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Measurement of quantum channels

Let Hg, H1 be finite dimensional Hilbert spaces,
€ : B(Ho) — B(H1) a channel: (cp trace preserving map).
Suppose £ is unknown, we want to identify it by a measurement:

1. prepare of a state p € B(Ho ® Ha), Ha an ancillary Hilbert
space,

2. apply € ® idy, to p
3. measure the output by a POVM A : Q — B(H1 ® Ha)i

This produces an outcome i € Q with probability

p,-(E) = TI'/\,'(E ® idHA)(p)



A general channel mesurement

A general definition of channel measurement: an affine map

E— p(€) € P(Q) = set of probability measures on Q

Question
Are all channel measurements given by some triple (Ha, p,\)?



Quantum 1- testers (PPOVMs)
Let Xg € B(H1 ® Ho) denote the Choi represenation of &:

Xe = (E@idw,)(V), W=D |l
i

A quantum 1-tester: {M;,i € Q}, M; € B(H1 @ Ho)T,

Z M; = IHI R w, w € 6(7‘[0)

This defines a channel measurement € — p;(£) = TrM; Xe, i € Q.

Theorem

Each triple (Ha, p,\) is associated with a I-tester. Each I-tester
is implemented by a triple (Ha, p, \).

(Chiribella, D'Ariano, Perinotti, Phys. Rev. Lett.(2008)

Ziman, Phys. Rev. A(2008) (1-testers are called proces POVMs))



The set C(Ho, H1)

Let C(Ho, H1) C B(H1 ® Hp) denote the set of Choi
representations of channels B(#Ho) — B(H1):

C(HO,Hl) = {X S B(Hl ®H0)+,TI'H1X = IHO}

Question
Are all affine maps C(#H1,Ho) — P(2) given by 1-testers?

Note that
C(Ho,H1) = N doS(H1 @ Ho), do = dim(Ho)
where J C B(H1 ® Ho) is the subspace

J= {X S B(Hl ®H0),TI‘H1X = ZIHO, Z € (C}



Quantum supermaps

e A quantum supermap is a map that maps channels
B(Hin) — B(Hout) to channels B(Kiy) — B(Kout)-

e Such maps are given by cp maps
S B(Hout @ Hin) — B(Kout ® Kipn), such that

S(C(Hina Hout)) C C(}Cinv Kout)

e Any such map has the form:

7_[out ’Cout
(I)l q)Z

(Chiribella, D'Ariano, Perinotti, Europhysics Letters 2008)



Quantum networks and combs
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This defines a channel

Quantum network
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S :BHo@H2® - @Hon-2) = B(H1®@H3 @+ @ Hon-1).

Its Choi representation X¢ is a (deterministic) quantum N-comb.

Let

Comb(Ho, ..., Hon—-1)

denote the set of (deterministic) N combs.



Characterization of quantum combs

(Gutoski& Watrous, STOC 2007 (quantum strategies),
Chiribella, D'Ariano, Perinotti, Phys. Rev. A 2009)

Theorem
An element X € B(®2N Y24;) is a quantum N-comb if and only if

there are X(K) ¢ B(®J2£0 1)*, XN) = X, such that

Terk—lx(k) = by, ,® X(k_l), k=2,....N
TTHIX(l) = /HO

It follows that
Comb(Ho, - .., Han—1) = In N dy&S(275H;)

for some subspace Jy and dy > 0.



Quantum N combs as supermaps

Quantum N-combs can be defined as follows:
1. Comb(Ho, H1) = C(Ho, H1)-

2. Comb(Hy,...,Han—1) is the set of Choi operators of cp maps
that transform Comb(#Hs, ..., Han_2) to C(Ho, Han—1)-

@ P,

d4 P, o3

Conclusion
Quantum networks (supermaps, testers,...) are given by (constant
multiples of) cp maps that map J N &(H) into &(K).



Algebras and subspaces

Let A be a finite dim C*-algebra. We suppose
A=a;B(Hi) C B(H), H=>diH,.

We denote
e Try the trace inherited from B(#H)
e a’ the transpose of a
e AT the positive cone in A
o S(A)={pe AT, Trap = 1} the set of density operators

Let J C A be a positively generated subspace. We denote
o JT ={a',ac J}is positively generated.
o Jt ={xe€ A Try(x*a) =0, ac J} self-adjoint subspace



Channels

Let K C &(A) be a convex subset, J = span(K).

Definition
A channel = : K — &(B) is an affine map, extending to a cp map
=:J—B.

e = : J — B is trace preserving

e we may suppose that K is a section of G(A):
K=JNnG6&(A)

o If K =6(A), then = is a channel A — B.



An extension theorem

The following is an easy consequence of Arveson's extension
theorem:

Theorem

Let J C A be a positively generated subspace and let = : J — B
be a cp map. There is a cp map ® : A — B such that

d(a) ==(a), a € J.

Any channel = : K — &(B) is the restriction of a generalized
channel with respect to J:
a cp map ¢ : A — B that preserves trace on J



The Choi representation

Let ® : A — B be a linear map. The Choi representation of &:
Xo € B® A, such that

®(a) = Tra(ls®a’ )Xo

® is cp if and only if Xp >0

Theorem
® : A — B is a generalized channel with respect to J if and only if

Xo >0, TrpXe € L4+ (JT)*

We denote by C (A, B) the set of all (Choi representations of)
generalized channels, C4(A, B) = C(A, B).



Decomposition of generalized channels

Let c € A, define xc: A — A, xc(a) = cac*. Then
Xc € Cy(A, A) if and only if

cfce AT n(Ig+Jh)

Such generalized channels are called simple.

Theorem
& € C (A, B) if and only if there is a pair (xc,N), xc € C4(A, A)
is simple and \ € C(A, B), such that

® =ANox.

Moreover, there is a minimal decomposition with p = supp(cc*)
and N\ € C(pAp, B), which is unique (up to a unitary
transformation).

Note that we have c*c = ®*(Ig) = (TrsXs) .



A general example

Suppose that J C A is a positively generated subspace and
J=57"1(J), where S : A — A is a channel and Jy C Ag is a
subspace. Then & : A — B is a generalized channel with respect
to J if and only if

TrBXq; (S (ST)*(IAO + (J(;F)J_)

where ST : A — Ag is defined as ST (a) = [S(a”)]". In particular,
if A=A; ® Ag and S is a partial trace, then

TrpXe = 14, ® a, ac -AS_ N (IAo + (JOT)L)



Example: " Channels on channels”

Let A=A; ® Ag, S=Try,, Jo=Cly, Then J=S5"1(Jp)is
generated by C(Ap, A1) and

C(Ao, A1) = JN 1S (A1 ® Ay), to = Tra,(/4,)

Channels = : C( Ao, A1) — S(B) are given by cp maps ¢ : A — B,
such that to® € C (A, B), that is, such that

TrpXe € 4, ® (.Ag N (to_lle + {/AO}J‘)) = l4, ® S(Ap)



"Channels on channels”: decomposition

Suppose Ag = B(Hop). Let
TreXe = l4, @ w, w € &(Ho).
Then there is a a minimal decomposition of ¢:
¢ =AoXige,

where c*c = w’, A € C(A; ® pAop, B), p = supp(cc*). Let
Xe € C(.Ao,.Al), then

Xioc(Xe) = Xiwe(€ @ idy, (V) = (€ @ idpy,)(p)

where p = x19c(V) € 6(Ho ® pHo) is a pure state such that
Trop =w'.



"Chanels on channels”: implementation

Let Ag = B(Ho).

Theorem

¢ : A ® Ay — B defines a channel C(Ag, A1) — &(B) if and only
if there is an ancilary Hilbert space Ha, a pure state

p € 6(Ho® Ha) and a channel \ : Ay ® B(Ha) — B such that

(Xe) = No (€@ idu,)(p)

Moreover, the triple (Ha, p,\) is unique (up to a unitary
transformation).



Measurements on K and generalized POVMs

Let K C &(.A) be any convex subset. A measurement on K with
values in Q, |Q| = m is an affine map

K — P(Q)

Let J = span(K), then any ® € C,(A,C™) defines a measurement
on K. We have Xo = >_; |j)(j| @ M and

®(a) = (Tra(Ma),. .., Tra(Mnpa)), aekK

where

Mie At > Mielg+J*
M= (My,...,Mp) is called a generalized POVM with respect to
J.



Measurements on sections

Let K C &(.A) be a section of G(A):
K=JnG6(A), J = span(K)

Equivalently

(i) K=LNG&(A), L C Ais any subspace

(ii) Let V =Ux>0AK, then a,be V,a—b >0 impliesa—b e V.
Theorem

All measurements on K are given by generalized POVMs if and
only if K is a section of §(A), that is, K = J N &(A).



Example: quantum 1-testers (PPOVMs)

Let K = C(Ho, H1), then K is a (multiple of) a section of
S(H1 ® Ho). Hence any channel measurement is given by a
generalized POVM with respect to J = span(K):

(My,...,Mp), M;e B(H1®Ho)t, ZI\/I by, @ w

where w € &(Hyp), this is a quantum 1-tester (PPOVM).

Theorem
There exists an ancilla Ha, a pure state p € S(Ho @ Ha) and a
POVM A : {1,...,m} = B(H1 ® Ha) (unique up to a unitary)
such that

Tr(XeM;) :'I‘r(/\,'((f@idHA)(p)), i=1...,m



Example: unital channels

Let Ag = A1 = B(H), dim(H) =d.
Let K = CY(#H) = unital channels B(H) — B(#). Then

K =Tr;H(Chy) N Try H(Cly) N dS(H ® H)

is (d-times) a section of &(H ® H). Hence any measurement on
unital channels is given by a generalized POVM with respect to

J =Tr}(Cly) N Try Y (Cly).

These are collections (M, ..., My), M; € B(H ® H)*, such that

> M= dw1 ® by + (1= Ay @ ws

where X € [0, 1], w1, w2 € S(H).

Implementation ?



The set C(A, B)

Let J C A be a positively generated subspace. Let
J:=span((JT)* U{l4})

Then we have

Cy(A,B) = Tl‘l_gl( )n 6/B®pT(B ® A)
for any p € JN S(A), where
Spapr(BoA) ={aec (B A", Tr((ls@p)a) =1}

In particular, if [4 € J then C,(A, B) is a (multiple of) a section of
S(B® A):

C,(A,B) :TI‘EI( YNtaS(BR A), ta:=Tra(la)



Generalized supermaps

Let By, B1,... be finite dimensional C*-algebras.

e Suppose J C By is positively generated, Iz, € J.
Then C,(Bo, B1) is (multiple of) a section of &(B1 ® Bp).
Channels C(Bo, B1) — &(B2) are given (multlples of)

generalized channels with respect to TrB ().

/31®30 S TI‘Bl (J~)

Generalized supermaps

We denote C,(Bo, B, . .., Bp) the set of (Choi representations of)
cp maps Bp-1 ® -+ ® By — B, that map C,(By,...,Bp-1) to
S(By).



Characterization of generalized supermaps |

Let us denote A, =B, 3B,-1®---® By, n=0,1,...,
Sp: Ap — Ap—1 the partial trace Trp,, n=1,2,....

Cy(Bo, ..., Bp) = Jn N caB(Ap)

n—1
where ¢, = I'I,L:é ts,_,_, and

Sk = St a(Ssa(Sut s ST )
Sk = S (Ssica Sy Si(9) )



Characterization of generalized supermaps Il

Let k := |5]. Then X € Cy(Bo, ..., Bn) if and only if there are
Y(m e AY , for m=0,...,k, such that

Trg, ,, Y™ =g, _, @Y™ m=0,.. . k-1
Y(© .= X and

Yk ¢ Cy(Bo,B1) ifn=2k+1
YK e JnS(By) if n=2k



Decomposition of generalized supermaps

Let n=2N —1.
Then any ¢ € Cy(By,...,Ban—1) is implemented as a sequence of
networks with classical inputs and outputs:

Hio Hh Hiz Hig HizN—z HiZN—l
Io I . In-1
(I)il (I)is CDi2N—1
io, i1, ... classical inputs/outputs, I; = igi1 ... i}

where ®h is a generalized channel, ol j > 0 are channels, with
classical inputs and outputs, labelled by all classical outcomes
before step j.



Decomposition of generalized supermaps
Let B; = B(H;), j=0,1,... and let J = By. Then
C(Bo, ceey B2N71) = Comb(?—[o, e ,7‘[2/\/,1), N = 1, 2, e

If By, Bi, ... (finite dim) C*-algebras, then C(Bo, ..., Byn_1) is
the set of conditional combs,
(Chiribella et al, arxiv:0905.3801)

Let n=2N, By, B1,..., J C By arbitrary. Then

Vlio i) Hiy  Hizy Higy

I In
o, i

2N

o, i1, ... classical inputs/outputs, |; = ipi1 ... i2j_1.

p € Trylk (J) NS (Bo @ B(Ha)).



Extremal generalized channels

We find extreme points of the set C (A, B):
Ci(A,B)=BoA) ™ NL
where L = Trgl(lA + (JT)1) is an affine subspace. Let
Lo = Lin(L) = Trz*((UT)")
Theorem
Let X € C4(A,B), P =supp(X). Then X is an extreme point if

and only if
P(B® A)PnNLy={0}



Extremal generalized channels: decomposition

Let ® : A — B be a generalized channel with respect to J and
¢ =Aoxc

be a minimal decomposition. Let X5 be the Choi representation of
A, p = supp(cc*).
Theorem

Xo is extremal in C (A, B) if and only if Xp is extremal in
Cy.(pAp, B) where Jo = xc(J) = cJc*.

In particular, A must be an extremal channel. (Note that A is a
generalized channel with respect to any subspace.)



Extremal generalized channels: Kraus operators

Suppose A = B(H), B = B(K).
Let & : B(H) — B(K) be a cp map and let

a) = Z VkaVk
k

be a Kraus representation. Then ® is a generalized channel with
respect to J if and only if >, ViV € 14+ J*.

Theorem
® s extremal if and only if there is a Kraus representation such
that the set

{\/lj< Vi, k, /} U {Xl, .. .Xm}

is linearly independent, where {xi,...,xm} is a basis of J+.



Extremal generalized channels: Kraus operators

Let
®=NAoxc

be a minimal decomposition and let A(a) = >, WiaW, be a
Kraus representation.

Theorem
& js extremal if and only if \ is an extremal channel and

span{ W; W, k, I} N J+ = {0}

(Jec = cJc*)



Extremal generalized channels: conjugate maps

Let ®(a) = > ;4 VkaV) be a minimal Kraus representation. The
cojugate map ®¢ : B(H) — B(C") is defined by

©(a) = Y Tr(ViaVy) k) (|
k1=

Since Tr(®(a)) = Tr(dC(a)), ®€ is a generalized channel with
respect to J if and only if ® is.

Theorem
® is extremal if and only if (J) = B(C").



Extremal quantum networks

Since

1
C(BO, e ,Bn) = Cilc_jnil(An_l, Bn)

extremal quantum networks are obtained from extreme points in
CJ,,_l(An—LBn)- Let 7, = {a S B,,,Trgna = 0}, I/, = /Bn- Then

we have
Lo= (b ® J,,L_l) V(Th ® Ap-1)
and
_IIJ‘ = /1®76
_/2J‘ = hLh®Ti®B

Jr = 1@ |1 @)V (Tho1® Ana)|, n>3



Extremal " channels on channels”

Let X € C(Bo, B1, B2) and let
Px =NoXige

be a minimal decomposition.

Theorem
Let N(a) = >, WiaW, be a Kraus representation of N. Then X is
extremal if and only if \ is an extremal channel and

span(W, W) N (h ® To) = {0}



Extremal generalized POVMs

Let

MY(A,Q) ={(M;, i € Q),M; € AT, M € Ix+ J*1},

1

then M(A, Q) = C, (A, CI.

Theorem

Let M € My(A,Q), pi :=supp(M;), i € Q. Then M is extremal if
and only if for any collection (D;,i € Q), D; € piAp;i, >; D; € J*
implies that D; = 0 for all i € Q.



Extremal generalized POVMs: decomposition

Let M € M (A, ), then there is a minimal decomposition
M = Noxc

with A a POVM in M(pAp,Q), p = supp(cc*), > ; M; = c*c.

Theorem
M is extremal if and only if \ is extremal in My« (pAp, Q).

Theorem
Suppose N\ is a PVM. Then M is extremal if and only if

{Ni,i € QY N (ctc*) npAp = {0}

where A’ denotes the commutant of A for A C A.



Extremal 1-testers

A quantum 1-tester defines a measurement on the set of channels
B(Ho) — B(H1):

M= (M;, i €Q), M € B(H1®Ho), > M = hy&w, w € &(Ho)

Suppose M = Ao xgc is a minimal decomposition, p = supp(cc*)
and A a POVM on B(H1 ® pHo).

Theorem

Suppose N is a PVYM. Then M is not extremal if and only if there
is a nontrivial subspace L C pHoy, a PYM P on B(H1 ® L) and a
PVM P, on B(H1 ® L*) such that A= P + P, .

Note that this characterizes all 2-outcome 1-testers.



Extremal qubit 1-testers with 2 outcomes

Let dim(Ho) = 2.

o Let M = (My, Mp), M; € B(H1 ®7‘[o)+, M+ My =y, ®@w
for w € &(Hop), w is invertible.

Suppose M = Ao x. is a minimal decomposition, for some
A = (A1,Az) a POVM.

If M is extremal, then A must be a PVM.
Any nontrivial subspace £ C Hp is 1 dimensional.

M is extremal if and only if A is a PVM and A; is NOT of the
form

M =e® )] + f @ ) (]

where 1, ¢ € Ho, (¢,") =0 and e, f € B(H;) are any
projections.



