Vol. 62 (2008) REPORTS ON MATHEMATICAL PHYSICS No. 2

A NOTE ON EFFECT ALGEBRAS AND DIMENSION THEORY
OF AF C*-ALGEBRAS

ANNA JENCOVA and S/LVIA PULMANNOV A

Mathematical Institute, Slovak Academy of Sciences,
SK-814 73 Bratislava, Slovakia
(e-mails: pulmann@mat.savba.sk, JENCA@mat.savba.sk)

(Received January 10, 2008 — Revised April 24, 2008

We continue in the investigation of the relations betwedactfalgebras and AF C*-algebras
started by Pulmann@y 1999. In particular, in analogy with the notion of a dimensgroup,
we introduce the notion of a dimension effect algebra as tetteélgebra obtained as the direct
limit of finite effect algebras with RDP. We also give an ingiin characterization of dimension
effect algebras. It turns out that every dimension effegelafa is a unit interval in a dimension
group with a unit. We prove that there is a categorical edenee between the category of
countable dimension effect algebras and unital AF C*-algeb
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1. Introduction

In the traditional approach, the mathematical descriptiba quantum mechanical
system is based on a Hilbert space. Experimentally verdigisbpositions about a
physical system are modeled by projections on the correkpgnHilbert space.

Recently, to describe unsharp propositions and measutemesw abstract partial
algebraic structures were introduced, called effect akgel{alternatively, D-posets).
In the Hilbert space approach, the effect algebra is redlipe self-adjoint operators
lying between zero and identity, which are called the Hilbspace effects. The
transition from projections to effects corresponds to trengition from projection-
valued (PV) to positive operator-valued (POV) observablgéhe latter play an
important role in the theory of quantum measurements [6].

For the systems with infinitely many degrees of freedom, theal@Gebraic
approach is more appropriate [18]. For example, the phlysigstem arising as the
thermodynamic limit of finite spin-like systems is descdbey AF C*-algebras, i.e.
the norm closure of an ascending sequence of finite-dimeakiG*-algebras.

This work was supported by Center of excellence SAS, CEPI I52dhd grant APVV- 0071-06. SP was
also supported by the grant VEGA 2/6088/26.
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Among general effect algebras, a special role is played byaldeébras, introduced
as an algebraic description of many-valued logic [7, 8].28]] a correspondence was
shown between (countable) MV-algebras and the subclassitdl lLAF C*-algebras,
whose Murray—von Neumann order is a lattice. This result extended in [24] to
all unital AF C*-algebras, and a certain subclass of effdgelaras with the Riesz
decomposition property, extending the class of MV-algebra

In the present paper, we give an intrinsic characterizatibrihe latter subclass
of effect algebras. We also show that they can be obtained ir@st dimits of
sequences of finite effect algebras with the Riesz decorpogiroperty. In analogy
with the notion of dimension groups, we introduce the notadhdimension effect
algebras. It turns out that dimension effect algebras awctBx the unit intervals
in unital dimension groups. We prove a categorical equi@debetween countable
dimension effect algebras and unital AF C*-algebras. A kimiesult was stated in
[24, Theorem 8] without proof.

2. Preliminaries on Kp-theory of AF C*-algebras

The purpose of dimension theory of C*-algebras is to meathee‘dimensions”
of projections in the algebra. The dimension of a projeciiora matrix algebra is a
nonnegative integer, while in a finite von Neumann factor ob&ins a nonnegative
real number. In a C*-algebra, in general, the dimension function must be given
by values in a pre-ordered abelian group (a so-cakgdgroup), rather than in real
numbers. For basics oKp-theory for C*-algebras see e.g. [4, 17, 27, 28].

Given a C*-algebraA, two projectionsp,q € A are equivalent, writterp ~ g,
if there is a partial isometry: such thatu*u = p and uu™ = gq. Let ProfA) denote
the set of all equivalence classes of projections4of A partial binary operation
+ can be defined on Prgj) in the following way: for two equivalence classes
[p] and [¢g] their "sum” [p] + [¢] exists iff there are representativgs € [p] and
q' € [q] with p'q" =0, in which caselp] + [¢] =[p"+q'].

Recall that in the Ko-theory of C*-algebras, the definition oKy(A) for a
C*-algebra A requires simultaneous consideration of all matrix algeboaer A.
Denote by M, (A) the set of alln x n matrices with entries ilA. Let M., denote
the algebraic direct limit ofM,(A) under the embedding — diagla, 0). Then
M (A) can be thought as the algebra of all infinite matrices withy ofrhitely
many nonzero entries. LeV(A) := Proj(M(A)). If A is separable, therV(A)
is countable. There is a binary operation 6(A): If [e],[f] € V(A), choose
e elel, f' € [f] with ¢ L f’. Notice that this is always possible by “moving
down” the diagonal. Then defing]+[f] = [¢'+ f']. This operation is well defined
and makesV(A) into an abelian semigroup with the additive zdfd.

If A is a unital C*-algebra, therKy(A) is defined as the Grothendieck group
for V(A). For nonunital C*-algebras the construction &b is more refined. The
embedding of V(A) into Ko(A) is injective iff V(A) has cancelation, i.e. if
le] + [g] = [e] + [h] implies [g] = [h] for [e], [g], [h] € V(A). Ko(A) can be
pre-ordered taking the image &f(A) in Ko(A) as Ko(A)™. We can also define the
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scale D(A) as the image of Proj) in Kqo(A). If A is a unital C*-algebra, then
D(A) =1[0,14]. If ¢ : A— B is a homomorphism of C*-algebras, then extends
to a semigroup homomorphism* : V(A) — V(B). Moreover,V : A — V(A) is

a covariant functor from the category of C*-algebras to tlaegory of abelian
semigroups, which preserves direct products and indudtis.

It turns out that to every abelian groug there is a C*-algebrad with
Ko(A) = G. But this correspondence is not one-to-one; the C*-algefras not
uniquely defined by itsKp(A). The situation is better in the class of approximately
finite C*-algebras.

A C*-algebra A is called approximately finite-dimensional (AF) i is the
direct limit of an increasing sequence of finite-dimensioG&algebras. We will be
concerned with unital AF C*-algebras that arise as direntitti of sequences of
unital finite-dimensional C*-algebras with the same unite Wefer to [17] for the
definition of the functorkKy, from the category of AF C*-algebras with C*-algebra
homomorphisms to the category of countable partially adeabelian groups with
order-preserving group homomorphisms.

It was proved in [12] that any AF C*-algebra is uniquely detared by its
Ko-group. Such groups are just the ordered direct limits ofusages of simplicial
groups (i.e. groups order-isomorphic ®, r € N, with the standard positive cone)
called the (countableflimension groupq11, 16]. In [11], it was proved that the
dimension groups can be characterized as unperforatedtetirénterpolation groups.
We note that such groups coincide with the Riesz groups [15].

We note that some authors allow AF C*-algebras to be nonabfeby defining
them as direct limits of arbitrary directed sets of finiteadnsional C*-algebras.
Their Ko groups are then the general dimension groups, obtained rast dimits
of directed systems of simplicial groups.

We follow the classical definition of AF C*-algebras, altlygbuthe more general
case is immediate.

3. Interpolation groups and their unit intervals

By a partially ordered groupwe shall mean an abelian group together with
a subsetG* such thatGt+ Gt C G*, Gt N(-G*) = {0}. The setG™* is called
the positive coneof G and we writea < b iff b —a € G*. G is said to have
the Riesz interpolation propert{RIP), or to be an interpolation group if given
ai,b; (1<i<m,1<j<n) with a; <b; for all i, j, there must be & € G with
a; <c <b; for all i, j. The Riesz interpolation property is equivalent to Resz
decomposition propertfRDP): givena;,b; in Gt (1 <i <m,1 < j <n) with
> a; =) bj, there existc;; € G* with a; = 3~ ¢;j, bj = 3, c;;. Equivalently, RDP
can be expressed as follows: givenb;,i <n in G* with a <"._, b;, there exist
ai,i <n, with a; <b;,i <n, anda =7y _,_, a;. In order to verify these properties,
it is only necessary to consider the case=n =2 (see [15, 16]).

An elementu of a partially ordered grougs; is an order unit if for all a € G,
a < nu for somen € N. A partially ordered groupG is said to bedirected if
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G =G'—G*. If G has an order unit, then it is directed; indeed, it < nu,
then we may writeg = nu — (nu — g).

An abelian partially ordered groug is called unperforatedif given n € N and
a € G, na € Gt implies a € G". Any unperforated abelian group must be torsion
free. G is archimedeanif wheneverx,y € G such thatnx < y for all positive
integersn, thenx < 0. According to [16, Proposition 1.24], i is an archimedean
directed abelian group, the@ is unperforated. Also, by [16, Proposition 1.22], all
lattice ordered abelian groups are unperforated.

Given partially ordered groupS and H, we say that a homomorphisgh: G — H
is positive if ¢(G*) € H*, and that an isomorphisne : G — H is an order
isomorphismif ¢(G™) = H*. If G and H have order unitsx and v respectively,
then a positive homomorphism : G — H such that¢(u) = v is called unital.
Fixing an order unitu € G*, a positive homomorphisny : G — R with f(u) =1
is called au-stateon G.

We say that a partially ordered grou@ is a Riesz groupif it is directed,
unperforated and has the interpolation property. Rieszuggowere first studied in
[15].

Let G be a partially ordered group. We say thatc G* is a generating unit
if every g € G* can be expressed in the form of a finite sum of (not necessarily
different) elements of the interv@0, u]. It is straightforward to show that a generating
unit is an order unit. Conversely, i; is an interpolation group, then any order
unit is generating. Indeed, if & g < nu, then the Riesz decomposition property
implies thatg =Y _._, g with g <u, i <n.

For anyv € G*, where G is a partially ordered group, the interval™ [0, v] =
{a € G:0<a < v} can be endowed with a partial algebraic structure in the
following way: we define a unary operatidnby putting '’ = v —a, and a partial
binary operation® defined iffa+b < v, anda ®b = a + b. This partial algebraic
structure is a special case of a more general structurealkmceffect algebra. A
general axiomatic definition is the following [13]. Notickat an alternative structure
of a so-called D-poset was introduced in [21].

DerINITION 3.1. An effect algebrais an algebraic systendf; 0, 1, @), where
@ is a partial binary operation and 0 and 1 are constants, sughtlhe following
axioms are satisfied for evewy, b, c € E:
() if a®b is defined thenb d a is defined anda & b = b  a (commutativity);
@i)if ae®b and (a & b) & ¢ is defined, thena & (b & ¢) is defined and
@@®b)®c=a®d () (associativity);
(iii) for every a € E there is a unique:’ € E such thata @ a’ = 1,
(iv) a1 is defined iffa = 0.

In an effect algebrak, we definea < b if there isc e E with a®dc=05b. It
turns out that< is a partial order such that 8a <1 for all a € E. Moreover, if
a®c1=a®cy thency = ¢z, and we definec =bea iff a®dc=0>. In particular,
1—a=4d is called theorthosupplemenbf a.
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A very important example of effect algebras is the interfi@ll] in the group of
self-adjoint operators on a Hilbert space, which are callesl Hilbert space effects.
This example gave a motivation for introducing the abstmefinition.

Effect algebras include as special subclasses algebnaictigtes that have been
used so far as quantum logics (i.e. mathematical models ahtgm propositions):
boolean algebras, MV-algebras, orthomodular lattices poskts, orthoalgebras [10].
In particular, MV-algebras were originally introduced as algebraic basis for
many-valued logics [7, 8]. Recall that an MV-algebra is amehtaic structure
(M;0,1,,4), where Q1 are constants,: M — M is a unary operation and- is
a binary operation which is associative and commutatives @ts neutral element,
1ta =1, ata’ =1, 0 =1 andat(a+b) = b+(b+a’). With a v b = at(a+b')
as the join, anda’ vb')’ as the meetM becomes a distributive lattice with respect
to the partial ordew < b iff avb = b. If we restrict the operation- to those pairs
(a,b) for which a < b’, M becomes a lattice ordered effect algebra (a so-called
MV-effect algebra with the same ordering as the original MV-algebra and with
ad=16a.

We say that an effect algebr& has theRiesz decomposition properfRDP) if
one of the following equivalent properties is satisfied:

R a<bi®b,®---Db, impliesa=a1®a,®---®da, with a; <b;, i <n;
(R2) Di<na;, = @jfnbj’ m,n € N, ImpIIeS a; = ®jcij, i <m, and bj = ®Dicij,
J < n, where (¢;;);; are orthogonal elements if.

Similarly, as for partially ordered groups, it suffices toye the above properties
for m,n = 2.

Let (P, <) be a partially ordered set. We say thathas theinterpolation property
if ai,ax,b1,b, € P and g; < b; for all i,j = 1,2, there is an element € P
with a; <x < bj,i,j =1,2. Every effect algebra with RDP has the interpolation
property (see [20] for a direct proof; it also follows frometHact that any such
algebra is an interval of an interpolation group, as will Heowen below). But,
differently from the groups, the interpolation propertyr feffect algebras is weaker
than the Riesz decomposition property. (There are latticered effect algebras that
do not satisfy the RDP, see e.g. the "diamond” [10]).

A characterization of MV-algebras among effect algebras ¥aamulated in [9].
By an easy reformulation of it, we find the following ([10]).v&y MV-effect
algebra satisfies RDP. Conversely, every lattice orderéatteélgebra with RDP can
be organized into an MV-algebra by putting-b = a ®a’ Ab. So MV-algebras are
in one-to-one correspondence with lattice ordered effégebmas with RDP.

DEFINITION 3.2 ([2]). An effect algebraFE is called aninterval effect algebraf
it is isomorphic to an effect algebra of the form™[0, e], where G is a partially
ordered abelian group ande G*.

DEFINITION 3.3. Let E be an effect algebra. A map : E — K, where K
is any abelian group, is called &-valued measure ifp(a ® b) = ¢p(a) + ¢(b)
whenevera @ b is defined inE.
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THEOREM 3.4 ([2]). Let E be an interval effect algebra. Then there exists a
unique (up to isomorphism) partially ordered directed adelgroup G with positive
cone G* and an elemenu € G* such that the following conditions are satisfied:

(i) E is isomorphic to the interval effect algebr@*[0, u],

(i) » is a generating unit,
(i) every K-valued measurep : E — K can be extended uniquely to a group
homomorphismp* : G — K.

The groupG in the preceding theorem is called tlhmiversal groupfor E. We
will denote it by Gg. The elementu is a generating unit inGg.

There are effect algebras that are not interval effect afgebE.g., there exist
orthomodular lattices with no group valued measures [23h ®Be other hand,
according to [26], every effect algebra with RDP is an intkreffect algebra and its
universal group is an interpolation group. The techniquedus the proof (so-called
word method) goes back to Baer [1]. See [26] or [10] for mor¢aite

The proof of the following theorem can be found in [24]. Foe thonvenience
of readers, we repeat it here.

THEOREM 3.5. Let G be an interpolation group with order unit. Put E =
G*[0, u]. Then (G, u) is the universal group forE.

Proof: Properties (i) and (ii) of Theorem 3.4 are clear. We have hec& (iii).
Let K be any abelian group and let : E — K be a K-valued measure. Take

x € GT, then there arexi,xs,...,x, € E with x = x; + x>+ --- + x,. Define
Yr(x) =Y., ¥(x;). Theny*: Gt — K is a well-defined additive map. Indeed,
assume thatx = y1 4+ yo+--- 4+ y, with y; € E, i = 1,2,...,m, be another

representation ofc. Owing to the Riesz decomposition property far, there are
w;j € G* such thatx; =) ._, w;; for i <n, y; =>"i <nw; for j <m. Then

we have =
PR =Y YD) =YY pwi) =Y Y Yy =Y ¥
i<n i<n j<m j<m i<n Jj<m

Additivity of ¥* on G* is clear. SinceG is directed, anyz € G has a form
z=x—y with x, y € G*. Define v*(z) = ¥ (x) — ¥ (y). If x1, y1 is another pair of
elements inG* such that; = x;—y1, thenx+y; = x;+y are elements oG ™, hence
Yr(x) + ¥ (y1) = ¥ (x) + ¥ (y), which entailsy*(x) — ¥ *(y) = ¢¥*(x1) — ¥ (y1).
So ¢¥*: G — K is well defined, and additivity ofy* is clear. O

The following example shows that not every unital group is raversal group
for its unit interval (see [14, Example 11.3, 11.5]).

ExAMPLE 3.6. Let G = Z with the positive coneG* := {0,2, 3,4,...} and
unit u := 5. Then G is a (nonarchimedean) unital group, and the unit interval
E = {0,2,3,5} is a Boolean effect algebra. The only group homomorphisms
G — R are of the formn — cn wherec is a real constant. But, for any € [0, 1],

7, : E — R defined byr,(0) =0,7,2 =p, 7,3 =1—p andn,(5 =1 is a



A NOTE ON DIMENSION THEORY 211

state onE. Som, can be extended to a group homomorphiém- R iff p =1/5.
Therefore,G is not the universal group foE.

Notice that the universal group faf is (Z x Z, y) with coordinatewise addition
and partial order, wherg(2) = (1,0), ¥(3) = (0, 1), andy(5) = (1, 1). The mapping
v:Z x 7 — G defined byv(m,n) = 2m+ 3n is a surjective group homomorphism.

Let E and F be effect algebras. A mapping : E — F is an (effect algebra)
morphismif ¢ preserves the unit element amgl

LEmMMA 3.7. Let E and F be effect algebras with RDP and letGg, u)
and (Gr,v) be their respective universal groups with the correspogdimits.
Every morphism¢ : E — F uniquely extends to a unital group homomorphism
¢* . GE —> GF.

Proof: Owing to the isomorphism, we may identiff’ with the unit interval
G;[0,v] C GF, and consider as aGr-valued measure o. By the properties of
universal groupsg¢ uniquely extends to a group homomorphigi: Gp — Gr. As
¢ mapsGL[0, u] to GL[O, v], andu andv are generating, we gét*(Gg)" € (Gp)*,
hence ¢* is positive, and asp preserves the unit elements, we hay&u) = v.
Hence ¢* is a unital group homomorphism. O

Let us consider the categoily of effect algebras with RDP with effect algebra
morphisms as morphisms, and the categt®y of interpolation groups with dis-
tinguished order units with unital group homomorphisms asphisms. Denote by
S :E — IG the map that to every effect algeba assigns its universal grou@ g,
and letT :IG — E denote the map that to every interpolation groGpwith unit
u assigns the effect algebr@*[0, u].

THEOREM 38. () S:E —- IG and T : IG — E are functors; (i) there is a
categorical equivalence between the categ&yof effect algebras with RDP with
effect algebra morphisms, and the categd€ of interpolation groups with order
unit.

Proof: (i) For effect algebrast, F and an effect algebra morphisth: E — F,
define S¢ = ¢* : G — Gpg. For groups(G,u) and (H,v) and a unital group
homomorphism f : G — H, define Tf = f/G*[0,u] : G*[0,u] — HT[O, v].
Clearly, the identity mapping ot extends to the identity oGz, and the identity
mapping onGg restricts to the identity onE. Let E;, E,, E3 be effect algebras
in E, and let¢ : E; — E, and v : E; — E3 be effect algebra morphisms. Then
(Y o¢) : E1 — E3 has a unique extensiotwy o ¢)* : Gg; — Gg,. The mapping
Y*o¢* coincides withyro¢ on E; (as the unit interval olGg,), and by uniqueness
of the extension, we obtaity o ¢)* = ¥* o ¢*, which entailsS(y o ¢) = Sy o S¢p.
Similarly we can show thal'(f og) = Tf o Tg. This proves that bott§ and T
are functors.

(i) We have S(E) = Gg, T(Gg) = G™[0,u], so thatT o S(E) = GT[0,u] = E
by 3.4 (i). Conversely,T7((G,u)) = G*[0,u], S(GT[0,u]) = Gg+jo,, SO that
SoT((G,u)) = Ggtiou = (G,u) by Theorem 3.5. O
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It was proved in [26] that the universal group for an MV-effetigebra is a
lattice ordered group with generating unit. By a well-knovesult in [22], there is a
categorical equivalence between MV-algebras with MV-atgehomomorphisms and
lattice ordered groups with generating unit with unital loonorphisms of lattice
ordered groups.

4. Simplicial groups and dimension groups

Let Z denote the ordered abelian group of integers with the stdngasitive
cone Z* = Z N [0,00). Here every nonzero element iA™ is an order unit. If
r is a positive integer, we understand that is organized into additive abelian
group with coordinatewise addition. The standard partiaeo is the coordinatewise
partial order determined by the standard total orderZgnand the corresponding
standard positive cone i€*)". An elementv € Z" is an order unit if and only if
all of its coordinates are strictly positive. In this ordeyiZ” is a lattice ordered,
unperforated archimedean group. Uf= (k1, ko, ..., k) is an order unit, then the
interval (Z*)"[0,u] is an MV-algebra which is the direct product of finite chains
0,1,...,k),i=1,2,...,r. It can be shown that every finite effect algel#awith
RDP is of this type. Indeed, RDP implies the interpolatiooparty, and sincet is
finite, it is a lattice satisfying RDP, hence an MV-algebravely MV-algebra is a
direct product of linearly ordered MV-algebras [7], henEeis a direct product of
a finite number of finite chains. As we mentioned above, a gfrtordered abelian
group G is called simplicial if it is isomorphic with Z" with standard positive cone
(Z™)". Consequently, every finite effect algebra with RDP is a unterval in a
simplicial group.

Unital homomorphisms of simplicial groups can be descritzexd follows. Let
£:7" — 7ZF be a positive group homomorphism such that) = v for some order
units u in Z™ andv in Z*. Letd; =(1,0,...,0), do =(0,1,0,...,0),...,d, =
(0,0,...,1) be the standard base f&", and similarly, let(e;, e, ..., &) be the
standard base foZ'. Let £(d;) = )" dije;. If x = (x1,x2,...,xn), then £(x) =
Doiem X&) =D, xi Y dijej =D (D i, xidij)€;. Thusé is determined by
the matrix(d;;) whose elements satisfy the system of linear equatpons,, u;d;; = v;
obtained fromé&(u) = v. The restrictioné : [0, u] — [0, v] of £ is an effect algebra
morphism. Conversely, every effect algebra morphiem [0, u] — [0, v] of unit
intervals extends uniquely to a unital group homomorphism Z" — Z*.

We recall that dimension groups are defined as direct limitglieected systems
of simplicial groups. In analogy, direct limits of directesystems of finite effect
algebras with RDP will be calledimension effect algebrag-rom the properties of
direct limits it follows that a dimension effect algebra hBR®P. Direct limits for
effect algebras have been studied and their existence wagdgrin [25, 19], see
also [10, 81.9.7.].

THEOREM 4.1. Let (D;; (f;j : Di — Dj),i, j e l,i < j) be a directed system of
effect algebras with RDP and ldd be its direct limit. Then the universal grou@p
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of D is the direct limit of the directed systetiGp,, v;); fl.j :Gp; > Gp;,i <)
of the universal groups ofGp,,v;),i € 1.

Proof: Every f;; : D; - D;,i < j extends to a positive unital group homomor-
phism f%: Gp, — Gp;, such thatf: =idg, for everyi e[, and f; f; = f},
wheneveri < j <m. Hence((Gp,, v;); f}) is a directed system of simplicial groups
with order units. For every € I, f; : D; — D extends uniquely tof* : Gp, — Gp,
and if i < j, then f; fi; = f; implies f} fi = f.

Let (H,z) be a unital group andg; : Gp, — H,i € I be any system of
unital positive group homomorphisms such thgtf; = g; for all i < j in I. The
restriction gf of g; to D; (identified with Gp, [0, v;]) is an effect algebra morphism
from D; — HIO, z] for all i € I. Clearly, g?f,»j = gl.b. Since D is the direct limit
of (D;; (fij)), there exists a unique effect algebra morphigin D — HJO, z] such
that g’ f; = gl.b. This g” uniquely extends to a positive unital group homomorphism
from Gp to H such thatgf* = g;. ThusGp is the direct limit of (Gp,, vi); f;‘;).D

It follows that the universal group of a (countable) dimensieffect algebra is
a (countable) dimension group. On the other hand, it can lem dkat the unit
interval of a dimension group is a dimension effect algebra.

Dimension groups have an intrinsic characterization asRigroups [11]. The
next theorem gives an intrinsic characterization of dinem®ffect algebras. Clearly,
an effect algebra with RDP is a dimension effect algebratsf universal group is
unperforated.

THEOREM 4.2. Let E be an effect algebra with RDP and I€t be its universal
group. ThenG is unperforated if and only ifE satisfies the following condition:

Letn eN and letc/{ e E,i,j=1....n,k=1....,m, [ =1..., p be such that
®jucit=a) = a, for all i,1, 1)
®uctt=b <b.,  forall jk

for some elements;, b, € E. Then there is somg € N and some element ; € E,

k=1...,m,1=1...,p+gq, such that

EBkko:al, [=1,...,p, (2)
@ldk,lzbk, k=1 ...,m.
Proof: First, note that condition (2) is equivalent with the faeat) ", a; < >, bk

in G. Indeed, ptq

P p
Zal = szk,l < szk,l = Zbk-
% =1 & %

=1 =1

Conversely, sincé_, by —) ,a; > 0 and E ~ G0, u] generatesG*, there are some
elementscy,...,c, € E, such that) by = > ,a,+ ) ,cy. The statement now
follows from the RDP.
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Suppose now that is unperforated and Ietl’.‘j € E satisfy condition (1). Let
a = Zla], b= Zkbk’ then

n
— J_ kil _ i
nb = E nby > E E by, = E ¢ = E a; =na.
k k j=1 i,j.k,1 il

It follows that n(b —a) > 0, so thatb —a >0, that is, ), by > ), a;.
To prove the converse, let € G be such thatic > 0 for somen. Since G
is directed,c = b —a for somea,b € G* and sinceE is generatinga = ), a,
b =7, by for someq,, by € E. Fromna < nb, we have by RDP that there are some
elementse; <b, j=1,...,n, such thatna = }_;e;. Moreover, sincee; < >, by,

there are some] < by, such thate; = Y, b/. Putting all together, we get
nZal =na = Zej = Zbi
1 j X

Applying the RDP to this we get that there are elemed%é € G* such that

Yiucit=a and Y, 'l = b < b. Then ¢! are elements inE, satisfying
(1) and by assumptions, (2) must hold. This implies thafa; < >, b, hence
c=b—a>0. O

5. Effect algebras and AF C*-algebras

A *-algebra A is called standard matricialif A = M,1)(C) x - -+ x M, (C). It
is a well-known fact that every finite dimensional C*-alget4 is isomorphic to a
standard matricial C*-algebra (see, e.g. [17]).

It was proved by Bratteli [5] that morphisms of standard mo&t C*-algebras can
be expressed by means of a so-cabtahdard mapslf A = M,,1)(C) x- - - X My, (C),
B = M, 1)(C) x --- x My (C), then every standard map — B is determined by
an ¢ x k matrix (s;;) of nonnegative integers such that

sin(L) + sion(2) + - - - + sn(k) = m(i), i=12...,¢
The construction of a standard map goes as follows. We firgt m&o M,,,(C)
by sending anyk-tuple (a1, a, ..., a;) from A to the block diagonal matrix with

entriesa; s11-times, a, s1o- times, . ., a; sy-times. To obtain *-algebra map$ — B,
we paste together the maps from to each of the matrix algebra&/,,.

According to [17, Lemma 17.1], to every *-algebra homomdsph¢ : A — B
there exists an inner *-algebra automorphigmof B such thatBo¢: A — B is a
standard map. According to [5], [17, Prop. 17.2], any AF @jedbra is isomorphic
(as a C*-algebra) to a C*-algebra direct limit of standardtnoel C*-algebras and
standard maps.

Let us consider the algebr#(,(C). Two projections inM, (C) are equivalent iff
they have the same dimension. Hence the range of dimensiorbeadescribed by
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a finite chain of integerg0, 1, ...,n). This chain can be endowed with a structure
of an MV-effect algebra, its universal group %, with order unitn, which is the
dimension group forM, (C). The general case of a finite-dimensional C*-algebra is
treated in the next lemma.

LEMMA 5.1. Let A be a finite-dimensional C*-algebra which is isomorphic with
M, 1) (C) x My2)(C) x -+ x M, (C). Its dimension group is the simplicial group
Z' with order unit (n(1),n(2),...,n(r)). Conversely, to every simplicial group”
with distinguished order unitu = (uy, us, ..., u,) there exists a finite-dimensional
C*-algebra A such thatZ" is its dimension group.

Proof: The first part is proved in [17, Lemma 20.4]. The randggA) of
the dimension equivalence of can be described as follows. There are central
projections p1, ..., p,, with the dimensions dim; = n(i),i < r, in A such that
piAp; is isomorphic with M,;,(C), and > _._. p; = 1. Every projectiong can be
written asq = ), _, qp;, and to the equivalence clagg], a sequencéky, ko, ..., k,)
can be assigned, where = dimgp;, < n(i),i <r. So the range of the dimension
equivalence corresponds to the direct product of finiterehéd, 1, ..., n(1) x...x
(0,1,...,n()), which is a finite-dimensional MV-algebra correspondingthe unit
interval (Z")H)[0,u], u= (n(1),n?2),...,n)).

Conversely, to any simplicial grougZ”) with unit u, u = (n(1), n(2), ..., n(r)),
we may assign the standard matricial algebfaq)(C) x M,2)(C) x - -+ x M, (C),
which is completely described by the-tuple (n(1),n(2),...,n(r)), and whose
dimension group is the given simplicial group. O

Comparing standard maps and positive unital homomorphafrssmplicial groups,
we obtain the following (compare with [12, Lemma 5.3, Lemmad])p proposition.

ProOPOSITIONL. Let D, F be finite effect algebras with RDP. Every effect algebra
morphism¢ : D — F is induced by a *-algebra homomorphisgn: A — B, whereA
and B are finite-dimensional C*-algebras whose ranges of dinmmsire isomorphic
with D and F, respectively.

By [12], the situation is the following. To any sequence
Al — Ay —> -

of finite-dimensional C*-algebras (unital, with the sametuthere is a canonically
induced sequence
D(A1) - D(A2) — -+

of dimension effect algebras, whei®@(A;) denotes the range of dimension df,
which induce a sequence
G]_ — G2 —> e

of simplicial groups, whereG; is the universal group foiD(A;). If A is the direct
limit of A;, then G = Kg(A) is the direct limit of G; = Kp(A;), and hence the
range D(A)(= GT[0, u]) of its dimension is the direct limit ofD(A;).
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Conversely, if
D1 — Dz — ...

is an increasing sequence of finite effect algebras with RD# direct limit D,
then there is an increasing sequence

Al —> Ay —> -
of finite-dimensional C*-algebras such that
D(A) — D(Ap) — ---

is isomorphic with
Dy — Dy — -

and if A is the direct limit of A;, then D(A) is isomorphic with D. Moreover,
Ko(A) is isomorphic with the universal grougp of D.

So there is one-to-one correspondence between any two dbllbeving classes:
unital AF C*-algebras, countable dimension effect algebs#ad countable dimension
groups. In what follows, we show that there are categoricplivalences between
any two of the three corresponding categories. Owing to f@m03.8, it suffices to
show that there is a categorical equivalence between AFlg¥beas and countable
dimension effect algebras.

THEOREM 5.2. There is a categorical equivalence between the categorynilu
AF C*-algebras and countable dimension effect algebras.

Proof: Let A denote the category of AF C*-algebras with C*-algebra homoem
phisms as morphisms, and I& denote the category of countable dimension effect
algebras with effect algebra morphisms as morphisms. ..et4A — D denote the
mapping such thaSA = D(A). If ¢ : A — B is a C*-algebra homomorphism, its
restriction to projections preserves the equivalence ofegtions, therefore it induces
a well-defined mappingS¢ : D(A) — D(B). Clearly, if ¢ =id4, then S¢ = idp,
and S(po) = S¢ oSy, wheneverg oy makes sense. It follows that is a functor.

Conversely, letT : D — A be the mapping which to every countable dimension
effect algebra assigns the corresponding AF C*-algebrdh shat D = D(A). We
have to prove thatl’ is a functor. Lety : D — F for D, F € D be an effect
algebra morphism. Then there are increasing sequences

Dy — Dy — ---
Fr— F—---

of finite effect algebras with RDP, such tha&t is the direct limit of D; and F is
the direct limit of F;. Let
Al — Ay — -

By —> By —> -

be sequences of finite-dimensional C*-algebras induced hey sequenced); and
F;, and let A, B be their corresponding limits.
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For every D;, there isFy, such thaty; : D; — Fy), wherey; is the restriction
of ¥ to D;. If i < j then sinceD; C D;, we may assume thaky;, C Fy). By
Proposition 1,; : D; — Fi) is induced by a C*-algebra morphis* : A; — By).
Since y; o fi; = ¥i, where f;; : D; —> D;, i < j, we haveyo fi =y, where
[+ Ai > A;, i < j. By the properties of direct limits, the morphisngg : A; — B
then uniquely extend to a morphisgh* : A — B. Denoting y* = Ty, it is easily
seen that7T : D — A is a functor.

Now we have, forA € A, TSA =TD(A) = A, and for every dimension effect
algebraST D = D(T D) = D. This proves the statement. O

We note that, taking into account Theorem 3.5 and the fadt fh@) is the unit
interval in Ko(A), the Ko group for an AF C*-algebrad can be constructed from
D(A) using the word method, described in [26, 10]. This may replasnsideration
of all matrix algebras over in the construction ofKy(A).
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