Base norms on subspaces of matrices, with applications in quantum information theory

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Gdansk, January 30, 2013

Discrimination of quantum states

Let \mathcal{H} be a Hilbert space, dim $(\mathcal{H}) < \infty$. Let

$$\mathfrak{S}(\mathcal{H}) = \{ \rho \in B(\mathcal{H})^+, \operatorname{Tr} \rho = 1 \}$$

the set of quantum states (density operators). Let $\rho_0, \rho_1 \in \mathfrak{S}(\mathcal{H})$.

- Assumption: A quantum system represented by H is in one of the states ρ₀, ρ₁.
- Task: Decide which is the true state.
- Tests: Binary POVMs: (M, I − M), 0 ≤ M ≤ I, Tr Mρ is the probability of choosing ρ₀ if the true state is ρ.

• Alternatively, a test is an affine map $\mathfrak{S}(\mathcal{H}) \to \mathcal{P}(\{0,1\}).$

Discrimination of quantum states

Optimality: Given a prior $0 \le \lambda \le 1$, minimize the average error probability

$$E_{\lambda}(M) := \lambda \operatorname{Tr} (I - M)
ho_0 + (1 - \lambda) \operatorname{Tr} M
ho_1$$

It is well known that (Helstrom, 1969)

$$\Pi_{\lambda}(\rho_{0},\rho_{1}) := \min_{0 \leq M \leq I} E_{\lambda}(M) = \frac{1}{2}(1 - \|\lambda\rho_{0} - (1 - \lambda)\rho_{1}\|_{1})$$

where

$$\|X\|_1 = \operatorname{Tr} |X|, \quad X \in B(\mathcal{H})$$

is the trace norm. Moreover,

- the corresponding base norm on $B(\mathcal{H})^{sa}$ is the trace norm.

Discrimination of quantum channels

Let dim(\mathcal{H}), dim(\mathcal{K}) < ∞ . A quantum channel is a completely positive trace preserving map $\Phi : B(\mathcal{H}) \to B(\mathcal{K})$. Let Φ_0, Φ_1 be two channels.

- Assumption: A channel $B(\mathcal{H}) \to B(\mathcal{K})$ is either Φ_0 or Φ_1 .
- Task: Decide which.
- Tests: Binary quantum 1-testers: T = (H_A, ρ, M), where ρ ∈ 𝔅(H ⊗ H_A), M ∈ B(K ⊗ H_A), 0 ≤ M ≤ I. The probability that Φ₀ is chosen if the true channel is Φ is:

$$p(T, \Phi) := \operatorname{Tr} M(\Phi \otimes id_{\mathcal{H}_A})(\rho)$$

• Alternatively, tests are affine maps from all channels to $\mathcal{P}(\{0,1\}).$

Discrimination of quantum channels

Optimality: Given $0 \le \lambda \le 1$, minimize the average error probability

$$E_{\lambda}^{C}(T) = \lambda(1 - p(T, \Phi_{0})) + (1 - \lambda)p(T, \Phi_{1})$$

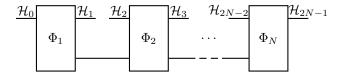
It is known that

$$\Pi_{\lambda}^{\mathcal{C}}(\Phi_0, \Phi_1) := \min_{\mathcal{T}} E_{\lambda}^{\mathcal{C}}(\mathcal{T}) = \frac{1}{2} (1 - \|\lambda \Phi_0 - (1 - \lambda) \Phi_1\|_{\diamond})$$

where for $\Phi: B(\mathcal{H})
ightarrow B(\mathcal{K}), \ \Phi(X^*) = \Phi(X)^*$,

$$\begin{split} \|\Phi\|_{\diamond} &= \sup_{\substack{\dim(\mathcal{L}')<\infty \\ \rho\in\mathfrak{S}(\mathcal{H}\otimes\mathcal{L}')}} \sup_{\substack{\varphi\in\mathfrak{S}(\mathcal{H}\otimes\mathcal{L}')}} \|\Phi\otimes id_{\mathcal{L}'}(\rho)\|_{1} \\ &= \sup_{\substack{\rho\in\mathfrak{S}(\mathcal{H}\otimes\mathcal{L})}} \|\Phi\otimes id_{\mathcal{L}}(\rho)\|_{1}, \qquad \dim(\mathcal{L}) = \dim(\mathcal{H}) \end{split}$$

Quantum *N*-combs: (Chiribella,D'Ariano,Perinotti,2008) Quantum *N*-round strategies (Gutoski,Watrous,2007,2011)



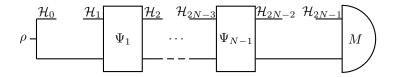
This defines a channel

 $\Phi: B(\mathcal{H}_0 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_{2N-2}) \to B(\mathcal{H}_1 \otimes \mathcal{H}_3 \otimes \cdots \otimes \mathcal{H}_{2N-1}).$

Its Choi matrix X_{Φ} is a quantum *N*-comb for $(\mathcal{H}_0, \ldots, \mathcal{H}_{2N-1})$.

• Task: Discriminate between two quantum networks Φ^0 and Φ^1

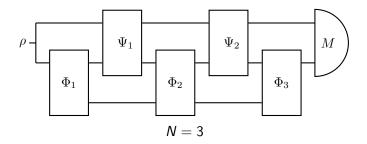
 Tests: Binary quantum N-testers (CDP,2008) measuring N-round co-strategies (GW,2007,2011)



 $\rho \in \mathfrak{S}(\mathcal{H}_0 \otimes \mathcal{H}_A), \ M \in B(\mathcal{H}_{2N-1} \otimes \mathcal{H}_A)$ a binary POVM

• Represented by $T = (T_0, T_1), T_i \in B(\mathcal{H}_{2N-1} \otimes \cdots \otimes \mathcal{H}_0)^+,$ $T_0 + T_1$ is an (N + 1)-comb for $(\mathbb{C}, \mathcal{H}_0, \dots, \mathcal{H}_{2N-1}, \mathbb{C}).$

- The probability of choosing Φ^0 if the true value is Φ is ${\rm Tr}\; {\cal T}_0 X_\Phi$



• Alternatively, test are affine maps from N-combs to $\mathcal{P}(\{0,1\})$.

 The minimum average error probability: (CDP 2008, Gutoski 2011 - "strategy N-norm")

$$\Pi^{N}_{\lambda}(\Phi^{0},\Phi^{1})=\frac{1}{2}(1-\|\lambda\Phi^{0}-(1-\lambda)\Phi^{1}\|_{\diamond N})$$

where for any Hermitian map Φ ,

$$\begin{split} \|\Phi\|_{\diamond N} &= \sup_{\substack{Y=T_0+T_1\\ =}} \|Y^{1/2} X_{\Phi} Y^{1/2}\|_1 \quad \text{(CDP)} \end{split}$$

 We will show that all these norms are obtained as certain base norms on subspaces of self-adjoint operators.

Ordered vector spaces, bases and order units

Let $\mathcal{V}, \mathcal{V}^*$ be a finite dimensional real vector space and its dual, with duality $\langle \cdot, \cdot \rangle$.

- $Q \subset \mathcal{V}$ a positive cone in \mathcal{V} : closed convex cone, $Q \cap -Q = \{0\}, \ \mathcal{V} = Q - Q$
- (\mathcal{V}, Q) ordered vector space: $x \leq_Q y$ if $y x \in Q$
- $Q^* \subset \mathcal{V}^*$ the dual cone: $\{f \in \mathcal{V}^*, \langle f, q \rangle \ge 0, q \in Q\}$, (\mathcal{V}^*, Q^*) is an ordered vector space
- $B \subset Q$ a base: for $q \in Q$, $q \neq 0$, $\exists t > 0, b \in B$: q = tb
- $e \in Q$ an order unit: for $x \in \mathcal{V}$, $\exists r > 0$: $re \geq_Q x$, e is an order unit iff $e \in int(Q)$

There is a 1-1 correspondence between bases of Q and order units $e \in Q^*$:

$$B=\{q\in Q,\;\langle e,q
angle=1\}$$

Base norms and order unit norms

Let $B \subset Q$ be a base, $e \in Q$ an order unit.

• Base norm in
$$\mathcal{V}$$
:
 $\|x\|_B = \inf\{\lambda + \mu : x = \lambda b_1 - \mu b_2, \lambda, \mu \ge 0, b_1, b_2 \in B\}$

• Order unit norm in \mathcal{V} :

 $\|x\|_e = \inf\{\lambda > 0: -\lambda e \leq_Q x \leq_Q \lambda e\}$

Let $e_B \in Q^*$ be such that $B = \{q \in Q : \langle e_B, q \rangle = 1\}$. Then $\| \cdot \|_B^* = \| \cdot \|_{e_B}$ is the dual norm. Hence

$$\|x\|_{B} = \sup_{-e_{B} \leq_{Q^{*}} f \leq_{Q^{*}} e_{B}} \langle f, x \rangle = 2 \sup_{0 \leq_{Q^{*}} f \leq_{Q^{*}} e_{B}} \langle f, x \rangle - \langle e_{B}, x \rangle$$

Discrimination of elements of a base B

Formally, we can consider the discrimination problem in B:

- Given $b_0, b_1 \in B$, distinguish them by tests = affine maps $B \rightarrow \mathcal{P}(\{0, 1\})$.
- Tests correspond to elements 0 ≤_{Q*} m ≤_{Q*} e_B: the probability of choosing b₀ if the "true value" is b is ⟨m, b⟩.
- Given $0 \le \lambda \le 1$, the average error probability is

$$\begin{aligned} E^{\mathcal{B}}_{\lambda}(m) &= \lambda(1-\langle m,b_0\rangle)+(1-\lambda)\langle m,b_1\rangle \\ &= \lambda-\langle m,\lambda b_0-(1-\lambda)b_1\rangle \end{aligned}$$

It follows that

$$\Pi_{\lambda}^{B}(b_{0}, b_{1}) := \min_{0 \leq Q^{*}} \min_{m \leq Q^{*}} e_{B}} E_{\lambda}^{B}(m) = \frac{1}{2}(1 - \|\lambda b_{0} - (1 - \lambda)b_{1}\|_{B})$$

Bases of the cone of positive operators

Let \mathcal{A} be a finite dimensional C^* -algebra, $\mathcal{A}^{sa} = \{a \in \mathcal{A}, a = a^*\}$, $\mathcal{A}^+ = \{a \in \mathcal{A}, a \ge 0\}$. Identify $(\mathcal{A}^{sa})^* = \mathcal{A}^{sa}$, with $\langle a, b \rangle = \operatorname{Tr} ab$.

- $(\mathcal{A}^{sa}, \mathcal{A}^+)$ is an ordered vector space.
- \mathcal{A}^+ is self-dual: $(\mathcal{A}^+)^* = \mathcal{A}^+$.
- Order units: $a \in int(\mathcal{A}^+) = \{a \ge 0, a \text{ invertible}\}.$
- Bases of \mathcal{A}^+ : $B \leftrightarrow \tilde{b} \in int(\mathcal{A}^+)$:

$$B = S_{\tilde{b}} = \{ a \in \mathcal{A}^+, \operatorname{Tr} a \tilde{b} = 1 \}$$

• States: $\mathfrak{S}(\mathcal{A}) = S_I$

Base norms and order unit norms in \mathcal{A}^{sa}

Let
$$\tilde{b} \in int(\mathcal{A}^+)$$
, $B = S_{\tilde{b}}$.

$$\begin{aligned} \|x\|_{S_{\tilde{b}}} &= \|\tilde{b}^{1/2}x\tilde{b}^{1/2}\|_{1} \\ \|x\|_{S_{\tilde{b}}}^{*} &= \|x\|_{\tilde{b}} = \inf\{\lambda > 0: -\lambda \tilde{b} \le x \le \lambda \tilde{b}\} \end{aligned}$$

For $\tilde{b} = I$,

$$||x||_{\mathfrak{S}(\mathcal{A})} = ||x||_1 = \operatorname{Tr} |x|, \qquad ||x||_I = ||x||$$

If $a \geq 0$, then

$$\|a\|_{\tilde{b}}=2^{D_{max}(a\|b)},$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $D_{max}(a||b)$ - relative max-entropy (Datta, 2009)

Bases for subspaces in \mathcal{A}^{sa}

Let $J \subseteq A^{sa}$ be a real linear subspace, $Q = J \cap A^+$. Suppose J = Q - Q.

• (J, Q) is an ordered vector space.

•
$$J^* \equiv \mathcal{A}^{sa}|_{J^\perp} = \{a + J^\perp, a \in \mathcal{A}^{sa}\}, J^\perp = \{a, \operatorname{Tr} ax = 0, x \in J\}$$

- Duality: $\langle a + J^{\perp}, x \rangle = \operatorname{Tr} ax, x \in J$
- $Q^* = \{a + J^{\perp}, a \in A^+\}$ (AJ, 2012)
- $int(Q^*) = \{a + J^{\perp}, a \in int(\mathcal{A}^+)\}$

Lemma

Bases of Q are precisely sets of the form $B = J \cap S_{\tilde{b}}$, with $\tilde{b} \in int(\mathcal{A}^+)$, $e_B = \tilde{b} + J^{\perp}$.

Sections of a base of \mathcal{A}^+

Let $\tilde{b} \in int(\mathcal{A}^+)$, $L \subseteq \mathcal{A}^{sa}$ be a subspace. Let $B = L \cap S_{\tilde{b}}$.

- *B* is called a section of a base of \mathcal{A}^+ .
- Let $J = \operatorname{span}(B)$, $Q = J \cap A^+$, then B is a base of Q.
- Conversely, if J ⊆ A⁺, Q = J ∩ A⁺, J = Q − Q and B is a base of Q, then B is a section of a base of A⁺.

If B is a section and B ∩ int(A⁺) ≠ Ø, then B is called faithful. In this case, B ∩ int(A⁺) = ri(B).

The dual section

Let B be a section of a base of \mathcal{A}^+ , $J = \operatorname{span}(B)$, $Q = J \cap \mathcal{A}^+$. Let

$$ilde{B} = \{ ilde{b} \in \mathcal{A}^+: ext{ Tr } ilde{b} b = 1, b \in B\}.$$

Then \tilde{B} is convex and closed, and

$$ri(ilde{B}) = \{ ilde{b} \in int(\mathcal{A}^+): B = J \cap S_{ ilde{b}}\}$$

Lemma

Let B be faithful, $b \in ri(B)$. Let $\tilde{J} = \operatorname{span}(\tilde{B})$. (i) $\tilde{B} = \tilde{J} \cap S_b$, so that \tilde{B} is a faithful section of a base of \mathcal{A}^+ . (ii) $\tilde{\tilde{B}} = B$ (iii) $B = \bigcap_{\tilde{b} \in ri(\tilde{B})} S_{\tilde{b}} = \bigcap \{B_0 \text{ is a base of } \mathcal{A}^+, B \subseteq B_0\}$

An extension of the base norm

Let B be a section of a base of \mathcal{A}^+ , $J = \operatorname{span}(B)$, $Q = J \cap \mathcal{A}^+$. Let

$$\mathcal{O}_B = \{x \in \mathcal{A}^{sa}: x = x_1 - x_2, x_1, x_2 \ge 0, x_1 + x_2 \in B\}$$

 $\mathcal{O}_B \cap J$ is the unit ball of the base norm $\|\cdot\|_B$ in (J, Q).

Theorem

Let B be faithful. Then

(i) O_B is the unit ball of a norm in A^{sa}. We denote it by || · ||_B.
(ii) The dual norm is || · ||_{B̃}.

(iii)
$$||x||_B = \sup_{\tilde{b} \in ri(\tilde{B})} ||x||_{S_{\tilde{b}}} = \max_{\tilde{b} \in \tilde{B}} ||\tilde{b}^{1/2}x\tilde{b}^{1/2}||_1$$

(iv) $||x||_B = \inf_{b \in ri(B)} ||x||_b = \min_{b \in B} \inf\{\lambda > 0 : -\lambda b \le x \le \lambda b\}$

Extended base norm in \mathcal{A}^+

Let $a \in \mathcal{A}^+$, then

$$\|a\|_B = \max_{\tilde{b}\in\tilde{B}} \operatorname{Tr} a\tilde{b} = \min_{b\in B} 2^{D_{max}(a\|b)}$$

Moreover, $\tilde{b}_0 \in \tilde{B}$ is such that $||a||_B = \operatorname{Tr} a\tilde{b}_0$ if and only if: $\exists q = sb_0 \in Q$, such that

$$a\leq q$$
 and $(q-a) ilde{b}_0=0$

In this case, $s = ||a||_B = 2^{D_{max}(a||b_0)}$.

The Choi isomorphism

Let dim (\mathcal{H}) , dim $(\mathcal{K}) < \infty$.

• Choi isomorphism: $X \in B(\mathcal{K} \otimes \mathcal{H}) \leftrightarrow \text{linear maps } \Phi : B(\mathcal{H}) \rightarrow B(\mathcal{K}):$

$$X_{\Phi} = (\Phi \otimes id_{\mathcal{H}})(|\psi\rangle\langle\psi|), \quad \Phi_X(a) = \operatorname{Tr}_{\mathcal{H}}[(I_{\mathcal{K}} \otimes a^{\mathsf{T}})X]$$

 $|\psi\rangle = \sum_{i} |i\rangle \otimes |i\rangle$, $|i\rangle$ an ONB in \mathcal{H} , a^{T} transpose of a

- Φ is completely positive if and only if $X_{\Phi} \ge 0$.
- Φ is Hermitian $\Phi(x^*) = \Phi(x)^*$ if and only if $X_{\Phi} = X_{\Phi}^*$.
- Φ is trace preserving if and only if $\operatorname{Tr}_{\mathcal{K}} X_{\Phi} = I_{\mathcal{H}}$.

Generalized channels

Let B be a faithful section of a base of $B(\mathcal{H})^+$.

- A generalized channel with respect to B: Φ : B(H) → B(K), completely positive and Φ(B) ⊆ 𝔅(K).
- Φ is a generalized channel with respect to B if and only if

$$\mathcal{K}_{\Phi} \in \mathcal{C}_{\mathcal{B}}(\mathcal{H},\mathcal{K}) := \{X \in \mathcal{B}(\mathcal{K} \otimes \mathcal{H})^+, \; (\operatorname{Tr}_{\mathcal{K}} X)^{\mathsf{T}} \in \tilde{\mathcal{B}}\}$$

•
$$\tilde{B} = \mathcal{C}_B(\mathcal{H}, \mathbb{C})$$

Theorem

 $\mathcal{C}_B(\mathcal{H},\mathcal{K})$ is a faithful section of a base of $B(\mathcal{K}\otimes\mathcal{H})^+$. The dual section is $\mathcal{C}_B(\mathcal{H},\mathcal{K}) = \{I_{\mathcal{K}}\otimes b^{\mathsf{T}}, b\in B\} = I_{\mathcal{K}}\otimes B^{\mathsf{T}}$.

Generalized channels: base norm and its dual

Let
$$X = X^* \in B(\mathcal{K} \otimes \mathcal{H})$$
, $X = (\Phi \otimes id_{\mathcal{H}})(|\psi\rangle\langle\psi|)$.
Theorem

$$\begin{split} \|X\|_{\mathcal{C}_{B}(\mathcal{H},\mathcal{K})} &= \sup_{\substack{\dim(\mathcal{L}')<\infty \ Y\in\mathcal{C}_{\tilde{B}}(\mathcal{H},\mathcal{L}')}} \sup_{Y\in\mathcal{C}_{\tilde{B}}(\mathcal{H},\mathcal{L}')} \|(\Phi\otimes id_{\mathcal{L}'})(Y)\|_{1} \\ &= \sup_{Y\in\mathcal{C}_{\tilde{B}}(\mathcal{H},\mathcal{L})} \|(\Phi\otimes id_{\mathcal{L}})(Y)\|_{1}, \quad \dim(\mathcal{L}) = \dim(\mathcal{H}) \\ \|X\|_{\mathcal{C}_{B}(\mathcal{H},\mathcal{K})}^{*} &= \|X\|_{I\otimes B^{\mathsf{T}}} \\ &= \inf_{b\in B} \inf\{\lambda > 0, -\lambda(I\otimes b^{\mathsf{T}}) \le X \le \lambda(I\otimes b^{\mathsf{T}})\} \end{split}$$

If $X \ge 0$, then

$$\|X\|_{I\otimes B^{\mathsf{T}}} = \inf_{b\in B} 2^{D_{max}(X\|I\otimes b^{\mathsf{T}})}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Quantum channels

Let $B = \mathfrak{S}(\mathcal{H})$. Then • $\mathcal{C}_B(\mathcal{H}, \mathcal{K}) =: \mathcal{C}(\mathcal{H}, \mathcal{K})$ Choi matrices of channels • $\mathcal{C}_{\tilde{B}}(\mathcal{H}, \mathcal{K}) = \mathfrak{S}(\mathcal{K} \otimes \mathcal{H})$ • $\widetilde{\mathcal{C}(\mathcal{H}, \mathcal{K})} = \{I_{\mathcal{K}} \otimes \rho, \ \rho \in \mathfrak{S}(\mathcal{H})\}$

Hence if $X = (\Phi \otimes id_{\mathcal{H}})(|\psi\rangle\langle\psi|) \in B(\mathcal{K} \otimes \mathcal{H})^{sa}$,

$$\begin{split} \|X\|_{\mathcal{C}(\mathcal{H},\mathcal{K})} &= \sup_{\dim(\mathcal{L}')<\infty} \sup_{\sigma\in\mathfrak{S}(\mathcal{H}\otimes\mathcal{L}')} \|(\Phi\otimes id_{\mathcal{L}'})(\sigma)\|_1 = \|\Phi\|_\diamond\\ \|X\|^*_{\mathcal{C}(\mathcal{H},\mathcal{K})} &= \inf_{\rho\in\mathfrak{S}(\mathcal{H})} \inf\{\lambda>0, -\lambda(I\otimes\rho)\leq X\leq\lambda(I\otimes\rho)\} \end{split}$$

If $\sigma \in \mathfrak{S}(\mathcal{K} \otimes \mathcal{H})$ is a state, then

$$\|\sigma\|_{\mathcal{C}(\mathcal{H},\mathcal{K})}^* = 2^{-H_{\min}(\mathcal{K}|\mathcal{H})_{\sigma}}$$

 $H_{min}(\mathcal{K}|\mathcal{H})_{\sigma}$ is the conditional min-entropy of σ , (Renner,2008)

Quantum supermaps

Let $\mathcal{H}_0, \mathcal{H}_1, \ldots$ be a sequence of finite dimensional Hilbert spaces. Define

1.
$$C(\mathcal{H}_0) := \mathfrak{S}(\mathcal{H}_0).$$

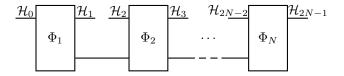
2. For $n \ge 1$, $C(\mathcal{H}_0, \dots, \mathcal{H}_n) \subseteq B(\mathcal{H}_n \otimes \dots \otimes \mathcal{H}_0)^+,$
 $C(\mathcal{H}_0, \dots, \mathcal{H}_n) := \{X_{\Phi} \ge 0, \ \Phi(C(\mathcal{H}_0, \dots, \mathcal{H}_{n-1})) \subseteq \mathfrak{S}(\mathcal{H}_n)\}$

Then

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quantum supermaps

•
$$C(\mathcal{H}_0, \ldots, \mathcal{H}_{2N-1}) \equiv N$$
-combs for $(\mathcal{H}_0, \ldots, \mathcal{H}_{2N-1})$:



• $C(\mathcal{H}_0, \dots, \mathcal{H}_{2N}) \equiv (N+1)$ -combs for $(\mathbb{C}, \mathcal{H}_0, \dots, \mathcal{H}_{2N})$:

$$\rho - \underbrace{\begin{array}{ccc} \mathcal{H}_{0} & \mathcal{H}_{1} \\ & \Psi_{1} \\ & \Psi_{1} \\ & \Psi_{N} \end{array}}_{\mu_{2N-1}} \Psi_{N} \\ \Psi_{N} \\ \mu_{N} \\ & \Psi_{N} \\ & \Psi$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Supermap norms and their duals

Let $n \geq 2$. Let $X \in B(\mathcal{H}_n \otimes \cdots \otimes \mathcal{H}_0)^{sa}$ and let $\Phi : B(\mathcal{H}_{n-1} \otimes \cdots \otimes \mathcal{H}_0) \to B(\mathcal{H}_n)$ be the corresponding Hermitian map. Then

$$\begin{split} \|X\|_{\mathcal{C}_n} &= \sup_{\substack{\dim(\mathcal{L}') < \infty \quad Y \in \mathcal{C}(\mathcal{H}_0, \dots, \mathcal{H}_{n-2}, \mathcal{H}_{n-1} \otimes \mathcal{L}') \\} &= \sup_{\substack{Y \in \mathcal{C}(\mathcal{H}_0, \dots, \mathcal{H}_{n-2}, \mathcal{H}_{n-1} \otimes \mathcal{L})}} \|(\Phi \otimes id_{\mathcal{L}})(Y)\|_1 \end{split}$$

where dim $(\mathcal{L}) = \prod_{k=0}^{n-1} \dim(\mathcal{H}_k)$. The dual norm is

$$\|X\|_{\mathcal{C}_n}^* = \|X\|_{\mathcal{C}(\mathcal{H}_0,\ldots,\mathcal{H}_n,\mathbb{C})}$$

We have

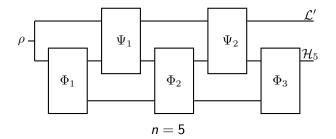
$$\|X\|_{\mathcal{C}_{2N-1}} = \|\Phi\|_{N\diamond}$$

Supermap norms and their duals

Let $X = X_{\Phi} \in \mathcal{C}(\mathcal{H}_0, \ldots, \mathcal{H}_n)$, $Y \in \mathcal{C}(\mathcal{H}_0, \ldots, \mathcal{H}_{n-1} \otimes \mathcal{L}')$.

Then $(\Phi \otimes id_{\mathcal{L}'})(Y)$ has the form

٠



Measurements on B and generalized POVMs

Let B be a section of a base of $B(\mathcal{H})^+$, U a finite set. Let $J = \operatorname{span}(B)$, $Q = J \cap B(\mathcal{H})^+$.

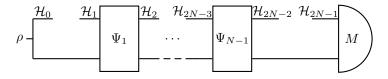
- A measurement on B is an affine map $\mathbf{m} : B \to \mathcal{P}(U)$.
- $\mathbf{m} \equiv \{f_u \in Q^*, u \in U\}, \sum_u f_u = e_B: \mathbf{m}(b)_u = \langle f_u, b \rangle.$
- $f_u = M_u + J^{\perp}$, for some $M_u \in B(\mathcal{H})^+$, $\sum_u M_u \in \tilde{B}$.
- *M*_B(*H*, *U*) = {{*M*_u, *u* ∈ *U*}, *M*_u ∈ *B*(*H*)⁺, ∑_u *M*_u ∈ *B*} generalized POVMs with respect to *B*
- $\mathcal{M}_B(\mathcal{A}, U) \subset \mathcal{C}_B(\mathcal{H}, \mathcal{H}_U)$, dim $(\mathcal{H}_U) = |U|$:

$$\{M_u, u \in U\} \mapsto M = \sum_{u \in U} |u\rangle \langle u| \otimes M_u^{\mathsf{T}}$$

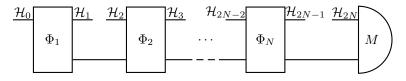
 $\{|u\rangle, u \in U\}$ an ONB in \mathcal{H}_U .

Quantum testers

If $B = C(\mathcal{H}_0, \dots, \mathcal{H}_{2N-1})$, then elements in $\mathcal{M}_B(\mathcal{A}, U)$ are quantum *N*-testers for $(\mathcal{H}_0, \dots, \mathcal{H}_{2N-1})$:



If
$$B = C(\mathcal{H}_0, \ldots, \mathcal{H}_{2N})$$
:



 $M = \{M_u, u \in U\}, M_u \in B(\mathcal{H}_n \otimes \mathcal{H}_A)^+, \sum_u M_u = I \text{ a POVM}$

Decision theory

Let B be a section of a base of $B(\mathcal{H})^+$. Let $\{b_{\theta}, \theta \in \Theta\} \subset B$, $|\Theta| = m$, be the set of possible values of $b \in B$. Let

- D, |D| = k be a set of decisions,
- $w: \Theta \times D \rightarrow [0,1]$ a loss function,
- (D, w) a (classical) decision problem,
- $M = \{M_d, d \in D\} \in \mathcal{M}_B(\mathcal{H}, D)$ a decision function.
- Given a prior $\lambda \in \mathcal{P}(\Theta)$, the average loss for M is

$$\mathcal{W}^{\mathcal{B}}_{w,\lambda}(M) = \sum_{\theta} \sum_{d} \lambda_{\theta} w(\theta, d) \operatorname{Tr} b_{\theta} M_{d}$$

• Minimize $\mathcal{W}^{B}_{w,\lambda}(M)$ over all decision functions.

Quantum decision problems

Let $\{b_{\theta}, \theta \in \Theta\} \subset B$, $|\Theta| = m$. Let

- \mathcal{D} , dim $(\mathcal{D}) = k$ be a Hilbert space,
- $W: \Theta \ni \theta \mapsto W_{\theta} \in B(\mathcal{D}), \ 0 \le W_{\theta} \le I_{\mathcal{D}} \ \text{loss operators,}$
- (\mathcal{D}, W) a quantum decision problem,
- $X \in C_B(\mathcal{H}, \mathcal{D})$ a quantum decision function.
- Given a prior $\lambda \in \mathcal{P}(\Theta)$, the average loss for $X = X_{\Phi}$ is

$$\mathcal{W}^{\mathcal{B}}_{\mathcal{W},\lambda}(X) = \sum_{ heta} \lambda_{ heta} \mathrm{Tr} \, \Phi(b_{ heta}) \mathcal{W}_{ heta} = \sum_{ heta} \lambda_{ heta} \mathrm{Tr} \, (\mathcal{W}_{ heta} \otimes b_{ heta}^{\mathsf{T}}) X$$

• Minimize this over all X.

Classical and quantum decision problems

Let (D, w) be a classical decision problem. Let

• \mathcal{H}_D a Hilbert space, dim $(\mathcal{H}_D) = |D|$, $\{|d\rangle, d \in D\}$ ONB,

•
$$W_{\theta} = \sum_{d \in D} w(\theta, d) |d\rangle \langle d| \in B(\mathcal{H}_D), \ 0 \leq W_{\theta} \leq I.$$

Then (\mathcal{H}_D, W) is a quantum decision problem, with

$$W_{ heta}W_{ heta'} = W_{ heta'}W_{ heta}, \qquad heta, heta' \in \Theta$$
(*)

Conversely, let (\mathcal{D}, W) be a quantum decision problem with (*), then

$$W_{ heta} = \sum_{d} w(heta, d) |e_d
angle \langle e_d|, \qquad heta \in \Theta$$

for some ONB, and (D, w) is a classical decision problem. If $X \in C_B(\mathcal{H}, \mathcal{D})$, then $\mathcal{W}^B_{W,\lambda}(X) = \mathcal{W}^B_{w,\lambda}(M)$, with

$$M \in \mathcal{M}_B(\mathcal{H}, D), \quad M_d = (\langle e_d | \otimes I_{\mathcal{H}}) X^{\mathsf{T}}(|e_d \rangle \otimes I_{\mathcal{H}})$$

Minimal average loss

Theorem Minimal average loss is

$$\begin{aligned} \Pi^{B}_{W,\lambda} &:= \min_{X \in \mathcal{C}_{\mathcal{B}}(\mathcal{H},\mathcal{D})} \mathcal{W}^{B}_{W,\lambda}(X) = 1 - \|\xi_{W,\lambda}\|_{I_{\mathcal{D}} \otimes B} \\ &= 1 - \inf_{b \in B} 2^{D_{max}(\xi_{W,\lambda}\|I_{\mathcal{D}} \otimes b)} \end{aligned}$$

where $\xi_{W,\lambda} = \sum_{\theta} \lambda_{\theta} (I - W_{\theta}^{\mathsf{T}}) \otimes b_{\theta}$. If $W_{\theta} = \sum_{d} w(\theta, d) |d\rangle \langle d|$,

$$\xi_{W,\lambda} = \sum_d |d
angle \langle d| \otimes \sum_ heta \lambda_ heta w(heta,d) b_ heta = \sum_d |d
angle \langle d| \otimes \xi_{w,\lambda,d}$$

and

$$\|\xi_{W,\lambda}\|_{I_{\mathcal{D}}\otimes B} = \inf_{b\in B} \sup_{d\in D} 2^{D_{max}(\xi_{W,\lambda,d}\|b)}$$

Proof

We have

$$\mathcal{W}^{\mathcal{B}}_{W,\lambda}(X) = \sum_{ heta} \lambda_{ heta} \mathrm{Tr} \left(W_{ heta} \otimes b_{ heta}^{\mathsf{T}} \right) X = 1 - \mathrm{Tr} \left(X^{\mathsf{T}} \xi_{W,\lambda}
ight)$$

Hence

$$\min_{X \in \mathcal{C}_{\mathcal{B}}(\mathcal{H}, \mathcal{D})} \mathcal{W}^{\mathcal{B}}_{W, \lambda}(X) = 1 - \max_{X \in \mathcal{C}_{\mathcal{B}^{\mathsf{T}}}(\mathcal{H}, \mathcal{D})} \operatorname{Tr}(X\xi_{W, \lambda})$$
$$= 1 - \|\xi_{W, \lambda}\|^{*}_{\mathcal{C}_{\mathcal{B}^{\mathsf{T}}}(\mathcal{H}, \mathcal{D})} = 1 - \|\xi_{W, \lambda}\|_{I \otimes \mathcal{B}}$$

Optimal Bayes decision function

Corollary

 X₀ ∈ C_B(H, D) satisfies W^B_{W,λ}(X₀) = Π^B_{W,λ} if and only if there ∃ some b₀ ∈ B, s ≥ 0 such that

 $s(I_{\mathcal{D}}\otimes b_0)\geq \xi_{W,\lambda}$ and $(s(I\otimes b_0)-\xi_{W,\lambda})X_0^{\mathsf{T}}=0$

In this case, $s = 2^{D_{max}(\xi_{W,\lambda} \parallel I \otimes b_0)} = 1 - \Pi^B_{W,\lambda}$.

 If W is classical, M⁰ ∈ M_B(H, U) is optimal if and only if there ∃ b₀ ∈ B, s ≥ 0 such that for all d ∈ D,

$$sb_0 \geq \xi_{w,\lambda,d}$$
 and $(sb_0 - \xi_{w,\lambda,d})M_d = 0$

Hypothesis testing

Let $\Theta = D = \{0, 1\}$ and $w(\theta, d) = 1 - \delta_{\theta d}$, the average loss is the average error probability

$$\mathcal{W}^{\mathcal{B}}_{w,\lambda}(\mathcal{M}) = E^{\mathcal{B}}_{\lambda}(\mathcal{M}) = \lambda \operatorname{Tr} b_0 \mathcal{M}_1 + (1-\lambda) \operatorname{Tr} b_1 \mathcal{M}_0$$

and

$$\Pi^B_{w,\lambda} = 1 - \|\xi_{w,\lambda}\|_{I_2\otimes B}, \quad \xi_{w,\lambda} = |0
angle\langle 0|\otimes\lambda b_0 + |1
angle\langle 1|\otimes(1-\lambda)b_1$$

Lemma

Let s, t > 0, $b_0, b_1 \in B$. Then

 $\||0
angle\langle 0|\otimes sb_0+|1
angle\langle 1|\otimes tb_1\|_{I_2\otimes B}=rac{1}{2}(\|sb_0-tb_1\|_B+s+t)$

Hence $\Pi^B_{w,\lambda} = \frac{1}{2}(1 - \|\lambda b_0 - (1 - \lambda b_1)\|_B).$

Multiple hypothesis testing

Task: given $b_1, \ldots, b_m \in B$, with a prior λ , decide which is the true value, with minimal probablity of error

•
$$\Theta = D = \{1, \dots, m\}, w(\theta, d) = 1 - \delta_{\theta d}$$

• $\xi_{w,\lambda} = \sum_{d \in D} |d\rangle \langle d| \otimes \lambda_d b_d$
• $\Pi^B_{w,\lambda} = 1 - \|\xi_{w,\lambda}\|_{I_m \otimes B} = 1 - \min_{b \in B} \max_{\theta \in \Theta} \lambda_{\theta} 2^{D_{max}(b_{\theta}\|b)}$

If
$$B = \mathfrak{S}(\mathcal{H})$$
, $\{\rho_1, \dots, \rho_m\} \subset \mathfrak{S}(\mathcal{H})$:

$$\Pi_{\lambda} = 1 - 2^{-H_{min}(\mathcal{H}|\mathcal{H}_D)_{\xi}} \quad (\text{Renner, 2008})$$

$$= 1 - \min_{\sigma \in \mathfrak{S}(\mathcal{H})} \max_{1 \le i \le m} \lambda_i 2^{D_{max}(\rho_i \| \sigma)} \quad (\text{Datta,2009})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?