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Abstract Two different characterizations of POV measures with commutative range
are compared using a representation of some stochastic operators by (weak) Markov
kernels. A representation by Choquet theorem is obtained as an integral over func-
tions of a sharp observable appearing in one of the characterizations. A Naimark
extension is constructed.
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1 Introduction

Quantum observables are usually considered as normalized POV measures. The spe-
cial subclass represented by PV measures is classified as sharp observables, while the
remaining POV measures are classified as unsharp. Every POV measure M is com-
pletely described by the family {m ◦ M} of probability distributions in all physical
states m. This enables us to apply some results from classical probability theory and
theory of experiments to quantum observables. For example, a stochastic operator is
defined as an affine mapping from the set of probability measures on one measurable
space to the set of probability measures on another measurable space. This yields the
following relation between two observables M and N : we say that N is a smearing
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e-mail: jenca@mat.savba.sk

mailto:pulmann@mat.savba.sk
mailto:jenca@mat.savba.sk


614 Found Phys (2009) 39: 613–624

of M if there is a stochastic operator that maps m ◦ M to m ◦ N , and write M � N .
The relation � is a preorder on the set of observables.

In this paper, we study the special case of POV measures with commutative range.
Observables of this type were characterized in several different ways, but always as
smearings of sharp observables (PV-measures).

The first characterization we consider is based on the von Neumann theorem stat-
ing that any system of mutually commuting bounded self-adjoint operators on a sepa-
rable Hilbert space can be represented by functions of one bounded self-adjoint oper-
ator (cf. [11, Theorem 10], [7, Théorème p. 355]). In [5] (see Theorem A below), we
proved that a POV measure with commutative range is a smearing of the PV-measure
corresponding to the self-adjoint operator with the property that all elements in the
range are its functions.

The second result was obtained by Holevo [3], where a characterization is given
by a smearing of a PV measure defined on the Borel σ -algebra of subsets of a set of
probability measures (see Theorem B below).

In addition, Ali [1] obtained an integral representation for (not necessarily commu-
tative) POV measures defined on a separable metrizable locally compact topological
space by means of Choquet theorem.

Using a representation of some stochastic operators by (weak) Markov kernels, we
show equivalence of Theorems A and B. In fact, the sharp observable in Theorem B
is a smearing of the sharp observable of Theorem A. Conversely, the sharp observable
in Theorem A can be chosen as a smearing of the observable in Theorem B.

In addition, we show that a representation by Choquet theorem for a POV mea-
sure with commutative range defined on a separable metrizable locally compact topo-
logical space can be obtained as an integral over the functions of the sharp observ-
able from Theorem A. Finally, Theorem A can also be used to the construction of a
Naimark extension for the POV measure.

2 Stochastic Maps and Markov Kernels

Let (X, A) and (Y, B) be measurable spaces and let P (X, A) be the set of probability
measures on (X, A). An affine map

T : P (X, A) → P (Y, B)

is called a stochastic map, or a stochastic operator. It is clear that a stochastic map
extends to a positive linear mapping on the space of complex measures, preserving
the total variation norm on the positive cone. This extended map will be also called a
stochastic map.

An important class of stochastic maps is given by means of Markov kernels, that
is, mappings λ : X × B → [0,1], satisfying the following conditions:

(1) the function x �→ λ(x,B) is A-measurable for all fixed B ∈ B
(2) B �→ λ(x,B) is a probability measure on B for any fixed x ∈ X

It is easy to see that

B �→
∫

X

λ(x,B)ρ(dx) (1)
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is a probability measure on (Y, B) for any ρ ∈ P (X, A) and that this defines a sto-
chastic map, which we denote by Tλ.

In general, there is little hope that a stochastic map is defined by a Markov kernel.
The situation is different if we consider stochastic maps defined on certain convex
subsets of P (X, A). Let μ be a σ -finite measure on (X, A) and let L(μ) = {ρ ∈
P (X, A), ρ � μ}.

Theorem 2.1 [8, pp. 338–340] Let μ be a σ -finite measure on (X, A) and let (Y, B)

be a standard Borel space. Let T : L(μ) → P (Y, B) be a stochastic operator. Then
there is a Markov kernel λ : X × B → [0,1], such that T = Tλ|L(μ).

2.1 Weak Markov Kernels

Let τ ∈ P (X, A). A function ν : X × B → [0,1] is called a weak Markov kernel with
respect to τ (or a τ -Markov kernel) if it satisfies:

(i) x �→ ν(x,B) is A-measurable for each B ∈ B
(ii) ν(x,∅) = 0 and ν(x,Y ) = 1, τ -a.s.

(iii) for each sequence Bn ∈ B, such that Bn ∩ Bm = ∅ whenever n 
= m, we have
ν(x,

⋃
n Bn) = ∑

n ν(x,Bn), τ -a.s.

It is easy to see that a weak Markov kernel ν defines a stochastic map Tν :
L(τ) → L(Tν(τ )), by (1). Therefore Tν extends to a stochastic operator Tν :
L1(X, A, τ ) → L1(Y, B, Tν(τ )). Such an operator is always bounded and its dual
T ∗

ν : L∞(Y, B, Tν(τ )) → L∞(X, A, τ ) is a Markov operator, that is, positive, linear
operator with T ∗

ν (1) = 1 and T ∗
ν (fn) ↓ 0 whenever fn ↓ 0 (see, e.g., [9]).

Suppose that ν1 and ν2 are weak Markov kernels with respect to τ . Then it is clear
that Tν1 = Tν2 if and only if

ν1(x,B) = ν2(x,B), τ -a.s., B ∈ B (2)

This defines an equivalence relation ∼τ on the set of τ -Markov kernels. Let us denote
the quotient of this set by ∼τ by K(X, B, τ ).

It is clear that a Markov kernel is a weak Markov kernel with respect to any τ ∈
P (X, A). On the other hand, if (Y, B) is a standard Borel space and ν a weak Markov
kernel, then Theorem 2.1 implies that there exists a Markov kernel λ, such that Tν =
Tλ|L(τ). This means that the equivalence class of ν with respect to ∼τ contains a
Markov kernel, in this case. Note that then

T ∗
λ (f ) =

∫
Y

f (y)λ(x, dy)

for f ∈ L∞(Y, B, Tλ(τ )).
Another important example of a weak Markov kernel is the conditional probabil-

ity: let X = Y and let A ⊂ B, then ν(x,B) := P(B|A)(x) defines a weak Markov
kernel with respect to τ = P |A.
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2.2 Composition of Weak Markov Kernels

Let (Z, C) be another measurable space and let μ : Y × C → [0,1] be a weak Markov
kernel with respect to some ρ ∈ P (Y, B). If we have Tν(τ ) � ρ, then L(Tν(τ )) ⊆
L(ρ), so that there exists a stochastic operator Tμ ◦ Tν : L(τ) → P (Z, C). Our aim is
to show that this stochastic operator is given by a weak Markov kernel λ : X × C →
[0,1], with respect to τ .

So let ω ∈ L(τ) and C ∈ C . Let us denote μC = μ(·,C). Then

Tμ(Tν(ω))(C) =
∫

Y

μ(y,C)Tν(ω)(dy) =
∫

X

T ∗
ν (μC)(x)ω(dx) (3)

Let us put

λ(x,C) = T ∗
ν (μC)(x) (4)

and check that this defines a weak Markov kernel with respect to τ .
First, since λC = T ∗

ν (μC) ∈ L∞(X, A, τ ), it is obviously A-measurable, so that
condition (i) is satisfied. Further, by (3), we get

∫
X

λ(x,∅)ω(dx) = Tμ◦Tν(ω)(∅) = 0
and similarly

∫
X

λ(x,Z)ω(dx) = 1 for all ω � τ , this implies condition (ii). Let now
{Cn} be a sequence of pairwise disjoint elements in C . Then, again by (3), we get for
each k that

λ

(
x,

k⋃
n=1

Cn

)
=

k∑
n=1

λ(x,Cn), τ -a.s.

Then
∑k

n=1 λ(x,Cn) is τ -a.s. an increasing sequence of positive functions, bounded
by 1. It follows that the limit

∑
n λ(x,Cn) exists (τ -a.s.) and that

∫
X

∑
n

λ(x,Cn)ω(dx) =
∑
n

∫
X

λ(x,Cn)ω(dx) =
∑
n

Tμ ◦ Tν(ω)(Cn)

= Tμ ◦ Tν(ω)

(⋃
n

Cn

)
=

∫
X

λ

(
x,

⋃
n

Cn

)
ω(dx)

for all ω � τ , this entails (iii).
Note that if ν and μ are Markov kernels, then the expression

λ(x,C) =
∫

Y

μ(y,C)ν(x, dy)

defines a Markov kernel, such that Tλ = Tμ ◦ Tν (in fact, it is enough if ν is a Markov
kernel). We will use the expression λ = μ ◦ ν to denote the weak Markov kernel
defined by (4).

3 Observables and their Smearings

Let H be a separable Hilbert space, E (H) = {T ∈ B(H) : 0 ≤ T ≤ I } the set of
Hilbert space effects, and let m0 be a faithful state on B(H). Let M : (X, A) → E (H)
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be a POV measure (observable) and let ν : X × B → [0,1] be a weak Markov kernel
with respect to the measure m0 ◦ M . Then

B →
∫

X

ν(x,B)M(dx)

defines a POV measure ν ◦ M : (Y, B) → E (H), called the smearing of M by ν.
Clearly, ν1 ◦ M = ν2 ◦ M if and only if ν1 ∼m0◦M ν2. Note that if m is a state on
B(H), then

m ◦ (ν ◦ M)(B) =
∫

X

ν(x,B)m ◦ M(dx) = Tν(m ◦ M)(B)

If N is a smearing of M , we write M � N . The relation � is clearly reflexive.
We next show that it is also transitive. Indeed, let M : (X, A) → E (H), N : (Y, B) →
E (H) and R : (Z, C) → E (H) be POV measures, such that N = ν ◦M and R = μ◦N ,
where ν : X × B → [0,1] is an m0 ◦ M-Markov kernel and μ : Y × C → [0,1] is an
m0 ◦ N -Markov kernel. Since m0 ◦ N = Tν(m0 ◦ M), we can define the m0 ◦ M-
Markov kernel λ = μ ◦ ν : X × C → [0,1], as in the previous section. Then for every
state m,

m ◦ (λ ◦ M) = Tλ(m ◦ M) = Tμ(Tν(m ◦ M)) = Tμ(m ◦ N) = m ◦ R,

so that R = λ ◦ M and M � R. Therefore, � is a preorder on the set of observables.
If M � R and R � M we write M ∼ R, and say that M and R are equivalent.

4 Observables with Commutative Range

Suppose that the range R(M) of the observable M : (X, A) → E (H) is commutative.
Observables of this type were characterized in several different ways, but they are
always obtained from PV measures (sharp observables).

An example of such observable is a POV measure M : (X, A) → L∞(Y, B, τ ) ⊂
B(L2(Y, B, τ )) for some τ ∈ P (Y, B). It is easy to show that the set of all such POV
measures can be identified with the quotient K(Y, A, τ ), the correspondence is given
by M(A) = νA. Note that if N = μ◦M for a weak Markov kernel μ : X× C → [0,1],
then N corresponds to the composition μ ◦ ν.

In fact, this describes all observables with commutative range. Indeed, let R be any
commutative von Neumann subalgebra in B(H), containing the range of M . Then R
is generated by a single self-adjoint operator S. Let PS be the spectral measure of S

and let us denote τS = m0 ◦PS . Then R can be identified with the von Neumann alge-
bra L∞(R,B(R), τS), by f �→ f (S). It follows that M corresponds to a τS -Markov
kernel ν : R × A → [0,1], so that

M(A) = νA(S) =
∫

R

ν(t,A)PS(dt) (5)

This implies the following characterization of commutative POV measures.
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Theorem A [5] The observable M has a commutative range if and only if there is a
PV measure P : (R,B(R)) → E (H) and a weak Markov kernel ν : R × A → [0,1],
such that M = ν ◦ P .

Our next aim is to compare this characterization to another one, obtained by
Holevo [3]. For this, let D := P (X, A) ⊂ [0,1]A. Let B([0,1]A) be the Borel
σ -algebra on [0,1]A, generated by the cylinders, and let S := B([0,1]A) ∩ D.

Theorem B M is an observable with commutative range if and only if there exists a
(unique) PV measure P̃ : (D, S) → E (H), such that

M(A) =
∫

D

ρ(A)P̃ (dρ)

Note that also in Theorem B, M is a smearing of the PV measure P̃ by the Markov
kernel κ : D × A → [0,1], given by κ(ρ,A) = ρ(A), so that P̃ � M .

Proposition 1 Let M : (X, A) → E (H) be a POV measure with commutative range.
Let

M(A) =
∫

R

ν(x,A)P (dx)

be as in Theorem A. Let us define the function ϕ : R → [0,1]A by ϕ(x) = ν(x, ·).
Then ϕ is B([0,1]A)-measurable and

P̃ (F ∩ D) := P(ϕ−1(F )), F ∈ B([0,1]A)

is a PV measure (D, S) → E (H) that satisfies

M(A) =
∫

D

ρ(A)P̃ (dρ).

Proof The function ϕ is B([0,1]A)-measurable, since νA is measurable for each A.
The rest of the proof is based on the following lemma. �

Lemma 4.1 Let F ∈ B([0,1]A) be such that F ∩ D = ∅. Then P(ϕ−1(F )) = 0.

Proof This proof is a modification of the proof of [3, Lemma 2].
So let f ∈ [0,1]A, then f ∈ D if and only if f (A1) + f (A2) + · · · = 1 for any

mutually disjoint sequence {An}n of sets in A, such that
⋃

An = X. For each such
sequence, we denote B({An}) := {f,

∑
n f (An) = 1}. Clearly, B({An}) is a closed

subset in the compact space [0,1]A and D = ∩B({An}), over all such sequences.
Let F ′ ⊂ F be closed. Since F ∩ D = ∅, F ′ ⊂ Dc = ⋃

B({An})c . As F ′ is
compact, there exists a finite number of sequences, {A1

n}, . . . , {Ak
n}, such that F ′ ⊂⋃

i B({Ai
n})c. From this,

ϕ−1(F ′) ⊆
⋃
i

{
x,

∑
n

ν(x,Ai
n) 
= 1

}
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and the set on the right hand side has m0 ◦ P -measure 0, since ν is a weak Markov
kernel. It follows that m0 ◦ P(ϕ−1(F ′)) = 0 for all closed sets F ′ ⊂ F .

Note that the Borel σ -algebra B([0,1]A) is generated by sets of the form {f,ai ≤
f (Ai) ≤ bi, i = 1, . . . ,m} and these are Gδ-sets. Hence B([0,1]A) is the algebra
of Baire sets and consequently, F �→ m0 ◦ P(ϕ−1(F )) is a Baire measure. Since all
Baire measures are regular, we have

m0 ◦ P(ϕ−1(F )) = sup{m0 ◦ P(ϕ−1(F ′), F ′ ⊂ F,F ′ is closed} = 0 �

Proof of Proposition 1 First we prove that P̃ is well defined. Let F ∩D = E ∩D, we
have to prove that P(ϕ−1(E)) = P(ϕ−1(F )). We have (F�E) = (F \ E) ∪ (E \ F),
(F \ E) ∩ D = F ∩ D \ E = E ∩ D \ E = ∅, which entails that (F�E) ∩ D = ∅.
Hence P(ϕ−1(F�E)) = 0. Since E = (E ∩ F) ∪ (E \ F), F = (E ∩ F) ∪ (F \ E),
we obtain P(ϕ−1(E)) = P(ϕ−1(E ∩ F)) = P(ϕ−1(F )).

For A ∈ A then
∫

D

ρ(A)P̃ (dρ) =
∫

[0,1]A
f (A)P (ϕ−1(df ))

=
∫

R

ϕ(x)(A)P (dx)

=
∫

R

ν(x,A)P (dx) = M(A). �

Proposition 2 Let M be an observable with commutative range and let P̃ : (D, S) →
E (H) be a PV-measure such that

M(A) =
∫

D

ρ(A)P̃ (dρ).

Then there is a real PV measure R : (R, B(R)) → E (H) such that R ∼ P̃ � M .
Moreover, P̃ = λ ◦ R for a weak Markov kernel λ : R × S → {0,1} and ν = κ ◦ λ

satisfies

M(A) =
∫

R

ν(x,A)R(dx).

Proof The range R(P̃ ) is a boolean σ -subalgebra of the projection lattice of H. By
[10, Theorem 1.6(i)], there is a real PV measure R : (R, B(R)) → E (H) such that
R(P̃ ) = R(R). By [4, Theorem 3.4], there is a weak Markov kernel λ : R × S →
{0,1} such that

P̃ (C) =
∫

R

λ(x,C)R(dx), C ∈ S,

hence R � P̃ . As we have seen, M = κ ◦ P̃ for the Markov kernel κ(ρ,A) = ρ(A),
ρ ∈ D, A ∈ A, hence also P̃ � M . Now, M = ν ◦ R, with ν = κ ◦ λ according to
Sect. 1.
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Since P̃ and R have the same ranges, we also have P̃ � R so that P̃ ∼ R. Notice
that by [4, Theorem 3.5(ii′)], there is a function f : D → R such that R(B) = P̃ ◦
f −1(B), B ∈ B(R). �

5 Representation of Commutative POV Measures by Choquet Theorem

Now we consider integral representation of POV measures by Choquet theorem, as
it was obtained in [1], but we formulate this result in the setting of Markov kernels.
Throughout this section, we suppose that X is a separable metrizable locally compact
topological space and A the σ -algebra of Borel subsets. Note that in this case, X is a
Polish space [2, Theorem 4.3.26 and p. 196], so that (X, A) is standard Borel.

We consider the set of all POV measures (X, A) → L∞(R, τ ), where τ is a prob-
ability measure on (R,B(R)). By the beginning of the previous section, this set is
identified with K(R, A, τ ) and by Theorem 2.1, each of the equivalence classes con-
tains a Markov kernel.

Let C0(X) be the set of continuous functions g : X → C, vanishing at infinity
and let uα be an approximate unit in C0(X). As we have seen in Sect. 2.1, each
equivalence class [λ] defines a Markov operator

T ∗
λ : C0(X) ⊂ L∞(X, A, Tλ(τ )) → L∞(R, τ )

and, since we may suppose that λ is a Markov kernel,

T ∗
λ (g) =

∫
X

g(x)λ(t, dx), g ∈ C0(X) (6)

This implies that T ∗
λ (uα) → 1. Conversely, it is known and can be shown for example

by the Riesz representation theorem, that any positive linear operator L : C0(X) →
L∞(R, τ ), satisfying L(uα) → 1 is given by (6), for some Markov kernel λ.

Let us endow the set K(R, A, τ ) with the topology T , such that [λα] converges to
[λ] if ∫

R

T ∗
λα

(g)(t)h(t)τ (dt) →
∫

R

T ∗
λ (g)(t)h(t)τ (dt)

for each g ∈ C0(X) and h ∈ L1(R, τ ). Then K(R, A, τ ) is compact and metrizable,
this can be proved as [1, Lemma 1], using the fact that the space L1(R, τ ) is separable.

5.1 Extreme Points in K(R, A, τ )

Since K(R, A, τ ) is clearly convex, we can apply Choquet theorem (e.g. [6]) to ob-
tain a representing measure, concentrated on the set of extreme points ∂ . The ex-
treme points of the set of Markov kernels are the Markov kernels with values in
{0,1}. Therefore it is not difficult to see that the extreme points in K(R, A, τ ) are
the equivalence classes [δ], with δ(t,A) ∈ {0,1}, τ -a.s. for all A. We will show that
these are precisely the equivalence classes [χf ], where χf (t,A) := χf −1(A)(t) for a
measurable function f : R → X.
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It is clear that any [χf ] is an extreme point. The proof of the converse is similar to
the proof of [4, Theorem 3.3], so we omit some of the details.

So let [δ] be an extreme point and let us suppose that δ is a Markov kernel. Let
π(A) = {s, δ(s,A) = 1}, then δ(t,A) = χπ(A)(t), τ -a.s. Moreover, it can be shown
that π is a σ -homomorphism of sets modulo τ . Let I := {B ∈ B(R), τ (B) = 0},
then I is a σ -ideal and B(R)/I is a Boolean σ -algebra. Let p : B(R) → B(R)/I be
the canonical homomorphism and put π1 = p ◦ π . Then π1 : A → B(R)/I is a σ -
homomorphism and by [10, Theorem 1.4], there is a measurable function f : R → X,
such that p ◦ π(A) = π1(A) = p ◦ f −1(A). Hence, δ(t,A) = χf −1(A)(t), τ -a.s.

Let now f1 and f2 be measurable functions R → X, such that [χf1 ] = [χf2 ]. By
definition, χ

f −1
1 (A)

(t) = χ
f −1

2 (A)
(t), τ -a.s., so that, for each A ∈ A,

τ({s, f1(s) ∈ A,f2(s) ∈ Ac}) = 0

Let Br(x) be the open ball in X with radius r and centered at x, recall that X is
metrizable. Then Br(x) ∈ A. Since X is separable, we can choose a countable dense
subset {xn} in X. It is clear that

{s, f1(s) 
= f2(s)} =
⋃

n∈N,r∈Q

{s, f1(s) ∈ Br(xn), f2(s) ∈ Br(xn)
c}

so that f1 = f2, τ -a.s. This implies that the set of extreme points ∂ can be identified
with the set F (τ ) of measurable functions f : R → X modulo τ .

Next we identify the topology in F (τ ), inherited from T . Let f ∈ F (τ ), then for
any measurable step function g(x) = ∑

i ciχAi
(x), we have

T ∗
χf

(g)(t) =
∫

g(x)χf (t, dx) =
∑

i

ciχf −1(Ai)
(t) = g ◦ f (t)

Since T ∗
χf

is normal, this holds for any bounded measurable function g, hence also
for all g ∈ C0(X).

Let now fn,f ∈ F (τ ) be such that [χfn ] → [χf ] in T -topology. Then for all
g ∈ C0(X), h ∈ L1(R, τ ), we get that

∫
R

g ◦ fn(t)h(t)τ (dt) →
∫

R

g ◦ f (t)h(t)τ (dt)

equivalently,

g ◦ fn(t) → g ◦ f (t), τ -a.s. g ∈ C0(X) (7)

It is clear that this holds if fn(t) → f (t), τ -a.s. We are going to prove the converse.
So let (7) be true and let s be such that fn(s) � f (s). Then there is an open

neighborhood f (s) ∈ O , such that fn(s) /∈ O for large enough n. Since X is locally
compact, there is an open set U , such that f (s) ∈ U ⊂ Ū ⊂ O and Ū is compact.
Then {f (s)} and Uc are disjoint closed sets.

By Urysohn’s Lemma, there is a continuous function g : X → [0,1], such that
g(f (s)) = 1 and g(x) = 0 for x ∈ Uc, so that g(fn(s)) = 0 for large enough n, hence
g(fn(s)) � g(f (s)). Clearly, g ∈ C0(X), since g vanishes outside the compact set Ū .
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Let us now choose a countable dense subset {gi} in C0(X) (note that also C0(X)

is separable) and pick a gi sufficiently close to g, then also gi(fn(s)) � gi(f (s)).
Therefore,

{s, fn(s) � f (s)} =
⋃
i

{s, gi ◦ fn(s) � gi ◦ f (s)}

so that fn(s) → f (s), τ -a.s. We have shown the following theorem.

Theorem 5.1 The set ∂ of extreme points of K(R, A, τ ) can be identified with F (τ )

with the topology of τ -a.s. pointwise convergence.

5.2 Integral Representations for Commutative POV Measures

Recall that we consider POV measures (X, A) → L∞(R, τ ) identified with the set
K(R, A, τ ) which is convex, compact and metrizable. The following result is a spe-
cial case of [1, Theorem 2], taking into account Theorem 5.1.

Theorem 5.2 For each τ ∈ P (R,B(R)) and a Markov kernel λ : R × A → [0,1],
there is a representing measure σ concentrated on F (τ ), such that

λ(t,A) =
∫

F (τ )

χf −1(A)(t)σ (df ), τ -a.s.

Let now M : (X, A) → B(H) be a POV measure with commutative range and let
R ⊂ B(H) be a commutative subalgebra containing R(M). As before, we identify R
with L∞(R, τS), τS = m0 ◦ PS , and M with (the ∼τS

-equivalence class of) a Markov
kernel λ : R × A → [0,1]. Let σ be the representing measure of λ on F (τS). Then
we have

M(A) =
∫

R

λ(t,A)PS(dt) =
∫

R

∫
F (τS)

χf −1(A)(t)σ (df )PS(dt)

=
∫

F (τS)

∫
R

χf −1(A)PS(dt)σ (df ) =
∫

F (τS)

PS(f −1(A))σ (df )

so that M can be obtained as an integral over the set of PV measures on (X, A) with
ranges in R.

6 Naimark Extensions

Let M : (X, A) → B(H) be a commutative POV measure. Let K be a Hilbert space
containing H and let P̂ be a Naimark extension of M on K, then EP̂ (A)E = M(A),
where E : K → H is the orthogonal projection.

Let R, S and PS be as before and let ν be the weak Markov kernel, such that
M(A) = νA(S). Let R̂ be a real PV measure having the same range as P̂ , see the
proof of Proposition 2, and let Ŝ be the self-adjoint operator with spectral measure R̂.
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Then, since R(P̂ ) = R(R̂), there is some measurable function ϕ : X → R, such that
R̂(B) = P̂ (ϕ−1(B)). Then

ER̂(B)E = EP̂ (ϕ−1(B))E = M(ϕ−1(B))

so that EχB(Ŝ)E = νϕ−1(B)(S). Clearly, (t,B) �→ ν(t, ϕ−1(B)) is a weak Markov
kernel R × B(R) → [0,1] with respect to τS , which we denote by ν ◦ ϕ−1. Then

EχB(Ŝ)E = (ν ◦ ϕ−1)B(S) = T ∗
ν◦ϕ−1(χB)(S)

Since this holds for any B ∈ B(R) and T ∗
ν◦ϕ−1 is a Markov operator, we get

Eg(Ŝ)E = T ∗
ν◦ϕ−1(g)(S)

for any bounded measurable function g : R → C. Since (R,B(R)) is standard Borel,
there is a Markov kernel κ : R × B(R) → [0,1] with Tν◦ϕ−1 = Tκ , so that

Eg(Ŝ)E = T ∗
κ (g)(S) =

∫
R

g(t)κ(S, dt) =
∫

F (τS)

g ◦ f (S)σ (df )

where κ = ∫
F (τS)

χf −1(·)σ (df ) is the integral representation from Theorem 5.2.
Let us now suppose that X is a separable metrizable locally compact space and

let M = λ ◦ PS for a Markov kernel λ. Let λ = ∫
F (τS)

χf −1(·)σ (df ) be the integral
representation from Theorem 5.2.

Let K = H ⊗ L2(F (τS), σ ). Then K can be identified with the Hilbert space of
functions ϕ : F (τS) → H, with the inner product (ϕ,ψ) = ∫ 〈ϕ(f ),ψ(f )〉σ(df ).
Then H can be identified with the subspace of constant functions H ⊗ 1 and the
projection E : K → H ⊗ 1 is given by

(Eϕ)(f ) =
∫

F (τS)

ϕ(g)σ (dg), ϕ ∈ K, f ∈ F (τS)

Let us define a PV measure P̂ : (X, A) → B(K) by

(P̂ (A)ϕ)(f ) = χf −1(A)(S)ϕ(f ) = PS(f −1(A))ϕ(f ), ϕ ∈ K

Then each P̂ (A) is a decomposable operator f �→ P̂ (A)(f ) = PS(f −1(A)) and (tak-
ing into account the end of previous section) it is rather clear that P̂ is a Naimark
extension of M .
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