lower bound for compatibility degree:

$$
\gamma\left(g ; V, V^{+}\right)=\max \left\{g^{-1}, d^{-1}\right\}
$$

Centrally symmetric GPTs: examples

Spherical GPTs:

- $\|\cdot\|=\|\cdot\|_{2}$
- the state space:

Euclidean ball

- compatibility degree:

$$
\begin{array}{cc}
\gamma\left(g ; V, V^{+}\right)=g^{-1 / 2}, & \text { if } g \leq d \\
d^{-1 / 2} \geq \gamma\left(g ; V, V^{+}\right) \geq \max \left\{g^{-1 / 2}, \frac{\Gamma\left(\frac{d}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d+1}{2}\right)}\right\}, & \text { if } g \geq d
\end{array}
$$

Compatibility of qubit effects

Qubits (spherical GPT with $d=3$):

- $g=2,3:$

$$
\gamma\left(g ; M_{2}^{s a}, M_{2}^{+}\right)=g^{-1 / 2}
$$

- $g \geq 4$:

$$
3^{-1 / 2}>\gamma\left(g ; M_{2}^{s a}, M_{2}^{+}\right) \downarrow 1 / 2
$$

Is the lower bound $1 / 2$ attained for some $g \geq 4$?

Compatibility of quantum effects: matrix convex sets

Matrix convex sets

Matrix convex set in g variables: g-tuples of self-adjoint matrices

$$
\mathcal{C}=\cup_{n} \mathcal{C}_{n}, \quad \mathcal{C}_{n} \subseteq\left(M_{n}^{s a}\right)^{g}
$$

- closed under directs sums:

$$
\left(X_{i}\right)_{i=1}^{g} \in \mathcal{C}_{k},\left(Y_{i}\right)_{i=1}^{g} \in \mathcal{C}_{n} \Longrightarrow\left(X_{i} \oplus Y_{i}\right)_{i=1}^{g} \in \mathcal{C}_{n+k}
$$

- closed under application of ucp maps: for $\phi: M_{k} \rightarrow M_{m}$,

$$
\left(X_{i}\right)_{i=1}^{g} \in \mathcal{C}_{k} \Longrightarrow\left(\phi\left(X_{i}\right)\right)_{i=1}^{g} \in \mathcal{C}_{m}
$$

Related to optimization (relaxation of linear matrix inequalities), operator algebras (dilation of operators, operator systems)

Examples of matrix convex sets

Main examples: given by a g-tuple $\left(A_{i}\right)_{i=1}^{g} \in\left(B(\mathcal{H})^{\text {sa }}\right)^{g}$

- Matrix range:

$$
\begin{aligned}
\mathcal{W}(A) & =\cup_{n} \mathcal{W}_{n}(A) \\
\mathcal{W}_{n}(A) & :=\left\{\left(\phi\left(A_{i}\right)\right)_{i=1}^{g}, \phi: B(\mathcal{H}) \rightarrow M_{n} \text { ucp map }\right\}
\end{aligned}
$$

- Free spectrahedron:

$$
\begin{aligned}
\mathcal{D}_{A} & =\cup_{n} \mathcal{D}_{A}(n) \\
\mathcal{D}_{A}(n) & :=\left\{\left(X_{i}\right)_{i=1}^{g}, \sum_{i=1}^{g} A_{i} \otimes X_{i} \leq I\right\}
\end{aligned}
$$

At level 1: $\mathcal{D}_{A}(1)=\left\{x \in \mathbb{R}^{g}, \sum_{i} x_{i} A_{i} \leq I\right\}$ - spectrahedron

Duality of matrix convex sets

The matrix dual: for a matrix convex set $\mathcal{C}\left(\right.$ in g variables): $\mathcal{C}^{\bullet}=\cup_{n} \mathcal{C}_{n}^{\bullet}$,

$$
\mathcal{C}_{n}^{\bullet}:=\left\{\left(X_{i}\right)_{i=1}^{g} \in\left(M_{n}^{\text {sa }}\right)^{g}, \sum_{i=1}^{g} C_{i} \otimes X_{i} \leq I, \forall\left(C_{i}\right) \in \mathcal{C}\right\}
$$

Duality of free spectrahedron and matrix range:

$$
\mathcal{W}(A)^{\bullet}=\mathcal{D}_{A}, \quad \mathcal{D}_{A}^{\bullet}=\mathcal{W}(A)
$$

Minimal and maximal matrix convex sets

Let $K \subseteq \mathbb{R}^{g}$ be a convex set.

- A matrix convex set over $K: \mathcal{C}=\cup_{n} \mathcal{C}_{n}, \mathcal{C}_{1}=K$.
- Minimal and maximal matrix convex set over K :

$$
\mathcal{C}_{1}^{\min }=\mathcal{C}_{1}^{\max }=K, \quad \mathcal{C}^{\min }(K) \subseteq \mathcal{C} \subseteq \mathcal{C}^{\max }(K)
$$

for all \mathcal{C} with $\mathcal{C}_{1}=K$.

- Duality: with K° the polar of K.

$$
\mathcal{C}^{\max }(K)^{\bullet}=\mathcal{C}^{\min }\left(K^{\circ}\right), \quad \mathcal{C}^{\min }(K)^{\bullet}=\mathcal{C}^{\max }\left(K^{\circ}\right)
$$

- If K is a polytope: there are some $\left(A_{i}\right)^{g},\left(B_{i}\right)^{g}$ such that

$$
\mathcal{C}^{\min }(K)=\mathcal{W}(A), \quad \mathcal{C}^{\max }(K)=\mathcal{D}_{B}
$$

Matrix convex sets and tensor norms

$$
\text { Let } \varphi=\sum_{i} e_{i} \otimes \tilde{f}_{i} \in \ell_{\infty}^{g} \otimes M_{n}^{s a}
$$

Unit ball of the injective norm:

$$
\|\varphi\|_{\epsilon} \leq 1 \Longleftrightarrow\left(\tilde{f}_{i}\right)_{i=1}^{g} \in \mathcal{C}_{n}^{\max }\left(B_{g, \infty}\right)
$$

Unit ball of $\|\cdot\|_{c}$:

$$
\|\varphi\|_{c} \leq 1 \Longleftrightarrow\left(\tilde{f}_{i}\right)_{i=1}^{g} \in \mathcal{C}_{n}^{\min }\left(B_{g, \infty}\right)
$$

$$
B_{g, \infty}=[-1,1]^{g} \text { is the unit ball in } \ell_{\infty}^{g}
$$

The matrix cube and the matrix diamond

$$
B_{g, \infty}-\text { hypercube }
$$

$$
B_{g, \infty}^{\circ}=B_{g, 1}-\text { cross polytope }
$$

The matrix cube:

$$
\mathcal{C}_{n}^{\max }\left(B_{g, \infty}\right)=\left\{\left(X_{i}\right) \in\left(M_{n}^{s a}\right)^{g},\left\|X_{i}\right\| \leq 1, i \in[g]\right\}=: \mathcal{D}_{\square, g}(n)
$$

The matrix diamond:

$$
\begin{aligned}
\mathcal{C}_{n}^{\max }\left(B_{g, 1}\right) & =\left\{\left(X_{i}\right) \in\left(M_{n}^{\text {sa }}\right)^{g}, \sum_{i} \varepsilon_{i} X_{i} \leq I, \varepsilon \in\{-1,1\}^{g}\right\} \\
& =: \mathcal{D}_{\diamond, g}(n)
\end{aligned}
$$

Equivalent characterizations of compatible quantum effects

Let f_{1}, \ldots, f_{g} be quantum effects, $\tilde{f}_{i}=2 f_{i}-I$.
f_{1}, \ldots, f_{g} are compatible iff any of the following holds:
(i) $\left(\tilde{f}_{i}\right) \in \mathcal{C}_{n}^{\min }\left(B_{g, \infty}\right)=\mathcal{D}_{\delta, g}^{\bullet}(n)$
(ii) free spectrahedra inclusion: $\mathcal{D}_{\diamond, g} \subseteq \mathcal{D}_{\tilde{f}}$
(iii) $\tilde{f}_{i}=\phi\left(A_{i}\right), i \in[g]$, for a ucp $\operatorname{map} \phi: M_{2} g \rightarrow M_{n}$
(iv) $\left(\tilde{f}_{i}\right)$ dilates to a g-tuple of commuting contractions

$$
A_{i}=I \otimes \cdots \otimes I \otimes\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \otimes I \otimes \cdots \otimes I \in M_{2^{g},}^{s a}, \quad i \in[g] .
$$

The compatibility degree and inclusion constant

Minimal compatibility degree:

$$
\gamma\left(g ; M_{n}^{s a}, M_{n}^{+}\right)=\sup \left\{s>0, s \mathcal{D}_{\square, g}(n) \subseteq \mathcal{D}_{\diamond, g}^{\bullet}(n)\right\}
$$

Lower bounds:

1. For all n and g,

$$
\gamma\left(g ; M_{n}^{s a}, M_{n}^{+}\right) \geq g^{-1 / 2}
$$

Equality holds for $n \geq 2^{\frac{g-1}{2}}$, attained by anti-commuting s.a. unitaries.
2. Dimension-dependent bound:

$$
\gamma\left(g ; M_{n}^{s a}, M_{n}^{+}\right) \geq \frac{1}{2 n}
$$

Compatible measurements and positive maps

Tensor cones and positive maps

$\left(E, E^{+}\right),\left(F, F^{+}\right)$- ordered vector spaces
Tensor cone: a positive cone $C \subset E \otimes F$:

$$
E^{+} \otimes_{\min } F^{+} \subseteq C \subseteq E^{+} \otimes_{\max } F^{+}
$$

- minimal tensor product (separable elements are positive)

$$
E^{+} \otimes_{\min } F^{+}:=\left\{\sum_{i} v_{i} \otimes w_{i}, v_{i} \in E^{+}, w_{i} \in F^{+}\right\}
$$

- maximal tensor product (separable effects are positive)

$$
E^{+} \otimes_{\max } F^{+}:=\left(\left(E^{+}\right)^{*} \otimes_{\min }\left(F^{+}\right)^{*}\right)^{*}
$$

Tensor cones and positive maps

Let $\phi:\left(E, E^{+}\right) \rightarrow\left(F, F^{+}\right)$be a positive map, $\left(L, L^{+}\right)$an OVS:

- ϕ is completely positive with respect to the max or min cone:

$$
\left(\phi \otimes i d_{L}\right)\left(E^{+} \otimes_{\max / \min } L^{+}\right) \subseteq F^{+} \otimes_{\max / \min } L^{+}
$$

- ϕ is entanglement breaking if:

$$
\begin{gathered}
\left(\phi \otimes i d_{L}\right)\left(E^{+} \otimes_{\max } L^{+}\right) \subseteq F^{+} \otimes_{\min } L^{+}, \forall\left(L, L^{+}\right) \\
\Longleftrightarrow \\
\left(\phi \otimes i d_{L}\right)\left(E^{+} \otimes_{\max }\left(F^{+}\right)^{*}\right) \subseteq F^{+} \otimes_{\min }\left(F^{+}\right)^{*}
\end{gathered}
$$

Compatible measurements in a GPT

Let $\left(V, V^{+}, \mathbb{1}\right)$ be a GPT
$f^{(1)}, \ldots, f^{(g)}$ measurements with $\boldsymbol{k}=\left(k_{1}, \ldots, k_{g}\right)$ outcomes
We define an affine map: $\boldsymbol{f}: K \rightarrow \mathcal{P}_{\boldsymbol{k}}:=\Delta_{k_{1}} \times \cdots \times \Delta_{k_{g}}$

$$
\rho \mapsto\left(f^{(1)}(\rho), \ldots, f^{(g)}(\rho)\right)
$$

Compatibility:

A GPT with state space $\mathcal{P}_{\boldsymbol{k}}$

We construct a subspace $E_{k} \subseteq \mathbb{R}^{\boldsymbol{k}}:=\bigotimes_{i} \mathbb{R}^{k_{i}}$, with $J: \mathbb{R}^{\boldsymbol{k}} \rightarrow E_{k}$ orthogonal projection, such that

- $\left(E_{k}, J\left(\mathbb{R}_{+}^{k}\right), 1_{k}=(1, \ldots, 1)\right)$ is a GPT with state space

$$
K=J\left(\Delta_{\boldsymbol{k}}\right) \simeq \mathcal{P}_{\boldsymbol{k}}
$$

- $\left.J\right|_{\Delta_{k}}$ corresponds to taking marginals
- The dual space is $\left(E_{k}, E_{k} \cap \mathbb{R}_{+}^{k}\right)$

The affine map $\boldsymbol{f}: K \rightarrow \mathcal{P}_{\boldsymbol{k}}$ extends to a positive map

$$
\boldsymbol{f}:\left(V, V^{+}\right) \rightarrow\left(E_{\boldsymbol{k}}, J\left(\mathbb{R}_{+}^{\boldsymbol{k}}\right)\right), \quad \boldsymbol{f}^{*}:\left(E_{\boldsymbol{k}}, E_{\boldsymbol{k}} \cap \mathbb{R}_{+}^{\boldsymbol{k}}\right) \rightarrow\left(A, A^{+}\right)
$$

A GPT with state space $\mathcal{P}_{\boldsymbol{k}}$

We choose a suitable basis in E_{k} :

$$
v:=\left\{1_{\mathbf{k}}, v_{j}^{(i)}, j \in\left[k_{i}-1\right], i \in[g]\right\}
$$

The adjoint map $\boldsymbol{f}^{*}: E_{\boldsymbol{k}} \rightarrow A$ is determined by
$\boldsymbol{f}^{*}\left(1_{\boldsymbol{k}}\right)=\mathbb{1}, \quad \boldsymbol{f}^{*}\left(v_{j}^{(i)}\right)=\tilde{f}_{j}^{(i)}:=2 f_{j}^{(i)}-2 / k_{i} \mathbb{1}, j \in\left[k_{i}-1\right], i \in[g]$

Compatibility, ETB maps and extendable maps

Compatibility: for the extended (positive) maps

Equivalent compatibility conditions:

- \boldsymbol{f}^{*} extends to a positive map $\left(\mathbb{R}^{\boldsymbol{k}}, \mathbb{R}_{+}^{\boldsymbol{k}}\right) \rightarrow\left(A, A^{+}\right)$.
- \boldsymbol{f} (equivalently \boldsymbol{f}^{*}) is entanglement breaking.

The quantum case

Let $f^{(1)}, \ldots, f^{(g)}$ be quantum measurements,

$$
\boldsymbol{f}^{*}:\left(E_{\boldsymbol{k}}, E_{\boldsymbol{k}} \cap \mathbb{R}^{\boldsymbol{k}}\right) \rightarrow\left(M_{n}^{s a}, M_{n}^{+}\right)
$$

- E_{k} is an operator system, generated by diagonal matrices

$$
A_{j}^{(i)}(\boldsymbol{k})=\operatorname{diag}\left(v_{j}^{(i)}\right), \quad j \in\left[k_{i}-1\right], i \in[g] .
$$

- \boldsymbol{f}^{*} has a positive extension iff it is completely positive iff \boldsymbol{f}^{*} has an ucp extension $\phi: M_{\boldsymbol{k}} \rightarrow M_{n}$
- this means that

$$
\left(\boldsymbol{f}^{*}\left(v_{j}^{(i)}\right)\right)=\left(\tilde{f}_{j}^{(i)}\right) \in \mathcal{W}(A(\boldsymbol{k})), \quad A(\boldsymbol{k})=\left(A_{j}^{(i)}(\boldsymbol{k})\right)
$$

a matrix range.

The matrix jewel

The matrix jewel: a free spectrahedron in $\sum_{i}\left(k_{i}-1\right)$ variables

$$
\mathcal{D}_{\star, k}=\mathcal{D}_{A(k)}=\mathcal{C}^{\max }\left(\mathcal{D}_{\star, k}(1)\right), \quad \mathcal{D}_{\star, k}(1) \simeq \mathcal{P}_{\boldsymbol{k}}^{\circ}
$$

Put $\tilde{f}=\left\{\tilde{f}_{j}^{(i)}:=2 f_{j}^{(i)}-2 / k_{i} \mathbb{1}, j \in\left[k_{i}-1\right], i \in[g]\right\}$.
Equivalent compatibility conditions:

- $\left(\tilde{f}_{j}^{(i)}\right) \in \mathcal{D}_{\text {,k }}^{\bullet}(n)=\mathcal{W}_{n}(A(\boldsymbol{k}))$
- Free spectrahedra inclusion: $\mathcal{D}_{\star, k} \subseteq \mathcal{D}_{\tilde{f}}$.

Compatible measurements and generalized spectrahedra

Generalized spectrahedra

$\left(E, E^{+}\right),\left(L, L^{+}\right)$, a tensor cone $C \subseteq E \otimes L, a_{1}, \ldots, a_{N} \in E$.
A generalized spectrahedron: a positive cone in L^{N},

$$
\mathcal{D}_{a}(L, C):=\left\{\left(v_{1}, \ldots, v_{N}\right) \in L^{N}, \sum_{i} a_{i} \otimes v_{i} \in C\right\}
$$

Assume that $\left\{a_{1}, \ldots, a_{N}\right\}$ is a basis of E.

- $\mathcal{D}_{a}(\mathbb{R}, C) \simeq C$.
- Let $\left(F, F^{+}\right), C^{\prime} \subseteq F \otimes L$ a tensor cone, $\phi: E \rightarrow F$. Then

$$
\phi \otimes i d_{L}:(E \otimes L, C) \rightarrow\left(F \otimes L, C^{\prime}\right)
$$

is positive if and only if $\mathcal{D}_{a}(L, C) \subseteq \mathcal{D}_{\phi(a)}\left(L, C^{\prime}\right)$.

The GPT jewel and compatibility

Let $E_{\mathbf{k}} \subseteq \mathbb{R}^{\mathbf{k}}$ be as before, with basis

$$
v:=\left\{1_{\mathbf{k}}, v_{j}^{(i)}, j \in\left[k_{i}-1\right], i \in[g]\right\}
$$

The GPT jewel: for $\left(L, L^{+}\right)$,

$$
\mathcal{D}_{G P T,}\left(\mathbf{k} ; L, L^{+}\right):=\mathcal{D}_{v}\left(L, E_{\mathbf{k}}^{+} \otimes_{\max } L^{+}\right)
$$

$f^{(1)}, \ldots, f^{(g)}$ are compatible measurements if and only if

$$
\mathcal{D}_{G P T,}\left(\mathbf{k} ; V, V^{+}\right) \subseteq \mathcal{D}_{\tilde{f}}\left(V, A^{+} \otimes_{\min } V^{+}\right),
$$

with $\tilde{f}=\left\{1, \tilde{f}_{j}^{(i)}, j \in\left[k_{i}-1\right], i \in[g]\right\}$.

The GPT diamond

For binary measurements (effects), $\boldsymbol{k}=(2, \ldots, 2)$:

The GPT diamond:

$$
\begin{aligned}
& \mathcal{D}_{G P T, \diamond}\left(g ; L, L^{+}\right):=\mathcal{D}_{G P T,}\left((2, \ldots, 2) ; L, L^{+}\right) \\
& \quad=\left\{\left(z_{0}, \ldots, z_{g}\right), z_{0}+\sum_{i} \varepsilon_{i} z_{i} \in L^{+}, \forall \varepsilon \in\{ \pm 1\}^{g}\right\} \\
& \begin{aligned}
\mathcal{D}_{G P T, \diamond} & \left(g ; V, V^{+}\right)= \\
& =\left\{\left(z_{0}, \ldots, z_{g}\right), z_{0} \in V^{+},\left\|\sum_{i} e_{i} \otimes z_{i}\right\|_{c^{*}} \leq \mathbb{1}\left(z_{0}\right)\right\}
\end{aligned}
\end{aligned}
$$

where $\|\cdot\|_{c^{*}}$ is the cross norm in $\ell_{1}^{g} \otimes V$ dual to $\|\cdot\|_{c}$.

Relation to the matrix jewel

For quantum theory:

$$
\begin{aligned}
& \mathcal{D}_{G P T,}\left(\mathbf{k} ; M_{n}^{\text {sa }}, M_{n}^{+}\right) \\
& \quad=\left\{\left(Z_{0}, Z_{0}^{1 / 2} X_{j}^{(i)} Z_{0}^{1 / 2}\right), \quad Z_{0} \in M_{n}^{+},\left(X_{j}^{(i)}\right) \in \mathcal{D}_{\star, \mathbf{k}}(n)\right\}
\end{aligned}
$$

At dimension 1: $\mathcal{D}_{G P T, \uparrow}\left(\mathbf{k} ; \mathbb{R}, \mathbb{R}_{+}\right)=\mathbb{R}_{+}\left(1, \mathcal{D}_{\star, k}(1)\right)$

The GPT jewel and compatibility degree

For $\left(z_{0}, z_{j}^{(i)}\right) \in \mathcal{D}_{G P T,}\left(\mathbf{k} ; V, V^{+}\right)$and $s>0$, we define

$$
s \cdot\left(z_{0}, z_{j}^{(i)}\right):=\left(z_{0}, s z_{j}^{(i)}\right) .
$$

The compatibility degree as inclusion constant:

$$
\begin{aligned}
& \gamma\left(\mathbf{k} ; V, V^{+}\right)= \\
& \sup \left\{s>0, s \cdot \mathcal{D}_{G P T,}\left(\mathbf{k} ; V, V^{+}\right) \subseteq \mathcal{D}_{\tilde{f}}\left(V ; A^{+} \otimes_{\min } V^{+}\right)\right. \\
& \left.\left.\forall f_{j}^{(i)} \in A \text {, such that } \mathcal{D}_{G P T,}\left(\mathbf{k} ; \mathbb{R}, \mathbb{R}_{+}\right) \subseteq \mathcal{D}_{\tilde{f}}\left(\mathbb{R}, A^{+}\right)\right)\right\}
\end{aligned}
$$

Lower bounds on compatibility degree

Let $k_{m}=\max \left\{k_{i}\right\}, \bar{k}=\sum_{i}\left(k_{i}-1\right)$. From the relation

$$
\frac{k_{m}}{2}\left(k_{m}-1\right)^{-1} \mathcal{D}_{\diamond, \bar{k}}(1) \subseteq \mathcal{D}_{\diamond, k}(1) \subseteq \frac{k_{m}}{2}\left(k_{m}-1\right) \mathcal{D}_{\diamond, \bar{k}}(1)
$$

From the lower bound for effects:

$$
\begin{aligned}
\gamma\left(\mathbf{k} ; V, V^{+}\right) & \geq\left(k_{m}-1\right)^{-2} \gamma\left(\bar{k} ; V, V^{+}\right) \\
& \geq\left(k_{m}-1\right)^{-2} \rho\left(\ell_{\infty}^{\bar{k}}, A\right)^{-1}
\end{aligned}
$$

In conclusion...

Incompatibility of measurements in GPT is related to

- tensor norms in Banach spaces
- inclusion problems for matrix convex sets
- properties of positive maps on OVS
- inclusion of generalized spectrahedra

Further results

Compatibility region: different coefficients in the mixture with noise

$$
\begin{aligned}
& \Gamma(f)=\left\{s \in[0,1]^{g},\right. \\
& \\
& \left.\quad\left(s_{i} f^{(i)}+\left(1-s_{i}\right) \tau^{k_{i}}\right) \text { are compatible }\right\}
\end{aligned}
$$

$\Gamma\left(\boldsymbol{k} ; V, V^{+}\right)=\cap\{\Gamma(f)$,
$\left(f^{(i)}\right)$ are measurements with \boldsymbol{k} outcomes $\}$
Incompatibility witnesses: obtained from

- spectrahedra
- duality of maps
- duality of norms $\|\cdot\|_{c},\|\cdot\|_{c^{*}}$

