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Classical Rényi relative entropies

7

For p, g probability measures over a finite set X, 0 < a # 1:
lo x)%q(x)—®
- ng:p( )“q

In the limit o — 1: relative entropy

S(pllg) = Zp ) log(p(x)/a(x))

Da(pllq) =

» introduced as the unique family of divergences satisfying a set
of postulates

» fundamental quantities appearing in many information -
theoretic tasks

A. Rényi, Proc. Symp. on Math., Stat. and Probability, 1961.



Standard quantum Rényi relative entropies

For density matrices p,o, 0 < o # 1,

«

Da(pllo) = log Tr p*o™~

a—1

In the limit & — 1. quantum (Umegaki) relative entropy

5(pllo) = Tr p(log(p) — log(c))

» obtained from Petz quasi-entropies’:?

» defined for normal states of a von Neumann algebra, using the
relative modular operator

ID. Petz, Rep. Math. Phys., 1986
2D. Petz, Publ. RIMS, Kyoto Univ., 1985



Standard quantum Rényi relative entropies

It follows from the properties of quasi-entropies that: if « € (0, 2]
» strict positivity: Dq(p||o) > 0 with equality iff p = o;

» data processing inequality:
Da(pllo) = Da(®(p)||®(a))

for any quantum channel ¢
> joint lower semicontinuity

» joint (quasi)-convexity: the map
(p,0) = exp{(a —1)Da(pllo)}

is jointly convex.



Equality in DPI: sufficient quantum channels

Let the quantum states p, o and a channel ® be such that

S(®(p)[[®(0)) = S(pllo) < o0

This condition was introduced as a quantum extension of classical
sufficient statistics:

A statistic T is sufficient with respect to a pair of probability
distributons {p, q} if

» the conditional expectation satisfies Ep[-| T] = Eq[:| T]

> an equivalent Kullback-Leibler characterization by the classical
relative entropy:

S(pTlla"™) = S(pllq) (if <o)

D. Petz, CMP, 1986
D. Petz, Quart. J. Math. Oxford, 1988



Sufficient quantum channels

Let p, o be quantum states (normal states of a von Neumann
algebra), o faithful. Assume that S(p||o) < oo

The following are equivalent.

> S(pllo) = S(®(p)l|®(0));
> There is a quantum channel W such that

Vo d(p) =p, Vod(o)=0

We say in this case that @ is sufficient (reversible) with respect to

{p.o}.



Sufficient quantum channels: divergences

A divergence D characterizes sufficiency if
D(®(p)l|®(0)) = D(pllo) < o0
implies that @ is sufficient with respect to {p,o}.

The following divergences characterize sufficiency:

> relative entropy
» D,, with a € (0,2)%4

» a class of f-divergences (in finite dimension)®°

3D. Petz, Quart. J. Math. Oxford, 1988
*AJ and D. Petz, 2006

5Hiai, Mosonyi, Petz, Bény, 2011

®F. Hiai and M. Mosonyi, 2017



Sufficient quantum channels: universal recovery channel

The Petz recovery channel is defined as
®,(Y) = o20%(d(0) V2V (o) V/2)01/2

Note that we always have ®, o (o) = 0.

® is sufficient with respect to {p, o} if and only if

®; 0 ®(p) = p.




Sufficient quantum channels: a conditional expectation

Note that by the last condition, p (and o) must be invariant states
of the channel ®, o .

There is a conditional expectation E, o0 o E = ¢, such that
® is sufficient with respect to {p, o} if and only if po E = p.

Structure ot the states’: in finite dimensions (or on B(#)), there
is a decomposition

UoU* = @)\naﬁ ® 05, U,L,, a,’? states, A, probabilities
n

such that @ is sufficient with respect to {p, o} iff

UpU* = @unpﬁ @k, pk states, i, probabilities
n

™. Mosonyi and D. Petz, 2004; AJ and D. Petz, 2006



Sufficient quantum channels: applications

Characterization of equality in various entropic inequalities:

» strong subadditivity: characterization of quantum Markov
states®

» monotonicity of quantum Fisher information, Holevo quantity,
etc.

Approximate version - recoverability?:

S(pllo) — S(@(p)[|9(0)) > d(p]| s 0 P(p))

d some divergence measure, ®, a modification of Petz recovery
channel

8Hayden, Josza, Petz, Winter, 2004
°0. Fawzi and R. Renner, 2014; M. M. Wilde, 2015; Junge et. -al, 2015; .=



Sandwiched Rényi relative entropy

Another version:

for density matrices p, o:

~ 1 P 1—a o
D.(pllo) = po— log Tr [(o 20 po 2a ) ]

M. Miiller-Lennert et al., J. Math. Phys., 2013
M. M. Wilde et al., Commun. Math. Phys., 2014

» satisfies DPI (4 other properties) if a € [1/2,1) U (1, c0)
> lima 1 Da(pllo) = S(pllo)

» operational interpretation for o > 1: strong converse
exponents in quantum hypothesis testing©

oM. Mosonyi, and T. Ogawa, Commun. Math. Phys., 2017



The purpose of the rest of this talk

Extend the sandwiched Rényi relative entropies to normal
states of von Neumann algebras and show some properties

» the standard version D, (quasi-entropies) is defined in this
setting and has an operational interpretation in hypothesis
testing as in finite dimensions!!

In this general setting, prove that D, characterize sufficiency
of channels, for a € (1/2,1) U (1, o0).

11V Jaksic et al., Rev. Math. Phys., 2012



Extensions of D, to von Neumann algebras

Let p, o be normal states on a von Neumann algebra M.

Two constructions, using noncommutative L,-spaces:
» Araki-Masuda divergences, defined for o € [1/2,1) U (1, ],
uses Araki-Masuda Lp—spaces12
» sandwiched Rényi relative entropies, defined for o > 1, uses
Kosaki Lp-spaces13

2M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018
13AJ, Ann. H. Poincaré, 2018



Haagerup L,-spaces

For 1 < p < o0, Lp(M) - Haagerup L,-space, with norm || - ||,
> M~ L (M),
» the predual M, ~ L1(M): p— h,, Trh, =p(1);
» Ly(M) a Hilbert space: (h,k) =Trk*h

If M = B(H), we can use the Schatten classes:

Lp(M) = {X € B(H), Tr |[X|P < o0}, | X]p, = (Tx|X|P)"/P



The standard form

Standard form: (A(M), Ly(M), J, Lo(M)T)

a representation of M on Ly(M) by left multiplication:
A(x)h = xh, x €M, he Ly(M)
Any p € M has a unique vector representative hi,/z in Lo(M)*:

p(a) = (ah}/? nY/?)



Kosaki L,-spaces with respect to a faithful normal state

Let o be a faithful normal state:

» continuous embedding
M = L1(M), x> h/2xp}/?
> Put
Loo(M, 0) i= by PMBZ/2, [ 2t P |oco = [1x]loc
> let p € M}, then h, € Loo(M, 0) iff p < Ao and

hylloc.s = inf{A > 0,p < Ao}.



Kosaki L,-spaces with respect to a faithful normal state

Let 1 < p < o0t
» (Loo(M, o), L1(M)) compatible pair of Banach spaces
> interpolation space

Lp(M,0) == C1/p(Los(M, 7), L1(M)), with norm || - ||
» Let 1/p+1/qg =1, then

Lp(M, o) = {hy/2Tkhy/29, k € Lp(M)},
I 2ok

p,oc — Hk”p



A definition of D,,, o > 1

Extension to non-faithful o: by restriction to support s(c) = e

Lo(M,0) ={he L1(M), h=ehe € L(eMe,0|epe)}

For normal states p, 0 and 1 < a < o0:

. 225 log(|lhpllas) if hy € La(M, o)
Do(pllo) =
00 otherwise.




Some properties of D,

Using complex interpolation, we can prove
» strict positivity: Dy(pllo) > 0, with equality iff p = 0.
» joint lower semicontinuity (on Ly(M)T x Ly(M)T)
> if p# o and Du(p||o) < oo, then

o — Dy(pllo) is strictly increasing for o € (1,al.

> quasi-convexity



Relation to the standard version D,,, limit values

For normal states p,o, a > 1:
Ds_1/0(pllo) < Dalpllo) < Dal(pllo)

4

Limit values:

lim Ba(pllo) = S(pll0)

lim Da(pllo) = Dss(p||o) relative max entropy
a—00




Data processing inequality

®: L1(M) — Li(N) positive, trace-preserving. Let o = ®(0).
» & is a contraction L1(M) — Li(N).
» if 0 < p < Ao, then also 0 < ®(p) < Aoy, hence

O(Loo(M,0)") = Loo(N, 00) "

» this extends to a map x — y, <I>(h1/2 1/2) hl/2 hl/2
(adjoint of) the Petz recovery channell* &,
» & defines a contraction Loo(M,0) = Loo(N, 0p).

¢ defines a contraction Ly(M,0) — Ly(N,09) for all 1 <
p < 0.

D. Petz, Quart. J. Math. Oxford, 1984



Data processing inequality

For a > 1, normal states p, o, positive, trace-preserving ®:

Da(pllo) = Da(®(p)||®(0))

Consequently, by the limit o — 1:

For normal states p, o,

S(plle) = S(®(p)[[®())

holds for any positive trace-preserving map ®.

A. Miiller-Hermes, D. Reeb, Ann. H. Poincaré, 2017 (for M = B(H))




The Araki-Masuda divergences

The Araki-Masuda L,-norm: defined on Ly(M)

» for 2< p< oo, €€ Lh(M)T,

l€lpy = sup  [IAYZTHPE|,
weMt w(l)=1
if s(we) < s(o) and is infinite otherwise
> for 1 < p <2,

[IS

= inf 18Y571Pe]2
weMT w(1)=1,s(w)>s(we)

M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018



The Araki-Masuda divergences

For normal states p, o and a € [1/2,1) U (1, c0):

DM (pllo) = —— log(llhy/?I50%)

» can be defined using any *-representation of M on a Hilbert
space H and any vector £ € ‘H representing p

» duality relation: for 1/p+1/g=1

(0.1 < InllpFlIEllqs,  &mneH

» if 1 < p <2, there is a (unique) unit vector 1y € H such that

(n.10) = lInll5e Imollgy

M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018



DﬁM and Da

Araki-Masuda Ly-norms can be introduced by interpolation:
» For 2 < p < oo: a continuous embedding M — Lp(M)

x — hY/2x, xeM

the interpolation norm || - [|A¥ in C; (M, La(M)).

» For 1 < p <2: a continuous embedding Ly(M) — L1(M)
ks khY2. ke Ly(M)

the interpolation norm || - [|[A¥ in G /,(L2(M), L1(M)).



DAM and D,

For1l < a < oo,
Da(pllo) = D2M(pllo)

For 1/2 < a < 1: b KY2 € Loo(M) and

= = 2« =c
Da(pllo) == D4 (pllo) = ~— log | ™ hy/?|l2a

Limit values:

> lime o1 Da(pllo) = S(pllo)
> limg_s1/0 Da(pllo) = —log F(p, o) Uhlmann’s fidelity



Data processing inequality for D,, o € (1/2,1)

We have to assume that ¢ : L1(M) — L;(N) is trace preserving
and completely positive, with Stinespring representation:

O =T'n()T
7 a *-representation, T an isometry

> Let p =2a, 1/p+1/q— 1. Let p = wy and let w 1= wy, be
such that (n,m0) = [[nl|A¥[Inol|4. Then

(o) = (T, Tno) < 1 Tnllh e Tnolla e

» we obtain, with o* = a/(2ac — 1) > 1:

Da(pllo) = Da(®(p)[|9(0)) + Do+ (w]|0) — Da (¢ (w)]|®())
> Da(®(p)l|®(0))

M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018



Characterizations of sufficient channels by D,

The sandwiched Rényi relative entropies D,, characterize suf-
ficiency for v € (1/2,1) U (1, 00).

AJ, Ann. H. Poincaré, 2018; AJ, arXiv:1707.00047

That is:
Da(®(p)[|#(0)) = Dalpllo) < oo

implies that

Vo d(p), Vo d(o).

for some channel V.



The proof in case a > 1

Let oo > 1.

> the assumption
Da(®(p)[|9(0)) = Da(pllo) < oo

implies that h, € Lo(M, o) and ® is a contraction preserving
its norm.

> An easy proof for o = 2:
Ly(M, o) is a Hilbert space, @, is the adjoint of ®

By properties of contractions on Hilbert spaces:
O, 0®(h,) = h,

(note that positivity of ® is enough for this)



The proof in case a > 1

For general o > 1, use interpolation:

Let 7 be a normal state, s(7) < s(o). Put
he(z) = K1=2)/2p2p(1=2)/2 ¢ [1(M), 0< Re(z) <1,

continuous function, analytic in 0 < Re(z) < 1.

If the equality

[®(hr(1/))lla,0(0) = - (1/ ) llao

holds for some « > 1, then it holds for all o > 1.




The proof in case a > 1

By assumptions h, = th-(1/c) for some state 7, t > 0 -
normalization, and we have

[®(h(1/ )], 0(0) = 1A (1/ )

Then the equality holds also for a = 2, so that

o is sufficient with respect to {w, o}, where

ho = shy(1/2) = sh*h}/2pt/4 s >0.

Ok, but this is not what we wanted to prove!



The proof in case a > 1

Assume M = B(H), replace h, by the density operator p.

There is a decomposition UsU* = @, Apol @ o such that
o is sufficient with respect to {p, o} iff

UpU* = @D pnph @ of
n

But we have such a decomposition for w = so/471/251/4 hence
also for p = tot/2871/251/28 \which imlies the result.

(In the general case, we use the characterization by conditional
expectations.)



The case a € (1/2,1)

Let a € (1/2,1). Then

hy 2a h1/2 h1/2au € Loy, (M)

for some 7 € M and partial isometry u € M.
> We recall the inequality

Da(pllo)

a(®(p)|9(0)) + Do (w|0) = Do (®(w)|9(0))
(P (p)[|®(0))

for a* > 1 and some state w.
» Actually, we have h, = th (1/a*).

> D,
>

Dz



The case a € (1/2,1)

» By assumptions, we obtain
Do+ (w]|0) = Do+ (®(w)||#(0))

> since a® > 1, this implies that ® is sufficient with respect to
{w,a}.

» use the decompositions (conditional expectations) as before.



