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Discrimination of quantum states

Let H be a Hilbert space, dim(H) < co. Let
S(H) = {p € BH)* Trp = 1}

the set of quantum states (density operators). Let po, p1 € S(H).

e Assumption: A quantum system represented by H is in one of
the states pg, p1-

e Task: Decide which is the true state.

e Tests: Binary POVMs: (M, — M), 0 < M <[, Tr Mp is the
probability of choosing pg if the true state is p.

e Alternatively, a test is an affine map &(H) — P({0,1}).



Discrimination of quantum states

Optimality: Given a prior 0 < A < 1, minimize the average error
probability

Ex(M) := ATr (I — M)po + (1 — N\)Tr Mp;
It is well known that (Helstrom, 1969)

1

M(po, p1) = oMin, Ex(M) = 5(1 = [[Apo — (L = A)p1ll1)

where
IX|lh =Tr|X]|, Xe€B(H)
is the trace norm. Moreover,
e S(H) is a base of the positive cone B(H)*

e the corresponding base norm on B(#)*? is the trace norm.



Discrimination of quantum channels

Let dim(#),dim(K) < co. A quantum channel is a completely
positive trace preserving map ¢ : B(H) — B(K). Let ®g, ®1 be
two channels.

e Assumption: A channel B(H) — B(K) is either ®y or ®;.
e Task: Decide which.

e Tests: Binary quantum 1-testers: T = (Ha, p, M), where
PEG(HRHA), Me BIKRHA), 0 <M.
The probability that ®q is chosen if the true channel is  is:

p(T.®) := Tr M(® & idhy,)(p)

o Alternatively, tests are affine maps from all channels to

P({0,1}).



Discrimination of quantum channels

Optimality: Given 0 < A < 1, minimize the average error
probability

EXC(T) = A1 = p(T, ®0)) + (1= N)p(T, 1)
It is known that
(@0, ®1) = min EX(T) = (1~ [A®0 — (1 A1)
where for ¢ : B(H) — B(K), ®(X*) = ®(X)*,
[®fo = sup sup [|® @ ider ()1

dim(L')<oo peS(HRL')

= sup ||®®@ide(p)l1,  dim(L) = dim(H)
PEG(HRL)



Discrimination of quantum networks

Quantum N-combs: (Chiribella,D’Ariano,Perinotti,2008)
Quantum N-round strategies (Gutoski,Watrous,2007,2011)
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e Task: Discriminate between two quantum networks ®° and ¢!



Discrimination of quantum networks

e Tests: Binary quantum N-testers (CDP,2008)
measuring N-round co-strategies (GW,2007,2011)
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e Represented by T = (Tp, T1), T; € B(Hon-1® -+ @ Ho) T,

To + Ty is an (N 4 1)-comb for (C, Hy, ..., Han-1,C).



Discrimination of quantum networks

e The probability of choosing @0 if the true value is ® is
Tr ToXe

P*‘\ Wy Wy M
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o Alternatively, test are affine maps from N-combs to P({0,1}).



Discrimination of quantum networks

e The minimum average error probability:
(CDP 2008, Gutoski 2011 - "strategy N-norm")

1
ni(e% o) = 5= IA®° — (1 = \)®*{|on)
where for any Hermitian map ¢,

Ioon = sup ||[YY2Xe Y21 (CDP)
Y=To+T1

= supTrXo(T1 — Tp), (Gutoski)
T

e We will show that all these norms are obtained as certain base
norms on subspaces of self-adjoint operators.



Ordered vector spaces, bases and order units

Let V, V* be a finite dimensional real vector space and its dual,
with duality (-, ).
e Q CV a positive cone in V: closed convex cone,
QN-Q=1{0},V=Q-Q
e (V, Q) ordered vector space: x <qyify—x€Q
e Q* C V* the dual cone: {f € V*,(f,q) >0, g€ Q},
(V*, Q*) is an ordered vector space
e BC Qabase: forge Q,q#0,dJt>0,be B: g=tb
e ec @ an order unit: for x € V, 3Ir > 0: re >q x,
e is an order unit iff e € int(Q)
There is a 1-1 correspondence between bases of @ and order units
e c Q"
B={q€Q, (e,q9) =1}



Base norms and order unit norms

Let B C @ be a base, e € Q an order unit.
e Base norm in V:
Ix||lg = inf{\+ pu: x = Aby — uba, A\, u > 0, b1, by € B}
e Order unit norm in V:
Ix[le =inf{A >0: —Xe <@g x <@ Ae}

Let eg € Q* be such that B={q € Q: (eg,q) =1}. Then
|- 1l5 =1 - lleg is the dual norm. Hence

Ixllg=" sup  (f,x)=2 sup (f,x)—(es,x)
—eBSQ*fSQ*eB OSQ*fSQ*eB



Discrimination of elements of a base B

Formally, we can consider the discrimination problem in B:
e Given bg, by € B, distinguish them by tests = affine maps
B — P({0,1}).
e Tests correspond to elements 0 <@~ m <@+ eg: the
probability of choosing by if the "true value” is b is (m, b).

e Given 0 < X\ <1, the average error probability is

Ex(m) = A1 —(m, b))+ (L—A)(m,b1)
= A—(m,)\bo—(l—)\)bﬁ

It follows that

. 1
N%(bo, by) == min  EE(m) = Z(1—|Abo—(1—)\)b1||)

OS Q* mg Q*€B 2



Bases of the cone of positive operators

Let A be a finite dimensional C*-algebra, A% = {a € A,a = a*},
At ={ae A ,a>0}. Identify (A%)* = A%, with (a, b) = Tr ab.

o (A% AT) is an ordered vector space.

o AT is self-dual: (AT)* = AT,

e Order units: a € int(A") ={a >0, a invertible}.
o Bases of AT: B < b € int(A*):

B=S5;= {ae A*, Trab=1}

e States: 6(A) =S,



Base norms and order unit norms in A%

Let b € int(AT), B=S;.

_ HBI/ZXBI/ZHI

Ix|ls, =
Ix|ls, = lIxllz =inf{A>0:-Ab < x < Ab}
For b=1I,
Ixllgay = lIx[l = Trlx|, x|y = [Ix]]
If a >0, then

a5 = 25219,

Dpmax(al|b) - relative max-entropy (Datta, 2009)



Bases for subspaces in A%

Let J C A% be a real linear subspace, @ = JN A". Suppose
J=Q-Q.

(J, Q) is an ordered vector space.

Jr=A% L ={a+ S ac A%}, Jt={aTrax =0,x € J}
Duality: (a+ J*,x) = Trax, x € J

Q* ={a+Jt, ac AT} (AJ, 2012)

int(Q*) = {a+ J+, acint(A")}

Lemma
Bases of @ are precisely sets of the form B = JN S, with

b e int(AT), eg = b+ J*-.



Sections of a base of AT

Let b € int(AT), L C A% be a subspace. Let B=LNS;.

e B is called a section of a base of AT,

e Let J=span(B), Q = JN AT, then B is a base of Q.

e Conversely, if JC AT, Q=JNAT, J=Q—-Qand Bisa
base of Q, then B is a section of a base of A™.

e If B is a section and BN int(A") # 0, then B is called
faithful. In this case, B N int(A™) = ri(B).



The dual section

Let B be a section of a base of A", J =span(B), @ = JN AT,
Let y y y
B={becA": Trhb=1,be B}.

Then B is convex and closed, and
ri(B) = {b € int(A"): B=JnNS;}

Lemma N y
Let B be faithful, b € ri(B). Let J = span(B).

(i) B=JNSp, so that B is a faithful section of a base of AT
(i) B=8B
B = MNperics) S = N{Bo is a base of AT, B C Bo}



An extension of the base norm

Let B be a section of a base of AT, J =span(B), Q =JNA™.
Let

Op={xeA%: x=x1—x2, x1,x2 >0, x1 + x2 € B}

Op N J is the unit ball of the base norm || - |5 in (J, Q).

Theorem
Let B be faithful. Then

(i) Op is the unit ball of a norm in A%?. We denote it by || - ||5-
(if)

(i) lIxllg = suPgeig) lIxlls; = maxpep 16/2xbY/2]

(iv) lIxlls = infperigy IXIlo = minpep inf{A > 0: —Ab < x < Ab}

The dual norm is || - || 5.



Extended base norm in AT

Let a € AT, then

HaHB = max'Ir a[; = min 2Dmax(a||b)
beB beB

Moreover, by € B is such that ||a||g = Tr aby if and only if:
dg = sby € Q, such that

a<gqg and (q—a)Bozo

In this case, s = ||a||g = 2Dmax(allbo)



The Choi isomorphism

Let dim(H),dim(K) < oc.
e Choi isomorphism:
X € B(K®H) <« linear maps ¢ : B(H) — B(K):
Xo = (@ idy)([¥)(¥]),  Ox(a) = Tro[(fc @ a")X]

[9) = 3. 1i) @ i), |i) an ONB in H, a transpose of a
e O is completely positive if and only if X¢ > 0.
e ® is Hermitian ®(x*) = ®(x)* if and only if Xo = X3.
e & s trace preserving if and only if TrxXe = Iy.



Generalized channels

Let B be a faithful section of a base of B(H)*.

o A generalized channel with respect to B: ¢ : B(H) — B(K),
completely positive and ®(B) C S(K).

e & is a generalized channel with respect to B if and only if
Xo € C(H,K) :={X e BK®H)*, (TrxX)" € B}
o B=Cp(H,C)

Theorem
Cg(H,K) is a faithful section of a base of B(K ® H)". The dual

section is Cg(H,K) = {lx @ bT,b € B} = lx @ BT.



Generalized channels: base norm and its dual

Let X = X* € BIK®@H), X = (@ idy)(|00) (1)]).

Theorem
[ Xlleg(rc) = sup sup  [[(®®@ide) (V)11
dim(L£)<oo YECz(H,L')
= sup (P ®@ide)(Y)|1, dim(L) = dim(H)
YeCs(H,L)
IXllegrniy = IXlhesr
= inf inf{A>0,-\(/® bT) < X <A/ ®b")}
S
If X >0, then

X — inf 2Pmax(XIllbT)
IXlligsr = nf



Quantum channels

Let B = &(H). Then
e Cpg(H,K) =:C(H,K) Choi matrices of channels
e C5(H,K)=6(K®H)

° C(H,K)={lc®p, pe &H)}
Hence if X = (¢ @ idy)(|v)(¥]) € B(K @ H)*2,

[ Xllex)y = sup sup  [[(®®@id) (o)1 = (@]
dim(L)<oo c€S(HKRL')
XI5 = inf inf{A>0,-AN/®p)<XIANI®
| ||c(H,1c) pe'g(ﬂ) inf{ (I®p) <X <Al ®p)}

If o € (K @ H) is a state, then

ol ) =277

Hpmin(KC|H)o is the conditional min-entropy of o, (Renner,2008)



Quantum supermaps

Let Ho, H1,... be a sequence of finite dimensional Hilbert spaces.
Define

1. C(Ho) := S(Ho).
2. Forn>1,C(Ho,...,Hn) CB(H, @ - ®@Ho)T,

C(Ho,---,Hn) = {Xo >0, ®(C(Ho, ..., Hn-1)) C &(Hn)}

Then
e C,:=C(Ho,...,Hp) is a faithful section of a base of
B(Hp® - @ Ho)™".
* Ch=Cc,_,(Hn-1®@---®Ho, Hn)
o Ch=1,®Cp1=C(Ho, ..., HnC)
. C@(Hn®---®Ho,£’) =C(Ho,--- Hn-1,Hrn @ L)



Quantum supermaps

e C(Ho,...,Han—1) = N-combs for (Ho, .
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Supermap norms and their duals

Let n>2. Let X € B(Hp® -+ @ Ho)* and let
®:B(Hp-1®---®Ho) = B(Hn) be the corresponding Hermitian
map. Then

[X[le, = sup sup [(® ®ide ) (V)L
dim(L/)<oco YEC(Ho,.../Hn—2,Hn1®L')

= sup 1(® @ ide) (V)1
YEC(HO7---7Hn—27Hn—1®£)

where dim(£) = N}_g dim(#Hx). The dual norm is

||X||én = HXHC(HO,...,H,,,C)

We have
[XNlean—y = [[®llno



Supermap norms and their duals

Let X = Xo € C(Ho, ..., Hn), Y € C(Ho,..., Hno1® L).
Then (¢ ® id/)(Y) has the form

E/

p Uy Vo
|| | || | %

b, o, o3




Measurements on B and generalized POVMs

Let B be a section of a base of B(H)™", U a finite set. Let
J=span(B), @ = JNB(H)™ .
e A measurement on B is an affine map m: B — P(U).
em={f, e Q,uec U}, >, f,=ep m(b), = (fy,b).
f, = M, + J*, for some M, € B(H)*, 3., M, € B.
Mp(H, U) = {{My,u e U}, M, € B(H)*,>, M, € B} -
generalized POVMs with respect to B
Mp(A,U) C Ce(H,Huy), dim(Hy) = |U|:

{My,uc Ut M=>"|u)(ul & M,
uelU

{|u),u € U} an ONB in Hy.



Quantum testers

If B =C(Ho,-.

quantum N-testers for (Ho, . .
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Decision theory

Let B be a section of a base of B(H)™.
Let {by,0 € ©} C B, |©] = m, be the set of possible values of
be B. Let

e D, |D| = k be a set of decisions,
w:© x D — [0,1] a loss function,

(D, w) a (classical) decision problem,
M = {My,d € D} € Mg(H, D) a decision function.
e Given a prior A € P(©), the average loss for M is

WEAM) =" " Xgw(0, d)Tr byMg
0 d

o Minimize W5 , (M) over all decision functions.



Quantum decision problems

Let {by,0 € ©} C B, |©] = m. Let

e D, dim(D) = k be a Hilbert space,
W:0356— Wye B(D), 0< W < Ip loss operators,
(D, W) a quantum decision problem,

X € Cg(H,D) a quantum decision function.
e Given a prior A € P(©), the average loss for X = Xg is

Wi AX) =D A Trd(bg) Wy = > AgTr (Wp @ by )X
0 0

e Minimize this over all X.



Classical and quantum decision problems

Let (D, w) be a classical decision problem. Let
e Hp a Hilbert space, dim(Hp) = |D|, {|d),d € D} ONB,
o Wy =73 yepw(0,d)|d)(d| € B(Hp), 0 < Wp < 1.

Then (Hp, W) is a quantum decision problem, with

Wy Wy = Wy Wy, 0, 9 co (*)

Conversely, let (D, W) be a quantum decision problem with (x),
then

Wy = w(b,d)les)(es], 0€0©
d

for some ONB, and (D, w) is a classical decision problem. If
X € Cg(H, D), then WE/A(X) = W‘EA(M), with

M e Mg(H,D), My= ((eqg| @ )X (Jeg) ® hy)



Minimal average loss

Theorem
Minimal average loss is

Wiya(X) =1 = [[Ewllipes

ne = min

WA X&Cp(H,D)
— 1 — inf 2Pmax(Ewalllp®b)
beB

where Ew =Y g Mol — W) @ by. If Wy =, w(0,d)|d)(d],

EWA—ZW d|®z>\9W9db9 Z|d (d| ® Ewrd

and
2Drnax(§w,>\,d”b)

lEwallipes = lnf sup
B deD



Proof

We have

Wi a(X) = NTr (Wy @ b )X =1—Tr (X éw,n)
0

Hence
in WE (X)) = 1— max Tr(Xéw.)
XeC(H.D) wa(X) XeCyt (H,D) (

= 1-[léwalleraupy =1 = lEwallies

[



Optimal Bayes decision function

Corollary

* Xo € C(H, D) satisties Wy, \(Xo) = Ny, , if and only if
there 3 some by € B, s > 0 such that

s(lp® bo) > &w and (s(I ® bo) — Ewp)Xg =0

In this case, s = 2Pmx(Ewalll®b) — 1 &

o If W is classical, M® € Mg(H, U) is optimal if and only if
there 4 bg € B, s > 0 such that for all d € D,

sbo > Ew g and (sbo —&wd)Mg =0



Hypothesis testing

Let © = D = {0,1} and w(6,d) =1 — dpq4, the average loss is the
average error probability

Wv’iA(M) = EZ(M) = ATr boMy + (1 — A)Tr by My

and
Moy =1—lléwallnos,  Ewa =10)(0]® Aby + [1){1] & (1 — )by

Lemma
Lets,t >0, by, by € B. Then

1
110){0] @ sbo + |1){1] ® thy[|,es = 5 (Ilsbo — thr]lg + 5 +t)

Hence I'If/’)\ = %(1 — |[Abo — (1 — Ab1)||B).



Multiple hypothesis testing

Task: given by, ..., b, € B, with a prior A, decide which is the
true value, with minimal probablity of error

c©=D={1,....m} w(6,d)=1— 4
* Swa = 2gep |d)(d] @ Agby
e NB, =1—¢wallee =1 — minsep maxgee Ag2Pme(5212)

If B=G6(H), {p1,---,pm} C S(H):
My = 1—2 Hmn(HHo)e  (Renner, 2008)

1— min  max \2Pm=(ile)  (Datta,2009)
0ES(H) 1<i<m



