DUALISTIC PROPERTIES OF THE MANIFOLD OF QUANTUM STATES

ANNA JENČOVÁ

ABSTRACT. In the finite dimensional case, we introduce a family of torsion-free affine connections in the manifold of all invertible density matrices. These are the quantum version of Amari's α -connections, based on the α -representation of the tangent space. The dual connections with respect to a monotone metric are, in general, not torsion-free. We compute the torsion and the Riemannian curvature. Finally, geodesics are used to define a divergence.

MONOTONE METRICS

If not stated otherwise, the proofs can be found in [6].

Let \mathcal{M} denote the differentiable manifold of all *n*-dimensional complex hermitean matrices and let $\mathcal{M}^+ = \{M \in \mathcal{M} \mid M > 0\}$. Let \tilde{T}_M be the tangent space at M. We introduce a Riemannian structure in \mathcal{M}^+ , defining an inner product in \tilde{T}_M by $\lambda_M(X,Y) = \text{Tr}XJ_M(Y)$ where J_M is a suitable superoperator on matrices. The state space of an *n*-level quantum system can be identified with the submanifold $\mathcal{D} = \{D \in \mathcal{M}^+ \mid \text{Tr}D = 1\}$. The tangent space $T_D \subset \tilde{T}_D$ is the real *N*-dimensional vector space of all self-adjoint traceless matrices. We require that λ is monotone, in the sense that if T is a stochastic map, then

$$\lambda_{T(M)}(T(X), T(X)) \le \lambda_M(X, X), \ \forall M \in \mathcal{M}^+, X \in \mathcal{M}$$

As it was proved in [8], this is true iff J_M is of the form

(1)
$$J_M = (R_M^{\frac{1}{2}} f(L_M R_M^{-1}) R_M^{\frac{1}{2}})^{-1}$$

where $f: \mathbb{R}^+ \to \mathbb{R}$ is an operator monotone function such that $f(t) = tf(t^{-1})$ for every t > 0 and $L_M(A) = MA$ and $R_M(A) = AM$, for each matrix A. We also adopt a normalization condition f(1) = 1.

Let T_D^* be the cotangent space of \mathcal{D} at D, then T_D^* is the vector space of all observables A with zero mean at D (i.e. TrDA = 0). It is easy to see that

(2)
$$T_D^* = \{J_D(H) \mid H \in T_D\}$$

Here are some examples of monotone metrics.

1. Let $J_D(H) = G$, where GD + DG = 2H, the corresponding metric is called the metric of the symmetric logarithmic derivative, see [5, 9].

2. If $J_D(H) = \frac{d}{dt} \log(D + tH)|_{t=0}$, we obtain the well-known Kubo-Mori metric. 3. Let $J_D(H) = \frac{1}{2}(D^{-1}H + HD^{-1})$. The corresponding metric is the metric of the right logarithmic derivative, see [5, 10]

For more about monotone metrics and their use see [9, 10, 4].

The α -representation

Let $g: R \to R$ be a smooth (strictly) monotone function. We define an operator $L_g[M]: \tilde{T}_M \to \tilde{T}_{g(M)}$ by (see [6])

$$L_g[M](H) = \frac{d}{ds}g(M+sH)|_{s=0}$$

In what follows, we omit the indication of the point in square brackets if no confusion is possible. The vector space

$$T_D^g = \{ L_g(H) \mid H \in T_D \}$$

will be called the g-representation of the tangent space T_D . The corresponding inner product in T_D^g is

$$\lambda_D^g(G_1, G_2) = \lambda_D(L_g^{-1}(G_1), L_g^{-1}(G_2)) = \text{Tr}G_1K_g(G_2)$$

where $K_g = L_g^{-1} J_D L_g^{-1}$. The g-representation of the cotangent space is given by

$$T_D^{g*} = \{ K_g(G) \mid G \in T_D^g \} = \{ L_{g^{-1}} J_D(H) \mid H \in T_D \}$$

Clearly, if g is the identity function, we obtain the usual tangent and cotangent spaces T_D and T_D^* .

The quantum analogue of Amari's α -representations [1] is obtained if we put

$$g(x) = g_{\alpha}(x) = \begin{cases} \frac{2}{1-\alpha}x^{\frac{1-\alpha}{2}} & \alpha \neq 1\\ \log x & \alpha = 1 \end{cases}$$

We have $T_D^{\alpha*} = T_D^{-\alpha}$ for each α so that K_{α} is an isomorphism $K_{\alpha} : T_D^{\alpha} \to T_D^{-\alpha}$. We have

$$K_{\alpha}^{-1} = K_{-\alpha} \iff J_D = J_{\alpha} := L_{-\alpha}L_{\alpha} = J_{-\alpha}.$$

The family of metrics J_{α} was studied in [4] and it was shown that these are monotone for $\alpha \in [-3,3]$. For example, the Kubo-Mori metric is obtained if $\alpha = \pm 1$ and the right logarithmic derivative metric if $\alpha = \pm 3$.

The affine connections, torsion and curvature

In this section, we define the α -connections in \mathcal{M}^+ and \mathcal{D} and investigate the important notions of duality, stated in [1], namely the dual connections and the existence of dual affine coordinate systems.

Let $g: R \to R$ be a smooth strictly monotone function and let $M, M' \in \mathcal{M}^+$. Then there is an isomorphism $\tilde{T}_M \to \tilde{T}_{M'}$ given by $H \mapsto L_g^{-1}[M']L_g[M](H)$. This isomorphism induces an affine connection on \mathcal{M}^+ . Let us denote the corresponding covariant derivative by $\tilde{\nabla}^g$.

Let x_1, \ldots, x_{N+1} be a coordinate system in \mathcal{M}^+ . Let us denote $\partial_i = \frac{\partial}{\partial x_i}$ and let $\tilde{H}_i = \partial_i M(x), \ \tilde{G}_i = L_g(\tilde{H}_i) = \partial_i g(M(x)), \ i = 1, \ldots, N+1$. Then

$$L_g(\tilde{\nabla}^g_{\tilde{H}_j}\tilde{H}_i) = \partial_i \partial_j g(M(x))$$

Hence, the coefficients of the affine connection are

$$\tilde{\Gamma}^{g}_{ijk}(x) = \lambda_x(\tilde{\nabla}^{g}_{\tilde{H}_i}\tilde{H}_j,\tilde{H}_k) = \text{Tr}\partial_i\partial_j g(M(x))K_g(\tilde{G}_k), \ i,j,k = 1,\dots,N+1$$

From this, it follows that this connection is torsion-free.

If we use the functions g_{α} , we obtain a one-parameter family of torsion-free connections $\tilde{\nabla}^{\alpha}$ which is the quantum analogue of α -connections defined by Amari

[1]. But, unlike the classical case, the connections $\tilde{\nabla}^{\alpha}$ and $\tilde{\nabla}^{-\alpha}$ are not dual in general.

To obtain the dual connection, consider the isomorphism $\tilde{T}_M \to \tilde{T}_{M'}$, given by $H \mapsto J_{M'}^{-1}L_g[M']L_g^{-1}[M]J_M(H)$. The induced affine connection on \mathcal{M}^+ , resp. the covariant derivative will be denoted by $\tilde{\nabla}^{g*}$. We have

$$L_g^{-1}[M]J_M(\tilde{\nabla}_{\tilde{H}_i}^{g*}\tilde{H}_j) = \partial_i K_g(\tilde{G}_j(x))$$

The coefficients of this connection are

(3)
$$\tilde{\Gamma}_{ijk}^{g*} = \lambda(\tilde{\nabla}_{\tilde{H}_i}^{g*}\tilde{H}_j, \tilde{H}_k) = \text{Tr}\partial_i K_g(\tilde{G}_j)\tilde{G}_k$$

It is easy to prove that $\tilde{\nabla}^g$ and $\tilde{\nabla}^{g*}$ are dual.

The components of the torsion tensor are

$$\tilde{S}_{ijk}^{g*} = \tilde{\Gamma}_{ijk}^{g*} - \tilde{\Gamma}_{jik}^{g*} = \text{Tr}\{\partial_i K_g(\tilde{G}_j(x)) - \partial_j K_g(\tilde{G}_i(x))\}\tilde{G}_k$$

so that this connection is torsion-free iff $\partial_i K_g(\tilde{G}_j) = \partial_j K_g(\tilde{G}_i), \forall i, j = 1, ..., N+1$. Obviously, this is not always the case.

Consider now \mathcal{D} as an N-dimensional submanifold in \mathcal{M} and let t_1, \ldots, t_N be a coordinate system in \mathcal{D} . As there is no danger of confusion, we use the symbol ∂_i also for $\frac{\partial}{\partial t_i}$. Let $H_i = \partial_i D(t)$, $G_i = \partial_i g(D(t))$, $i = 1, \ldots, N$. The affine structure in \mathcal{D} is obtained by projecting the above affine connections orthogonaly onto \mathcal{D} . The covariant derivative is given by

$$L_g(\nabla_{H_j}^g H_i) = \partial_i \partial_j g(D_t) - g'(D_t) D_t \operatorname{Tr}(g'(D_t))^{-1} \partial_i \partial_j g(D_t)$$

$$L_g^{-1} J_D(\nabla_{H_i}^{g*} H_j) = \partial_i K_g(G_j(t)) - (g'(D_t))^{-1} \operatorname{Tr}g'(D_t) D_t \partial_i K_g(G_j(t))$$

and the coefficients are

$$\Gamma_{ijk}^{g}(t) = \operatorname{Tr} K_{g}(G_{k})\partial_{i}\partial_{j}g(D_{t}) \quad \Gamma_{ijk}^{g*}(t) = \operatorname{Tr} G_{k}\partial_{i}K_{g}(G_{j}(t))$$

Proposition 1. Let $\alpha \in [-3,3]$. The following statements are equivalent:

- (i) $\tilde{\nabla}^{\alpha*}$ is torsion-free
- (ii) $\nabla^{\alpha*}$ is torsion-free
- (iii) $J_D = J_\alpha = L_{-\alpha}L_\alpha$

Proof. The cases (i) \Rightarrow (ii) and (iii) \Rightarrow (i) are rather obvious. We prove (ii) \Rightarrow (iii): Let us consider the natural affine parametrization in \mathcal{D}

$$D_t = D_0 + \sum_i t_i H_i \quad t \in \Theta \subset \mathbb{R}^N \quad \text{Tr}H_i = 0, \ i = 1, \dots, N$$

Let $\nabla^{\alpha*}$ be torsion-free, then

$$\operatorname{Tr}\left(\partial_{i}L_{\alpha}^{-1}J_{D}(H_{j})-\partial_{j}L_{\alpha}^{-1}J_{D}(H_{i})\right)L_{\alpha}(H_{k})=0\ i,j,k=1,\ldots,N$$

Clearly, $D \in \tilde{T}_D$, $D \perp T_D$ for each $D \in \mathcal{D}$ and

$$\operatorname{Tr}\partial_{i}\{L_{\alpha}^{-1}J_{D}(H_{j})\}L_{\alpha}(D) = \partial_{i}\operatorname{Tr}L_{\alpha}^{-1}J_{D}(H_{j})L_{\alpha}(D) - \frac{1-\alpha}{2}\operatorname{Tr}L_{\alpha}J_{D}(H_{j})\partial_{i}g_{\alpha}(D) = -\frac{1-\alpha}{2}\operatorname{Tr}J_{D}(H_{j})H_{i} = \operatorname{Tr}\partial_{j}\{L_{\alpha}^{-1}J_{D}(H_{i})\}L_{\alpha}(D)$$

It follows that $\partial_i L_{\alpha}^{-1} J_D(H_j) = \partial_j L_{\alpha}^{-1} J_D(H_i)$, for i, j = 1, ..., N. This implies the existence of a potential function $\Phi : \Theta \to \mathcal{M}$, such that $\frac{d}{dt} \Phi(D + tH) =$

ANNA JENČOVÁ

 $L_{\alpha}^{-1}[D+tH]J_{D+tH}(H)$. Let $\alpha \neq -1$. If DH = HD, then $L_{\alpha}^{-1}[D+tH]J_{D+tH}(H) = (D+tH)^{\frac{\alpha-1}{2}}H$. Let $H = D - \frac{1}{n}$. Compute

$$\Phi(D) - \Phi(\frac{1}{n}) = \int_0^1 \frac{d}{dt} \Phi(\frac{1}{n} + tH) dt = \int_0^1 (\frac{1}{n} + tH)^{\frac{\alpha - 1}{2}} H dt = g_{-\alpha}(D) - g_{\alpha}(\frac{1}{n})$$

It follows that $L_{\alpha}^{-1}J_D(H) = L_{-\alpha}(H)$. The case $\alpha = -1$ is proved similarly.

Let us now compute the Riemannian curvature. Let \tilde{R}^g (\tilde{R}^{g*}) be the Riemannian curvature tensor of $\tilde{\nabla}^g$ ($\tilde{\nabla}^{g*}$) in \mathcal{M}^+ , then $\tilde{R}^g = \tilde{R}^{g*} = 0$. The curvature tensor R^g in \mathcal{D} is equal to

$$R^{g}_{ijkl} = H^{g}_{jk1}H^{g*}_{il1} - H^{g}_{ik1}H^{g*}_{jl1}$$

where H_{ij1}^g , resp. H_{ij1}^{g*} , is the Euler-Shouten imbedding curvature. If $g = g_{\alpha}$,

$$R_{ijkl}^{\alpha}(D) = \frac{1-\alpha^2}{4} \{ \mathrm{Tr}H_j J_{\alpha}(H_k) \mathrm{Tr}H_i J_D(H_l) - \mathrm{Tr}H_i J_{\alpha}(H_k) \mathrm{Tr}H_j J_D(H_l) \}$$

We see that $R^{\alpha} = 0$ iff $\alpha = \pm 1$. The dual curvature $R^{\alpha*}$ is then computed from [2]

(4)
$$\tilde{R}(X,Y,Z,W) = -\tilde{R}^*(X,Y,W,Z)$$

We see that, as $\tilde{\nabla}^{\alpha}$ and $\nabla^{\pm 1}$ connections are flat, there exists an affine coordinate system. On the other hand, no dual coordinate system and hence no potential function exists, unless $J_D = J_{\alpha}$. It means that, in general, we cannot use Amari's theory to define a divergence.

Geodesics and divergence functions

As one dimensional submanifolds are always torsion-free, a divergence exists for each $\nabla^{\pm 1*}$ and $\tilde{\nabla}^{\alpha*}$ -geodesic. As suggested in [7], we use these to define a divergence in $\mathcal{D}(\mathcal{M}^+)$.

For each α , a $\tilde{\nabla}^{\alpha*}$ -geodesic is a solution of

(5)
$$L_{\alpha}^{-1}J_{\rho_t}(\dot{\rho}_t) = A$$

where $A \in \mathcal{M}$, it means that each geodesic is determined by the observable A.

Proposition 2. Let $\tilde{\rho}_t$ be a solution of $L_{\alpha}^{-1} J_{\rho_t}(\dot{\rho}_t) = A$. Then $\rho_t = \frac{\tilde{\rho}_t}{\text{Tr}\tilde{\rho}_t}$ is a $\nabla^{\alpha*}$ geodesic.

A divergence measure in $\mathcal{D}(\mathcal{M}^+)$ can be defined as follows. Let $\rho_0, \rho_1 \in \mathcal{M}^+$. Let $\tilde{\rho}_t$ be the unique $\tilde{\nabla}^{\alpha*}$ -geodesic connecting them. The α -divergence is $D_{\alpha}(\rho_0, \rho_1) = D_{\alpha}^{\tilde{\rho}}(0, 1)$.

Proposition 3. Let $\alpha \neq 1$, $\rho_0, \rho_1 \in \mathcal{M}^+$. Let $\tilde{\rho}_t$ be as above and let A be the corresponding observable. Then

$$D_{\alpha}(\rho_0,\rho_1) = \frac{2}{1-\alpha} (\operatorname{Tr}\rho_0 - \operatorname{Tr}\rho_1) + \operatorname{Tr}g_{\alpha}(\rho_1)A$$

If $\alpha = -1$ and $\rho_0, \rho_1 \in \mathcal{D}$, we may use the $\nabla^{\alpha*}$ -geodesic $\rho_t = (\text{Tr}\tilde{\rho}_t)^{-1}\tilde{\rho}_t$ to define -1- divergence. In this way we obtain the restriction of D_{α} to \mathcal{D} . **Examples.** 1. Let $J_D = J_{\alpha}$ for some $\alpha \in [-3,3]$. In this case we have the same

Examples. 1. Let $J_D = J_\alpha$ for some $\alpha \in [-3,3]$. In this case we have the same situation as in the classical case. Thus for $\alpha = \pm 1$, the divergence is given by

$$D(\rho_0, \rho_1) = \operatorname{Tr} \rho_1(\log \rho_1 - \log \rho_0)$$

which is the relative entropy.

For $\alpha \neq \pm 1$, $D_{\alpha}(\rho_0, \rho_1) = \text{Tr}g_{\alpha}(\rho_1)(g_{-\alpha}(\rho_1) - g_{-\alpha}(\rho_0))$ This α -divergence was defined also in [3]. It is easy to see that the above divergence functions are the same as those from Proposition 3.

2.[7] Let $\alpha = -1$ and let λ be the metric of the symmetric logarithmic derivative. Then

$$\rho_t = \exp\{\frac{1}{2}(tA - \psi(t))\}\rho_0 \exp\{\frac{1}{2}(tA - \psi(t))\}$$

where $\psi(t) = \log \operatorname{Tr} \rho_0 \exp tA$ is a ∇^{-1*} -geodesic. The divergence is

$$D_{-1}(\rho_0, \rho_1) = 2 \operatorname{Tr} \rho_1 \log \rho_0^{-\frac{1}{2}} (\rho_0^{\frac{1}{2}} \rho_1 \rho_0^{\frac{1}{2}})^{\frac{1}{2}} \rho_0^{-\frac{1}{2}}$$

which coincides with the relative entropy if ρ_0 and ρ_1 commute.

3. Let $\alpha = -1$ and let λ be the metric of the right logarithmic derivative. Let Q_F be the linear operator given by $Q_F^{-1}(A) = \frac{1}{2}(F^{-\frac{1}{2}}AF^{\frac{1}{2}} + F^{\frac{1}{2}}AF^{-\frac{1}{2}})$, then

$$\rho_t = \rho^{\frac{1}{2}} \exp\{(t-1)Q_{\rho}(A) - \psi(t)\}\rho^{\frac{1}{2}}$$

with $\psi(t) = \log \operatorname{Tr} \rho \exp\{(t-1)Q_{\rho}(A)\}$ is a ∇^{-1*} -geodesic. The divergence is given by

$$D_{-1}(\rho_0, \rho_1) = \text{Tr}\rho_1 A = \text{Tr}\rho_1 \log \rho_1^{\frac{1}{2}} \rho_0^{-1} \rho_1^{\frac{1}{2}}$$

which is another version of the relative entropy.

References

- [1] Amari, S. Differential-geometrical methods in statistic, Lecture Notes in Statistics 28(1985)
- [2] S. Amari, O.E. Barndorff-Nielsen, R.E. Kass, S.L. Lauritzen, C.R. Rao Differential geometry in statistical inference. IMS Lecture notes-Monograph series 10(1987)
- [3] Hasegawa, H. Rep. Math. Phys. 33 (1993) 87–93
- [4] Hasegawa, H. and Petz, D. Non-commutative extension of information geometry II, Quantum Communication, Computing and Measurement, Eds. Hirota et al., Plenum Press, New York, (1997)
- [5] Holevo, A.S., Probabilistic and statistical aspects of quantum theory, North-Holland, Amsterdam, 1982
- [6] Jenčová, A., Geometry of quantum states: dual connections and divergence functions Rep. Math. Phys., (to appear)
- [7] Nagaoka, H. Differential geometrical aspects of quantum state estimation and relative entropy, in *Quantum Communication, Computing and Measurement*, eds. Hirota et al., Plenum Press, New York (1994)
- [8] Petz, D. and Sudár, Cs., J. Math. Phys. 37(1996), 2662–2673
- [9] Petz, D. Information geometry of quantum states, in *Quantum Probability Communications*, vol. 10, ed. R.L. Hudson et al, World Scientific, 135–158
- [10] Petz, D. Linear Algebra Appl. 244(1996),81-96

MATHEMATICAL INSTITUTE, SLOVAK ACADEMY OF SCIENCES, ŠTEFÁNIKOVA 49, SK-814 73 BRATISLAVA, SLOVAKIA