Randomization theorems for quantum channels

Anna Jenčová
Mathematical Institute, Slovak Academy of Sciences

Banff, July 2019

The problem

Given two channels

The problem

how precisely can we approximate

- α is a superchannel

The problem

how precisely can we approximate

- α is a superchannel
- approximation in diamond norm

The problem

how precisely can we approximate

- α is a superchannel
- approximation in diamond norm
- one shot

The problem

how precisely can we approximate

- α is a superchannel
- approximation in diamond norm
- one shot
- all superchannels or some restrictions on α

Equality case

- comparison of bipartite channels: (Gour, 2018)

Equality case

- comparison of bipartite channels: (Gour, 2018)
- comparison of channels: $d_{A_{0}}=d_{B_{0}}=1$, restrictions on α :

Equality case

- comparison of bipartite channels: (Gour, 2018)
- comparison of channels: $d_{A_{0}}=d_{B_{0}}=1$, restrictions on α :
- post-processings (degradability)

$$
A_{1}=A_{2}, \quad \Phi_{1} \stackrel{?}{=} \alpha \circ \Phi_{2}
$$

(Chefles 2009, Buscemi 2012,2016,...)

Equality case

- comparison of bipartite channels: (Gour, 2018)
- comparison of channels: $d_{A_{0}}=d_{B_{0}}=1$, restrictions on α :
- post-processings (degradability)

$$
A_{1}=A_{2}, \quad \Phi_{1} \stackrel{?}{=} \alpha \circ \Phi_{2}
$$

(Chefles 2009, Buscemi 2012,2016,...)

- comparison of quantum experiments: c-q channels

$$
\rho_{1}, \ldots, \rho_{k} \in \mathcal{S}\left(B_{1}\right), \quad \sigma_{1}, \ldots, \sigma_{k} \in \mathcal{S}\left(B_{2}\right), \quad \rho_{i} \stackrel{?}{=} \alpha\left(\sigma_{i}\right), \forall i
$$

(Alberti \& Uhlmann 1980, Buscemi 2012, Gour et al. 2018)

Equality case

- comparison of bipartite channels: (Gour, 2018)
- comparison of channels: $d_{A_{0}}=d_{B_{0}}=1$, restrictions on α :
- post-processings (degradability)

$$
A_{1}=A_{2}, \quad \Phi_{1} \stackrel{?}{=} \alpha \circ \Phi_{2}
$$

(Chefles 2009, Buscemi 2012,2016,...)

- comparison of quantum experiments: c-q channels

$$
\rho_{1}, \ldots, \rho_{k} \in \mathcal{S}\left(B_{1}\right), \quad \sigma_{1}, \ldots, \sigma_{k} \in \mathcal{S}\left(B_{2}\right), \quad \rho_{i} \stackrel{?}{=} \alpha\left(\sigma_{i}\right), \forall i
$$

(Alberti \& Uhlmann 1980, Buscemi 2012, Gour et al. 2018)

- comparison of classical experiments: (Blackwell 1953, Torgersen 1970)

Equality case

- comparison of bipartite channels: (Gour, 2018)
- comparison of channels: $d_{A_{0}}=d_{B_{0}}=1$, restrictions on α :
- post-processings (degradability)

$$
A_{1}=A_{2}, \quad \Phi_{1} \stackrel{?}{=} \alpha \circ \Phi_{2}
$$

(Chefles 2009, Buscemi 2012,2016,...)

- comparison of quantum experiments: c-q channels

$$
\rho_{1}, \ldots, \rho_{k} \in \mathcal{S}\left(B_{1}\right), \quad \sigma_{1}, \ldots, \sigma_{k} \in \mathcal{S}\left(B_{2}\right), \quad \rho_{i} \stackrel{?}{=} \alpha\left(\sigma_{i}\right), \forall i
$$

(Alberti \& Uhlmann 1980, Buscemi 2012, Gour et al. 2018)

- comparison of classical experiments: (Blackwell 1953, Torgersen 1970)
- more general comparison of classical channels: (Shannon 1958)

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

- formulated as an SDP problem

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

- formulated as an SDP problem
- characterized by

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

- formulated as an SDP problem
- characterized by
- a set of inequalities in (some extension of) conditional min-entropy

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

- formulated as an SDP problem
- characterized by
- a set of inequalities in (some extension of) conditional min-entropy
- risks of procedures in decision problems

Equality case

Preorder: $\Phi_{2} \succ \Phi_{1} \Longleftrightarrow \Phi_{1}=\alpha\left(\Phi_{2}\right)$

- formulated as an SDP problem
- characterized by
- a set of inequalities in (some extension of) conditional min-entropy
- risks of procedures in decision problems
- success probabilities in hypothesis testing problems

Deficiency

Let us return to the general case:

- we define the deficiency as

$$
\delta_{\mathcal{T}}\left(\Phi_{1} \| \Phi_{2}\right):=\min _{\alpha \in \mathcal{T}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}
$$

here \mathcal{T} is some subset of superchannels.

Deficiency

Let us return to the general case:

- we define the deficiency as

$$
\delta_{\mathcal{T}}\left(\Phi_{1} \| \Phi_{2}\right):=\min _{\alpha \in \mathcal{T}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}
$$

here \mathcal{T} is some subset of superchannels.

- pseudo-distance:

$$
\Delta_{\mathcal{T}}\left(\Phi_{1}, \Phi_{2}\right):=\max \left\{\delta_{\mathcal{T}}\left(\Phi_{1} \| \Phi_{2}\right), \delta_{\mathcal{T}}\left(\Phi_{2} \| \Phi_{1}\right)\right\}
$$

Deficiency

Let us return to the general case:

- we define the deficiency as

$$
\delta_{\mathcal{T}}\left(\Phi_{1} \| \Phi_{2}\right):=\min _{\alpha \in \mathcal{T}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}
$$

here \mathcal{T} is some subset of superchannels.

- pseudo-distance:

$$
\Delta_{\mathcal{T}}\left(\Phi_{1}, \Phi_{2}\right):=\max \left\{\delta_{\mathcal{T}}\left(\Phi_{1} \| \Phi_{2}\right), \delta_{\mathcal{T}}\left(\Phi_{2} \| \Phi_{1}\right)\right\}
$$

- equivalence relation:

$$
\Phi_{1} \sim_{\mathcal{T}} \Phi_{2} \Longleftrightarrow \Delta_{\mathcal{T}}\left(\Phi_{1}, \Phi_{2}\right)=0
$$

Deficiency

- These are extensions of Le Cam deficiency/distance for classical statistical experiments: $\mathcal{F}_{1}=\left\{p_{\theta}, \theta \in \Theta\right\}$, $\mathcal{F}_{2}=\left\{q_{\theta}, \theta \in \Theta\right\}$

$$
\delta\left(\mathcal{F}_{1} \| \mathcal{F}_{2}\right)=\min _{\alpha} \sup _{\theta}\left\|p_{\theta}-\alpha\left(q_{\theta}\right)\right\|_{1}
$$

- Randomization theorem (Le Cam 1964): deficiency is characterized by comparing risks in decision problems: informativity

Randomization theorem for classical channels

Φ_{1}, Φ_{2} - classical channels with equal input spaces: $A_{1}=A_{2}=A$, $\mathcal{T}=$ post $:=$ set of post-processings

Theorem
Let $\epsilon \geq 0$, Then $\delta_{\text {post }}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$ if and only if: for any ensemble $\mathcal{E}=\left\{\lambda_{x}, p_{x}\right\}$ of classical states $p_{x} \in \mathcal{S}(A)$,

$$
P_{\text {succ }}\left(\Phi_{1}(\mathcal{E})\right) \leq P_{\text {succ }}\left(\Phi_{2}(\mathcal{E})\right)+\frac{\epsilon}{2} P_{\text {succ }}(\mathcal{E})
$$

here $\Phi_{i}(\mathcal{E})=\left\{\lambda_{x}, \Phi_{i}\left(p_{x}\right)\right\}$.

Quantum randomization theorems

- for c-q channels (quantum experiments) (Matsumoto 2010): risks of quantum decision problems

Quantum randomization theorems

- for c-q channels (quantum experiments) (Matsumoto 2010): risks of quantum decision problems
- for quantum channels (J 2016): $\delta_{\text {post }}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$

$$
P_{\text {succ }}\left(\Phi_{1} \otimes i d_{R}(\mathcal{E})\right) \leq P_{\text {succ }}\left(\Phi_{2} \otimes i d_{R}(\mathcal{E})\right)+\frac{\epsilon}{2} P_{\text {succ }}(\mathcal{E})
$$

for any ensemble on $A R$

Quantum randomization theorems

- for c-q channels (quantum experiments) (Matsumoto 2010): risks of quantum decision problems
- for quantum channels (J 2016): $\delta_{\text {post }}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$

$$
P_{\text {succ }}\left(\Phi_{1} \otimes i d_{R}(\mathcal{E})\right) \leq P_{\text {succ }}\left(\Phi_{2} \otimes i d_{R}(\mathcal{E})\right)+\frac{\epsilon}{2} P_{\text {succ }}(\mathcal{E})
$$

for any ensemble on $A R \Longleftrightarrow$ for any $\rho \in \mathcal{S}(A R)$:

$$
2^{-H_{\min }\left(R \mid B_{1}\right)_{\rho_{1}}} \leq 2^{-H_{\min }\left(R \mid B_{2}\right)_{\rho_{2}}}+\frac{\epsilon}{2} 2^{-H_{\min }(R \mid A)_{\rho}}
$$

$\rho_{i}=\left(\Phi_{i} \otimes i d_{R}\right)(\rho), H_{\text {min }}$ - conditional min-entropy

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Tools:

- the duality of diamond norm and conditional min-entropy (and extensions)

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Tools:

- the duality of diamond norm and conditional min-entropy (and extensions)
- comes from dual SDP (Chiribella \& Ebler 2016, Gour 2018)

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Tools:

- the duality of diamond norm and conditional min-entropy (and extensions)
- comes from dual SDP (Chiribella \& Ebler 2016, Gour 2018)
- but also as a dual norm (Gutoski 2012, J 2014)

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Tools:

- the duality of diamond norm and conditional min-entropy (and extensions)
- comes from dual SDP (Chiribella \& Ebler 2016, Gour 2018)
- but also as a dual norm (Gutoski 2012, J 2014)
- properties (monotonicity) of conditional min-entropy

Outline

Φ_{1}, Φ_{2} bipartite quantum channels, $\mathcal{T}=s c:=$ all superchannels
Goals: characterize $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$ by

- inequalities in (extended) conditional min-entropies
- success probabilities in some hypothesis testing schemes

Tools:

- the duality of diamond norm and conditional min-entropy (and extensions)
- comes from dual SDP (Chiribella \& Ebler 2016, Gour 2018)
- but also as a dual norm (Gutoski 2012, J 2014)
- properties (monotonicity) of conditional min-entropy
- minimax theorem (Le Cam)

Choi isomorphism

$$
\text { Let } \left.\left|I_{A}\right\rangle\right\rangle=\sum_{i}|i\rangle_{A}|i\rangle_{A^{\prime}}, \quad A \simeq A^{\prime}
$$

Choi isomorphism

Let $\left.\left|I_{A}\right\rangle\right\rangle=\sum_{i}|i\rangle_{A}|i\rangle_{A^{\prime}}, \quad A \simeq A^{\prime}$

$\underbrace{A}_{A^{\prime}}=$| $\left.\left\|I_{A}\right\rangle\right\rangle$ | A |
| :--- | :--- |
| | A^{\prime} |

Choi isomorphism

Let $\left.\left|I_{A}\right\rangle\right\rangle=\sum_{i}|i\rangle_{A}|i\rangle_{A^{\prime}}, \quad A \simeq A^{\prime}$

$\sum_{A^{\prime}}^{A}=$| $\left.\left\|I_{A}\right\rangle\right\rangle$ | A |
| :--- | :--- |
| | A^{\prime} |

Choi isomorphism

Let $\left.\left|I_{A}\right\rangle\right\rangle=\sum_{i}|i\rangle_{A}|i\rangle_{A^{\prime}}, \quad A \simeq A^{\prime}$

$\underbrace{A}_{A^{\prime}}=$| $\left.\left\|I_{A}\right\rangle\right\rangle$ | A |
| :--- | :--- |
| | A^{\prime} |

Choi isomorphism:

Choi isomorphism

Let $\left.\left|I_{A}\right\rangle\right\rangle=\sum_{i}|i\rangle_{A}|i\rangle_{A^{\prime}}, \quad A \simeq A^{\prime}$

$C_{A^{\prime}}^{A}=$| $\left.\left\|I_{A}\right\rangle\right\rangle$ | $\frac{A}{A^{\prime}}$ |
| :--- | :--- |
| | |

the inverse:

Ordered spaces of hermitian maps

- $\mathcal{L}=\mathcal{L}(A \rightarrow B) \equiv$ the space of hermitian-preserving maps

$$
\phi: \mathcal{B}(A) \rightarrow \mathcal{B}(B), \quad \phi\left(Y^{*}\right)=\phi(Y)^{*}
$$

Ordered spaces of hermitian maps

- $\mathcal{L}=\mathcal{L}(A \rightarrow B) \equiv$ the space of hermitian-preserving maps

$$
\phi: \mathcal{B}(A) \rightarrow \mathcal{B}(B), \quad \phi\left(Y^{*}\right)=\phi(Y)^{*}
$$

- $\mathcal{L}^{+}=\mathcal{L}^{+}(A \rightarrow B) \equiv$ the cone of completely positive maps

Ordered spaces of hermitian maps

- $\mathcal{L}=\mathcal{L}(A \rightarrow B) \equiv$ the space of hermitian-preserving maps

$$
\phi: \mathcal{B}(A) \rightarrow \mathcal{B}(B), \quad \phi\left(Y^{*}\right)=\phi(Y)^{*}
$$

- $\mathcal{L}^{+}=\mathcal{L}^{+}(A \rightarrow B) \equiv$ the cone of completely positive maps
- $\left(\mathcal{L}, \mathcal{L}^{+}\right)$is an ordered vector space

Ordered spaces of hermitian maps

- $\mathcal{L}=\mathcal{L}(A \rightarrow B) \equiv$ the space of hermitian-preserving maps

$$
\phi: \mathcal{B}(A) \rightarrow \mathcal{B}(B), \quad \phi\left(Y^{*}\right)=\phi(Y)^{*}
$$

- $\mathcal{L}^{+}=\mathcal{L}^{+}(A \rightarrow B) \equiv$ the cone of completely positive maps
- $\left(\mathcal{L}, \mathcal{L}^{+}\right)$is an ordered vector space
- Choi isomorphism:

$$
\left(\mathcal{L}, \mathcal{L}^{+}\right) \simeq\left(\mathcal{B}_{h}\left(B A^{\prime}\right), \mathcal{B}\left(B A^{\prime}\right)^{+}\right)
$$

The trace

For $\phi \in \mathcal{L}(A \rightarrow A)$, put $\left.\tau(\phi):=\left\langle\left\langle I_{A}\right| C_{\phi} \mid I_{A}\right\rangle\right\rangle$

The trace

For $\phi \in \mathcal{L}(A \rightarrow A)$, put $\left.\tau(\phi):=\left\langle\left\langle I_{A}\right| C_{\phi} \mid I_{A}\right\rangle\right\rangle$

The trace

For $\phi \in \mathcal{L}(A \rightarrow A)$, put $\left.\tau(\phi):=\left\langle\left\langle I_{A}\right| C_{\phi} \mid I_{A}\right\rangle\right\rangle$

the trace of ϕ as a linear map

The trace

Partial trace: for $\phi \in \mathcal{L}\left(A A_{0} \rightarrow B A_{0}\right)$

The trace

Partial trace: for $\phi \in \mathcal{L}\left(A A_{0} \rightarrow B A_{0}\right)$

The trace

Partial trace: for $\phi \in \mathcal{L}\left(A A_{0} \rightarrow B A_{0}\right)$

- if $\phi \in \mathcal{L}^{+}\left(A A_{0} \rightarrow B A_{0}\right)$ then $\tau_{A_{0}}(\phi) \in \mathcal{L}^{+}(A \rightarrow B)$

The trace

Partial trace: for $\phi \in \mathcal{L}\left(A A_{0} \rightarrow B A_{0}\right)$

- if $\phi \in \mathcal{L}^{+}\left(A A_{0} \rightarrow B A_{0}\right)$ then $\tau_{A_{0}}(\phi) \in \mathcal{L}^{+}(A \rightarrow B)$
- does not map channels to channels

The trace

Partial trace: for $\phi \in \mathcal{L}\left(A A_{0} \rightarrow B A_{0}\right)$

- if $\phi \in \mathcal{L}^{+}\left(A A_{0} \rightarrow B A_{0}\right)$ then $\tau_{A_{0}}(\phi) \in \mathcal{L}^{+}(A \rightarrow B)$
- does not map channels to channels
- $\tau(\phi \circ(\alpha \otimes i d))=\tau\left(\tau_{A_{0}}(\phi) \circ \alpha\right)$

The ordered dual of $\mathcal{L}(A \rightarrow B)$

For $\mathcal{L}=\mathcal{L}(A \rightarrow B)$, we represent

$$
\mathcal{L}^{*} \equiv \mathcal{L}(B \rightarrow A), \quad\left(\mathcal{L}^{+}\right)^{*} \equiv \mathcal{L}^{+}(B \rightarrow A)
$$

The ordered dual of $\mathcal{L}(A \rightarrow B)$

For $\mathcal{L}=\mathcal{L}(A \rightarrow B)$, we represent

$$
\mathcal{L}^{*} \equiv \mathcal{L}(B \rightarrow A), \quad\left(\mathcal{L}^{+}\right)^{*} \equiv \mathcal{L}^{+}(B \rightarrow A)
$$

with duality

$$
\langle\psi, \phi\rangle=\tau(\psi \circ \phi)=\tau(\phi \circ \psi)=\operatorname{Tr} C_{\phi} C_{\psi^{*}}:
$$

The ordered dual of $\mathcal{L}(A \rightarrow B)$

For $\mathcal{L}=\mathcal{L}(A \rightarrow B)$, we represent

$$
\mathcal{L}^{*} \equiv \mathcal{L}(B \rightarrow A), \quad\left(\mathcal{L}^{+}\right)^{*} \equiv \mathcal{L}^{+}(B \rightarrow A)
$$

with duality

$$
\langle\psi, \phi\rangle=\tau(\psi \circ \phi)=\tau(\phi \circ \psi)=\operatorname{Tr} C_{\phi} C_{\psi^{*}}:
$$

Diamond norm and conditional min-entropy

For $\phi \in \mathcal{L}=\mathcal{L}(A \rightarrow B)$, the diamond norm is defined as

$$
\|\phi\|_{\diamond}=\sup _{\rho \in \mathcal{S}\left(A A^{\prime}\right)}\left\|\phi \otimes i d_{A^{\prime}}(\rho)\right\|_{1}
$$

Diamond norm and conditional min-entropy

For $\phi \in \mathcal{L}=\mathcal{L}(A \rightarrow B)$, the diamond norm is defined as

$$
\|\phi\|_{\diamond}=\sup _{\rho \in \mathcal{S}\left(A A^{\prime}\right)}\left\|\phi \otimes i d_{A^{\prime}}(\rho)\right\|_{1}
$$

- distinguishability norm for channels $\mathcal{B}(A) \rightarrow \mathcal{B}(B)$

Diamond norm and conditional min-entropy

For $\phi \in \mathcal{L}=\mathcal{L}(A \rightarrow B)$, the diamond norm is defined as

$$
\|\phi\|_{\diamond}=\sup _{\rho \in \mathcal{S}\left(A A^{\prime}\right)}\left\|\phi \otimes i d_{A^{\prime}}(\rho)\right\|_{1}
$$

- distinguishability norm for channels $\mathcal{B}(A) \rightarrow \mathcal{B}(B)$
- constructed from the convex structure of the set of channels

Diamond norm and conditional min-entropy

Let

- $\mathcal{C}=\mathcal{C}(A \rightarrow B) \subset \mathcal{L}^{+}$the set of channels

Diamond norm and conditional min-entropy

Let

- $\mathcal{C}=\mathcal{C}(A \rightarrow B) \subset \mathcal{L}^{+}$the set of channels
- \mathcal{C} is and affine section of \mathcal{L}^{+}

Diamond norm and conditional min-entropy

Let

- $\mathcal{C}=\mathcal{C}(A \rightarrow B) \subset \mathcal{L}^{+}$the set of channels
- \mathcal{C} is and affine section of \mathcal{L}^{+}
- dual section:

$$
\tilde{\mathcal{C}}:=\left\{\gamma \in\left(\mathcal{L}^{+}\right)^{*},\langle\gamma, \alpha\rangle=1, \quad \forall \alpha \in \mathcal{C}\right\}
$$

Diamond norm and conditional min-entropy

Let

- $\mathcal{C}=\mathcal{C}(A \rightarrow B) \subset \mathcal{L}^{+}$the set of channels
- \mathcal{C} is and affine section of \mathcal{L}^{+}
- dual section:

$$
\tilde{\mathcal{C}}:=\left\{\gamma \in\left(\mathcal{L}^{+}\right)^{*},\langle\gamma, \alpha\rangle=1, \quad \forall \alpha \in \mathcal{C}\right\}
$$

Diamond norm and conditional min-entropy

Let

- $\mathcal{C}=\mathcal{C}(A \rightarrow B) \subset \mathcal{L}^{+}$the set of channels
- \mathcal{C} is and affine section of \mathcal{L}^{+}
- dual section:

$$
\tilde{\mathcal{C}}:=\left\{\gamma \in\left(\mathcal{L}^{+}\right)^{*},\langle\gamma, \alpha\rangle=1, \forall \alpha \in \mathcal{C}\right\}
$$

Dual expressions:

$$
\begin{aligned}
\|\phi\|_{\diamond} & =\min _{\alpha \in \mathcal{C}} \min \{\lambda>0,-\lambda \alpha \leq \phi \leq \lambda \alpha\} \\
& =\max _{\gamma \in \tilde{\mathcal{C}}} \max _{-\gamma \leq \eta \leq \gamma}\langle\eta, \phi\rangle
\end{aligned}
$$

Diamond norm and conditional min-entropy

The dual norm: for $\psi \in \mathcal{L}^{*}$,

$$
\begin{aligned}
\|\psi\|^{\diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}} \min \{\lambda>0,-\lambda \gamma \leq \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}} \max _{-\alpha \leq \xi \leq \alpha}\langle\psi, \xi\rangle
\end{aligned}
$$

Diamond norm and conditional min-entropy

The dual norm: for $\psi \in \mathcal{L}^{*}$,

$$
\begin{aligned}
\|\psi\|^{\diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}} \min \{\lambda>0,-\lambda \gamma \leq \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}} \max _{-\alpha \leq \xi \leq \alpha}\langle\psi, \xi\rangle
\end{aligned}
$$

For cp maps: if $\psi \in\left(\mathcal{L}^{+}\right)^{*}$:

$$
\begin{aligned}
\|\psi\|^{\diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}} \min \{\lambda>0, \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}}\langle\psi, \alpha\rangle
\end{aligned}
$$

Diamond norm and conditional min-entropy

- maps in $\tilde{\mathcal{C}}$:

$$
\sigma \in \mathcal{S}(A)
$$

Diamond norm and conditional min-entropy

- maps in $\tilde{\mathcal{C}}$:

- in Choi representation:

$$
\tilde{\mathcal{C}}=\left\{\sigma_{A} \otimes I_{B}, \sigma_{A} \in \mathcal{S}(A)\right\}
$$

Diamond norm and conditional min-entropy

- maps in $\tilde{\mathcal{C}}$:

- in Choi representation:

$$
\tilde{\mathcal{C}}=\left\{\sigma_{A} \otimes I_{B}, \sigma_{A} \in \mathcal{S}(A)\right\}
$$

- for $\psi \in\left(\mathcal{L}^{+}\right)^{*}, \rho=C_{\psi}$:

$$
\|\psi\|^{\diamond}=\min _{\sigma_{A} \in \mathcal{S}(A)} \min \left\{\lambda>0, \rho \leq \lambda \sigma_{A} \otimes I_{B}\right\}=2^{-H_{\min }(B \mid A)_{\rho}}
$$

Diamond norm and conditional min-entropy

- maps in $\tilde{\mathcal{C}}$:

- in Choi representation:

$$
\tilde{\mathcal{C}}=\left\{\sigma_{A} \otimes I_{B}, \sigma_{A} \in \mathcal{S}(A)\right\}
$$

- for $\psi \in\left(\mathcal{L}^{+}\right)^{*}, \rho=C_{\psi}$:

$$
\|\psi\|^{\diamond}=\min _{\sigma_{A} \in \mathcal{S}(A)} \min \left\{\lambda>0, \rho \leq \lambda \sigma_{A} \otimes I_{B}\right\}=2^{-H_{\min }(B \mid A)_{\rho}}
$$

- conditional min-entropy: $H_{\min }(B \mid A)_{\rho}$

Diamond norm and conditional min-entropy

Dual expression:

$$
\left.\|\psi\|^{\diamond}=\max _{\alpha \in \mathcal{C}}\langle\psi, \alpha\rangle=\max _{\alpha \in \mathcal{C}}\left\langle\left\langle I_{B}\right|(\alpha \otimes i d)(\rho) \mid I_{B}\right\rangle\right\rangle
$$

Diamond norm and conditional min-entropy

Dual expression:

$$
\left.\|\psi\|^{\diamond}=\max _{\alpha \in \mathcal{C}}\langle\psi, \alpha\rangle=\max _{\alpha \in \mathcal{C}}\left\langle\left\langle I_{B}\right|(\alpha \otimes i d)(\rho) \mid I_{B}\right\rangle\right\rangle
$$

Diamond norm and conditional min-entropy

Dual expression:

$$
\left.\|\psi\|^{\diamond}=\max _{\alpha \in \mathcal{C}}\langle\psi, \alpha\rangle=\max _{\alpha \in \mathcal{C}}\left\langle\left\langle I_{B}\right|(\alpha \otimes i d)(\rho) \mid I_{B}\right\rangle\right\rangle
$$

operational interpretation of $H_{\min }(B \mid A)_{\rho}$ (König et al., 2009):
(up to d_{B}) the largest fidelity with maximally entangled state, that can be obtained by applying a channel on A

The 2-diamond norm and conditional 2-min-entropy

Let now

- $\mathcal{L}=\mathcal{L}\left(A_{1} A_{2} \rightarrow B_{1} B_{2}\right)$

The 2-diamond norm and conditional 2-min-entropy

Let now

- $\mathcal{L}=\mathcal{L}\left(A_{1} A_{2} \rightarrow B_{1} B_{2}\right)$
- $\mathcal{C}_{2}=\mathcal{C}_{2}\left(A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}\right) \equiv$ set of superchannels:

The 2-diamond norm and conditional 2-min-entropy

Let now

- $\mathcal{L}=\mathcal{L}\left(A_{1} A_{2} \rightarrow B_{1} B_{2}\right)$
- $\mathcal{C}_{2}=\mathcal{C}_{2}\left(A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}\right) \equiv$ set of superchannels:

The 2-diamond norm and conditional 2-min-entropy

Let now

- $\mathcal{L}=\mathcal{L}\left(A_{1} A_{2} \rightarrow B_{1} B_{2}\right)$
- $\mathcal{C}_{2}=\mathcal{C}_{2}\left(A_{1} \rightarrow B_{1}, A_{2} \rightarrow B_{2}\right) \equiv$ set of superchannels:

- \mathcal{C}_{2} is an affine section of \mathcal{L}^{+}

The 2-diamond norm and conditional 2-min-entropy

The dual section $\tilde{\mathcal{C}_{2}}$: set of superchannels

The 2-diamond norm and conditional 2-min-entropy

The dual section $\tilde{\mathcal{C}_{2}}$: set of superchannels
\square

The 2-diamond norm and conditional 2-min-entropy

The dual section $\tilde{\mathcal{C}_{2}}$: set of superchannels

σ is a state, γ a channel

The 2-diamond norm and conditional 2-min-entropy

- we can define a pair of dual norms in $\mathcal{L}, \mathcal{L}^{*}$ as before:

$$
\begin{aligned}
\|\phi\|_{2 \diamond} & =\min _{\alpha \in \mathcal{C}_{2}} \min \{\lambda>0,-\lambda \alpha \leq \phi \leq \lambda \alpha\} \\
& =\max _{\gamma \in \tilde{\mathcal{C}}_{2}} \max _{\gamma \leq \eta \leq \gamma}\langle\eta, \phi\rangle \\
\|\psi\|^{2 \diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}_{2}} \min \{\lambda>0,-\lambda \gamma \leq \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}_{2}} \max _{-\alpha \leq \xi \leq \alpha}\langle\psi, \xi\rangle
\end{aligned}
$$

The 2-diamond norm and conditional 2-min-entropy

- we can define a pair of dual norms in $\mathcal{L}, \mathcal{L}^{*}$ as before:

$$
\begin{aligned}
\|\phi\|_{2 \diamond} & =\min _{\alpha \in \mathcal{C}_{2}} \min \{\lambda>0,-\lambda \alpha \leq \phi \leq \lambda \alpha\} \\
& =\max _{\gamma \in \tilde{\mathcal{C}}_{2}} \max _{\gamma \leq \eta \leq \gamma}\langle\eta, \phi\rangle \\
\|\psi\|^{2 \diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}_{2}} \min \{\lambda>0,-\lambda \gamma \leq \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}_{2}} \max _{-\alpha \leq \xi \leq \alpha}\langle\psi, \xi\rangle
\end{aligned}
$$

- $\|\cdot\|_{2 \diamond}$ is a distinguishability norm for superchannels

The 2-diamond norm and conditional 2-min-entropy

- we can define a pair of dual norms in $\mathcal{L}, \mathcal{L}^{*}$ as before:

$$
\begin{aligned}
\|\phi\|_{2 \diamond} & =\min _{\alpha \in \mathcal{C}_{2}} \min \{\lambda>0,-\lambda \alpha \leq \phi \leq \lambda \alpha\} \\
& =\max _{\gamma \in \tilde{\mathcal{C}}_{2}} \max _{\gamma \leq \eta \leq \gamma}\langle\eta, \phi\rangle \\
\|\psi\|^{2 \diamond} & =\min _{\gamma \in \tilde{\mathcal{C}}_{2}} \min \{\lambda>0,-\lambda \gamma \leq \psi \leq \lambda \gamma\} \\
& =\max _{\alpha \in \mathcal{C}_{2}} \max _{-\alpha \leq \xi \leq \alpha}\langle\psi, \xi\rangle
\end{aligned}
$$

- $\|\cdot\|_{2 \diamond}$ is a distinguishability norm for superchannels
- from $\|\cdot\|^{2 \diamond}$, we obtain the conditional 2-min-entropy

The 2-diamond norm and conditional 2-min-entropy

For $\psi \in\left(\mathcal{L}^{+}\right)^{*}, \rho=C_{\psi}$:

$$
\begin{aligned}
\|\psi\|^{2 \triangleright} & =\min _{\sigma, \gamma} \min \left\{\lambda>0, \psi \leq \lambda \sigma * \gamma \otimes \operatorname{Tr}_{B_{2}}\right\}=2^{-H_{\min }^{(2)}(B \mid A)_{\rho}} \\
& \left.=\max _{\alpha \in \mathcal{C}_{2}}\langle\alpha, \psi\rangle=\max _{\alpha \in \mathcal{C}_{2}}\left\langle\left\langle I_{B_{1} B_{2}}\right|(\alpha \otimes i d)(\rho) \mid I_{B_{1} B_{2}}\right\rangle\right\rangle
\end{aligned}
$$

The 2-diamond norm and conditional 2-min-entropy

For $\psi \in\left(\mathcal{L}^{+}\right)^{*}, \rho=C_{\psi}$:

$$
\begin{aligned}
\|\psi\|^{2 \triangleright} & =\min _{\sigma, \gamma} \min \left\{\lambda>0, \psi \leq \lambda \sigma * \gamma \otimes \operatorname{Tr}_{B_{2}}\right\}=2^{-H_{\min }^{(2)}(B \mid A)_{\rho}} \\
& \left.=\max _{\alpha \in \mathcal{C}_{2}}\langle\alpha, \psi\rangle=\max _{\alpha \in \mathcal{C}_{2}}\left\langle\left\langle I_{B_{1} B_{2}}\right|(\alpha \otimes i d)(\rho) \mid I_{B_{1} B_{2}}\right\rangle\right\rangle
\end{aligned}
$$

The 2-diamond norm and conditional 2-min-entropy

For $\psi \in\left(\mathcal{L}^{+}\right)^{*}, \rho=C_{\psi}$:

$$
\begin{aligned}
\|\psi\|^{2 \diamond} & =\min _{\sigma, \gamma} \min \left\{\lambda>0, \psi \leq \lambda \sigma * \gamma \otimes \operatorname{Tr}_{B_{2}}\right\}=2^{-H_{\min }^{(2)}(B \mid A)_{\rho}} \\
& \left.=\max _{\alpha \in \mathcal{C}_{2}}\langle\alpha, \psi\rangle=\max _{\alpha \in \mathcal{C}_{2}}\left\langle\left\langle I_{B_{1} B_{2}}\right|(\alpha \otimes i d)(\rho) \mid I_{B_{1} B_{2}}\right\rangle\right\rangle
\end{aligned}
$$

Useful properties of $H_{\text {min }}^{(2)}$: (Gour, 2018)

- monotonicity for any superchannel

$$
\Theta \in \mathcal{C}_{2}\left(B_{3} \rightarrow B_{1}, A_{1} \rightarrow A_{3}\right):
$$

$$
\|\phi\|^{2 \diamond} \geq\|\Theta(\phi)\|^{2 \diamond}
$$

- additivity

$$
\|\phi \otimes \psi\|^{2 \diamond}=\|\phi\|^{2 \diamond}\|\psi\|^{2 \diamond}
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}=
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}=\min _{\alpha \in \mathcal{C}_{2}} \max _{\|\gamma\|^{\diamond} \leq 1}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}=2 \min _{\alpha \in \mathcal{C}_{2}} \max _{\substack{\|\gamma\|^{\circ} \leq 1, \gamma \geq 0}}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\begin{gathered}
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond}=2 \min _{\alpha \in \mathcal{C}_{2}} \max _{\|\gamma\|^{\circ} \leq 1,}^{\gamma \geq 0}< \\
(\text { minimax thm. })=2 \max _{\gamma} \min _{\alpha}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle
\end{gathered}
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\begin{aligned}
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond} & =2 \min _{\alpha \in \mathcal{C}_{2}} \max _{\|\gamma\|^{\circ} \leq 1,}^{\gamma \geq 0}\langle \\
(\text { minimax thm. }) & =2 \max _{\gamma} \min _{\alpha}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle \\
& \left.\leq 2 \max _{\gamma}\left(\left\langle\gamma, \Phi_{1}\right)\right\rangle-\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{2}\right)\right\rangle\right)
\end{aligned}
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\begin{aligned}
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond} & =2 \min _{\alpha \in \mathcal{C}_{2}} \max _{\|\gamma\|^{\circ} \leq 1,}^{\gamma \geq 0}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle \\
(\text { minimax thm. }) & =2 \max _{\gamma} \min _{\alpha}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle \\
& \leq 2 \max _{\gamma}\left(\max _{\beta \in \mathcal{C}_{2}}\left\langle\gamma, \beta\left(\Phi_{1}\right)\right\rangle-\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{2}\right)\right\rangle\right)
\end{aligned}
$$

Comparison of bipartite channels

We compute the deficiency $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right)$:

$$
\begin{aligned}
\min _{\alpha \in \mathcal{C}_{2}}\left\|\Phi_{1}-\alpha\left(\Phi_{2}\right)\right\|_{\diamond} & =2 \min _{\alpha \in \mathcal{C}_{2}} \max _{\|\gamma\|^{\circ} \leq 1,}^{\gamma \geq 0} \\
(\text { minimax thm. }) & =2 \max _{\gamma} \min _{\alpha}\left\langle\gamma, \Phi_{1}-\alpha\left(\Phi_{2}\right)\right\rangle \\
& \leq 2 \max _{\gamma}\left(\max _{\beta \in \mathcal{C}_{2}}\left\langle\gamma, \beta\left(\Phi_{1}\right)\right\rangle-\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{2}\right)\right\rangle\right) \\
& \leq \epsilon ?
\end{aligned}
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=?
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=?
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=?
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=?
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=?
$$

Comparison of bipartite channels

$$
\max _{\alpha \in \mathcal{C}_{2}}\left\langle\gamma, \alpha\left(\Phi_{i}\right)\right\rangle=\max _{\alpha \in \mathcal{C}_{2}}\left\langle\tau_{B_{0}}\left(\gamma * \Phi_{i}\right), \alpha\right\rangle=\left\|\tau_{B_{0}}\left(\gamma * \Phi_{i}\right)\right\|^{2 \diamond}
$$

Comparison of bipartite channels

Theorem

Let $\epsilon \geq 0$. Then $\delta_{\text {sc }}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$ if and only if for all systems A_{3}, B_{3} and all $\gamma \in \mathcal{L}^{+}\left(B_{3} B_{0} \rightarrow A_{3} A_{0}\right)$ we have

$$
\left\|\tau_{B_{0}}\left(\gamma * \Phi_{1}\right)\right\|^{2 \diamond} \leq\left\|\tau_{B_{0}}\left(\gamma * \Phi_{2}\right)\right\|^{2 \diamond}+\frac{\epsilon}{2}\|\gamma\|^{\diamond} .
$$

Comparison of bipartite channels

Theorem

Let $\epsilon \geq 0$. Then $\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$ if and only if for all systems A_{3}, B_{3} and all $\gamma \in \mathcal{L}^{+}\left(B_{3} B_{0} \rightarrow A_{3} A_{0}\right)$ we have

$$
\left\|\tau_{B_{0}}\left(\gamma * \Phi_{1}\right)\right\|^{2 \diamond} \leq\left\|\tau_{B_{0}}\left(\gamma * \Phi_{2}\right)\right\|^{2 \diamond}+\frac{\epsilon}{2}\|\gamma\|^{\diamond} .
$$

where

Comparison of bipartite channels

Theorem

Let $\epsilon \geq 0$. Then $\delta_{\text {sc }}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$ if and only if for all systems A_{3}, B_{3} and all $\gamma \in \mathcal{L}^{+}\left(B_{3} B_{0} \rightarrow A_{3} A_{0}\right)$ we have

$$
\left\|\tau_{B_{0}}\left(\gamma * \Phi_{1}\right)\right\|^{2 \diamond} \leq\left\|\tau_{B_{0}}\left(\gamma * \Phi_{2}\right)\right\|^{2 \diamond}+\frac{\epsilon}{2}\|\gamma\|^{\diamond}
$$

where

We can restrict to $A_{3} \simeq A_{1}$ and $B_{3} \simeq B_{1}$.

Conditional min-entropy and guessing probabilities

For an ensemble $\mathcal{E}=\left\{\lambda_{x}, \rho_{x}\right\}, \rho_{x} \in \mathcal{S}(A)$, let

$$
\begin{gathered}
\phi_{\mathcal{E}} \in \mathcal{L}^{+}(B \rightarrow A), \quad C_{\phi_{\mathcal{E}}}=\rho_{\mathcal{E}}:=\sum_{x}|x\rangle\langle x| \otimes \lambda_{x} \rho_{x} \\
\phi_{\mathcal{E}}=\frac{x}{\lambda_{x} \rho_{x}} \frac{A}{4}
\end{gathered}
$$

-classical-to-quantum map

Conditional min-entropy and guessing probabilities

For an ensemble $\mathcal{E}=\left\{\lambda_{x}, \rho_{x}\right\}, \rho_{x} \in \mathcal{S}(A)$, let

$$
\begin{gathered}
\phi_{\mathcal{E}} \in \mathcal{L}^{+}(B \rightarrow A), \quad C_{\phi_{\mathcal{E}}}=\rho_{\mathcal{E}}:=\sum_{x}|x\rangle\langle x| \otimes \lambda_{x} \rho_{x} \\
\phi_{\mathcal{E}}=\frac{x}{\lambda_{x} \rho_{x}} A
\end{gathered}
$$

-classical-to-quantum map
Optimal success probability (König et al. 2009)

$$
P_{\text {succ }}(\mathcal{E})=\max _{M} \sum_{x} \lambda_{x} \operatorname{Tr}\left[\rho_{x} M_{x}\right]=\|\phi \mathcal{E}\|^{\triangleright}=2^{-H_{\min }(X \mid A)_{\rho \mathcal{E}}}
$$

Conditional min-entropy and guessing probabilities

Let $\gamma \in \mathcal{L}^{+}(R \rightarrow A), \rho=C_{\gamma} \in \mathcal{S}(A R)$. We produce an ensemble

$$
\mathcal{E}_{\rho}=\left\{\frac{1}{d_{R}^{2}}, \rho_{\times}\right\}, \quad \rho_{\times}=\left(i d_{A} \otimes \mathcal{U}_{x}^{R}\right)(\rho) \in \mathcal{S}(A R)
$$

Conditional min-entropy and guessing probabilities

Let $\gamma \in \mathcal{L}^{+}(R \rightarrow A)$, $\rho=C_{\gamma} \in \mathcal{S}(A R)$. We produce an ensemble

$$
\mathcal{E}_{\rho}=\left\{\frac{1}{d_{R}^{2}}, \rho_{\times}\right\}, \quad \rho_{\times}=\left(i d_{A} \otimes \mathcal{U}_{x}^{R}\right)(\rho) \in \mathcal{S}(A R)
$$

where

$$
\mathcal{U}_{x}^{R} \equiv \text { generalized Pauli unitaries on } \mathcal{H}_{R}
$$

Conditional min-entropy and guessing probabilities

Let $\gamma \in \mathcal{L}^{+}(R \rightarrow A), \rho=C_{\gamma} \in \mathcal{S}(A R)$. We produce an ensemble

$$
\mathcal{E}_{\rho}=\left\{\frac{1}{d_{R}^{2}}, \rho_{x}\right\}, \quad \rho_{\times}=\left(i d_{A} \otimes \mathcal{U}_{x}^{R}\right)(\rho) \in \mathcal{S}(A R)
$$

where

$$
\mathcal{U}_{x}^{R} \equiv \text { generalized Pauli unitaries on } \mathcal{H}_{R}
$$

Then we have

$$
P_{\text {succ }}\left(\mathcal{E}_{\rho}\right)=\frac{1}{d_{R}}\|\gamma\|^{\diamond}=\frac{1}{d_{R}} 2^{-H_{\text {min }}(R \mid A)_{\rho}}
$$

Conditional min-entropy and guessing probabilities

Channel discrimination problem:

- an ensemble of channels $\mathcal{E}_{R}=\left\{\frac{1}{d_{R}^{2}}, \mathcal{U}_{x}^{R}\right\}$
- testers (PPOVMs) with input state ρ :

- success probability:

$$
P_{\text {succ }}\left(\mathcal{E}_{R}, \rho\right):=\max _{M} \sum_{x} \operatorname{Tr}\left[\left(i d \otimes \mathcal{U}_{x}^{R}\right)(\rho) M_{x}\right]=\frac{1}{d_{R}} 2^{-H_{\min }(R \mid A)_{\rho}}
$$

Conditional min-entropy and guessing probabilities

For any ensemble $\mathcal{E}=\left\{\frac{1}{d_{R}^{2}}, \Psi_{x}\right\}_{x=1}^{d_{R}^{2}}$ of unital channels:

$$
P_{\text {succ }}(\mathcal{E}, \rho) \leq \frac{1}{d_{R}} 2^{-H_{\text {min }}(R \mid A)_{\rho}}
$$

Conditional min-entropy and guessing probabilities

For any ensemble $\mathcal{E}=\left\{\frac{1}{d_{R}^{2}}, \Psi_{x}\right\}_{x=1}^{d_{R}^{2}}$ of unital channels:

$$
P_{\text {succ }}(\mathcal{E}, \rho) \leq \frac{1}{d_{R}} 2^{-H_{\min }(R \mid A)_{\rho}}
$$

For a pair of quantum channels $\Phi_{i}: A \rightarrow B_{i}, \delta_{\text {post }}\left(\Phi_{1} \| \Phi_{2}\right)$ can be characterized by comparing testers of the form

for this type of tasks, for any $\rho \in \mathcal{S}(A R)$.

Comparison of bipartite channels by guessing probabilities
A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

A more complicated situation - we maximize over α_{1}, α_{2} :

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

1. pre-processing: pick and apply any $\alpha \in \mathcal{C}\left(A_{3} \rightarrow R A_{i}\right)$;

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

1. pre-processing: pick and apply any $\alpha \in \mathcal{C}\left(A_{3} \rightarrow R A_{i}\right)$;
2. apply Φ_{i};

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

1. pre-processing: pick and apply any $\alpha \in \mathcal{C}\left(A_{3} \rightarrow R A_{i}\right)$;
2. apply Φ_{i};
3. measurement: pick any $\operatorname{POVM}\left\{M_{x}\right\}$ and measure $M \otimes N$.

Comparison of bipartite channels by guessing probabilities

Let $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$ be an ensemble on $B_{3} A_{3} A_{0} B_{0}$ and $\left\{N_{y}\right\}$ a POVM on $B_{0} B_{0}^{\prime}$. Consider the following scheme:

1. pre-processing: pick and apply any $\alpha \in \mathcal{C}\left(A_{3} \rightarrow R A_{i}\right)$;
2. apply Φ_{i};
3. measurement: pick any $\operatorname{POVM}\left\{M_{x}\right\}$ and measure $M \otimes N$.

The optimal success probability is

$$
P_{\text {succ }}\left(\mathcal{E}, \Phi_{i}, N\right):=\max _{\alpha, M} P_{\text {succ }}\left(\mathcal{E},\left(\Phi_{i} * \alpha\right)^{*}(M \otimes N)\right)
$$

Comparison of bipartite channels: guessing probabilities

Theorem
$\delta_{s c}\left(\Phi_{1} \| \Phi_{2}\right) \leq \epsilon$ if and only if for any A_{3}, B_{3}, any POVM N on $B_{0} B_{0}^{\prime}$ and any ensemble $\mathcal{E}=\left\{\lambda_{x y}, \rho_{x y}\right\}$, on $B_{3} A_{3} A_{0} B_{0}^{\prime}$, we have

$$
P_{\text {succ }}\left(\mathcal{E}, \Phi_{1}, N\right) \leq P_{\text {succ }}\left(\mathcal{E}, \Phi_{2}, N\right)+\frac{\epsilon}{2} P_{\text {succ }}(\mathcal{E})
$$

We may restrict to $A_{3} \simeq A_{1}, B_{3} \simeq B_{1}$ and $N=\mathcal{B}$ the Bell measurement.

Deficiency for $\mathcal{T} \subset \mathcal{C}_{2}$

Let $\mathcal{T} \subseteq \mathcal{C}_{2}$ be

- convex
- closed
- $\mathcal{T} \circ \mathcal{T} \subseteq \mathcal{T}$

Deficiency for $\mathcal{T} \subset \mathcal{C}_{2}$

Let $\mathcal{T} \subseteq \mathcal{C}_{2}$ be

- convex
- closed
- $\mathcal{T} \circ \mathcal{T} \subseteq \mathcal{T}$

Then we obtain similar results with modified conditional 2-min-entropy:

$$
H_{\min , \mathcal{T}}^{(2)}:=-\log \left(\max _{\alpha \in \mathcal{T}}\langle\gamma, \alpha\rangle\right)
$$

Deficiency for $\mathcal{T} \subset \mathcal{C}_{2}$

Let $\mathcal{T} \subseteq \mathcal{C}_{2}$ be

- convex
- closed
- $\mathcal{T} \circ \mathcal{T} \subseteq \mathcal{T}$

Then we obtain similar results with modified conditional 2-min-entropy:

$$
H_{\min , \mathcal{T}}^{(2)}:=-\log \left(\max _{\alpha \in \mathcal{T}}\langle\gamma, \alpha\rangle\right)
$$

For characterization by guessing probabilities: restrictions on allowed pairs (α, M) of pre-processing and measurement.

