A geometric view on quantum incompatibility

Anna Jenčová
Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Genoa, June 2018

Outline

- Introduction
- GPT: basic definitions and examples
- Incompatibility:
- characterization
- incompatibility witnesses and degree
- maximal incompatibility
- Incompatibility and Bell non-locality
- Steering

General probabilistic theories: basic notions

states: preparation procedures of a given system

- convex structure: probabilistic mixtures of states

Assumption: Any state space is a compact convex subset $K \subset \mathbb{R}^{m}$.
effects: yes/no experiments

- determined by outcome probabilities in each state
- respect the convex structure of states: affine maps $K \rightarrow[0,1]$

Assumption: All affine maps $K \rightarrow[0,1]$ correspond to effects.

For the more general framework, see e.g (G. Chiribella, G. D'Ariano, P. Perinotti, PRA 2010)

General probabilistic theories: basic notions

measurements: (with finite number of outcomes)

- described by outcome statistics in each state
- affine maps $K \rightarrow \Delta_{n}$
Δ_{n} : simplex of probabilities over $\{0, \ldots, n\}$
- given by effects:

$$
f_{i}(x)=f(x)_{i}, i=0, \ldots, n, \quad \sum_{i} f_{i}=1
$$

Assumption: All affine maps $K \rightarrow \Delta_{n}$ correspond to measurements.

General probabilistic theories: basic examples

Classical systems:

- state spaces: Δ_{m}
- effects: vectors in \mathbb{R}^{m+1} with entries in $[0,1]$
- measurements: classical channels $T: \Delta_{m} \rightarrow \Delta_{n}$

The measurements are identified with $(m+1) \times(n+1)$ stochastic matrices (conditional probabilities) $\{T(j \mid i)\}_{i, j}$:

$$
T(j \mid i)=f\left(\delta_{i}^{m}\right)_{j}, \quad \delta_{i}^{m}=\text { vertices of } \Delta_{m}
$$

General probabilistic theories: basic examples

Quantum systems

- state spaces: $\mathfrak{S}(\mathcal{H})=$ density operators on a Hilbert space \mathcal{H}, $\operatorname{dim}(\mathcal{H})<\infty$
- effects: $E(\mathcal{H})=$ quantum effects,

$$
0 \leq E \leq I, \quad E \in B(\mathcal{H})
$$

- measurements: POVMs on \mathcal{H}

$$
M_{0}, \ldots, M_{n} \in E(\mathcal{H}), \quad \sum_{i} M_{i}=I
$$

General probabilistic theories: basic examples

Spaces of quantum channels

- state spaces: $\mathcal{C}_{A, A^{\prime}}=$ set of all quantum channels (CPTP maps) $B\left(\mathcal{H}_{A}\right) \rightarrow B\left(\mathcal{H}_{A^{\prime}}\right)$
- effects: $f \in E\left(\mathcal{C}_{A, A^{\prime}}\right)$,

$$
f(\Phi)=\operatorname{Tr} M\left(\Phi \otimes i d_{R}\right)\left(\rho_{A R}\right), \quad \Phi \in \mathcal{C}_{A, A^{\prime}},
$$

for some state $\rho_{A R} \in \mathfrak{S}\left(\mathcal{H}_{A R}\right)$ and effect $M \in E\left(\mathcal{H}_{A^{\prime} R}\right)$

- measurements: f_{0}, \ldots, f_{n},

$$
f_{i}(\Phi)=\operatorname{Tr} M_{i}\left(\Phi \otimes i d_{R}\right)\left(\rho_{A R}\right), \quad \Phi \in \mathcal{C}_{A, A^{\prime}}
$$

for some $\rho_{A R} \in \mathfrak{S}\left(\mathcal{H}_{A R}\right)$ and a POVM $\left\{M_{0}, \ldots, M_{n}\right\}$ on $\mathcal{H}_{A^{\prime} R}$.

GPT and ordered vector spaces

Ordered vector space: $\left(V, V^{+}\right)$

- a real vector space $V(\operatorname{dim}(V)<\infty)$
- a closed convex cone $V^{+} \subset V$, generating in V, $V^{+} \cap-V^{+}=\{0\}$
Dual OVP: an ordered vector space $\left(V^{*},\left(V^{+}\right)^{*}\right)$
- vector space dual V^{*}
- dual cone

$$
\left(V^{+}\right)^{*}=\left\{\varphi \in V^{*},\langle\varphi, x\rangle \geq 0, \forall x \in V\right\}
$$

We have $V^{* *}=V,\left(V^{+}\right)^{* *}=V^{+}$.

GPT and ordered vector spaces

Any state space K determines an OVP:

- $A(K)=$ all affine functions $K \rightarrow \mathbb{R}$
- $A(K)^{+}=$positive affine functions
- $E(K)=\left\{f \in A(K), 0 \leq f \leq 1_{K}\right\}, 1_{K}$ is the constant unit function

Then $\left(A(K), A(K)^{+}\right)$is an OVP, $E(K)$ is the set of all effects.
A norm in $A(K)$:

$$
\|f\|_{\max }=\max _{x \in K}|f(x)|
$$

GPT and ordered vector spaces

Let $\left(V(K), V(K)^{+}\right)$be the dual OVP.

- $K \simeq\left\{\varphi \in V(K)^{+},\left\langle\varphi, 1_{K}\right\rangle=1\right\}$ a base of $V(K)^{+}$
- $V(K)^{+} \simeq \cup_{\lambda \geq 0} \lambda K$ the cone generated by K
- $V(K) \simeq$ the vector space generated by K

Base norm:

$$
\|\psi\|_{K}=\inf \{a+b, \psi=a x-b y, a, b \geq 0, x, y \in K\}, \psi \in V(K)
$$

- the dual norm to $\|\cdot\|_{\text {max }}$.

GPT and ordered vector spaces: self-duality

We say that the cone V^{+}is (weakly) self-dual if $V^{+} \simeq\left(V^{+}\right)^{*}$

- classical: $V\left(\Delta_{n}\right)^{+} \simeq A\left(\Delta_{n}\right)^{+}\left(\simeq\left(\mathbb{R}^{n+1}\right)^{+}\right)$
- quantum: $V(\mathfrak{S}(\mathcal{H}))^{+} \simeq A(\mathfrak{S}(\mathcal{H}))^{+}\left(\simeq B(\mathcal{H})^{+}\right)$
- not true for spaces of quantum channels
- not true for all spaces of classical channels

Composition of state spaces: tensor products

Assumption: For state spaces K_{A} and K_{B}, the joint state space $K_{A} \widetilde{\otimes} K_{B}$ is a subset in $V\left(K_{A}\right) \otimes V\left(K_{B}\right)$.

We have:

$$
K_{A} \otimes_{\min } K_{B} \subseteq K_{A} \widetilde{\otimes} K_{B} \subseteq K_{A} \otimes_{\max } K_{B}
$$

minimal tensor product: separable states

$$
K_{A} \otimes_{\min } K_{B}=\operatorname{co}\left\{x_{A} \otimes x_{B}, x_{A} \in K_{A}, x_{B} \in K_{B}\right\}
$$

maximal tensor product: no-signalling

$$
\begin{gathered}
K_{A} \otimes_{\max } K_{B}:=\left\{y \in V\left(K_{A}\right) \otimes V\left(K_{B}\right),\left\langle f_{A} \otimes f_{B}, y\right\rangle \geq 0,\right. \\
\left.\left\langle 1_{A} \otimes 1_{B}, y\right\rangle=1\right\}
\end{gathered}
$$

Composition of state spaces: tensor products

classical:
$-\Delta_{n_{A}} \otimes_{\min } \Delta_{n_{B}}=\Delta_{n_{A}} \otimes_{\max } \Delta_{n_{B}}=\Delta_{n_{A B}}$

- the probability simplex on $\left\{0, \ldots, n_{A}\right\} \times\left\{0, \ldots, n_{B}\right\}$

quantum:

- $\mathfrak{S}\left(\mathcal{H}_{A}\right) \widetilde{\otimes} \mathfrak{S}\left(\mathcal{H}_{B}\right)=\mathfrak{S}\left(\mathcal{H}_{A B}\right)$
- $\mathfrak{S}\left(\mathcal{H}_{A}\right) \otimes_{\min } \mathfrak{S}\left(\mathcal{H}_{B}\right)$ separable states
- $\mathfrak{S}\left(\mathcal{H}_{A}\right) \otimes_{\max } \mathfrak{S}\left(\mathcal{H}_{B}\right)$ normalized entanglement witnesses quantum channels:
- $\mathcal{C}_{A, A^{\prime}} \widetilde{\otimes} \mathcal{C}_{B, B^{\prime}}=\mathcal{C}_{A B, A^{\prime} B^{\prime}}^{\text {caus }}$ causal bipartite channels
- $\mathcal{C}_{A, A^{\prime}} \otimes_{\min } \mathcal{C}_{B, B^{\prime}}=\mathcal{C}_{A B, A^{\prime} B^{\prime}}^{\text {loc }}$ local bipartite channels
- $\mathcal{C}_{A, A^{\prime}} \otimes_{\max } \mathcal{C}_{B, B^{\prime}}$ causal, not necessarily CP

Channels and positive maps

Channels: transformations of the systems allowed in the theory

- affine maps between state spaces $K \rightarrow K^{\prime}$
- affine maps $K \rightarrow V\left(K^{\prime}\right)^{+}$extend to positive maps of the ordered vector spaces

$$
\left(V(K), V(K)^{+}\right) \rightarrow\left(V\left(K^{\prime}\right), V\left(K^{\prime}\right)^{+}\right)
$$

not all affine maps are allowed in general:

- $\Delta_{n} \rightarrow \Delta_{m}$: all classical channels
- $\mathfrak{S}(\mathcal{H}) \rightarrow \mathfrak{S}\left(\mathcal{H}^{\prime}\right):$ must be completely positive

Entanglement breaking maps

A positive map $T_{A}: K_{A} \rightarrow V\left(K_{A}^{\prime}\right)^{+}$is entanglement breaking (ETB) if

$$
\left(T_{A} \otimes i d_{B}\right)\left(K_{A} \otimes_{\max } K_{B}\right) \subseteq V\left(K_{A}^{\prime} \otimes_{\min } K_{B}\right)^{+}
$$

for all state spaces K_{B}.
T_{A} is ETB iff it factorizes through a simplex:

$$
T_{A}: K \xrightarrow{g} \Delta_{n} \xrightarrow{T_{0}} V\left(K^{\prime}\right)^{+}
$$

(measure (g) and "prepare" $\left(T_{0}\right)$)

Duality

The space of all linear maps $V(K) \rightarrow V\left(K^{\prime}\right)$, with the cone of positive maps is an ordered vector space.

Its dual is the space of linear maps $V\left(K^{\prime}\right) \rightarrow V(K)$, with the cone of positive ETB maps, duality:

$$
\left\langle T, T^{\prime}\right\rangle=\operatorname{Tr} T T^{\prime}
$$

Polysimplices

A polysimplex is a Cartesian product of simplices

$$
\mathrm{S}_{I_{o}, \ldots, I_{k}}:=\Delta_{I_{0}} \times \cdots \times \Delta_{I_{k}}
$$

with pointwise defined convex structure.

- states of a device specified by inputs and allowed outputs
- theories exhibiting super-quantum correlations
(S. Popescu, D. Rohrlich, Found. Phys. 1994; J. Barrett, PRA 2007; P. Janotta, R. Lal, PRA 2013)

Polysimplices

$\mathrm{S}=\mathrm{S}_{\mathrm{l}_{0}, \ldots, l_{k}}:$

- convex polytope, with vertices

$$
\mathrm{s}_{n_{0}, \ldots, n_{k}}=\left(\delta_{n_{0}}^{\prime 0}, \ldots, \delta_{n_{k}}^{l_{k}}\right)
$$

δ_{j}^{i} is the j-th vertex of $\Delta_{I_{i}}$

- $A(\mathrm{~S})^{+}$: generated by effects of the projections

$$
\mathrm{m}^{i}: \mathrm{S}_{l_{0}, \ldots, l_{k}} \rightarrow \Delta_{l_{i}}, \mathrm{~m}_{0}^{i}, \ldots, \mathrm{~m}_{l_{i}}^{i} \in E(\mathrm{~S})
$$

The base of $A(S)^{+}$is the dual polytope.

Polysimplices: examples

Square (gbit, square-bit): $\square=\Delta_{1} \times \Delta_{1}$

- $V(\square)^{+} \simeq A(\square)^{+}$- weakly self-dual
- the only polysimplex with this property

the cone $A(\square)^{+}$

Polysimplices: examples

Hypercube: $\square_{n}=\Delta_{1} \times \cdots \times \Delta_{1}$

- base of $A\left(\square_{n}\right)^{+}$: a cross-polytope

the cube \square_{3}
octahedron

Polysimplices: examples

Prism:

$$
\mathrm{S}_{2,1}=\Delta_{2} \times \Delta_{1}
$$

Polysimplices and classical channels

Let $S=\Delta_{n}^{k+1}$.
A correspondence between $s \in \Delta_{n}^{k+1}$ and stochastic matrices T :

$$
T(j \mid i)=\mathrm{m}_{j}^{i}(s), \quad s=(T(\cdot \mid 0), \ldots, T(\cdot \mid k))
$$

Δ_{n}^{k+1} is isomorphic to the set of all classical channels

$$
\Delta_{k} \rightarrow \Delta_{n}
$$

Any polysimplex is isomorphic to a face in a set of classical channels.

Polysimplices and quantum channels

There are channels $R: C_{A, A^{\prime}} \rightarrow \Delta_{n}^{m}$ and $R^{\prime}: \Delta_{n}^{m} \rightarrow C_{A, A^{\prime}}$, such that

$$
R R^{\prime}=i d
$$

The maps are determined by ONBs $\left\{\left|i_{A}\right\rangle\right\},\left\{\left|j_{A^{\prime}}\right\rangle\right\}$ as

$$
\begin{aligned}
R(\Phi)(j \mid i) & =\left\langle j, \Phi\left(|i\rangle\left\langle\left. i\right|_{A}\right)|j\rangle_{A^{\prime}}, \quad \forall i, j ; \Phi \in \mathcal{C}_{A, A^{\prime}}\right.\right. \\
R^{\prime}(s)(\rho) & =\sum_{i, j} \mathrm{~m}_{j}^{i}(s)\langle i, \rho \mid i\rangle_{A}|j\rangle\left\langle\left. j\right|_{A^{\prime}}, \quad \rho \in \mathfrak{S}\left(\mathcal{H}_{A}\right) ; s \in \Delta_{n}^{m} .\right.
\end{aligned}
$$

Such maps are called: R - retraction, R^{\prime} - section. Note that $R^{\prime} R$ is a projection (onto a set of c-c channels).

Incompatible measurements in GPT

A collection of measurements $f^{0}, \ldots, f^{k}, f^{i}: K \rightarrow \Delta_{l_{i}}$, is the same as a channel $F=\left(f^{0}, \ldots, f^{k}\right): K \rightarrow \mathrm{~S}_{l_{0}, \ldots, l_{k}}$:

$$
F(x)=\left(f^{0}(x), \ldots, f^{k}(x)\right), \quad f^{i}=m^{i} F, i=0, \ldots, k
$$

- compatible: marginals of a single joint measurement

$$
g: K \rightarrow \Delta_{L}=\Delta_{I_{0}} \otimes \cdots \otimes \Delta_{I_{k}}
$$

- that is, $\left(f^{0}, \ldots, f^{k}\right): K \xrightarrow{g} \Delta_{L} \xrightarrow{J} S$
f^{0}, \ldots, f^{k} are compatible if and only if $\left(f^{0}, \ldots, f^{k}\right)$ is ETB.

Incompatibility witnesses

By duality of the spaces of maps:
$F=\left(f^{0}, \ldots, f^{k}\right): K \rightarrow S$ is incompatible if and only if there is an incompatibility witness: a map $W: S \rightarrow V(K)^{+}$such that

$$
\operatorname{Tr} F W<0
$$

Incompatibility witnesses

Any $W: S \rightarrow V(K)^{+}$is determined by images of vertices:

$$
w_{n_{0}, \ldots, n_{k}}=W\left(s_{n_{0}, \ldots, n_{k}}\right)
$$

W is ETB iff there are $\psi_{j}^{i} \in V(K)^{+}$such that

$$
w_{n_{0}, \ldots, n_{k}}=\sum_{i} \psi_{n_{i}}^{i}
$$

Incompatibility witnesses

A witness must be non-ETB, but this is not enough

Characterization of witnesses: $W: S \rightarrow V(K)^{+}$is a witness iff no translation of W along K is ETB.

Translation along $K: \tilde{W}: S \rightarrow V(K)^{+}$, such that

$$
\tilde{W}(s)=W(s)+v
$$

for some $\left\langle 1_{K}, v\right\rangle=0$.

Incompatibility witnesses in Bloch ball

Incompatibility witnesses for two-outcome measurements

We have another characterization if S is a hypercube \square_{k+1} :
Let $W: \square_{k+1} \rightarrow V(K)^{+}$

```
pick a vertex: }\mp@subsup{s}{\mp@subsup{n}{0}{},\ldots,\mp@subsup{n}{k}{}}{
all adjacent edges: \(e_{0}, \ldots, e_{k}\)
```


$$
\sum_{i=0}^{k}\left\|W\left(e_{i}\right)\right\|_{K}>2\left\langle 1_{K}, W(\overline{\mathrm{~s}})\right\rangle
$$

Examples of extremal witnesses for pairs of effects

It is enough to use extremal incompatibility witnesses: extremal as maps $S \rightarrow V(K)^{+}$

Some examples for $S=\square$:
Square-bit: $K=\square$

- extremal non-ETB maps = symmetries of the square

dihedral group D_{4} :
- group of order 8
- 2 generators: r,s
- non-ETB, no nontrivial translations: witnesses

Examples of extremal witnesses for pairs of effects

Quantum states: $K=\mathfrak{S}(\mathcal{H})$
extremal non-ETB maps: parallelograms in $B(\mathcal{H})^{+}$with rank one vertices:

$$
\left|x_{00}\right\rangle\left\langle x_{00}\right|+\left|x_{11}\right\rangle\left\langle x_{11}\right|=\rho=\left|x_{01}\right\rangle\left\langle x_{01}\right|+\left|x_{10}\right\rangle\left\langle x_{10}\right|,
$$

- incompatibility witness if perimeter (in trace norm) $>2 \operatorname{Tr} \rho$
- for compatibility of pairs of effects, it is enough to consider restrictions to 2-dimensional subspaces

Incompatibility degree

Can we quantify incompatibility?
(M.M. Wolf et al., PRL 2009; P. Busch et al., EPL 2013; T. Heinosaari et al., J. Phys. A 2016; D. Cavalcanti, P. Szkrzypczyk, PRA 2016)

- Incompatibility degree: the least amount of noise that has to be added to obtain a compatible collection.
- different definitions by the choice of noise
- we choose coin-toss measurements $=$ constant maps $f_{p}(x) \equiv p \in \Delta$
- Collection of coin-tosses $=$ constant map

$$
F_{s}: K \rightarrow s=\left(p^{0}, \ldots, p^{k}\right) \in \mathrm{S}
$$

always compatible (ETB)

Incompatibility degree

Let $F, F_{s}: K \rightarrow S, s \in S$.

We put

$$
\begin{gathered}
I D_{s}(F)=\min \left\{\lambda,(1-\lambda) F+\lambda F_{s} \text { is } \mathrm{ETB}\right\}, \\
I D(F):=\inf _{s \in \mathrm{~S}} I D_{s}(F)
\end{gathered}
$$

(T. Heinosaari et al. PLA 2014)

Incompatibility degree by incompatibility witnesses

For $s \in \operatorname{int}(S)$, let us denote

$$
\mathcal{W}_{s}:=\left\{W: S \rightarrow V(K)^{+}, W(s) \in K\right\}
$$

and

$$
q_{s}(F):=\min _{W \in \mathcal{W}_{s}} \operatorname{Tr} F W
$$

Then

$$
I D_{s}(F)=\left\{\begin{array}{cc}
0 & \text { if } q_{s}(F)>0 \\
\frac{-q_{s}(F)}{1-q_{s}(F)} & \text { otherwise }
\end{array}\right.
$$

This expression is related to (dual) linear programs for incompatibility degree
e.g. (M. Wolf, D. Perez-Garcia, C. Fernandez, PRL 2009)

ID attainable for pairs of quantum effects

Using extremal witnesses $\square \rightarrow B(\mathcal{H})^{+}$, we can prove:

For quantum state spaces, we have

$$
\max _{F: \mathfrak{S}(\mathcal{H}) \rightarrow \square} I D(F)=1-\frac{1}{\sqrt{2}}
$$

- for $I D_{\bar{s}}, \bar{s}$ the barycenter of \square, proved already in
(M. Banik et al., PRA 2013)

Maximal incompatibility in GPT

For any $s \in \mathrm{~S}$, it is known that

$$
I D_{s}(F) \leq \frac{k}{k+1}
$$

The joint measurement for $\frac{1}{k+1} F+\frac{k}{k+1} F_{s}$:

- choose one measurement in F uniformly at random
- replace all others by coin-tosses

We say that F is maximally incompatible if $I D(F)=\frac{k}{k+1}$.

Maximal incompatibility for effects

For two-outcome measurements, we have a nice characterization:
Let $F: K \rightarrow \square_{k}$:
F is maximally incompatible if and only if F is a retraction. The corresponding section is the witness $W: \square_{k} \rightarrow K$ such that $I D(F)$ is attained.

There exist k maximally incompatible effects on K if and only if there exists a projection $K \rightarrow K$ whose range is affinely isomorphic to the hypercube \square_{k}.

Maximal incompatibility: examples

- Polysimplices: Let $M: S \rightarrow \square_{k+1}$,

$$
M=\left(\mathrm{m}_{n_{0}}^{0}, \ldots, \mathrm{~m}_{n_{k}}^{k}\right), \quad n_{i} \in\left\{0, \ldots, l_{i}\right\}
$$

Then M is maximally incompatible.

- Quantum channels: There are $m=\operatorname{dim}\left(\mathcal{H}_{A}\right)$ maximally incompatible effects on $\mathcal{C}_{A, A^{\prime}}$
compose the retraction $R: \mathcal{C}_{A, A^{\prime}} \rightarrow \Delta_{n}^{m}$ with M as above.
(cf. M. Sedlák et al., PRA 2016; AJ, M. Plávala, PRA 2017)

Bell non-locality in GPT

Bell scenario:

The conditional probabilities satisfy the no-signalling conditions:

$$
\begin{aligned}
& \sum_{j_{A}} p\left(j_{A}, j_{B} \mid i_{A}, i_{B}\right)=p_{B}\left(j_{B} \mid i_{B}\right), \quad \forall i_{A} \\
& \sum_{j_{B}} p\left(j_{A}, j_{B} \mid i_{A}, i_{B}\right)=p_{A}\left(j_{A} \mid i_{A}\right), \quad \forall i_{B}
\end{aligned}
$$

Bell non-locality in GPT

In our setting:
$F_{A}=\left(f_{A}^{0}, \ldots, f_{A}^{k_{A}}\right), F_{B}=\left(f_{B}^{0}, \ldots, f_{B}^{k_{B}}\right), y \in K_{A} \widetilde{\otimes} K_{B}$

$$
\left(F_{A} \otimes F_{B}\right)(y) \in \mathrm{S}_{A} \otimes_{\max } \mathrm{S}_{B}
$$

There is a correspondence $S_{A} \otimes_{\max } S_{B} \equiv$ no-signalling conditional probabilities:

$$
s \leftrightarrow p\left(j_{A}, j_{B} \mid i_{A}, i_{B}\right):=\left(\mathrm{m}_{j_{A}}^{i_{A}} \otimes \mathrm{~m}_{j_{B}}^{i_{B}}\right)(s)
$$

- the no-signalling polytope

Bell non-locality in GPT

Local hidden variable model:

(H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)

Bell witnesses and Bell inequalities

- $p\left(j_{A}, j_{B} \mid i_{A}, i_{B}\right)$ admit LHV iff $s \in S_{A} \otimes_{\min } S_{B}:$
- the local polytope
- Bell witnesses: entangled elements in $A\left(S_{A} \otimes_{\min } S_{B}\right)^{+}$
- Extremal: finitely many μ_{1}, \ldots, μ_{N}
- Bell inequalities:

$$
s \in S_{A} \otimes_{\min } S_{B} \Longleftrightarrow\left\langle\mu_{i}, s\right\rangle \geq 0, \quad i=1, \ldots, N
$$

- $\mu_{i} \equiv M_{i}$ extremal affine maps $S_{A} \rightarrow A\left(S_{B}\right)^{+}$

Let $s=\left(F_{A} \otimes F_{B}\right)(y)$. If F_{A} or F_{B} is compatible or y separable, then $s \in \mathrm{~S}_{A} \otimes_{\text {min }} \mathrm{S}_{B}$.

The CHSH inequality

If $S_{A}=S_{B}=\square:$

- the CHSH witnesses: $\mu_{\square} \equiv$ isomorphisms

$$
M_{\square}: V(\square)^{+} \rightarrow A(\square)^{+}
$$

- the CHSH inequality:

$$
\begin{aligned}
& 0 \leq\left\langle\mu_{\square},\left(F_{A} \otimes F_{B}\right)(y)\right\rangle \\
& =\frac{1}{2}\left(1-\frac{1}{2}\left\langle a_{0} \otimes\left(b_{0}+b_{1}\right)+a_{1} \otimes\left(b_{0}-b_{1}\right), y\right\rangle\right) \\
& \quad a_{i}=1-2\left(f_{A}^{i}\right)_{0}, \quad b_{i}=1-2\left(f_{B}^{i}\right)_{0}
\end{aligned}
$$

Bell inequalities and the incompatibility degree

Relation of violation of Bell inequalities to incompatibility degree:

If F_{A} is incompatible, then for any $y \in K_{A} \widetilde{\otimes} K_{B}$, any Bell witness μ and $s \in \operatorname{int}\left(\mathrm{~S}_{A}\right)$, we have

$$
\left\langle\mu, F_{A} \otimes F_{B}(y)\right\rangle \geq\|\mu\|_{\max } q_{s}\left(F_{A}\right)
$$

Bell inequalities and the incompatibility degree

- Maximal violation of CHSH inequality: CHSH bound
- Quantum case: Tsirelson bound

Equality case for the CHSH bound: If $K=\mathfrak{S}(\mathcal{H})$ and $S_{A}=\square$, then there is some $\mathcal{H}_{B} \simeq \mathcal{H}_{A}, F_{B}: \mathfrak{S}\left(\mathcal{H}_{B}\right) \rightarrow \square$ and $y \in \mathfrak{S}\left(\mathcal{H}_{A B}\right)$ such that

$$
\left\langle\mu_{\square}, F_{A} \otimes F_{B}(y)\right\rangle=\frac{1}{2} q_{\bar{s}}\left(F_{A}\right)
$$

\bar{s} is the barycenter of \square
(cf. M. M. Wolf et al., PRL 2009; P. Busch, N. Stevens, PRA 2014)

Bell inequalities and the incompatibility degree

Sketch of a proof using incompatibility witnesses:

- $\left\langle\mu, F_{A} \otimes F_{B}(y)\right\rangle=\operatorname{Tr} F_{A} W \geq\left(\operatorname{Tr} F_{s} W\right) q_{s}\left(F_{A}\right)$, with

W is an incompatibility witness if Bell inequality is violated. (M is a map related to μ and T to y.)

Bell inequalities are obtained from special incompatibility witnesses.

Bell inequalities and the incompatibility degree

- For the equality:

$$
\square_{A} \stackrel{M_{\square}}{\simeq} A\left(\square_{B}\right)^{+} \xrightarrow{F_{B}^{*}} B\left(\mathcal{H}_{B}\right)^{+} \xrightarrow{\simeq} B\left(\mathcal{H}_{A}\right)^{+}
$$

All incompatibility witnesses are obtained from CHSH inequalities.

Bell inequalities and the incompatibility degree

In general:

if $S_{A} \neq \square$ of $S_{B} \neq \square, M: V\left(S_{A}\right)^{+} \rightarrow A\left(S_{B}\right)^{+}$is never an isomorphism: weaker witnesses
there exists incompatible collections that do not violate Bell inequalities
(M. T. Quintino, T. Vértesi, N. Brunner, PRL 2014)

Steering in GPT

- Quantum steering: (E. Schrödinger, Proc. Camb. Phil. Soc. 1936)
- Rigorous definition (in GPT setting):

- assemblage: $\left\{p(j \mid i), x_{j \mid i}\right\}, x_{j \mid i} \in K_{B}, p(j \mid i)$ probabilities

$$
\sum_{j} p(j \mid i) x(j \mid i)=y_{B} \in K_{B}, \quad \forall i
$$

Steering in GPT

Local hidden state (LHS) model:

(cf. H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)

Assemblages and tensor products

Let $F_{A}=\left(f^{0}, \ldots, f^{k}\right)$.

- $\left(F_{A} \otimes i d_{B}\right)(y) \in \mathrm{S} \otimes_{\max } K_{B}$
- assemblages \equiv elements $\beta \in \mathrm{S} \otimes_{\max } K_{B}$:

$$
p(j \mid i) x_{j \mid i}=\left\langle\mathrm{m}_{j}^{i} \otimes i d_{B}, \beta\right\rangle
$$

- admits LHS model if and only if β is separable
- for $\beta=\left(F_{A} \otimes i d_{B}\right)(y)$: no steering if y is separable or F_{A} are compatible.
- steering witnesses: all entangled elements in $A\left(S \otimes_{\text {min }} K_{B}\right)^{+}$
- steering degree

