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Abstract. In the finite dimensional case, we introduce a family of torsion-free
affine connections in the manifold of all invertible density matrices. These are
the quantum version of Amari’s α-connections, based on the α-representation
of the tangent space. The dual connections with respect to a monotone metric
are, in general, not torsion-free. We compute the torsion and the Riemannian
curvature. Finally, geodesics are used to define a divergence.

Monotone metrics

If not stated otherwise, the proofs can be found in [6].
LetM denote the differentiable manifold of all n-dimensional complex hermitean

matrices and let M+ = {M ∈ M | M > 0}. Let T̃M be the tangent space at M .
We introduce a Riemannian structure in M+, defining an inner product in T̃M by
λM (X,Y ) = TrXJM (Y ) where JM is a suitable superoperator on matrices. The
state space of an n-level quantum system can be identified with the submanifold
D = {D ∈M+ | TrD = 1}. The tangent space TD ⊂ T̃D is the real N -dimensional
vector space of all self-adjoint traceless matrices. We require that λ is monotone,
in the sense that if T is a stochastic map, then

λT (M)(T (X), T (X)) ≤ λM (X,X), ∀M ∈M+, X ∈M

As it was proved in [8], this is true iff JM is of the form

(1) JM = (R
1
2
Mf(LMR−1

M )R
1
2
M )−1

where f : R+ → R is an operator monotone function such that f(t) = tf(t−1) for
every t > 0 and LM (A) = MA and RM (A) = AM , for each matrix A. We also
adopt a normalization condition f(1) = 1.

Let T ∗D be the cotangent space of D at D, then T ∗D is the vector space of all
observables A with zero mean at D (i.e. TrDA = 0). It is easy to see that

(2) T ∗D = {JD(H) | H ∈ TD}

Here are some examples of monotone metrics.
1. Let JD(H) = G, where GD +DG = 2H, the corresponding metric is called

the metric of the symmetric logarithmic derivative, see [5, 9].
2. If JD(H) = d

dt log(D+ tH)|t=0, we obtain the well-known Kubo-Mori metric.
3. Let JD(H) = 1

2 (D−1H +HD−1). The corresponding metric is the metric of
the right logarithmic derivative, see [5, 10]

For more about monotone metrics and their use see [9, 10, 4].
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The α-representation

Let g : R→ R be a smooth (strictly) monotone function. We define an operator
Lg[M ] : T̃M → T̃g(M) by (see [6])

Lg[M ](H) =
d

ds
g(M + sH)|s=0

In what follows, we omit the indication of the point in square brackets if no
confusion is possible. The vector space

T g
D = {Lg(H) | H ∈ TD}

will be called the g-representation of the tangent space TD. The corresponding
inner product in T g

D is

λg
D(G1, G2) = λD(L−1

g (G1), L−1
g (G2)) = TrG1Kg(G2)

where Kg = L−1
g JDL

−1
g . The g-representation of the cotangent space is given by

T g∗
D = {Kg(G) |G ∈ T g

D} = {Lg−1JD(H) | H ∈ TD}
Clearly, if g is the identity function, we obtain the usual tangent and cotangent

spaces TD and T ∗D.
The quantum analogue of Amari’s α-representations [1] is obtained if we put

g(x) = gα(x) =
{

2
1−αx

1−α
2 α 6= 1

log x α = 1

We have Tα∗
D = T−α

D for each α so that Kα is an isomorphism Kα : Tα
D → T−α

D .
We have

K−1
α = K−α ⇐⇒ JD = Jα := L−αLα = J−α.

The family of metrics Jα was studied in [4] and it was shown that these are monotone
for α ∈ [−3, 3]. For example, the Kubo-Mori metric is obtained if α = ±1 and the
right logarithmic derivative metric if α = ±3.

The affine connections, torsion and curvature

In this section, we define the α-connections in M+ and D and investigate the
important notions of duality, stated in [1], namely the dual connections and the
existence of dual affine coordinate systems.

Let g : R → R be a smooth strictly monotone function and let M,M ′ ∈ M+.
Then there is an isomorphism T̃M → T̃M ′ given by H 7→ L−1

g [M ′]Lg[M ](H). This
isomorphism induces an affine connection on M+. Let us denote the corresponding
covariant derivative by ∇̃g.

Let x1, . . . , xN+1 be a coordinate system in M+. Let us denote ∂i = ∂
∂xi

and let
H̃i = ∂iM(x), G̃i = Lg(H̃i) = ∂ig(M(x)), i = 1, . . . , N + 1. Then

Lg(∇̃g

H̃j
H̃i) = ∂i∂jg(M(x))

Hence, the coefficients of the affine connection are

Γ̃g
ijk(x) = λx(∇̃g

H̃i
H̃j , H̃k) = Tr∂i∂jg(M(x))Kg(G̃k), i, j, k = 1, . . . , N + 1

From this, it follows that this connection is torsion-free.
If we use the functions gα, we obtain a one-parameter family of torsion-free

connections ∇̃α which is the quantum analogue of α-connections defined by Amari
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[1]. But, unlike the classical case, the connections ∇̃α and ∇̃−α are not dual in
general.

To obtain the dual connection, consider the isomorphism T̃M → T̃M ′ , given by
H 7→ J−1

M ′Lg[M ′]L−1
g [M ]JM (H). The induced affine connection on M+, resp. the

covariant derivative will be denoted by ∇̃g∗. We have

L−1
g [M ]JM (∇̃g∗

H̃i
H̃j) = ∂iKg(G̃j(x))

The coefficients of this connection are

(3) Γ̃g∗
ijk = λ(∇̃g∗

H̃i
H̃j , H̃k) = Tr∂iKg(G̃j)G̃k

It is easy to prove that ∇̃g and ∇̃g∗ are dual.
The components of the torsion tensor are

S̃g∗
ijk = Γ̃g∗

ijk − Γ̃g∗
jik = Tr{∂iKg(G̃j(x))− ∂jKg(G̃i(x))}G̃k

so that this connection is torsion-free iff ∂iKg(G̃j) = ∂jKg(G̃i), ∀i, j = 1, . . . , N+1.
Obviously, this is not always the case.

Consider now D as an N -dimensional submanifold in M and let t1, . . . , tN be a
coordinate system in D. As there is no danger of confusion, we use the symbol ∂i

also for ∂
∂ti

. Let Hi = ∂iD(t), Gi = ∂ig(D(t)), i = 1, . . . , N . The affine structure in
D is obtained by projecting the above affine connections orthogonaly onto D. The
covariant derivative is given by

Lg(∇g
Hj
Hi) = ∂i∂jg(Dt)− g′(Dt)DtTr(g′(Dt))−1∂i∂jg(Dt)

L−1
g JD(∇g∗

Hi
Hj) = ∂iKg(Gj(t))− (g′(Dt))−1Trg′(Dt)Dt∂iKg(Gj(t))

and the coefficients are

Γg
ijk(t) = TrKg(Gk)∂i∂jg(Dt) Γg∗

ijk(t) = TrGk∂iKg(Gj(t))

Proposition 1. Let α ∈ [−3, 3]. The following statements are equivalent:

(i) ∇̃α∗ is torsion-free
(ii) ∇α∗ is torsion-free
(iii) JD = Jα = L−αLα

Proof. The cases (i) ⇒ (ii) and (iii)⇒ (i) are rather obvious. We prove (ii)⇒ (iii):
Let us consider the natural affine parametrization in D

Dt = D0 +
∑

i

tiHi t ∈ Θ ⊂ RN TrHi = 0, i = 1, . . . , N

Let ∇α∗ be torsion-free, then

Tr
(
∂iL

−1
α JD(Hj)− ∂jL

−1
α JD(Hi)

)
Lα(Hk) = 0 i, j, k = 1, . . . , N

Clearly, D ∈ T̃D, D ⊥ TD for each D ∈ D and

Tr∂i{L−1
α JD(Hj)}Lα(D) = ∂iTrL−1

α JD(Hj)Lα(D)− 1− α
2

TrLαJD(Hj)∂igα(D) =

= −1− α
2

TrJD(Hj)Hi = Tr∂j{L−1
α JD(Hi)}Lα(D)

It follows that ∂iL
−1
α JD(Hj) = ∂jL

−1
α JD(Hi), for i, j = 1, . . . , N . This implies

the existence of a potential function Φ : Θ → M, such that d
dtΦ(D + tH) =
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L−1
α [D+tH]JD+tH(H). Let α 6= −1. If DH = HD, then L−1

α [D+tH]JD+tH(H) =
(D + tH)

α−1
2 H. Let H = D − 1

n . Compute

Φ(D)− Φ(
1
n

) =
∫ 1

0

d

dt
Φ(

1
n

+ tH)dt =
∫ 1

0

(
1
n

+ tH)
α−1

2 Hdt = g−α(D)− gα(
1
n

)

It follows that L−1
α JD(H) = L−α(H). The case α = −1 is proved similarly.

Let us now compute the Riemannian curvature. Let R̃g (R̃g∗) be the Riemannian
curvature tensor of ∇̃g (∇̃g∗) in M+, then R̃g = R̃g∗ = 0. The curvature tensor
Rg in D is equal to

Rg
ijkl = Hg

jk1H
g∗
il1 −H

g
ik1H

g∗
jl1

where Hg
ij1, resp. Hg∗

ij1, is the Euler-Shouten imbedding curvature. If g = gα,

Rα
ijkl(D) =

1− α2

4
{TrHjJα(Hk)TrHiJD(Hl)− TrHiJα(Hk)TrHjJD(Hl)}

We see that Rα = 0 iff α = ±1. The dual curvature Rα∗ is then computed from [2]

(4) R̃(X,Y, Z,W ) = −R̃∗(X,Y,W,Z)

We see that, as ∇̃α and∇±1 connections are flat, there exists an affine coordinate
system. On the other hand, no dual coordinate system and hence no potential
function exists, unless JD = Jα. It means that, in general, we cannot use Amari’s
theory to define a divergence.

Geodesics and divergence functions

As one dimensional submanifolds are always torsion-free, a divergence exists
for each ∇±1∗ and ∇̃α∗-geodesic. As suggested in [7], we use these to define a
divergence in D (M+).

For each α, a ∇̃α∗-geodesic is a solution of

(5) L−1
α Jρt(ρ̇t) = A

where A ∈M, it means that each geodesic is determined by the observable A.

Proposition 2. Let ρ̃t be a solution of L−1
α Jρt(ρ̇t) = A. Then ρt = ρ̃t

Trρ̃t
is a ∇α∗

geodesic.

A divergence measure in D (M+) can be defined as follows. Let ρ0, ρ1 ∈
M+. Let ρ̃t be the unique ∇̃α∗-geodesic connecting them. The α-divergence is
Dα(ρ0, ρ1) = Dρ̃

α(0, 1).

Proposition 3. Let α 6= 1, ρ0, ρ1 ∈ M+. Let ρ̃t be as above and let A be the
corresponding observable. Then

Dα(ρ0, ρ1) =
2

1− α
(Trρ0 − Trρ1) + Trgα(ρ1)A

If α = −1 and ρ0, ρ1 ∈ D, we may use the ∇α∗-geodesic ρt = (Trρ̃t)−1ρ̃t to
define -1- divergence. In this way we obtain the restriction of Dα to D.
Examples. 1. Let JD = Jα for some α ∈ [−3, 3]. In this case we have the same
situation as in the classical case. Thus for α = ±1, the divergence is given by

D(ρ0, ρ1) = Trρ1(log ρ1 − log ρ0)

which is the relative entropy.
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For α 6= ±1, Dα(ρ0, ρ1) = Trgα(ρ1)(g−α(ρ1) − g−α(ρ0)) This α-divergence was
defined also in [3]. It is easy to see that the above divergence functions are the
same as those from Proposition 3.

2.[7] Let α = −1 and let λ be the metric of the symmetric logarithmic derivative.
Then

ρt = exp{1
2
(tA− ψ(t))}ρ0 exp{1

2
(tA− ψ(t))}

where ψ(t) = log Trρ0 exp tA is a ∇−1∗-geodesic. The divergence is

D−1(ρ0, ρ1) = 2Trρ1 log ρ−
1
2

0 (ρ
1
2
0 ρ1ρ

1
2
0 )

1
2 ρ

− 1
2

0

which coincides with the relative entropy if ρ0 and ρ1 commute.
3. Let α = −1 and let λ be the metric of the right logarithmic derivative. Let

QF be the linear operator given by Q−1
F (A) = 1

2 (F− 1
2AF

1
2 + F

1
2AF− 1

2 ), then

ρt = ρ
1
2 exp{(t− 1)Qρ(A)− ψ(t)}ρ 1

2

with ψ(t) = log Trρ exp{(t− 1)Qρ(A)} is a ∇−1∗-geodesic. The divergence is given
by

D−1(ρ0, ρ1) = Trρ1A = Trρ1 log ρ
1
2
1 ρ

−1
0 ρ

1
2
1

which is another version of the relative entropy.
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