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Equality case

I comparison of bipartite channels: (Gour, 2018)

I comparison of channels: dA0 = dB0 = 1, restrictions on α:

I post-processings (degradability)

A1 = A2, Φ1
?
= α ◦ Φ2

(Chefles 2009, Buscemi 2012,2016,...)
I comparison of quantum experiments: c-q channels

ρ1, . . . , ρk ∈ S(B1), σ1, . . . , σk ∈ S(B2), ρi
?
= α(σi ),∀i

(Alberti & Uhlmann 1980, Buscemi 2012, Gour et al. 2018)
I comparison of classical experiments: (Blackwell 1953,

Torgersen 1970)
I more general comparison of classical channels: (Shannon 1958)
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Equality case

Preorder: Φ2 � Φ1 ⇐⇒ Φ1 = α(Φ2)

I formulated as an SDP problem
I characterized by

I a set of inequalities in (some extension of) conditional
min-entropy

I risks of procedures in decision problems
I success probabilities in hypothesis testing problems
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Deficiency

Let us return to the general case:

I we define the deficiency as

δT (Φ1‖Φ2) := min
α∈T
‖Φ1 − α(Φ2)‖�

here T is some subset of superchannels.

I pseudo-distance:

∆T (Φ1,Φ2) := max{δT (Φ1‖Φ2), δT (Φ2‖Φ1)}
I equivalence relation:

Φ1 ∼T Φ2 ⇐⇒ ∆T (Φ1,Φ2) = 0
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Deficiency

I These are extensions of Le Cam deficiency/distance for
classical statistical experiments: F1 = {pθ, θ ∈ Θ},
F2 = {qθ, θ ∈ Θ}

δ(F1‖F2) = min
α

sup
θ
‖pθ − α(qθ)‖1

I Randomization theorem (Le Cam 1964): deficiency is
characterized by comparing risks in decision problems:
informativity



Randomization theorem for classical channels

Φ1, Φ2 - classical channels with equal input spaces: A1 = A2 = A,
T = post := set of post-processings

Theorem
Let ε ≥ 0, Then δpost(Φ1‖Φ2) ≤ ε if and only if:
for any ensemble E = {λx , px} of classical states px ∈ S(A),

Psucc(Φ1(E)) ≤ Psucc(Φ2(E)) +
ε

2
Psucc(E),

here Φi (E) = {λx ,Φi (px)}.



Quantum randomization theorems

I for c-q channels (quantum experiments) (Matsumoto 2010):
risks of quantum decision problems

I for quantum channels (J 2016): δpost(Φ1‖Φ2) ≤ ε ⇐⇒

Psucc(Φ1 ⊗ idR(E)) ≤ Psucc(Φ2 ⊗ idR(E)) +
ε

2
Psucc(E)

for any ensemble on AR

⇐⇒
for any ρ ∈ S(AR):

2−Hmin(R|B1)ρ1 ≤ 2−Hmin(R|B2)ρ2 +
ε

2
2−Hmin(R|A)ρ

ρi = (Φi ⊗ idR)(ρ), Hmin - conditional min-entropy
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Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)

I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Outline

Φ1, Φ2 bipartite quantum channels, T = sc := all superchannels

Goals: characterize δsc(Φ1‖Φ2) by

I inequalities in (extended) conditional min-entropies

I success probabilities in some hypothesis testing schemes

Tools:

I the duality of diamond norm and conditional min-entropy
(and extensions)

I comes from dual SDP (Chiribella & Ebler 2016, Gour 2018)
I but also as a dual norm (Gutoski 2012, J 2014)

I properties (monotonicity) of conditional min-entropy

I minimax theorem (Le Cam)



Choi isomorphism

Let |IA〉〉 =
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Ordered spaces of hermitian maps

I L = L(A→ B) ≡ the space of hermitian-preserving maps

φ : B(A)→ B(B), φ(Y ∗) = φ(Y )∗

I L+ = L+(A→ B) ≡ the cone of completely positive maps

I (L,L+) is an ordered vector space

I Choi isomorphism:

(L,L+) ' (Bh(BA′),B(BA′)+)
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The trace

Partial trace: for φ ∈ L(AA0 → BA0)

τA0(φ) =

φA

A0

A′
0

B

A0

I if φ ∈ L+(AA0 → BA0) then τA0(φ) ∈ L+(A→ B)

I does not map channels to channels

I τ(φ ◦ (α⊗ id)) = τ(τA0(φ) ◦ α)
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The ordered dual of L(A→ B)

For L = L(A→ B), we represent

L∗ ≡ L(B → A), (L+)∗ ≡ L+(B → A)

with duality

〈ψ, φ 〉 = τ(ψ ◦ φ) = τ(φ ◦ ψ) = TrCφCψ∗ :

φ ψA
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=
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Diamond norm and conditional min-entropy

For φ ∈ L = L(A→ B), the diamond norm is defined as

‖φ‖� = sup
ρ∈S(AA′)

‖φ⊗ idA′(ρ)‖1

I distinguishability norm for channels B(A)→ B(B)

I constructed from the convex structure of the set of channels
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Diamond norm and conditional min-entropy

Let

I C = C(A→ B) ⊂ L+ the set of channels

I C is and affine section of L+
I dual section:

C̃ := {γ ∈ (L+)∗, 〈 γ, α 〉 = 1, ∀α ∈ C}

Dual expressions:

‖φ‖� = min
α∈C

min{λ > 0,−λα ≤ φ ≤ λα}

= max
γ∈C̃

max
−γ≤η≤γ

〈 η, φ 〉
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I conditional min-entropy: Hmin(B|A)ρ
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Dual expression:

‖ψ‖� = max
α∈C
〈ψ, α 〉 = max
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〈〈 IB |(α⊗ id)(ρ)|IB〉〉

= max
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ρ αA

B′

B

operational interpretation of Hmin(B|A)ρ (König et al., 2009):

(up to dB) the largest fidelity with maximally entangled state, that
can be obtained by applying a channel on A
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The 2-diamond norm and conditional 2-min-entropy

Let now

I L = L(A1A2 → B1B2)

I C2 = C2(A1 → B1,A2 → B2) ≡ set of superchannels:

α =

α1 α2

A1 B1 A2 B2

= α1 ∗ α2

I C2 is an affine section of L+
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The 2-diamond norm and conditional 2-min-entropy

I we can define a pair of dual norms in L, L∗ as before:

‖φ‖2� = min
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min{λ > 0,−λα ≤ φ ≤ λα}
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〈 η, φ 〉

‖ψ‖2� = min
γ∈C̃2

min{λ > 0,−λγ ≤ ψ ≤ λγ}

= max
α∈C2

max
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〈ψ, ξ 〉

I ‖ · ‖2� is a distinguishability norm for superchannels

I from ‖ · ‖2�, we obtain the conditional 2-min-entropy
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The 2-diamond norm and conditional 2-min-entropy

For ψ ∈ (L+)∗, ρ = Cψ:

‖ψ‖2� = min
σ,γ

min{λ > 0, ψ ≤ λσ ∗ γ ⊗ TrB2} = 2−H
(2)
min(B|A)ρ
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α∈C2
〈〈 IB1B2 |(α⊗ id)(ρ)|IB1B2〉〉
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The 2-diamond norm and conditional 2-min-entropy

For ψ ∈ (L+)∗, ρ = Cψ:

‖ψ‖2� = min
σ,γ

min{λ > 0, ψ ≤ λσ ∗ γ ⊗ TrB2} = 2−H
(2)
min(B|A)ρ

= max
α∈C2
〈α,ψ 〉 = max

α∈C2
〈〈 IB1B2 |(α⊗ id)(ρ)|IB1B2〉〉

Useful properties of H
(2)
min: (Gour, 2018)

I monotonicity for any superchannel
Θ ∈ C2(B3 → B1,A1 → A3):

‖φ‖2� ≥ ‖Θ(φ)‖2�

I additivity
‖φ⊗ ψ‖2� = ‖φ‖2�‖ψ‖2�



Comparison of bipartite channels

We compute the deficiency δsc(Φ1‖Φ2):

min
α∈C2
‖Φ1 − α(Φ2)‖� =

2 min
α∈C2

max
‖γ‖�≤1,
γ≥0

〈 γ,Φ1 − α(Φ2) 〉

(minimax thm.) = 2 max
γ

min
α
〈 γ,Φ1 − α(Φ2) 〉

≤ 2 max
γ

(
max
β∈C2
〈 γ, β(Φ1) 〉 −max

α∈C2
〈 γ, α(Φ2) 〉

)
≤ ε ?
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Comparison of bipartite channels

Theorem
Let ε ≥ 0. Then δsc(Φ1‖Φ2) ≤ ε if and only if for all systems
A3,B3 and all γ ∈ L+(B3B0 → A3A0) we have

‖τB0(γ ∗ Φ1)‖2� ≤ ‖τB0(γ ∗ Φ2)‖2� +
ε

2
‖γ‖�.

where

τB0(γ ∗ Φi ) =

γ Φi
B3

B0

B′
0
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A0

Ai Bi

B0

We can restrict to A3 ' A1 and B3 ' B1.
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Conditional min-entropy and guessing probabilities

For an ensemble E = {λx , ρx}, ρx ∈ S(A), let

φE ∈ L+(B → A), CφE = ρE :=
∑
x

|x 〉〈 x | ⊗ λxρx

φE = λxρx
x A

-classical-to-quantum map

Optimal success probability (König et al. 2009)

Psucc(E) = max
M

∑
x

λxTr [ρxMx ] = ‖φE‖� = 2−Hmin(X |A)ρE
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Conditional min-entropy and guessing probabilities

Let γ ∈ L+(R → A), ρ = Cγ ∈ S(AR). We produce an ensemble

Eρ = { 1

d2
R

, ρx}, ρx = (idA ⊗ UR
x )(ρ) ∈ S(AR),

where
UR
x ≡ generalized Pauli unitaries on HR .

Then we have

Psucc(Eρ) =
1

dR
‖γ‖� =

1

dR
2−Hmin(R|A)ρ
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Conditional min-entropy and guessing probabilities

Channel discrimination problem:

I an ensemble of channels ER = { 1
d2
R
,UR

x }
I testers (PPOVMs) with input state ρ:

ρ Mx

x

I success probability:

Psucc(ER , ρ) := max
M

∑
x

Tr [(id ⊗ UR
x )(ρ)Mx ] =

1

dR
2−Hmin(R|A)ρ



Conditional min-entropy and guessing probabilities

For any ensemble E = { 1
d2
R
,Ψx}d

2
R

x=1 of unital channels:

Psucc(E , ρ) ≤ 1

dR
2−Hmin(R|A)ρ

For a pair of quantum channels Φi : A→ Bi , δpost(Φ1‖Φ2) can be
characterized by comparing testers of the form

for this type of tasks, for any ρ ∈ S(AR).
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POVM on B0B
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0. Consider the following scheme:

1. pre-processing: pick and apply any α ∈ C(A3 → RAi );

2. apply Φi ;

3. measurement: pick any POVM {Mx} and measure M ⊗ N.
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Let E = {λxy , ρxy} be an ensemble on B3A3A0B0 and {Ny} a
POVM on B0B

′
0. Consider the following scheme:

1. pre-processing: pick and apply any α ∈ C(A3 → RAi );

2. apply Φi ;

3. measurement: pick any POVM {Mx} and measure M ⊗ N.

The optimal success probability is

Psucc(E ,Φi ,N) := max
α,M

Psucc(E , (Φi ∗ α)∗(M ⊗ N))



Comparison of bipartite channels: guessing probabilities

Theorem
δsc(Φ1‖Φ2) ≤ ε if and only if for any A3, B3, any POVM N on
B0B

′
0 and any ensemble E = {λxy , ρxy}, on B3A3A0B

′
0, we have

Psucc(E ,Φ1,N) ≤ Psucc(E ,Φ2,N) +
ε

2
Psucc(E)

We may restrict to A3 ' A1, B3 ' B1 and N = B the Bell
measurement.



Deficiency for T ⊂ C2

Let T ⊆ C2 be

I convex

I closed

I T ◦ T ⊆ T

Then we obtain similar results with modified conditional
2-min-entropy:

H
(2)
min,T := − log(max

α∈T
〈 γ, α 〉)

For characterization by guessing probabilities: restrictions on
allowed pairs (α,M) of pre-processing and measurement.
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