DUALISTIC PROPERTIES OF THE MANIFOLD OF QUANTUM
STATES

ANNA JENCOVA

ABSTRACT. In the finite dimensional case, we introduce a family of torsion-free
affine connections in the manifold of all invertible density matrices. These are
the quantum version of Amari’s a-connections, based on the a-representation
of the tangent space. The dual connections with respect to a monotone metric
are, in general, not torsion-free. We compute the torsion and the Riemannian
curvature. Finally, geodesics are used to define a divergence.

MONOTONE METRICS

If not stated otherwise, the proofs can be found in [6].

Let M denote the differentiable manifold of all n-dimensional complex hermitean
matrices and let M* = {M € M | M > 0}. Let Ty be the tangent space at M.
We introduce a Riemannian structure in M™, defining an inner product in Tv by
A (X,Y) = TerX Jp(Y) where Jys is a suitable superoperator on matrices. The
state space of an n-level quantum system can be identified with the submanifold
D ={D e M* | TrD = 1}. The tangent space Tp C Tp is the real N-dimensional
vector space of all self-adjoint traceless matrices. We require that A is monotone,
in the sense that if T' is a stochastic map, then

Aron(T(X), T(X)) < Ay(X,X), VM e MY, X e M

As it was proved in [8], this is true iff Jjs is of the form

(1) Jar = (R, f(Ly Ry} RE,) ™

where f : Rt — R is an operator monotone function such that f(t) = tf(t=1) for
every t > 0 and Ly (A) = MA and Ry (A) = AM, for each matrix A. We also
adopt a normalization condition f(1) = 1.

Let T}, be the cotangent space of D at D, then T}, is the vector space of all
observables A with zero mean at D (i.e. TtDA = 0). It is easy to see that

(2) Tp ={Jp(H) | H € Tp}

Here are some examples of monotone metrics.

1. Let Jp(H) = G, where GD + DG = 2H, the corresponding metric is called
the metric of the symmetric logarithmic derivative, see [5, 9].

2. If Jp(H) = 4 log(D+tH)|i~o, we obtain the well-known Kubo-Mori metric.

3. Let Jp(H) = %(D‘lH + HD™'). The corresponding metric is the metric of
the right logarithmic derivative, see [5, 10]

For more about monotone metrics and their use see [9, 10, 4].
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THE -REPRESENTATION
Let g : R — ]:2 be a smooth (strictly) monotone function. We define an operator
Ly[M] : Tng — Tyary by (see [6])

Ly[M](H) (M + sH)|s=o

S
In what follows, we omit the indication of the point in square brackets if no
confusion is possible. The vector space

T}, ={L4(H) | H € Tp}

will be called the g-representation of the tangent space Tp. The corresponding
inner product in T is

A (G1,Ga) = Ap(L, N (Gh), LM (Ga)) = TrG1 Ky (Ga)
where K, = Lg_lJ DLg_l. The g-representation of the cotangent space is given by
TH ={Ky4(G) |GeTh}y ={Ly,~Jp(H) | He Tp}

Clearly, if g is the identity function, we obtain the usual tangent and cotangent
spaces Tp and T'f.
The quantum analogue of Amari’s a-representations [1] is obtained if we put
2 l-oa
{ mx 2 « #1

o) =galm) =1 T T 07

We have TH* = T, for each a so that K, is an isomorphism K, : T5 — T,
We have

K'=K o < Jp=Jo:=L oLoa=J 4.
The family of metrics .J, was studied in [4] and it was shown that these are monotone
for a € [—-3,3]. For example, the Kubo-Mori metric is obtained if &« = +1 and the
right logarithmic derivative metric if o = £3.

THE AFFINE CONNECTIONS, TORSION AND CURVATURE

In this section, we define the a-connections in M™* and D and investigate the
important notions of duality, stated in [1], namely the dual connections and the
existence of dual affine coordinate systems.

Let g : R — R be a smooth strictly monotone function and let M, M’ € M.
Then there is an isomorphism Th; — Thy given by H — L [M'|Ly[M](H). This
isomorphism induces an affine connection on M™. Let us denote the corresponding
covariant derivative by V9.

Let x1,...,Tx41 be a coordinate system in M™. Let us denote 9; = -2 and let

83@1
H; = 0;M(x), Gi = Ly(H;) = dig(M(z)), i =1,...,N + 1. Then
Lg(?%{jﬁi) = 0;0;9(M(z))
Hence, the coefficients of the affine connection are

LY (@) = A (VY Hj, Hy) = Ted;0;9(M () Ky (Gr), i gk =1,...,N+1

From this, it follows that this connection is torsion-free.

If we use the functions g,, we obtain a one-parameter family of torsion-free
connections V* which is the quantum analogue of a-connections defined by Amari
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[1]. But, unlike the classical case, the connections V* and V~* are not dual in
general. R 3
To obtain the dual connection, consider the isomorphism Th; — T, given by
H v Jy Lg[M'|L; [M]Jp(H). The induced affine connection on M*, resp. the
covariant derivative will be denoted by V9*. We have
L?[M]JM(@%}:JEIJ') = 0;K,(Gj(x))
The coefficients of this connection are

It is easy to prove that V9 and V9 are dual.
The components of the torsion tensor are

Seh =19 — T = Tr{0:K,(G;(x)) — 0;K,(Gi(x))} G

so that this connection is torsion-free iff 8; K, (G;) = 9;K,(Gy), Vi, j = 1,..., N+1.
Obviously, this is not always the case.

Consider now D as an N-dimensional submanifold in M and let ¢1,...,tx be a
coordinate system in D. As there is no danger of confusion, we use the symbol 9;
also for % Let H; = 9;D(t), G; = 9;9(D(t)), i =1,..., N. The affine structure in
D is obtained by projecting the above affine connections orthogonaly onto D. The
covariant derivative is given by

Ly(Vi Hi) = 0:9;9(D:) — g'(De) DiTr(g'(Dy)) ™ 8:059(Dy)
LYIp(Vi Hy) = 0;Ky(G(t)) — (¢ (Dy)) " Trg'(Di) D:0; K4 (G5 (1))
and the coefficients are

9 (t) = TrK,(Gy)9;0;9(D;) T,

ijk ijk

(1) = TrGrOi K, (G (1))

Proposition 1. Let a € [-3,3]. The following statements are equivalent:

(i) V* is torsion-free
(ii) V** is torsion-free
(ifl) Jp = Jo = L_aLq

Proof. The cases (i) = (ii) and (iii)= (i) are rather obvious. We prove (ii)= (iii):
Let us consider the natural affine parametrization in D

Dy=Dy+>» t;H; te©®CRY TrH;=0,i=1,...,N
i

Let V* be torsion-free, then
Tr (0; L' Jp(H;) — 0;L Jp(H;)) La(Hg) = 0,5,k =1,...,N
Clearly, D € TD, D 1 Tp for each D € D and

l1—«

Teoi{ Ly ' Jp(H;)}Lo(D) = O;TrL, ' Jp(H;)Lo(D) —

TrLoJp(H;)0iga (D) =

_ 1 ; aTrJD(Hj)Hi = Trd;{L, " " Jp(H;)}La(D)

It follows that &;L;'Jp(H;) = ;L Jp(H;), for 4,5 = 1,...,N. This implies
the existence of a potential function ® : © — M, such that £&(D + tH) =
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LY D+tH]Jpen(H). Let a # —1. If DH = HD, then L3 [D+tH]Jpos(H) =
(D+tH)*T H. Let H=D — 1. Compute
a—1 1

1 1
@(D)—@(%):/O %@(%+tH)dt:/0 (%+tH)THdt:g_a(D)—ga(

It follows that L3 Jp(H) = L_o(H). The case a« = —1 is proved similarly.

Let us now compute the Riemannian curvature. Let R9 (R?*) be the Riemannian
curvature tensor of V9 (V9*) in M™, then R9 = R9* = 0. The curvature tensor
RY9 in D is equal to

)

n

g  _ g g* g yg*
Rijlel = ijlHill - Hilejll

where HY is the Euler-Shouten imbedding curvature. If g = g,

g*
ij1> Tesp. H:

1510
1—a?
?jkl(D) = 1 {TI‘HjJa(Hk)TI‘HiJD(Hl) - TI‘HZ'JQ(Hk)TI‘HjJD(Hl)}

We see that R* = 0 iff @ = £1. The dual curvature R** is then computed from [2]
(4) R(X,Y,Z,W)=—R"(X,Y,W, Z2)

We see that, as V® and V*! connections are flat, there exists an affine coordinate
system. On the other hand, no dual coordinate system and hence no potential
function exists, unless Jp = J,. It means that, in general, we cannot use Amari’s
theory to define a divergence.

GEODESICS AND DIVERGENCE FUNCTIONS

As one dimensional submanifolds are always torsion-free, a divergence exists
for each V** and V**-geodesic. As suggested in [7], we use these to define a
divergence in D (M™).

For each «, a V**-geodesic is a solution of
(5) Lty (pe) = A

where A € M, it means that each geodesic is determined by the observable A.

Proposition 2. Let p; be a solution of L J,, (p¢) = A. Then p; = szgt is a V*
geodesic.

A divergence measure in D (M™) can be defined as follows. Let pg,p1 €
M™T. Let p; be the unique V**-geodesic connecting them. The a-divergence is

Da(p()apl) = DQ(O, 1)

Proposition 3. Let a # 1, po,p1 € M™. Let py be as above and let A be the
corresponding observable. Then

2
Da(po; pr) = 37— (Trpo — Trpy) + Trga(p1)A

If « = —1 and pg,p1 € D, we may use the V**-geodesic p; = (Trp;) " 1p; to
define -1- divergence. In this way we obtain the restriction of D, to D.
Examples. 1. Let Jp = J, for some o € [—3,3]. In this case we have the same
situation as in the classical case. Thus for @ = +1, the divergence is given by

D(po, p1) = Trp:(log p1 — log po)

which is the relative entropy.
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For oo # 1, Do (po, p1) = Trga(p1)(9—a(p1) — 9—a(po)) This a-divergence was
defined also in [3]. It is easy to see that the above divergence functions are the
same as those from Proposition 3.

2.[7] Let a = —1 and let A be the metric of the symmetric logarithmic derivative.
Then

1 1
e = exp{L (£ — V(1) o exp( 3 (14~ v(1)
where 1)(t) = log Trpg exptA is a V™ 1*-geodesic. The divergence is

1 1 1 1
D_1(po. p1) = 2Trp1 log pg * (pd 193 )2 po
which coincides with the relative entropy if pg and p; commute.
3. Let a = —1 and let A\ be the metric of the right logarithmic derivative. Let
Qr be the linear operator given by Q' (A) = %(F‘%AF% + F2AF~7), then

pe = p* exp{(t = 1)Qp(4) — v (t)}p?
with ¢(t) = log Trpexp{(t — 1)Q,(A)} is a V~'*-geodesic. The divergence is given
by

1 1
D_1(po,p1) = Trp1 A = Trpilog pi py ' pi
which is another version of the relative entropy.
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