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We continue in the investigation of the relations between effect algebras and AF C*-algebras
started by Pulmannová, 1999. In particular, in analogy with the notion of a dimension group,
we introduce the notion of a dimension effect algebra as an effect algebra obtained as the direct
limit of finite effect algebras with RDP. We also give an intrinsic characterization of dimension
effect algebras. It turns out that every dimension effect algebra is a unit interval in a dimension
group with a unit. We prove that there is a categorical equivalence between the category of
countable dimension effect algebras and unital AF C*-algebras.
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1. Introduction

In the traditional approach, the mathematical descriptionof a quantum mechanical
system is based on a Hilbert space. Experimentally verifiable propositions about a
physical system are modeled by projections on the corresponding Hilbert space.

Recently, to describe unsharp propositions and measurements, new abstract partial
algebraic structures were introduced, called effect algebras (alternatively, D-posets).
In the Hilbert space approach, the effect algebra is realized by self-adjoint operators
lying between zero and identity, which are called the Hilbert space effects. The
transition from projections to effects corresponds to the transition from projection-
valued (PV) to positive operator-valued (POV) observables. The latter play an
important role in the theory of quantum measurements [6].

For the systems with infinitely many degrees of freedom, the C*-algebraic
approach is more appropriate [18]. For example, the physical system arising as the
thermodynamic limit of finite spin-like systems is described by AF C*-algebras, i.e.
the norm closure of an ascending sequence of finite-dimensional C*-algebras.

This work was supported by Center of excellence SAS, CEPI I/2/2005 and grant APVV- 0071-06. SP was
also supported by the grant VEGA 2/6088/26.
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Among general effect algebras, a special role is played by MV-algebras, introduced
as an algebraic description of many-valued logic [7, 8]. In [22], a correspondence was
shown between (countable) MV-algebras and the subclass of unital AF C*-algebras,
whose Murray–von Neumann order is a lattice. This result wasextended in [24] to
all unital AF C*-algebras, and a certain subclass of effect algebras with the Riesz
decomposition property, extending the class of MV-algebras.

In the present paper, we give an intrinsic characterizationof the latter subclass
of effect algebras. We also show that they can be obtained as direct limits of
sequences of finite effect algebras with the Riesz decomposition property. In analogy
with the notion of dimension groups, we introduce the notionof dimension effect
algebras. It turns out that dimension effect algebras are exactly the unit intervals
in unital dimension groups. We prove a categorical equivalence between countable
dimension effect algebras and unital AF C*-algebras. A similar result was stated in
[24, Theorem 8] without proof.

2. Preliminaries on K0-theory of AF C*-algebras

The purpose of dimension theory of C*-algebras is to measurethe “dimensions”
of projections in the algebra. The dimension of a projectionin a matrix algebra is a
nonnegative integer, while in a finite von Neumann factor oneobtains a nonnegative
real number. In a C*-algebraA, in general, the dimension function must be given
by values in a pre-ordered abelian group (a so-calledK0 group), rather than in real
numbers. For basics ofK0-theory for C*-algebras see e.g. [4, 17, 27, 28].

Given a C*-algebraA, two projectionsp, q ∈ A are equivalent, writtenp ∼ g,
if there is a partial isometryu such thatu∗u = p and uu∗ = q. Let Proj(A) denote
the set of all equivalence classes of projections ofA. A partial binary operation
+ can be defined on Proj(A) in the following way: for two equivalence classes
[p] and [q] their ”sum” [p] + [q] exists iff there are representativesp′ ∈ [p] and
q ′ ∈ [q] with p′q ′ = 0, in which case[p] + [q] = [p′ + q ′].

Recall that in theK0-theory of C*-algebras, the definition ofK0(A) for a
C*-algebra A requires simultaneous consideration of all matrix algebras over A.
Denote byMn(A) the set of alln× n matrices with entries inA. Let M∞ denote
the algebraic direct limit ofMn(A) under the embeddinga 7→ diag(a,0). Then
M∞(A) can be thought as the algebra of all infinite matrices with only finitely
many nonzero entries. LetV (A) := Proj(M∞(A)). If A is separable, thenV (A)
is countable. There is a binary operation onV (A): If [e], [f ] ∈ V (A), choose
e′ ∈ [e], f ′ ∈ [f ] with e′ ⊥ f ′. Notice that this is always possible by “moving
down” the diagonal. Then define[e]+ [f ] = [e′ +f ′]. This operation is well defined
and makesV (A) into an abelian semigroup with the additive zero[0].

If A is a unital C*-algebra, thenK0(A) is defined as the Grothendieck group
for V (A). For nonunital C*-algebras the construction ofK0 is more refined. The
embedding of V (A) into K0(A) is injective iff V (A) has cancelation, i.e. if
[e] + [g] = [e] + [h] implies [g] = [h] for [e], [g], [h] ∈ V (A). K0(A) can be
pre-ordered taking the image ofV (A) in K0(A) asK0(A)

+. We can also define the
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scale D(A) as the image of Proj(A) in K0(A). If A is a unital C*-algebra, then
D(A) = [0,1A]. If φ : A → B is a homomorphism of C*-algebras, thenφ extends
to a semigroup homomorphismφ∗ : V (A) → V (B). Moreover, V : A → V (A) is
a covariant functor from the category of C*-algebras to the category of abelian
semigroups, which preserves direct products and inductivelimits.

It turns out that to every abelian groupG there is a C*-algebraA with
K0(A) = G. But this correspondence is not one-to-one; the C*-algebraA is not
uniquely defined by itsK0(A). The situation is better in the class of approximately
finite C*-algebras.

A C*-algebra A is called approximately finite-dimensional (AF) ifA is the
direct limit of an increasing sequence of finite-dimensional C*-algebras. We will be
concerned with unital AF C*-algebras that arise as direct limits of sequences of
unital finite-dimensional C*-algebras with the same unit. We refer to [17] for the
definition of the functorK0 from the category of AF C*-algebras with C*-algebra
homomorphisms to the category of countable partially ordered abelian groups with
order-preserving group homomorphisms.

It was proved in [12] that any AF C*-algebra is uniquely determined by its
K0-group. Such groups are just the ordered direct limits of sequences of simplicial
groups (i.e. groups order-isomorphic toZr , r ∈ N, with the standard positive cone)
called the (countable)dimension groups[11, 16]. In [11], it was proved that the
dimension groups can be characterized as unperforated directed interpolation groups.
We note that such groups coincide with the Riesz groups [15].

We note that some authors allow AF C*-algebras to be nonseparable by defining
them as direct limits of arbitrary directed sets of finite-dimensional C*-algebras.
Their K0 groups are then the general dimension groups, obtained as direct limits
of directed systems of simplicial groups.

We follow the classical definition of AF C*-algebras, although the more general
case is immediate.

3. Interpolation groups and their unit intervals

By a partially ordered groupwe shall mean an abelian groupG together with
a subsetG+ such thatG+ +G+ ⊆ G+, G+ ∩ (−G+) = {0}. The setG+ is called
the positive coneof G and we write a ≤ b iff b − a ∈ G+. G is said to have
the Riesz interpolation property(RIP), or to be an interpolation group, if given
ai, bj (1 ≤ i ≤ m,1 ≤ j ≤ n) with ai ≤ bj for all i, j , there must be ac ∈ G with
ai ≤ c ≤ bj for all i, j . The Riesz interpolation property is equivalent to theRiesz
decomposition property(RDP): given ai, bj in G+ (1 ≤ i ≤ m,1 ≤ j ≤ n) with∑
ai =

∑
bj , there existcij ∈ G+ with ai =

∑
j cij , bj =

∑
i cij . Equivalently, RDP

can be expressed as follows: givena, bi, i ≤ n in G+ with a ≤
∑

i≤n bi , there exist
ai, i ≤ n, with ai ≤ bi, i ≤ n, and a =

∑
i≤n ai . In order to verify these properties,

it is only necessary to consider the casem = n = 2 (see [15, 16]).
An elementu of a partially ordered groupG is an order unit if for all a ∈ G,

a ≤ nu for some n ∈ N. A partially ordered groupG is said to bedirected if
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G = G+ − G+. If G has an order unitu, then it is directed; indeed, ifg ≤ nu,
then we may writeg = nu− (nu− g).

An abelian partially ordered groupG is called unperforatedif given n ∈ N and
a ∈ G, na ∈ G+ implies a ∈ G+. Any unperforated abelian group must be torsion
free. G is archimedeanif whenever x, y ∈ G such thatnx ≤ y for all positive
integersn, then x ≤ 0. According to [16, Proposition 1.24], ifG is an archimedean
directed abelian group, thenG is unperforated. Also, by [16, Proposition 1.22], all
lattice ordered abelian groups are unperforated.

Given partially ordered groupsG andH , we say that a homomorphismφ : G → H
is positive if φ(G+) ⊆ H+, and that an isomorphismφ : G → H is an order
isomorphismif φ(G+) = H+. If G and H have order unitsu and v respectively,
then a positive homomorphismφ : G → H such thatφ(u) = v is called unital.
Fixing an order unitu ∈ G+, a positive homomorphismf : G → R with f (u) = 1
is called au-state on G.

We say that a partially ordered groupG is a Riesz groupif it is directed,
unperforated and has the interpolation property. Riesz groups were first studied in
[15].

Let G be a partially ordered group. We say thatu ∈ G+ is a generating unit
if every g ∈ G+ can be expressed in the form of a finite sum of (not necessarily
different) elements of the interval[0, u]. It is straightforward to show that a generating
unit is an order unit. Conversely, ifG is an interpolation group, then any order
unit is generating. Indeed, if 0≤ g ≤ nu, then the Riesz decomposition property
implies that g =

∑
i≤n gi with gi ≤ u, i ≤ n.

For any v ∈ G+, whereG is a partially ordered group, the intervalG+[0, v] =

{a ∈ G : 0 ≤ a ≤ v} can be endowed with a partial algebraic structure in the
following way: we define a unary operation′ by putting a′ = v − a, and a partial
binary operation⊕ defined iff a + b ≤ v, and a ⊕ b = a + b. This partial algebraic
structure is a special case of a more general structure, so-called effect algebra. A
general axiomatic definition is the following [13]. Notice that an alternative structure
of a so-called D-poset was introduced in [21].

DEFINITION 3.1. An effect algebrais an algebraic system(E; 0,1,⊕), where
⊕ is a partial binary operation and 0 and 1 are constants, such that the following
axioms are satisfied for everya, b, c ∈ E:

(i) if a ⊕ b is defined thenb⊕ a is defined anda ⊕ b = b⊕ a (commutativity);
(ii) if a ⊕ b and (a ⊕ b) ⊕ c is defined, thena ⊕ (b ⊕ c) is defined and

(a ⊕ b)⊕ c = a ⊕ (b ⊕ c) (associativity);
(iii) for every a ∈ E there is a uniquea′ ∈ E such thata ⊕ a′ = 1;
(iv) a ⊕ 1 is defined iff a = 0.

In an effect algebraE, we definea ≤ b if there is c ∈ E with a ⊕ c = b. It
turns out that≤ is a partial order such that 0≤ a ≤ 1 for all a ∈ E. Moreover, if
a⊕ c1 = a⊕ c2, then c1 = c2, and we definec = b⊖ a iff a⊕ c = b. In particular,
1 − a = a′ is called theorthosupplementof a.
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A very important example of effect algebras is the interval[0, I ] in the group of
self-adjoint operators on a Hilbert space, which are calledthe Hilbert space effects.
This example gave a motivation for introducing the abstractdefinition.

Effect algebras include as special subclasses algebraic structures that have been
used so far as quantum logics (i.e. mathematical models of quantum propositions):
boolean algebras, MV-algebras, orthomodular lattices andposets, orthoalgebras [10].
In particular, MV-algebras were originally introduced as an algebraic basis for
many-valued logics [7, 8]. Recall that an MV-algebra is an algebraic structure
(M; 0,1,′ , +̇), where 0,1 are constants,′ : M → M is a unary operation anḋ+ is
a binary operation which is associative and commutative, 0 is its neutral element,
1+̇a = 1, a+̇a′ = 1, 0′ = 1 and a+̇(a+̇b′)′ = b+̇(b+̇a′)′. With a ∨ b = a+̇(a+̇b′)′

as the join, and(a′ ∨ b′)′ as the meet,M becomes a distributive lattice with respect
to the partial ordera ≤ b iff a∨b = b. If we restrict the operatioṅ+ to those pairs
(a, b) for which a ≤ b′, M becomes a lattice ordered effect algebra (a so-called
MV-effect algebra) with the same ordering as the original MV-algebra and with
a′ = 1 ⊖ a.

We say that an effect algebraE has theRiesz decomposition property(RDP) if
one of the following equivalent properties is satisfied:
(R1) a ≤ b1 ⊕ b2 ⊕ · · · ⊕ bn implies a = a1 ⊕ a2 ⊕ · · · ⊕ an with ai ≤ bi , i ≤ n;
(R2) ⊕i≤mai = ⊕j≤nbj , m, n ∈ N, implies ai = ⊕jcij , i ≤ m, and bj = ⊕icij ,

j ≤ n, where (cij )ij are orthogonal elements inE.
Similarly, as for partially ordered groups, it suffices to prove the above properties

for m, n = 2.
Let (P,≤) be a partially ordered set. We say thatP has theinterpolation property

if a1, a2, b1, b2 ∈ P and ai ≤ bj for all i, j = 1,2, there is an elementx ∈ P
with ai ≤ x ≤ bj , i, j = 1,2. Every effect algebra with RDP has the interpolation
property (see [20] for a direct proof; it also follows from the fact that any such
algebra is an interval of an interpolation group, as will be shown below). But,
differently from the groups, the interpolation property for effect algebras is weaker
than the Riesz decomposition property. (There are lattice ordered effect algebras that
do not satisfy the RDP, see e.g. the ”diamond” [10]).

A characterization of MV-algebras among effect algebras was formulated in [9].
By an easy reformulation of it, we find the following ([10]). Every MV-effect
algebra satisfies RDP. Conversely, every lattice ordered effect algebra with RDP can
be organized into an MV-algebra by puttinga+̇b = a⊕ a′ ∧ b. So MV-algebras are
in one-to-one correspondence with lattice ordered effect algebras with RDP.

DEFINITION 3.2 ([2]). An effect algebraE is called aninterval effect algebraif
it is isomorphic to an effect algebra of the formG+[0, e], whereG is a partially
ordered abelian group ande ∈ G+.

DEFINITION 3.3. Let E be an effect algebra. A mapφ : E → K, where K
is any abelian group, is called aK-valued measure ifφ(a ⊕ b) = φ(a) + φ(b)
whenevera ⊕ b is defined inE.
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THEOREM 3.4 ([2]). Let E be an interval effect algebra. Then there exists a
unique (up to isomorphism) partially ordered directed abelian groupG with positive
coneG+ and an elementu ∈ G+ such that the following conditions are satisfied:

(i) E is isomorphic to the interval effect algebraG+[0, u],
(ii) u is a generating unit,

(iii) every K-valued measureφ : E → K can be extended uniquely to a group
homomorphismφ∗ : G → K.

The groupG in the preceding theorem is called theuniversal groupfor E. We
will denote it by GE. The elementu is a generating unit inGE.

There are effect algebras that are not interval effect algebras. E.g., there exist
orthomodular lattices with no group valued measures [23]. On the other hand,
according to [26], every effect algebra with RDP is an interval effect algebra and its
universal group is an interpolation group. The technique used in the proof (so-called
word method) goes back to Baer [1]. See [26] or [10] for more details.

The proof of the following theorem can be found in [24]. For the convenience
of readers, we repeat it here.

THEOREM 3.5. Let G be an interpolation group with order unitu. Put E =

G+[0, u]. Then (G, u) is the universal group forE.

Proof: Properties (i) and (ii) of Theorem 3.4 are clear. We have to check (iii).
Let K be any abelian group and letψ : E → K be a K-valued measure. Take
x ∈ G+, then there arex1, x2, . . . , xn ∈ E with x = x1 + x2 + · · · + xn. Define
ψ∗(x) =

∑
i≤n ψ(xi). Then ψ∗ : G+ → K is a well-defined additive map. Indeed,

assume thatx = y1 + y2 + · · · + ym with yi ∈ E, i = 1,2, . . . , m, be another
representation ofx. Owing to the Riesz decomposition property forG, there are
wij ∈ G+ such thatxi =

∑
j≤mwij for i ≤ n, yj =

∑
i ≤ nwij for j ≤ m. Then

we have

ψ∗(x) =
∑

i≤n

ψ(xi) =
∑

i≤n

∑

j≤m

ψ(wij ) =
∑

j≤m

∑

i≤n

ψ(wij ) =
∑

j≤m

ψ(yj ).

Additivity of ψ∗ on G+ is clear. SinceG is directed, anyz ∈ G has a form
z = x− y with x, y ∈ G+. Defineψ∗(z) = ψ(x)−ψ(y). If x1, y1 is another pair of
elements inG+ such thatz = x1−y1, thenx+y1 = x1+y are elements ofG+, hence
ψ∗(x)+ψ∗(y1) = ψ∗(x1)+ψ∗(y), which entailsψ∗(x)−ψ∗(y) = ψ∗(x1)−ψ∗(y1).
So ψ∗ : G → K is well defined, and additivity ofψ∗ is clear. �

The following example shows that not every unital group is a universal group
for its unit interval (see [14, Example 11.3, 11.5]).

EXAMPLE 3.6. Let G = Z with the positive coneG+ := {0,2,3,4, . . .} and
unit u := 5. Then G is a (nonarchimedean) unital group, and the unit interval
E = {0,2,3,5} is a Boolean effect algebra. The only group homomorphisms
G → R are of the formn 7→ cn where c is a real constant. But, for anyp ∈ [0,1],
πp : E → R defined byπp(0) = 0, πp(2) = p, πp(3) = 1 − p and πp(5) = 1 is a
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state onE. So πp can be extended to a group homomorphismG → R iff p = 1/5.
Therefore,G is not the universal group forE.

Notice that the universal group forE is (Z × Z, γ ) with coordinatewise addition
and partial order, whereγ (2) = (1,0), γ (3) = (0,1), andγ (5) = (1,1). The mapping
ν : Z × Z → G defined byν(m, n) = 2m+ 3n is a surjective group homomorphism.

Let E and F be effect algebras. A mappingφ : E → F is an (effect algebra)
morphism if φ preserves the unit element and⊕.

LEMMA 3.7. Let E and F be effect algebras with RDP and let(GE, u)
and (GF , v) be their respective universal groups with the corresponding units.
Every morphismφ : E → F uniquely extends to a unital group homomorphism
φ∗ : GE → GF .

Proof: Owing to the isomorphism, we may identifyF with the unit interval
G+
F [0, v] ⊂ GF , and considerφ as aGF -valued measure onE. By the properties of

universal groups,φ uniquely extends to a group homomorphismφ∗ : GE → GF . As
φ mapsG+

E[0, u] to G+
F [0, v], andu andv are generating, we getφ∗(GE)

+ ⊆ (GF )
+,

hence φ∗ is positive, and asφ preserves the unit elements, we haveφ∗(u) = v.
Henceφ∗ is a unital group homomorphism. �

Let us consider the categoryE of effect algebras with RDP with effect algebra
morphisms as morphisms, and the categoryIG of interpolation groups with dis-
tinguished order units with unital group homomorphisms as morphisms. Denote by
S : E → IG the map that to every effect algebraE assigns its universal groupGE,
and let T : IG → E denote the map that to every interpolation groupG with unit
u assigns the effect algebraG+[0, u].

THEOREM 3.8. (i) S : E → IG and T : IG → E are functors; (ii) there is a
categorical equivalence between the categoryE of effect algebras with RDP with
effect algebra morphisms, and the categoryIG of interpolation groups with order
unit.

Proof: (i) For effect algebrasE,F and an effect algebra morphismφ : E → F ,
define Sφ = φ∗ : GE → GF . For groups (G, u) and (H, v) and a unital group
homomorphismf : G → H , define Tf = f/G+[0, u] : G+[0, u] → H+[0, v].
Clearly, the identity mapping onE extends to the identity onGE, and the identity
mapping onGE restricts to the identity onE. Let E1, E2, E3 be effect algebras
in E, and let φ : E1 → E2 and ψ : E2 → E3 be effect algebra morphisms. Then
(ψ ◦ φ) : E1 → E3 has a unique extension(ψ ◦ φ)∗ : GE1 → GE3. The mapping
ψ∗ ◦φ∗ coincides withψ ◦φ on E1 (as the unit interval ofGE1), and by uniqueness
of the extension, we obtain(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, which entailsS(ψ ◦ φ) = Sψ ◦ Sφ.
Similarly we can show thatT (f ◦ g) = Tf ◦ T g. This proves that bothS and T
are functors.

(ii) We have S(E) = GE, T (GE) = G+[0, u], so thatT ◦ S(E) = G+[0, u] ∼= E
by 3.4 (i). Conversely,T ((G, u)) = G+[0, u], S(G+[0, u]) = GG+[0,u], so that
S ◦ T ((G, u)) = GG+[0,u]

∼= (G, u) by Theorem 3.5. �
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It was proved in [26] that the universal group for an MV-effect algebra is a
lattice ordered group with generating unit. By a well-knownresult in [22], there is a
categorical equivalence between MV-algebras with MV-algebra homomorphisms and
lattice ordered groups with generating unit with unital homomorphisms of lattice
ordered groups.

4. Simplicial groups and dimension groups

Let Z denote the ordered abelian group of integers with the standard positive
cone Z+ = Z ∩ [0,∞). Here every nonzero element inZ+ is an order unit. If
r is a positive integer, we understand thatZr is organized into additive abelian
group with coordinatewise addition. The standard partial order is the coordinatewise
partial order determined by the standard total order onZ, and the corresponding
standard positive cone is(Z+)r . An elementv ∈ Zr is an order unit if and only if
all of its coordinates are strictly positive. In this ordering Zr is a lattice ordered,
unperforated archimedean group. Ifu = (k1, k2, . . . , kr) is an order unit, then the
interval (Z+)r [0,u] is an MV-algebra which is the direct product of finite chains
(0,1, . . . , ki), i = 1,2, . . . , r. It can be shown that every finite effect algebraE with
RDP is of this type. Indeed, RDP implies the interpolation property, and sinceE is
finite, it is a lattice satisfying RDP, hence an MV-algebra. Every MV-algebra is a
direct product of linearly ordered MV-algebras [7], henceE is a direct product of
a finite number of finite chains. As we mentioned above, a partially ordered abelian
groupG is called simplicial if it is isomorphic with Zr with standard positive cone
(Z+)r . Consequently, every finite effect algebra with RDP is a unitinterval in a
simplicial group.

Unital homomorphisms of simplicial groups can be describedas follows. Let
ξ : Zm → Zk be a positive group homomorphism such thatξ(u) = v for some order
units u in Zm and v in Zk. Let d1 = (1,0, . . . ,0), d2 = (0,1,0, . . . ,0), . . . ,dm =

(0,0, . . . ,1) be the standard base forZm, and similarly, let (e1,e2, . . . ,ek) be the
standard base forZk. Let ξ(di) =

∑
j dijej . If x = (x1, x2, . . . , xm), then ξ(x) =∑

i≤m xiξ(di) =
∑

i≤m xi
∑

j≤k dijej =
∑

j≤k(
∑

i≤m xidij )ej . Thus ξ is determined by
the matrix(dij ) whose elements satisfy the system of linear equations

∑
i≤m uidij = vj

obtained fromξ(u) = v. The restrictionξ : [0,u] → [0, v] of ξ is an effect algebra
morphism. Conversely, every effect algebra morphismφ : [0,u] → [0, v] of unit
intervals extends uniquely to a unital group homomorphismφ∗ : Zm → Zk.

We recall that dimension groups are defined as direct limits of directed systems
of simplicial groups. In analogy, direct limits of directedsystems of finite effect
algebras with RDP will be calleddimension effect algebras. From the properties of
direct limits it follows that a dimension effect algebra hasRDP. Direct limits for
effect algebras have been studied and their existence was proved in [25, 19], see
also [10, §1.9.7.].

THEOREM 4.1. Let (Di; (fij : Di → Dj ), i, j ∈ I, i ≤ j) be a directed system of
effect algebras with RDP and letD be its direct limit. Then the universal groupGD
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of D is the direct limit of the directed system((GDi , vi); f
∗
ij : GDi → GDj , i ≤ j)

of the universal groups of(GDi , vi), i ∈ I .

Proof: Every fij : Di → Dj , i ≤ j extends to a positive unital group homomor-
phism f ∗

ij : GDi → GDj , such thatf ∗
ii = idGDi for every i ∈ I , and f ∗

jmf
∗
ij = f ∗

im

wheneveri ≤ j ≤ m. Hence((GDi , vi); f
∗
ij ) is a directed system of simplicial groups

with order units. For everyi ∈ I , fi : Di → D extends uniquely tof ∗
i : GDi → GD,

and if i ≤ j , then fjfij = fi implies f ∗
j f

∗
ij = f ∗

i .
Let (H, z) be a unital group andgi : GDi → H, i ∈ I be any system of

unital positive group homomorphisms such thatgjf ∗
ij = gi for all i ≤ j in I . The

restriction g♭i of gi to Di (identified withGDi [0, vi]) is an effect algebra morphism
from Di → H [0, z] for all i ∈ I . Clearly, g♭jfij = g

♭

i . SinceD is the direct limit
of (Di; (fij )), there exists a unique effect algebra morphismg♭ : D → H [0, z] such
that g♭fi = g

♭

i . This g♭ uniquely extends to a positive unital group homomorphismg
from GD to H such thatgf ∗

i = gi . ThusGD is the direct limit of ((GDi , vi); f
∗
ij ).�

It follows that the universal group of a (countable) dimension effect algebra is
a (countable) dimension group. On the other hand, it can be seen that the unit
interval of a dimension group is a dimension effect algebra.

Dimension groups have an intrinsic characterization as Riesz groups [11]. The
next theorem gives an intrinsic characterization of dimension effect algebras. Clearly,
an effect algebra with RDP is a dimension effect algebra iff its universal group is
unperforated.

THEOREM 4.2. Let E be an effect algebra with RDP and letG be its universal
group. ThenG is unperforated if and only ifE satisfies the following condition:
Let n ∈ N and let ck,li,j ∈ E, i, j = 1, . . . , n, k = 1, . . . , m, l = 1, . . . , p be such that

⊕j,kc
k,l
i,j = ail = al, for all i, l, (1)

⊕i,lc
k,l
i,j = b

j

k ≤ bk, for all j, k,

for some elementsal, bk ∈ E. Then there is someq ∈ N and some elementsdk,l ∈ E,
k = 1, . . . , m, l = 1, . . . , p + q, such that

⊕kdk,l = al, l = 1, . . . , p, (2)

⊕ldk,l = bk, k = 1, . . . , m.

Proof: First, note that condition (2) is equivalent with the fact that
∑

l al ≤
∑

k bk
in G. Indeed, p∑

l=1

al =

p∑

l=1

∑

k

dk,l ≤

p+q∑

l=1

∑

k

dk,l =
∑

k

bk.

Conversely, since
∑

k bk −
∑

l al ≥ 0 andE ≃ G[0, u] generatesG+, there are some
elements c1, . . . , cq ∈ E, such that

∑
k bk =

∑
l al +

∑
l′ cl′ . The statement now

follows from the RDP.
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Suppose now thatG is unperforated and letck,li,j ∈ E satisfy condition (1). Let
a =

∑
l al, b =

∑
k bk, then

nb =
∑

k

nbk ≥
∑

k

n∑

j=1

b
j

k =
∑

i,j,k,l

c
k,l
i,j =

∑

i,l

ail = na.

It follows that n(b − a) ≥ 0, so thatb − a ≥ 0, that is,
∑

k bk ≥
∑

l al.
To prove the converse, letc ∈ G be such thatnc ≥ 0 for some n. Since G

is directed,c = b − a for some a, b ∈ G+ and sinceE is generating,a =
∑

l al,
b =

∑
k bk for someal, bk ∈ E. From na ≤ nb, we have by RDP that there are some

elementsej ≤ b, j = 1, . . . , n, such thatna =
∑

j ej . Moreover, sinceej ≤
∑

k bk,

there are somebjk ≤ bk, such thatej =
∑

k b
j

k . Putting all together, we get

n
∑

l

al = na =
∑

j

ej =
∑

j,k

b
j

k .

Applying the RDP to this, we get that there are elementsck,li,j ∈ G+ such that
∑

j,k c
k,l
i,j = al and

∑
i,l c

k,l
i,j = b

j

k ≤ bk. Then ck,li,j are elements inE, satisfying
(1) and by assumptions, (2) must hold. This implies that

∑
l al ≤

∑
k bk, hence

c = b − a ≥ 0. �

5. Effect algebras and AF C*-algebras

.
A *-algebra A is called standard matricial if A = Mn(1)(C)× · · · ×Mn(k)(C). It

is a well-known fact that every finite dimensional C*-algebra A is isomorphic to a
standard matricial C*-algebra (see, e.g. [17]).

It was proved by Bratteli [5] that morphisms of standard matricial C*-algebras can
be expressed by means of a so-calledstandard maps. If A = Mn(1)(C)×· · ·×Mn(k)(C),
B = Mm(1)(C)× · · · ×Mm(ℓ)(C), then every standard mapA → B is determined by
an ℓ× k matrix (sij ) of nonnegative integers such that

si1n(1)+ si2n(2)+ · · · + sikn(k) = m(i), i = 1,2, . . . , ℓ.

The construction of a standard map goes as follows. We first map A to Mm(1)(C)
by sending anyk-tuple (a1, a2, . . . , ak) from A to the block diagonal matrix with
entriesa1 s11-times,a2 s12- times,. . ., ak s1k-times. To obtain *-algebra mapsA → B,
we paste together the maps fromA to each of the matrix algebrasMm(i).

According to [17, Lemma 17.1], to every *-algebra homomorphism φ : A → B
there exists an inner *-algebra automorphismβ of B such thatβ ◦ φ : A → B is a
standard map. According to [5], [17, Prop. 17.2], any AF C*-algebra is isomorphic
(as a C*-algebra) to a C*-algebra direct limit of standard matricial C*-algebras and
standard maps.

Let us consider the algebraMn(C). Two projections inMn(C) are equivalent iff
they have the same dimension. Hence the range of dimension can be described by
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a finite chain of integers(0,1, . . . , n). This chain can be endowed with a structure
of an MV-effect algebra, its universal group isZ, with order unit n, which is the
dimension group forMn(C). The general case of a finite-dimensional C*-algebra is
treated in the next lemma.

LEMMA 5.1. Let A be a finite-dimensional C*-algebra which is isomorphic with
Mn(1)(C) ×Mn(2)(C) × · · · ×Mn(r)(C). Its dimension group is the simplicial group
Zr with order unit (n(1), n(2), . . . , n(r)). Conversely, to every simplicial groupZr

with distinguished order unitu = (u1, u2, . . . , un) there exists a finite-dimensional
C*-algebra A such thatZr is its dimension group.

Proof: The first part is proved in [17, Lemma 20.4]. The rangeD(A) of
the dimension equivalence ofA can be described as follows. There are central
projections p1, . . . , pr , with the dimensions dimpi = n(i), i ≤ r, in A such that
piApi is isomorphic withMn(i)(C), and

∑
i≤r pi = 1. Every projectionq can be

written asq =
∑

i≤r qpi , and to the equivalence class[q], a sequence(k1, k2, . . . , kr)
can be assigned, whereki = dimqpi ≤ n(i), i ≤ r. So the range of the dimension
equivalence corresponds to the direct product of finite chains (0,1, . . . , n(1))× . . .×
(0,1, . . . , n(r)), which is a finite-dimensional MV-algebra corresponding tothe unit
interval (Zr)+[0,u], u = (n(1), n(2), . . . , n(r)).

Conversely, to any simplicial group(Zr) with unit u, u = (n(1), n(2), . . . , n(r)),
we may assign the standard matricial algebraMn(1)(C)×Mn(2)(C)× · · · ×Mn(r)(C),
which is completely described by then-tuple (n(1), n(2), . . . , n(r)), and whose
dimension group is the given simplicial group. �

Comparing standard maps and positive unital homomorphismsof simplicial groups,
we obtain the following (compare with [12, Lemma 5.3, Lemma 5.4]) proposition.

PROPOSITION1. Let D,F be finite effect algebras with RDP. Every effect algebra
morphismφ : D → F is induced by a *-algebra homomorphismψ : A → B, whereA
and B are finite-dimensional C*-algebras whose ranges of dimension are isomorphic
with D and F , respectively.

By [12], the situation is the following. To any sequence

A1 → A2 → · · ·

of finite-dimensional C*-algebras (unital, with the same unit) there is a canonically
induced sequence

D(A1) → D(A2) → · · ·

of dimension effect algebras, whereD(Ai) denotes the range of dimension ofAi ,
which induce a sequence

G1 → G2 → · · ·

of simplicial groups, whereGi is the universal group forD(Ai). If A is the direct
limit of Ai , then G = K0(A) is the direct limit of Gi = K0(Ai), and hence the
rangeD(A)(= G+[0, u]) of its dimension is the direct limit ofD(Ai).
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Conversely, if
D1 → D2 → . . .

is an increasing sequence of finite effect algebras with RDP with direct limit D,
then there is an increasing sequence

A1 → A2 → · · ·

of finite-dimensional C*-algebras such that

D(A1) → D(A2) → · · ·

is isomorphic with
D1 → D2 → · · ·

and if A is the direct limit of Ai , then D(A) is isomorphic withD. Moreover,
K0(A) is isomorphic with the universal groupGD of D.

So there is one-to-one correspondence between any two of thefollowing classes:
unital AF C*-algebras, countable dimension effect algebras and countable dimension
groups. In what follows, we show that there are categorical equivalences between
any two of the three corresponding categories. Owing to Theorem 3.8, it suffices to
show that there is a categorical equivalence between AF C*-algebras and countable
dimension effect algebras.

THEOREM 5.2. There is a categorical equivalence between the category of unital
AF C*-algebras and countable dimension effect algebras.

Proof: Let A denote the category of AF C*-algebras with C*-algebra homomor-
phisms as morphisms, and letD denote the category of countable dimension effect
algebras with effect algebra morphisms as morphisms. LetS : A → D denote the
mapping such thatSA = D(A). If φ : A → B is a C*-algebra homomorphism, its
restriction to projections preserves the equivalence of projections, therefore it induces
a well-defined mappingSφ : D(A) → D(B). Clearly, if φ = idA, then Sφ = idD,
and S(φ ◦ψ) = Sφ ◦Sψ , wheneverφ ◦ψ makes sense. It follows thatS is a functor.

Conversely, letT : D → A be the mapping which to every countable dimension
effect algebra assigns the corresponding AF C*-algebra such that D = D(A). We
have to prove thatT is a functor. Letψ : D → F for D,F ∈ D be an effect
algebra morphism. Then there are increasing sequences

D1 → D2 → · · ·

F1 → F2 → · · ·

of finite effect algebras with RDP, such thatD is the direct limit ofDi and F is
the direct limit of Fi . Let

A1 → A2 → · · ·

B1 → B2 → · · ·

be sequences of finite-dimensional C*-algebras induced by the sequencesDi and
Fi , and letA,B be their corresponding limits.
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For everyDi , there isFk(i) such thatψi : Di → Fk(i), whereψi is the restriction
of ψ to Di . If i ≤ j then sinceDi ⊂ Dj , we may assume thatFk(i) ⊂ Fk(j). By
Proposition 1,ψi : Di → Fk(i) is induced by a C*-algebra morphismψ∗

i : Ai → Bk(i).
Since ψj ◦ fij = ψi , where fij : Di → Dj , i ≤ j , we haveψ∗

j ◦ f ∗
ij = ψ∗

i , where
f ∗
ij : Ai → Aj , i ≤ j . By the properties of direct limits, the morphismsψ∗

i : Ai → B

then uniquely extend to a morphismψ∗ : A → B. Denotingψ∗ = T ψ , it is easily
seen thatT : D → A is a functor.

Now we have, forA ∈ A, T SA = TD(A) ∼= A, and for every dimension effect
algebraSTD = D(TD) ∼= D. This proves the statement. �

We note that, taking into account Theorem 3.5 and the fact that D(A) is the unit
interval in K0(A), the K0 group for an AF C*-algebraA can be constructed from
D(A) using the word method, described in [26, 10]. This may replace consideration
of all matrix algebras overA in the construction ofK0(A).
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