Generalized channels and quantum networks

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

BIRS, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Measurement of quantum channels

Let \mathcal{H}_0 , \mathcal{H}_1 be finite dimensional Hilbert spaces, $\mathcal{E} : B(\mathcal{H}_0) \to B(\mathcal{H}_1)$ a channel: (cp trace preserving map). Suppose \mathcal{E} is unknown, we want to identify it by a measurement:

- 1. prepare of a state $\rho \in B(\mathcal{H}_0 \otimes \mathcal{H}_A)$, \mathcal{H}_A an ancillary Hilbert space,
- 2. apply $\mathcal{E}\otimes \mathit{id}_{\mathcal{H}_{\mathcal{A}}}$ to ho
- 3. measure the output by a POVM $\Lambda : \Omega \to B(\mathcal{H}_1 \otimes \mathcal{H}_A)$ i

This produces an outcome $i \in \Omega$ with probability

$$p_i(\mathcal{E}) = \mathrm{Tr} \Lambda_i(\mathcal{E} \otimes id_{\mathcal{H}_A})(\rho)$$

A general definition of channel measurement: an affine map

 $\mathcal{E} \mapsto p(\mathcal{E}) \in \mathcal{P}(\Omega) = \text{set of probability measures on } \Omega$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Are all channel measurements given by some triple $(\mathcal{H}_A, \rho, \Lambda)$?

Quantum 1- testers (PPOVMs)

Let $X_{\mathcal{E}} \in B(\mathcal{H}_1 \otimes \mathcal{H}_0)$ denote the Choi represenation of \mathcal{E} :

$$X_{\mathcal{E}} = (\mathcal{E} \otimes id_{\mathcal{H}_0})(\Psi), \quad \Psi = \sum_{i,j} |i\rangle\langle j| \otimes |i\rangle\langle j|$$

A quantum 1-tester: $\{M_i, i \in \Omega\}$, $M_i \in B(\mathcal{H}_1 \otimes \mathcal{H}_0)^+$,

$$\sum_i \mathit{M}_i = \mathit{I}_{\mathcal{H}_1} \otimes \omega, \qquad \omega \in \mathfrak{S}(\mathcal{H}_0)$$

This defines a channel measurement $\mathcal{E} \mapsto p_i(\mathcal{E}) = \operatorname{Tr} M_i X_{\mathcal{E}}, i \in \Omega$.

Theorem

Each triple $(\mathcal{H}_A, \rho, \Lambda)$ is associated with a 1-tester. Each 1-tester is implemented by a triple $(\mathcal{H}_A, \rho, \Lambda)$.

(Chiribella, D'Ariano, Perinotti, Phys. Rev. Lett.(2008) Ziman, Phys. Rev. A(2008) (1-testers are called proces POVMs))

The set $\mathcal{C}(\mathcal{H}_0, \mathcal{H}_1)$

Let $\mathcal{C}(\mathcal{H}_0, \mathcal{H}_1) \subset B(\mathcal{H}_1 \otimes \mathcal{H}_0)$ denote the set of Choi representations of channels $B(\mathcal{H}_0) \rightarrow B(\mathcal{H}_1)$:

$$\mathcal{C}(\mathcal{H}_0,\mathcal{H}_1) = \{X \in B(\mathcal{H}_1 \otimes \mathcal{H}_0)^+, \operatorname{Tr}_{\mathcal{H}_1} X = I_{\mathcal{H}_0}\}$$

Question

Are all affine maps $\mathcal{C}(\mathcal{H}_1,\mathcal{H}_0)\to \mathcal{P}(\Omega)$ given by 1-testers? Note that

$$\mathcal{C}(\mathcal{H}_0,\mathcal{H}_1) = J \cap d_0 \mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{H}_0), \qquad d_0 = \dim(\mathcal{H}_0)$$

where $J \subset B(\mathcal{H}_1 \otimes \mathcal{H}_0)$ is the subspace

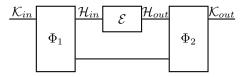
$$J = \{X \in B(\mathcal{H}_1 \otimes \mathcal{H}_0), \mathrm{Tr}_{\mathcal{H}_1} X = z I_{\mathcal{H}_0}, \ z \in \mathbb{C}\}$$

Quantum supermaps

- A quantum supermap is a map that maps channels $B(\mathcal{H}_{in}) \rightarrow B(\mathcal{H}_{out})$ to channels $B(\mathcal{K}_{in}) \rightarrow B(\mathcal{K}_{out})$.
- Such maps are given by cp maps $S: B(\mathcal{H}_{out} \otimes \mathcal{H}_{in}) \rightarrow B(\mathcal{K}_{out} \otimes \mathcal{K}_{in})$, such that

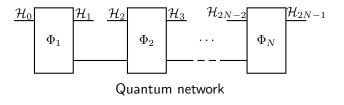
$$\mathcal{S}(\mathcal{C}(\mathcal{H}_{\textit{in}},\mathcal{H}_{\textit{out}})) \subset \mathcal{C}(\mathcal{K}_{\textit{in}},\mathcal{K}_{\textit{out}})$$

Any such map has the form:



(Chiribella, D'Ariano, Perinotti, Europhysics Letters 2008)

Quantum networks and combs



This defines a channel

$$\Phi: B(\mathcal{H}_0 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_{2N-2}) \to B(\mathcal{H}_1 \otimes \mathcal{H}_3 \otimes \cdots \otimes \mathcal{H}_{2N-1}).$$

Its Choi representation X_{Φ} is a (deterministic) quantum N-comb. Let

$$\operatorname{Comb}(\mathcal{H}_0,\ldots,\mathcal{H}_{2N-1})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

denote the set of (deterministic) N combs.

Characterization of quantum combs

(Gutoski& Watrous, STOC 2007 (quantum strategies), Chiribella, D'Ariano, Perinotti, Phys. Rev. A 2009)

Theorem

An element $X \in B(\bigotimes_{j=0}^{2N-1} \mathcal{H}_j)$ is a quantum N-comb if and only if there are $X^{(k)} \in B(\bigotimes_{j=0}^{2k-1} \mathcal{H}_j)^+$, $X^{(N)} = X$, such that

$$\begin{split} \mathrm{Tr}_{\mathcal{H}_{2k-1}} X^{(k)} &= I_{\mathcal{H}_{2k-2}} \otimes X^{(k-1)}, \quad k = 2, \dots, N \\ \mathrm{Tr}_{\mathcal{H}_1} X^{(1)} &= I_{\mathcal{H}_0} \end{split}$$

It follows that

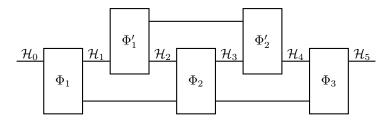
$$\operatorname{Comb}(\mathcal{H}_0,\ldots,\mathcal{H}_{2N-1})=J_N\cap d_N\mathfrak{S}(\otimes_{j=0}^{2N-1}\mathcal{H}_j)$$

for some subspace J_N and $d_N > 0$.

Quantum N combs as supermaps

Quantum N-combs can be defined as follows:

- 1. $\operatorname{Comb}(\mathcal{H}_0, \mathcal{H}_1) = \mathcal{C}(\mathcal{H}_0, \mathcal{H}_1).$
- 2. $\operatorname{Comb}(\mathcal{H}_0, \ldots, \mathcal{H}_{2N-1})$ is the set of Choi operators of cp maps that transform $\operatorname{Comb}(\mathcal{H}_1, \ldots, \mathcal{H}_{2N-2})$ to $\mathcal{C}(\mathcal{H}_0, \mathcal{H}_{2N-1})$.



Conclusion

Quantum networks (supermaps, testers,...) are given by (constant multiples of) cp maps that map $J \cap \mathfrak{S}(\mathcal{H})$ into $\mathfrak{S}(\mathcal{K})$.

Algebras and subspaces

Let \mathcal{A} be a finite dim C^* -algebra. We suppose

$$\mathcal{A} = \oplus_i B(\mathcal{H}_i) \subset B(\mathcal{H}), \qquad \mathcal{H} = \oplus_i \mathcal{H}_i.$$

We denote

- $\operatorname{Tr}_{\mathcal{A}}$ the trace inherited from $B(\mathcal{H})$
- a^T the transpose of a
- \mathcal{A}^+ the positive cone in \mathcal{A}
- $\mathfrak{S}(\mathcal{A}) = \{ \rho \in \mathcal{A}^+, \mathrm{Tr}_{\mathcal{A}} \rho = 1 \}$ the set of density operators

Let $J \subset \mathcal{A}$ be a positively generated subspace. We denote

•
$$J^T = \{a^T, a \in J\}$$
 is positively generated.

• $J^{\perp} = \{x \in \mathcal{A}, \operatorname{Tr}_{\mathcal{A}}(x^*a) = 0, a \in J\}$ self-adjoint subspace

Channels

Let $K \subset \mathfrak{S}(\mathcal{A})$ be a convex subset, $J = \operatorname{span}(K)$.

Definition

A channel $\Xi : K \to \mathfrak{S}(\mathcal{B})$ is an affine map, extending to a cp map $\Xi : J \to \mathcal{B}$.

- $\Xi: J \to \mathcal{B}$ is trace preserving
- we may suppose that K is a section of $\mathfrak{S}(\mathcal{A})$:

$$K = J \cap \mathfrak{S}(\mathcal{A})$$

• If
$$K = \mathfrak{S}(\mathcal{A})$$
, then Ξ is a channel $\mathcal{A} o \mathcal{B}$.

An extension theorem

The following is an easy consequence of Arveson's extension theorem:

Theorem

Let $J \subset A$ be a positively generated subspace and let $\Xi : J \to B$ be a cp map. There is a cp map $\Phi : A \to B$ such that $\Phi(a) = \Xi(a), a \in J$.

Any channel $\Xi : K \to \mathfrak{S}(\mathcal{B})$ is the restriction of a generalized channel with respect to J: a cp map $\Phi : \mathcal{A} \to \mathcal{B}$ that preserves trace on J

The Choi representation

Let $\Phi : \mathcal{A} \to \mathcal{B}$ be a linear map. The Choi representation of Φ : $X_{\Phi} \in \mathcal{B} \otimes \mathcal{A}$, such that

$$\Phi(a) = \operatorname{Tr}_{\mathcal{A}}(I_{\mathcal{B}} \otimes a^{\mathcal{T}})X_{\Phi}$$

 Φ is cp if and only if $X_{\Phi} \ge 0$

Theorem

 $\Phi: \mathcal{A} \to \mathcal{B}$ is a generalized channel with respect to J if and only if

$$X_{\Phi} \geq 0, \qquad \mathrm{Tr}_{\mathcal{B}} X_{\Phi} \in I_{\mathcal{A}} + (J^{\mathcal{T}})^{\perp}$$

We denote by $C_J(\mathcal{A}, \mathcal{B})$ the set of all (Choi representations of) generalized channels, $C_{\mathcal{A}}(\mathcal{A}, \mathcal{B}) = C(\mathcal{A}, \mathcal{B})$.

Decomposition of generalized channels

Let $c \in A$, define $\chi_c : A \to A$, $\chi_c(a) = cac^*$. Then $\chi_c \in C_J(A, A)$ if and only if

 $c^*c \in \mathcal{A}^+ \cap (I_{\mathcal{A}} + J^{\perp})$

Such generalized channels are called simple.

Theorem

 $\Phi \in C_J(\mathcal{A}, \mathcal{B})$ if and only if there is a pair (χ_c, Λ) , $\chi_c \in C_J(\mathcal{A}, \mathcal{A})$ is simple and $\Lambda \in C(\mathcal{A}, \mathcal{B})$, such that

$$\Phi = \Lambda \circ \chi_c$$

Moreover, there is a minimal decomposition with $p = \text{supp}(cc^*)$ and $\Lambda \in C(pAp, B)$, which is unique (up to a unitary transformation).

Note that we have $c^*c = \Phi^*(I_{\mathcal{B}}) = (\operatorname{Tr}_{\mathcal{B}} X_{\Phi})^T$.

A general example

Suppose that $J \subset A$ is a positively generated subspace and $J = S^{-1}(J_0)$, where $S : A \to A_0$ is a channel and $J_0 \subset A_0$ is a subspace. Then $\Phi : A \to B$ is a generalized channel with respect to J if and only if

$$\operatorname{Tr}_{\mathcal{B}} X_{\Phi} \in (S^{\mathcal{T}})^* (I_{\mathcal{A}_0} + (J_0^{\mathcal{T}})^{\perp})$$

where $S^T : A \to A_0$ is defined as $S^T(a) = [S(a^T)]^T$. In particular, if $A = A_1 \otimes A_0$ and S is a partial trace, then

$$\operatorname{Tr}_{\mathcal{B}} X_{\Phi} = I_{\mathcal{A}_1} \otimes a, \qquad a \in \mathcal{A}_0^+ \cap (I_{\mathcal{A}_0} + (J_0^T)^{\perp})$$

Example: "Channels on channels"

Let $\mathcal{A} = \mathcal{A}_1 \otimes \mathcal{A}_0$, $S = \operatorname{Tr}_{\mathcal{A}_1}$, $J_0 = \mathbb{C}I_{\mathcal{A}_0}$. Then $J = S^{-1}(J_0)$ is generated by $\mathcal{C}(\mathcal{A}_0, \mathcal{A}_1)$ and

$$\mathcal{C}(\mathcal{A}_0, \mathcal{A}_1) = J \cap t_0 \mathfrak{S}(\mathcal{A}_1 \otimes \mathcal{A}_0), \qquad t_0 = \operatorname{Tr}_{\mathcal{A}_0}(I_{\mathcal{A}_0})$$

Channels $\Xi : \mathcal{C}(\mathcal{A}_0, \mathcal{A}_1) \to \mathfrak{S}(\mathcal{B})$ are given by cp maps $\Phi : \mathcal{A} \to \mathcal{B}$, such that $t_0 \Phi \in \mathcal{C}_J(\mathcal{A}, \mathcal{B})$, that is, such that

 $\mathrm{Tr}_{\mathcal{B}}X_{\Phi} \in I_{\mathcal{A}_{1}} \otimes (\mathcal{A}_{0}^{+} \cap (t_{0}^{-1}I_{\mathcal{A}_{0}} + \{I_{\mathcal{A}_{0}}\}^{\perp})) = I_{\mathcal{A}_{1}} \otimes \mathfrak{S}(\mathcal{A}_{0})$

"Channels on channels": decomposition

Suppose $\mathcal{A}_0 = B(\mathcal{H}_0)$. Let

$$\mathrm{Tr}_{\mathcal{B}}X_{\Phi} = I_{\mathcal{A}_1} \otimes \omega, \qquad \omega \in \mathfrak{S}(\mathcal{H}_0).$$

Then there is a a minimal decomposition of Φ :

 $\Phi = \Lambda \circ \chi_{I \otimes c},$

where $c^*c = \omega^T$, $\Lambda \in C(\mathcal{A}_1 \otimes p\mathcal{A}_0 p, \mathcal{B})$, $p = \operatorname{supp}(cc^*)$. Let $X_{\mathcal{E}} \in C(\mathcal{A}_0, \mathcal{A}_1)$, then

 $\chi_{I\otimes c}(X_{\mathcal{E}}) = \chi_{I\otimes c}(\mathcal{E}\otimes id_{\mathcal{H}_0})(\Psi) = (\mathcal{E}\otimes id_{p\mathcal{H}_0})(\rho)$

where $\rho = \chi_{I \otimes c}(\Psi) \in \mathfrak{S}(\mathcal{H}_0 \otimes p\mathcal{H}_0)$ is a pure state such that $\operatorname{Tr}_2 \rho = \omega^T$.

"Chanels on channels": implementation

Let $\mathcal{A}_0 = B(\mathcal{H}_0)$.

Theorem

 $\Phi : \mathcal{A}_1 \otimes \mathcal{A}_0 \to \mathcal{B}$ defines a channel $\mathcal{C}(\mathcal{A}_0, \mathcal{A}_1) \to \mathfrak{S}(\mathcal{B})$ if and only if there is an ancilary Hilbert space \mathcal{H}_A , a pure state $\rho \in \mathfrak{S}(\mathcal{H}_0 \otimes \mathcal{H}_A)$ and a channel $\Lambda : \mathcal{A}_1 \otimes \mathcal{B}(\mathcal{H}_A) \to \mathcal{B}$ such that

$$\Phi(X_{\mathcal{E}}) = \Lambda \circ (\mathcal{E} \otimes id_{\mathcal{H}_A})(\rho)$$

Moreover, the triple $(\mathcal{H}_A, \rho, \Lambda)$ is unique (up to a unitary transformation).

Measurements on K and generalized POVMs

Let $K \subset \mathfrak{S}(\mathcal{A})$ be any convex subset. A measurement on K with values in Ω , $|\Omega| = m$ is an affine map

$$K o \mathcal{P}(\Omega)$$

Let $J = \operatorname{span}(K)$, then any $\Phi \in \mathcal{C}_J(\mathcal{A}, \mathbb{C}^m)$ defines a measurement on K. We have $X_{\Phi} = \sum_j |j\rangle\langle j| \otimes M_j^T$ and

$$\Phi(a) = (\mathrm{Tr}_{\mathcal{A}}(M_1a), \dots, \mathrm{Tr}_{\mathcal{A}}(M_ma)), \qquad a \in K$$

where

$$M_i \in \mathcal{A}^+, \qquad \sum_i M_i \in I_{\mathcal{A}} + J^\perp$$

 $M = (M_1, \ldots, M_m)$ is called a generalized POVM with respect to J.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Measurements on sections

Let $K \subseteq \mathfrak{S}(\mathcal{A})$ be a section of $\mathfrak{S}(\mathcal{A})$:

$$K = J \cap \mathfrak{S}(\mathcal{A}), \qquad J = \operatorname{span}(K)$$

Equivalently

(i)
$$K = L \cap \mathfrak{S}(\mathcal{A})$$
, $L \subset \mathcal{A}$ is any subspace

(ii) Let $V = \bigcup_{\lambda \ge 0} \lambda K$, then $a, b \in V$, $a - b \ge 0$ implies $a - b \in V$.

Theorem

All measurements on K are given by generalized POVMs if and only if K is a section of $\mathfrak{S}(\mathcal{A})$, that is, $K = J \cap \mathfrak{S}(\mathcal{A})$.

Example: quantum 1-testers (PPOVMs)

Let $K = C(\mathcal{H}_0, \mathcal{H}_1)$, then K is a (multiple of) a section of $\mathfrak{S}(\mathcal{H}_1 \otimes \mathcal{H}_0)$. Hence any channel measurement is given by a generalized POVM with respect to $J = \operatorname{span}(K)$:

$$(M_1,\ldots,M_m), \quad M_i\in B(\mathcal{H}_1\otimes\mathcal{H}_0)^+, \ \sum_i M_i=I_{\mathcal{H}_1}\otimes\omega$$

where $\omega \in \mathfrak{S}(\mathcal{H}_0)$, this is a quantum 1-tester (PPOVM).

Theorem

There exists an ancilla \mathcal{H}_A , a pure state $\rho \in \mathfrak{S}(\mathcal{H}_0 \otimes \mathcal{H}_A)$ and a POVM $\Lambda : \{1, \ldots, m\} \rightarrow B(\mathcal{H}_1 \otimes \mathcal{H}_A)$ (unique up to a unitary) such that

$$\operatorname{Tr}(X_{\mathcal{E}}M_i) = \operatorname{Tr}(\Lambda_i(\mathcal{E} \otimes id_{\mathcal{H}_A})(\rho)), \quad i = 1, \dots, m$$

Example: unital channels

Let
$$\mathcal{A}_0 = \mathcal{A}_1 = B(\mathcal{H})$$
, dim $(\mathcal{H}) = d$.
Let $K = \mathcal{C}^U(\mathcal{H}) =$ unital channels $B(\mathcal{H}) \to B(\mathcal{H})$. Then
 $K = \operatorname{Tr}_1^{-1}(\mathbb{C}I_{\mathcal{H}}) \cap \operatorname{Tr}_2^{-1}(\mathbb{C}I_{\mathcal{H}}) \cap d\mathfrak{S}(\mathcal{H} \otimes \mathcal{H})$

is (*d*-times) a section of $\mathfrak{S}(\mathcal{H} \otimes \mathcal{H})$. Hence any measurement on unital channels is given by a generalized POVM with respect to $J = \operatorname{Tr}_1^{-1}(\mathbb{C}I_{\mathcal{H}}) \cap \operatorname{Tr}_2^{-1}(\mathbb{C}I_{\mathcal{H}}).$

These are collections (M_1, \ldots, M_m) , $M_i \in B(\mathcal{H} \otimes \mathcal{H})^+$, such that

$$\sum_{i} M_{i} = \lambda \omega_{1} \otimes I_{\mathcal{H}} + (1 - \lambda) I_{\mathcal{H}} \otimes \omega_{2}$$

where $\lambda \in [0, 1]$, $\omega_1, \omega_2 \in \mathfrak{S}(\mathcal{H})$.

Implementation ?

The set $C_J(\mathcal{A}, \mathcal{B})$

Let $J \subset \mathcal{A}$ be a positively generated subspace. Let

$$\widetilde{J} := \operatorname{span}((J^T)^{\perp} \cup \{I_A\})$$

Then we have

$$\mathcal{C}_{J}(\mathcal{A},\mathcal{B})=\mathrm{Tr}_{\mathcal{B}}^{-1}(\widetilde{J})\cap\mathfrak{S}_{I_{\mathcal{B}}\otimes
ho^{\mathcal{T}}}(\mathcal{B}\otimes\mathcal{A})$$

for any $\rho \in J \cap \mathfrak{S}(\mathcal{A})$, where

$$\mathfrak{S}_{I_{\mathcal{B}}\otimes\rho^{\mathsf{T}}}(\mathcal{B}\otimes\mathcal{A})=\{\mathsf{a}\in(\mathcal{B}\otimes\mathcal{A})^{+},\ \mathrm{Tr}((I_{\mathcal{B}}\otimes\rho^{\mathsf{T}})\mathsf{a})=1\}$$

In particular, if $I_{\mathcal{A}} \in J$ then $C_J(\mathcal{A}, \mathcal{B})$ is a (multiple of) a section of $\mathfrak{S}(\mathcal{B} \otimes \mathcal{A})$:

$$\mathcal{C}_J(\mathcal{A},\mathcal{B})=\mathrm{Tr}_\mathcal{B}^{-1}(\widetilde{J})\cap t_\mathcal{A}\mathfrak{S}(\mathcal{B}\otimes\mathcal{A}),\quad t_\mathcal{A}:=\mathrm{Tr}_\mathcal{A}(I_\mathcal{A})$$

Generalized supermaps

Let $\mathcal{B}_0, \mathcal{B}_1, \ldots$ be finite dimensional C^* -algebras.

- Suppose $J \subset \mathcal{B}_0$ is positively generated, $I_{\mathcal{B}_0} \in J$.
- Then $C_J(\mathcal{B}_0, \mathcal{B}_1)$ is (multiple of) a section of $\mathfrak{S}(\mathcal{B}_1 \otimes \mathcal{B}_0)$.
- Channels C_J(B₀, B₁) → G(B₂) are given (multiples of) generalized channels with respect to Tr⁻¹_{B₁}(J̃).
- $I_{\mathcal{B}_1\otimes\mathcal{B}_0}\in\mathrm{Tr}_{\mathcal{B}_1}^{-1}(\widetilde{J})$
- ...

Generalized supermaps

We denote $C_J(\mathcal{B}_0, \mathcal{B}_1, \ldots, \mathcal{B}_n)$ the set of (Choi representations of) cp maps $\mathcal{B}_{n-1} \otimes \cdots \otimes \mathcal{B}_0 \to \mathcal{B}_n$ that map $C_J(\mathcal{B}_0, \ldots, \mathcal{B}_{n-1})$ to $\mathfrak{S}(\mathcal{B}_n)$.

Characterization of generalized supermaps I

Let us denote $\mathcal{A}_n = \mathcal{B}_n \otimes \mathcal{B}_{n-1} \otimes \cdots \otimes \mathcal{B}_0$, $n = 0, 1, \dots$, $S_n : \mathcal{A}_n \to \mathcal{A}_{n-1}$ the partial trace $\operatorname{Tr}_{\mathcal{B}_n}$, $n = 1, 2, \dots$

$$\mathcal{C}_J(\mathcal{B}_0,\ldots,\mathcal{B}_n)=J_n\cap c_n\mathfrak{S}(\mathcal{A}_n)$$

where $c_n = \prod_{l=0}^{\lfloor \frac{n-1}{2} \rfloor} t_{\mathcal{B}_{n-1-2l}}$ and

$$J_{2k-1} = S_{2k-1}^{-1}(S_{2k-2}^*(S_{2k-3}^{-1}(\dots S_1^{-1}(\tilde{J})\dots)))$$

$$J_{2k} = S_{2k}^{-1}(S_{2k-1}^*(S_{2k-2}^{-1}(\dots S_1^*(J)\dots)))$$

 $k=1,2,\ldots$

Characterization of generalized supermaps II

Let
$$k := \lfloor \frac{n}{2} \rfloor$$
. Then $X \in C_J(\mathcal{B}_0, \dots, \mathcal{B}_n)$ if and only if there are $Y^{(m)} \in \mathcal{A}_{n-2m}^+$ for $m = 0, \dots, k$, such that

$$\operatorname{Tr}_{\mathcal{B}_{n-2m}}Y^{(m)} = I_{\mathcal{B}_{n-2m-1}} \otimes Y^{(m+1)}, m = 0, \ldots, k-1$$

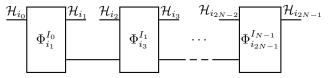
 $Y^{(0)} := X$ and

$$Y^{(k)} \in C_J(\mathcal{B}_0, \mathcal{B}_1)$$
 if $n = 2k + 1$
 $Y^{(k)} \in J \cap \mathfrak{S}(\mathcal{B}_0)$ if $n = 2k$

(ロ)、(型)、(E)、(E)、 E) の(の)

Decomposition of generalized supermaps

Let n = 2N - 1. Then any $\Phi \in C_J(\mathcal{B}_0, \dots, \mathcal{B}_{2N-1})$ is implemented as a sequence of networks with classical inputs and outputs:



 i_0, i_1, \ldots classical inputs/outputs, $I_j = i_0 i_1 \ldots i_{2j}$

where Φ^{l_0} is a generalized channel, Φ^{l_j} , j > 0 are channels, with classical inputs and outputs, labelled by all classical outcomes before step j.

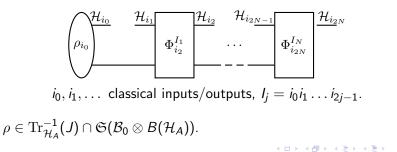
Decomposition of generalized supermaps

Let
$$\mathcal{B}_j = \mathcal{B}(\mathcal{H}_j)$$
, $j = 0, 1, ...$ and let $J = \mathcal{B}_0$. Then

$$\mathcal{C}(\mathcal{B}_0,\ldots,\mathcal{B}_{2N-1}) = \operatorname{Comb}(\mathcal{H}_0,\ldots,\mathcal{H}_{2N-1}), \quad N = 1,2,\ldots$$

If $\mathcal{B}_0, \mathcal{B}_1, \ldots$ (finite dim) C^* -algebras, then $\mathcal{C}(\mathcal{B}_0, \ldots, \mathcal{B}_{2N-1})$ is the set of conditional combs, (Chiribella et al, arxiv:0905.3801)

Let
$$n = 2N$$
, $\mathcal{B}_0, \mathcal{B}_1, \ldots$, $J \subset \mathcal{B}_0$ arbitrary. Then



Extremal generalized channels

We find extreme points of the set $C_J(\mathcal{A}, \mathcal{B})$:

$$\mathcal{C}_J(\mathcal{A},\mathcal{B}) = (\mathcal{B}\otimes\mathcal{A})^+\cap L$$

where $L = \operatorname{Tr}_{\mathcal{B}}^{-1}(I_{\mathcal{A}} + (J^{\mathcal{T}})^{\perp})$ is an affine subspace. Let

$$L_0 := \operatorname{Lin}(L) = \operatorname{Tr}_{\mathcal{B}}^{-1}((J^T)^{\perp})$$

Theorem

Let $X \in C_J(\mathcal{A}, \mathcal{B})$, $P = \operatorname{supp}(X)$. Then X is an extreme point if and only if

$$P(\mathcal{B}\otimes\mathcal{A})P\cap L_0=\{0\}$$

Extremal generalized channels: decomposition

Let $\Phi: \mathcal{A} \to \mathcal{B}$ be a generalized channel with respect to J and

$$\Phi = \Lambda \circ \chi_c$$

be a minimal decomposition. Let X_{Λ} be the Choi representation of Λ , $p = \sup(cc^*)$.

Theorem

 X_{Φ} is extremal in $C_J(\mathcal{A}, \mathcal{B})$ if and only if X_{Λ} is extremal in $C_{J_c}(p\mathcal{A}p, \mathcal{B})$ where $J_c = \chi_c(J) = cJc^*$.

In particular, Λ must be an extremal channel. (Note that Λ is a generalized channel with respect to any subspace.)

Extremal generalized channels: Kraus operators

Suppose $\mathcal{A} = B(\mathcal{H}), \ \mathcal{B} = B(\mathcal{K}).$ Let $\Phi : B(\mathcal{H}) \rightarrow B(\mathcal{K})$ be a cp map and let

$$\Phi(a) = \sum_k V_k a V_k$$

be a Kraus representation. Then Φ is a generalized channel with respect to J if and only if $\sum_k V_k^* V_k \in I_A + J^{\perp}$.

Theorem

 Φ is extremal if and only if there is a Kraus representation such that the set

$$\{V_k^*V_l,k,l\}\cup\{x_1,\ldots,x_m\}$$

is linearly independent, where $\{x_1, \ldots, x_m\}$ is a basis of J^{\perp} .

Extremal generalized channels: Kraus operators

Let

$$\Phi = \Lambda \circ \chi_c$$

be a minimal decomposition and let $\Lambda(a) = \sum_k W_k a W_k^*$ be a Kraus representation.

Theorem

 Φ is extremal if and only if Λ is an extremal channel and

 $\operatorname{span}\{W_k^*W_l,k,l\}\cap J_c^{\perp}=\{0\}$

 $(J_c = cJc^*)$

Extremal generalized channels: conjugate maps

Let $\Phi(a) = \sum_{k=1}^{n} V_k a V_k^*$ be a minimal Kraus representation. The cojugate map $\Phi^C : B(\mathcal{H}) \to B(\mathbb{C}^n)$ is defined by

$$\Phi^{C}(a) = \sum_{k,l=1}^{n} \operatorname{Tr}(V_{k} a V_{l}^{*}) |k\rangle \langle l|$$

Since $\operatorname{Tr}(\Phi(a)) = \operatorname{Tr}(\Phi^{C}(a))$, Φ^{C} is a generalized channel with respect to J if and only if Φ is.

Theorem

 Φ is extremal if and only if $\Phi^{C}(J) = B(\mathbb{C}^{n})$.

Extremal quantum networks

Since

$$\mathcal{C}(\mathcal{B}_0,\ldots,\mathcal{B}_n)=\frac{1}{c_{n-1}}\mathcal{C}_{J_{n-1}}(\mathcal{A}_{n-1},\mathcal{B}_n)$$

extremal quantum networks are obtained from extreme points in $C_{J_{n-1}}(A_{n-1}, B_n)$. Let $\mathcal{T}_n = \{a \in B_n, \operatorname{Tr}_{B_n} a = 0\}$, $I_n = I_{B_n}$. Then we have

$$L_0 = (I_0 \otimes J_{n-1}^{\perp}) \vee (\mathcal{T}_n \otimes \mathcal{A}_{n-1})$$

and

$$\begin{aligned} J_1^{\perp} &= I_1 \otimes \mathcal{T}_0 \\ J_2^{\perp} &= I_2 \otimes \mathcal{T}_1 \otimes \mathcal{B}_0 \\ J_n^{\perp} &= I_n \otimes \left[(I_{n-1} \otimes J_{n-2}^{\perp}) \vee (\mathcal{T}_{n-1} \otimes \mathcal{A}_{n-2}) \right], \quad n \geq 3 \end{aligned}$$

Extremal "channels on channels"

Let $X \in \mathcal{C}(\mathcal{B}_0, \mathcal{B}_1, \mathcal{B}_2)$ and let

$$\Phi_X = \Lambda \circ \chi_{I \otimes c}$$

be a minimal decomposition.

Theorem

Let $\Lambda(a) = \sum_{k} W_{k} a W_{k}^{*}$ be a Kraus representation of Λ . Then X is extremal if and only if Λ is an extremal channel and

 $\operatorname{span}(W_k^*W_l)\cap (I_1\otimes \mathcal{T}_0)=\{0\}$

Extremal generalized POVMs

Let

$$\mathcal{M}_J(\mathcal{A},\Omega) = \{ (M_i, i \in \Omega), M_i \in \mathcal{A}^+, \sum_i M_i \in I_{\mathcal{A}} + J^{\perp} \},$$

then $\mathcal{M}_J(\mathcal{A}, \Omega) \equiv \mathcal{C}_J(\mathcal{A}, \mathbb{C}^{|\Omega|}).$

Theorem

Let $M \in \mathcal{M}_J(\mathcal{A}, \Omega)$, $p_i := \operatorname{supp}(M_i)$, $i \in \Omega$. Then M is extremal if and only if for any collection $(D_i, i \in \Omega)$, $D_i \in p_i \mathcal{A} p_i$, $\sum_i D_i \in J^{\perp}$ implies that $D_i = 0$ for all $i \in \Omega$.

Extremal generalized POVMs: decomposition

Let $M \in \mathcal{M}_J(\mathcal{A}, \Omega)$, then there is a minimal decomposition

 $M = \Lambda \circ \chi_c$

with Λ a POVM in $\mathcal{M}(p\mathcal{A}p, \Omega)$, $p = \operatorname{supp}(cc^*)$, $\sum_i M_i = c^*c$. Theorem

M is extremal if and only if Λ is extremal in $\mathcal{M}_{cJc^*}(p\mathcal{A}p, \Omega)$.

Theorem

Suppose Λ is a PVM. Then M is extremal if and only if

$$\{\Lambda_i, i \in \Omega\}' \cap (cJc^*)^\perp \cap p\mathcal{A}p = \{0\}$$

where A' denotes the commutant of A for $A \subset A$.

Extremal 1-testers

A quantum 1-tester defines a measurement on the set of channels $B(\mathcal{H}_0) \rightarrow B(\mathcal{H}_1)$:

$$M = (M_i, i \in \Omega), \ M_i \in B(\mathcal{H}_1 \otimes \mathcal{H}_0), \ \sum_i M_i = I_{\mathcal{H}_1} \otimes \omega, \quad \omega \in \mathfrak{S}(\mathcal{H}_0)$$

Suppose $M = \Lambda \circ \chi_{I \otimes c}$ is a minimal decomposition, $p = \operatorname{supp}(cc^*)$ and Λ a POVM on $B(\mathcal{H}_1 \otimes p\mathcal{H}_0)$.

Theorem

Suppose Λ is a PVM. Then M is not extremal if and only if there is a nontrivial subspace $\mathcal{L} \subset p\mathcal{H}_0$, a PVM P on $B(\mathcal{H}_1 \otimes \mathcal{L})$ and a PVM P_{\perp} on $B(\mathcal{H}_1 \otimes \mathcal{L}^{\perp})$ such that $\Lambda = P + P_{\perp}$.

Note that this characterizes all 2-outcome 1-testers.

Extremal qubit 1-testers with 2 outcomes

Let dim $(\mathcal{H}_0) = 2$.

- Let M = (M₁, M₂), M_i ∈ B(H₁ ⊗ H₀)⁺, M₁ + M₂ = I_{H₁} ⊗ ω for ω ∈ 𝔅(H₀), ω is invertible.
- Suppose $M = \Lambda \circ \chi_c$ is a minimal decomposition, for some $\Lambda = (\Lambda_1, \Lambda_2)$ a POVM.
- If M is extremal, then Λ must be a PVM.
- Any nontrivial subspace $\mathcal{L} \subset \mathcal{H}_0$ is 1 dimensional.
- M is extremal if and only if Λ is a PVM and Λ₁ is NOT of the form

$$\Lambda_1 = \boldsymbol{e} \otimes |\psi\rangle \langle \psi| + \boldsymbol{f} \otimes |\psi^{\perp}\rangle \langle \psi^{\perp}|$$

where $\psi, \psi^{\perp} \in \mathcal{H}_0$, $\langle \psi, \psi^{\perp} \rangle = 0$ and $e, f \in B(\mathcal{H}_1)$ are any projections.