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Measurement of quantum channels

Let H0, H1 be finite dimensional Hilbert spaces,
E : B(H0)→ B(H1) a channel: (cp trace preserving map).
Suppose E is unknown, we want to identify it by a measurement:

1. prepare of a state ρ ∈ B(H0 ⊗HA), HA an ancillary Hilbert
space,

2. apply E ⊗ idHA
to ρ

3. measure the output by a POVM Λ : Ω→ B(H1 ⊗HA)i

This produces an outcome i ∈ Ω with probability

pi (E) = TrΛi (E ⊗ idHA
)(ρ)



A general channel mesurement

A general definition of channel measurement: an affine map

E 7→ p(E) ∈ P(Ω) = set of probability measures on Ω

Question
Are all channel measurements given by some triple (HA, ρ,Λ)?



Quantum 1- testers (PPOVMs)

Let XE ∈ B(H1 ⊗H0) denote the Choi represenation of E :

XE = (E ⊗ idH0)(Ψ), Ψ =
∑
i ,j

|i〉〈j | ⊗ |i〉〈j |

A quantum 1-tester: {Mi , i ∈ Ω}, Mi ∈ B(H1 ⊗H0)+,∑
i

Mi = IH1 ⊗ ω, ω ∈ S(H0)

This defines a channel measurement E 7→ pi (E) = TrMiXE , i ∈ Ω.

Theorem
Each triple (HA, ρ,Λ) is associated with a 1-tester. Each 1-tester
is implemented by a triple (HA, ρ,Λ).

(Chiribella, D’Ariano, Perinotti, Phys. Rev. Lett.(2008)
Ziman, Phys. Rev. A(2008) (1-testers are called proces POVMs))



The set C(H0,H1)

Let C(H0,H1) ⊂ B(H1 ⊗H0) denote the set of Choi
representations of channels B(H0)→ B(H1):

C(H0,H1) = {X ∈ B(H1 ⊗H0)+,TrH1X = IH0}

Question
Are all affine maps C(H1,H0)→ P(Ω) given by 1-testers?

Note that

C(H0,H1) = J ∩ d0S(H1 ⊗H0), d0 = dim(H0)

where J ⊂ B(H1 ⊗H0) is the subspace

J = {X ∈ B(H1 ⊗H0),TrH1X = zIH0 , z ∈ C}



Quantum supermaps

• A quantum supermap is a map that maps channels
B(Hin)→ B(Hout) to channels B(Kin)→ B(Kout).

• Such maps are given by cp maps
S : B(Hout ⊗Hin)→ B(Kout ⊗Kin), such that

S(C(Hin,Hout)) ⊂ C(Kin,Kout)

• Any such map has the form:

Φ1

Kin Hin E Hout

Φ2

Kout

(Chiribella, D’Ariano, Perinotti, Europhysics Letters 2008)



Quantum networks and combs

H1H0 H2 H3 H2N−2 H2N−1

Φ1 Φ2
. . . ΦN

Quantum network

This defines a channel

Φ : B(H0 ⊗H2 ⊗ · · · ⊗ H2N−2)→ B(H1 ⊗H3 ⊗ · · · ⊗ H2N−1).

Its Choi representation XΦ is a (deterministic) quantum N-comb.
Let

Comb(H0, . . . ,H2N−1)

denote the set of (deterministic) N combs.



Characterization of quantum combs

(Gutoski& Watrous, STOC 2007 (quantum strategies),
Chiribella, D’Ariano, Perinotti, Phys. Rev. A 2009)

Theorem
An element X ∈ B(⊗2N−1

j=0 Hj) is a quantum N-comb if and only if

there are X (k) ∈ B(⊗2k−1
j=0 Hj)

+, X (N) = X , such that

TrH2k−1
X (k) = IH2k−2

⊗ X (k−1), k = 2, . . . ,N

TrH1X
(1) = IH0

It follows that

Comb(H0, . . . ,H2N−1) = JN ∩ dNS(⊗2N−1
j=0 Hj)

for some subspace JN and dN > 0.



Quantum N combs as supermaps

Quantum N-combs can be defined as follows:

1. Comb(H0,H1) = C(H0,H1).

2. Comb(H0, . . . ,H2N−1) is the set of Choi operators of cp maps
that transform Comb(H1, . . . ,H2N−2) to C(H0,H2N−1).

H0

Φ1

H1

Φ′
1 H2

Φ2

H3

Φ′
2 H4

Φ3

H5

Conclusion
Quantum networks (supermaps, testers,...) are given by (constant
multiples of) cp maps that map J ∩S(H) into S(K).



Algebras and subspaces

Let A be a finite dim C ∗-algebra. We suppose

A = ⊕iB(Hi ) ⊂ B(H), H = ⊕iHi .

We denote

• TrA the trace inherited from B(H)

• aT the transpose of a

• A+ the positive cone in A
• S(A) = {ρ ∈ A+,TrAρ = 1} the set of density operators

Let J ⊂ A be a positively generated subspace. We denote

• JT = {aT , a ∈ J} is positively generated.

• J⊥ = {x ∈ A,TrA(x∗a) = 0, a ∈ J} self-adjoint subspace



Channels

Let K ⊂ S(A) be a convex subset, J = span(K ).

Definition
A channel Ξ : K → S(B) is an affine map, extending to a cp map
Ξ : J → B.

• Ξ : J → B is trace preserving

• we may suppose that K is a section of S(A):

K = J ∩S(A)

• If K = S(A), then Ξ is a channel A → B.



An extension theorem

The following is an easy consequence of Arveson’s extension
theorem:

Theorem
Let J ⊂ A be a positively generated subspace and let Ξ : J → B
be a cp map. There is a cp map Φ : A → B such that
Φ(a) = Ξ(a), a ∈ J.

Any channel Ξ : K → S(B) is the restriction of a generalized
channel with respect to J:
a cp map Φ : A → B that preserves trace on J



The Choi representation

Let Φ : A → B be a linear map. The Choi representation of Φ:
XΦ ∈ B ⊗A, such that

Φ(a) = TrA(IB ⊗ aT )XΦ

Φ is cp if and only if XΦ ≥ 0

Theorem
Φ : A → B is a generalized channel with respect to J if and only if

XΦ ≥ 0, TrBXΦ ∈ IA + (JT )⊥

We denote by CJ(A,B) the set of all (Choi representations of)
generalized channels, CA(A,B) = C(A,B).



Decomposition of generalized channels

Let c ∈ A, define χc : A → A, χc(a) = cac∗. Then
χc ∈ CJ(A,A) if and only if

c∗c ∈ A+ ∩ (IA + J⊥)

Such generalized channels are called simple.

Theorem
Φ ∈ CJ(A,B) if and only if there is a pair (χc ,Λ), χc ∈ CJ(A,A)
is simple and Λ ∈ C(A,B), such that

Φ = Λ ◦ χc

Moreover, there is a minimal decomposition with p = supp(cc∗)
and Λ ∈ C(pAp,B), which is unique (up to a unitary
transformation).

Note that we have c∗c = Φ∗(IB) = (TrBXΦ)T .



A general example

Suppose that J ⊂ A is a positively generated subspace and
J = S−1(J0), where S : A → A0 is a channel and J0 ⊂ A0 is a
subspace. Then Φ : A → B is a generalized channel with respect
to J if and only if

TrBXΦ ∈ (ST )∗(IA0 + (JT0 )⊥)

where ST : A → A0 is defined as ST (a) = [S(aT )]T . In particular,
if A = A1 ⊗A0 and S is a partial trace, then

TrBXΦ = IA1 ⊗ a, a ∈ A+
0 ∩ (IA0 + (JT0 )⊥)



Example: ”Channels on channels”

Let A = A1 ⊗A0, S = TrA1 , J0 = CIA0 . Then J = S−1(J0) is
generated by C(A0,A1) and

C(A0,A1) = J ∩ t0S(A1 ⊗A0), t0 = TrA0(IA0)

Channels Ξ : C(A0,A1)→ S(B) are given by cp maps Φ : A → B,
such that t0Φ ∈ CJ(A,B), that is, such that

TrBXΦ ∈ IA1 ⊗ (A+
0 ∩ (t−1

0 IA0 + {IA0}⊥)) = IA1 ⊗S(A0)



”Channels on channels”: decomposition

Suppose A0 = B(H0). Let

TrBXΦ = IA1 ⊗ ω, ω ∈ S(H0).

Then there is a a minimal decomposition of Φ:

Φ = Λ ◦ χI⊗c ,

where c∗c = ωT , Λ ∈ C(A1 ⊗ pA0p,B), p = supp(cc∗). Let
XE ∈ C(A0,A1), then

χI⊗c(XE) = χI⊗c(E ⊗ idH0)(Ψ) = (E ⊗ idpH0)(ρ)

where ρ = χI⊗c(Ψ) ∈ S(H0 ⊗ pH0) is a pure state such that
Tr2ρ = ωT .



”Chanels on channels”: implementation

Let A0 = B(H0).

Theorem
Φ : A1 ⊗A0 → B defines a channel C(A0,A1)→ S(B) if and only
if there is an ancilary Hilbert space HA, a pure state
ρ ∈ S(H0 ⊗HA) and a channel Λ : A1 ⊗ B(HA)→ B such that

Φ(XE) = Λ ◦ (E ⊗ idHA
)(ρ)

Moreover, the triple (HA, ρ,Λ) is unique (up to a unitary
transformation).



Measurements on K and generalized POVMs

Let K ⊂ S(A) be any convex subset. A measurement on K with
values in Ω, |Ω| = m is an affine map

K → P(Ω)

Let J = span(K ), then any Φ ∈ CJ(A,Cm) defines a measurement
on K . We have XΦ =

∑
j |j〉〈j | ⊗MT

j and

Φ(a) = (TrA(M1a), . . . ,TrA(Mma)), a ∈ K

where
Mi ∈ A+,

∑
i

Mi ∈ IA + J⊥

M = (M1, . . . ,Mm) is called a generalized POVM with respect to
J.



Measurements on sections

Let K ⊆ S(A) be a section of S(A):

K = J ∩S(A), J = span(K )

Equivalently

(i) K = L ∩S(A), L ⊂ A is any subspace

(ii) Let V = ∪λ≥0λK , then a, b ∈ V , a−b ≥ 0 implies a−b ∈ V .

Theorem
All measurements on K are given by generalized POVMs if and
only if K is a section of S(A), that is, K = J ∩S(A).



Example: quantum 1-testers (PPOVMs)

Let K = C(H0,H1), then K is a (multiple of) a section of
S(H1 ⊗H0). Hence any channel measurement is given by a
generalized POVM with respect to J = span(K ):

(M1, . . . ,Mm), Mi ∈ B(H1 ⊗H0)+,
∑
i

Mi = IH1 ⊗ ω

where ω ∈ S(H0), this is a quantum 1-tester (PPOVM).

Theorem
There exists an ancilla HA, a pure state ρ ∈ S(H0 ⊗HA) and a
POVM Λ : {1, . . . ,m} → B(H1 ⊗HA) (unique up to a unitary)
such that

Tr(XEMi ) = Tr(Λi (E ⊗ idHA
)(ρ)), i = 1, . . . ,m



Example: unital channels

Let A0 = A1 = B(H), dim(H) = d .
Let K = CU(H) = unital channels B(H)→ B(H). Then

K = Tr−1
1 (CIH) ∩ Tr−1

2 (CIH) ∩ dS(H⊗H)

is (d-times) a section of S(H⊗H). Hence any measurement on
unital channels is given by a generalized POVM with respect to
J = Tr−1

1 (CIH) ∩ Tr−1
2 (CIH).

These are collections (M1, . . . ,Mm), Mi ∈ B(H⊗H)+, such that∑
i

Mi = λω1 ⊗ IH + (1− λ)IH ⊗ ω2

where λ ∈ [0, 1], ω1, ω2 ∈ S(H).

Implementation ?



The set CJ(A,B)

Let J ⊂ A be a positively generated subspace. Let

J̃ := span((JT )⊥ ∪ {IA})

Then we have

CJ(A,B) = Tr−1
B (J̃) ∩SIB⊗ρT (B ⊗A)

for any ρ ∈ J ∩S(A), where

SIB⊗ρT (B ⊗A) = {a ∈ (B ⊗A)+, Tr((IB ⊗ ρT )a) = 1}

In particular, if IA ∈ J then CJ(A,B) is a (multiple of) a section of
S(B ⊗A):

CJ(A,B) = Tr−1
B (J̃) ∩ tAS(B ⊗A), tA := TrA(IA)



Generalized supermaps

Let B0,B1, . . . be finite dimensional C ∗-algebras.

• Suppose J ⊂ B0 is positively generated, IB0 ∈ J.

• Then CJ(B0,B1) is (multiple of) a section of S(B1 ⊗ B0).

• Channels CJ(B0,B1)→ S(B2) are given (multiples of)
generalized channels with respect to Tr−1

B1
(J̃).

• IB1⊗B0 ∈ Tr−1
B1

(J̃)

• ...

Generalized supermaps

We denote CJ(B0,B1, . . . ,Bn) the set of (Choi representations of)
cp maps Bn−1 ⊗ · · · ⊗ B0 → Bn that map CJ(B0, . . . ,Bn−1) to
S(Bn).



Characterization of generalized supermaps I

Let us denote An = Bn ⊗ Bn−1 ⊗ · · · ⊗ B0, n = 0, 1, . . . ,
Sn : An → An−1 the partial trace TrBn , n = 1, 2, . . . .

CJ(B0, . . . ,Bn) = Jn ∩ cnS(An)

where cn = Π
b n−1

2
c

l=0 tBn−1−2l
and

J2k−1 = S−1
2k−1(S∗2k−2(S−1

2k−3(. . . S−1
1 (J̃) . . . )))

J2k = S−1
2k (S∗2k−1(S−1

2k−2(. . . S∗1 (J) . . . )))

k = 1, 2, . . . .



Characterization of generalized supermaps II

Let k := bn2c. Then X ∈ CJ(B0, . . . ,Bn) if and only if there are

Y (m) ∈ A+
n−2m for m = 0, . . . , k , such that

TrBn−2mY
(m) = IBn−2m−1 ⊗ Y (m+1),m = 0, . . . , k − 1

Y (0) := X and

Y (k) ∈ CJ(B0,B1) if n = 2k + 1

Y (k) ∈ J ∩S(B0) if n = 2k



Decomposition of generalized supermaps

Let n = 2N − 1.
Then any Φ ∈ CJ(B0, . . . ,B2N−1) is implemented as a sequence of
networks with classical inputs and outputs:

Hi1Hi0 Hi2 Hi3 Hi2N−2 Hi2N−1

ΦI0
i1

ΦI1
i3

. . . Φ
IN−1

i2N−1

i0, i1, . . . classical inputs/outputs, Ij = i0i1 . . . i2j

where ΦI0 is a generalized channel, ΦIj , j > 0 are channels, with
classical inputs and outputs, labelled by all classical outcomes
before step j .



Decomposition of generalized supermaps

Let Bj = B(Hj), j = 0, 1, . . . and let J = B0. Then

C(B0, . . . ,B2N−1) = Comb(H0, . . . ,H2N−1), N = 1, 2, . . .

If B0,B1, . . . (finite dim) C ∗-algebras, then C(B0, . . . ,B2N−1) is
the set of conditional combs,
(Chiribella et al, arxiv:0905.3801)

Let n = 2N, B0,B1, . . . , J ⊂ B0 arbitrary. Then

Hi0 Hi1 Hi2 Hi2N−1 Hi2N

ρi0 ΦI1
i2

. . . ΦIN
i2N

i0, i1, . . . classical inputs/outputs, Ij = i0i1 . . . i2j−1.

ρ ∈ Tr−1
HA

(J) ∩S(B0 ⊗ B(HA)).



Extremal generalized channels

We find extreme points of the set CJ(A,B):

CJ(A,B) = (B ⊗A)+ ∩ L

where L = Tr−1
B (IA + (JT )⊥) is an affine subspace. Let

L0 := Lin(L) = Tr−1
B ((JT )⊥)

Theorem
Let X ∈ CJ(A,B), P = supp(X ). Then X is an extreme point if
and only if

P(B ⊗A)P ∩ L0 = {0}



Extremal generalized channels: decomposition

Let Φ : A → B be a generalized channel with respect to J and

Φ = Λ ◦ χc

be a minimal decomposition. Let XΛ be the Choi representation of
Λ, p = supp(cc∗).

Theorem
XΦ is extremal in CJ(A,B) if and only if XΛ is extremal in
CJc (pAp,B) where Jc = χc(J) = cJc∗.

In particular, Λ must be an extremal channel. (Note that Λ is a
generalized channel with respect to any subspace.)



Extremal generalized channels: Kraus operators

Suppose A = B(H), B = B(K).
Let Φ : B(H)→ B(K) be a cp map and let

Φ(a) =
∑
k

VkaVk

be a Kraus representation. Then Φ is a generalized channel with
respect to J if and only if

∑
k V
∗
k Vk ∈ IA + J⊥.

Theorem
Φ is extremal if and only if there is a Kraus representation such
that the set

{V ∗k Vl , k , l} ∪ {x1, . . . xm}
is linearly independent, where {x1, . . . , xm} is a basis of J⊥.



Extremal generalized channels: Kraus operators

Let
Φ = Λ ◦ χc

be a minimal decomposition and let Λ(a) =
∑

k WkaW
∗
k be a

Kraus representation.

Theorem
Φ is extremal if and only if Λ is an extremal channel and

span{W ∗
kWl , k, l} ∩ J⊥c = {0}

(Jc = cJc∗)



Extremal generalized channels: conjugate maps

Let Φ(a) =
∑n

k=1 VkaV
∗
k be a minimal Kraus representation. The

cojugate map ΦC : B(H)→ B(Cn) is defined by

ΦC (a) =
n∑

k,l=

Tr(VkaV
∗
l )|k〉〈l |

Since Tr(Φ(a)) = Tr(ΦC (a)), ΦC is a generalized channel with
respect to J if and only if Φ is.

Theorem
Φ is extremal if and only if ΦC (J) = B(Cn).



Extremal quantum networks

Since

C(B0, . . . ,Bn) =
1

cn−1
CJn−1(An−1,Bn)

extremal quantum networks are obtained from extreme points in
CJn−1(An−1,Bn). Let Tn = {a ∈ Bn,TrBna = 0}, In = IBn . Then
we have

L0 = (I0 ⊗ J⊥n−1) ∨ (Tn ⊗An−1)

and

J⊥1 = I1 ⊗ T0

J⊥2 = I2 ⊗ T1 ⊗ B0

J⊥n = In ⊗
[
(In−1 ⊗ J⊥n−2) ∨ (Tn−1 ⊗An−2)

]
, n ≥ 3



Extremal ”channels on channels”

Let X ∈ C(B0,B1,B2) and let

ΦX = Λ ◦ χI⊗c

be a minimal decomposition.

Theorem
Let Λ(a) =

∑
k WkaW

∗
k be a Kraus representation of Λ. Then X is

extremal if and only if Λ is an extremal channel and

span(W ∗
kWl) ∩ (I1 ⊗ T0) = {0}



Extremal generalized POVMs

Let

MJ(A,Ω) = {(Mi , i ∈ Ω),Mi ∈ A+,
∑
i

Mi ∈ IA + J⊥},

then MJ(A,Ω) ≡ CJ(A,C|Ω|).

Theorem
Let M ∈MJ(A,Ω), pi := supp(Mi ), i ∈ Ω. Then M is extremal if
and only if for any collection (Di , i ∈ Ω),Di ∈ piApi ,

∑
i Di ∈ J⊥

implies that Di = 0 for all i ∈ Ω.



Extremal generalized POVMs: decomposition

Let M ∈MJ(A,Ω), then there is a minimal decomposition

M = Λ ◦ χc

with Λ a POVM in M(pAp,Ω), p = supp(cc∗),
∑

i Mi = c∗c .

Theorem
M is extremal if and only if Λ is extremal in McJc∗(pAp,Ω).

Theorem
Suppose Λ is a PVM. Then M is extremal if and only if

{Λi , i ∈ Ω}′ ∩ (cJc∗)⊥ ∩ pAp = {0}

where A′ denotes the commutant of A for A ⊂ A.



Extremal 1-testers

A quantum 1-tester defines a measurement on the set of channels
B(H0)→ B(H1):

M = (Mi , i ∈ Ω), Mi ∈ B(H1⊗H0),
∑
i

Mi = IH1⊗ω, ω ∈ S(H0)

Suppose M = Λ ◦ χI⊗c is a minimal decomposition, p = supp(cc∗)
and Λ a POVM on B(H1 ⊗ pH0).

Theorem
Suppose Λ is a PVM. Then M is not extremal if and only if there
is a nontrivial subspace L ⊂ pH0, a PVM P on B(H1 ⊗ L) and a
PVM P⊥ on B(H1 ⊗ L⊥) such that Λ = P + P⊥.

Note that this characterizes all 2-outcome 1-testers.



Extremal qubit 1-testers with 2 outcomes

Let dim(H0) = 2.

• Let M = (M1,M2), Mi ∈ B(H1 ⊗H0)+, M1 + M2 = IH1 ⊗ ω
for ω ∈ S(H0), ω is invertible.

• Suppose M = Λ ◦ χc is a minimal decomposition, for some
Λ = (Λ1,Λ2) a POVM.

• If M is extremal, then Λ must be a PVM.

• Any nontrivial subspace L ⊂ H0 is 1 dimensional.

• M is extremal if and only if Λ is a PVM and Λ1 is NOT of the
form

Λ1 = e ⊗ |ψ〉〈ψ|+ f ⊗ |ψ⊥〉〈ψ⊥|
where ψ,ψ⊥ ∈ H0, 〈ψ,ψ⊥〉 = 0 and e, f ∈ B(H1) are any
projections.


