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General probabilistic theories: basic notions

states: preparation procedures of a given system

» convex structure: probabilistic mixtures of states

Assumption: Any state space is a compact convex subset
K C R™.

effects: yes/no experiments
» determined by outcome probabilities in each state

> respect the convex structure of states: affine maps K — [0, 1]

Assumption: All affine maps K — [0, 1] correspond to ef-
fects.

For the more general framework, see e.g (G. Chiribella, G. D’Ariano, P.
Perinotti, PRA 2010)



General probabilistic theories: basic notions

measurements: (with finite number of outcomes)
» described by outcome statistics in each state

» affine maps K — A,
A, simplex of probabilities over {0, ..., n}

> given by effects:

fi(x)=f(x)i, i=0,...,n, Y fi=1

Assumption: All affine maps K — A, correspond to mea-
surements.




General probabilistic theories: basic examples

Classical systems:
> state spaces: A,
» effects: vectors in R™+1 with entries in [0, 1]

» measurements: classical channels T : A,, — A,

The measurements are identified with (m+ 1) x (n + 1) stochastic
matrices (conditional probabilities) { T(j|)}/:

T(jli) = f(6);, 0" = vertices of Ap,
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General probabilistic theories: basic examples

Quantum systems

» state spaces: G(H) = density operators on a Hilbert space H,
dim(H) < oo
» effects: E(H) = quantum effects,

0<ELI, E € B(H)
» measurements: POVMs on H

Mo, ..., My € E(H), Y Mi=1I
i



General probabilistic theories: basic examples

Spaces of quantum channels

> state spaces: Cq 4 = set of all quantum channels
(CPTP maps) B(Ha) — B(Ha)
> effects: f € E(Can),

f(®) = Tr M(® ® idr)(par), P €Can,

for some state par € &(Har) and effect M € E(Har)

» measurements: fy,. .., f,
fi(®) = Tr Mi(® @ idg)(par), @ € Can,

for some par € S(Har) and a POVM {My, ..., M,} on
Har.



GPT and ordered vector spaces

Ordered vector space: (V, V)
» a real vector space V (dim(V) < )
» a closed convex cone V* C V, generating in V,
Vtn-v* ={0}
Dual OVP: an ordered vector space (V*,(V1)*)
» vector space dual V*

» dual cone
(V+)* ={pe V" {(p,x) >0,Vx € V}

We have V** =V, (VT)* = VT,



GPT and ordered vector spaces

Any state space K determines an OVP:

(K) =
(K)™ = positive affine functions
) =

E(K)={f € A(K),0 < f <1k}, 1k is the constant
unit function

> A all affine functions K — R
> A

\.

Then (A(K), A(K)™) is an OVP, E(K) is the set of all effects.

A norm in A(K):
[l = max )



GPT and ordered vector spaces

Let (V(K), V(K)™) be the dual OVP.

» K~ {pe V(K)", (p,1x) = 1} a base of V(K)™
» V(K)T ~ U)>oAK the cone generated by K
» V(K) =~ the vector space generated by K

Base norm:
]k =inf{a+ b, ¥ =ax — by, a,b>0,x,y € K},vp € V(K)

- the dual norm to || - || max-



GPT and ordered vector spaces: self-duality

We say that the cone VT is (weakly) self-dual if VT ~ (V*1)*
» classical: V(A,)T ~ A(An)t(~ (R™1)T)
» quantum: V(S(H))T ~ A(S(H))" (=~ B(H))
» not true for spaces of quantum channels

» not true for all spaces of classical channels



Composition of state spaces: tensor products

Assumption: For state spaces Ky and Kpg, the joint state
space Ka®Kpg is a subset in V(Ka) ® V(Kg).

We have:
Ka @min Ks € Ka®Kpg € Ka @max Ka
minimal tensor product: separable states
KA & min KB = CO{XA & xB, XA € KA, Xg € KB}
maximal tensor product: no-signalling

Ka @max Kg := {y € V(Ka) ® V(Kg), {(fa® fg,y) >0,
<1A ® 1Bay> = 1}



Composition of state spaces: tensor products

classical:
> AnA R min AnB = AnA X max Apy =A
» the probability simplex on {0,...,na} x{0,...,ng}

npg naB

quantum:

> G(Ha)26(Hp) = &(Hag)

> S(Ha) @min S(Hp) separable states

> S(Ha) @max ©(Hp) normalized entanglement witnesses
quantum channels:

> CA7A/(§CB7B/ = jéjg"iq,B, causal bipartite channels

> Capn @minCeBr = /Ifé,A’B’ local bipartite channels

» Caa @max Cp,pr causal, not necessarily CP



Channels and positive maps

Channels: transformations of the systems allowed in the theory
» affine maps between state spaces K — K’

» affine maps K — V/(K’)™ extend to positive maps of the
ordered vector spaces

(V(K), V(K)T) = (V(K'), V(K'))

not all affine maps are allowed in general:
» A, — A, all classical channels
» S(H) — &(H'): must be completely positive




Entanglement breaking maps

A positive map Ta : Ka — V(K})T is entanglement breaking
(ETB) if

(Ta®idg)(Ka ®max Kg) € V(K4 @min Kg) T

for all state spaces Kp.

Ta is ETB iff it factorizes through a simplex:
Ta:KE 0, 1% V(K)*

(measure (g) and "prepare” (Tp))




Duality

The space of all linear maps V(K) — V/(K’), with the cone
of positive maps is an ordered vector space.

Its dual is the space of linear maps V(K’) — V(K), with the
cone of positive ETB maps, duality:

(T, Ty =Tc TT'




Polysimplices

A polysimplex is a Cartesian product of simplices
S/o,..-,/k = A/o X o+ X A/k

with pointwise defined convex structure.

» states of a device specified by inputs and allowed outputs

> theories exhibiting super-quantum correlations

(S. Popescu, D. Rohrlich, Found. Phys. 1994; J. Barrett, PRA 2007; P.
Janotta, R. Lal, PRA 2013)



Polysimplices

S = Slor--alk:

> convex polytope, with vertices

S”Ov---ank = (5:?07 o 75#;()

(51’-' is the j-th vertex of A},
» A(S)T: generated by effects of the projections

m' : Sl07"'7lk — A/I., mé, ey m;’, S E(S),

The base of A(S)™ is the dual polytope.



Polysimplices: examples

Square (gbit, square-bit): 0 = A; x Ag
» V(O)T ~ AO)" - weakly self-dual

> the only polysimplex with this property

So,1

50,0

S1,1

S1,0

the cone A(OJ)*



Polysimplices: examples

Hypercube: O, = Ay X -+ X A
» base of A(0J,)": a cross-polytope

2
€p ml
S0.1,L #51,1,1
' €1
$0,0,1 - 510, € m(l]
-
’ 0
S0,1,0,8-=======q======-=~ 1,1,0 m()
$0,0,06= SLOG >
Mo
the cube [

octahedron



Polysimplices: examples

Prism:
1 1
0
msy
my m{
50,0 52,0
S1,0
’ 1
mp

52,1 = A2 X Al
a base of A(S21)"



Polysimplices and classical channels

Let S = Ak+L
A correspondence between s € AX*1 and stochastic matrices T:

T(li)=mj(s),  s=(T(0),..., T(-k))

AKX+ is isomorphic to the set of all classical channels

Ak — A,

Any polysimplex is isomorphic to a face in a set of classical
channels.




Polysimplices and quantum channels

There are channels R : Ca a0 — A and R : AT — Cap,
such that
=id.

The maps are determined by ONBs {|ia)}, {|ja)} as

R(d’)('\ ') =, ol '>('|A)|j>A/ Vi, j;® € Can
Zm (Lplal)Ula,  pe&(Ha) s € A7

Such maps are called: R - retraction, R’ - section. Note that R'R
is a projection (onto a set of c-c channels).



Incompatible measurements in GPT

A collection of measurements fo, ey kil K — Ay, is the same

as a channel F = (f0,...,fK): K = Sy

F(x) = (f°(x),...,f"(x)), fl=m'F i=0,... k
» compatible: marginals of a single joint measurement
g:K—)AL:A/O®~-'®A/k

> thatis, (f0,....F"): K& A, 2SS

[ fO ...,k are compatible if and only if (0, ..., fk) is ETB. ]




Incompatibility witnesses

By duality of the spaces of maps:

F=(f°...,f): K = Sis incompatible if and only if there
is an incompatibility witness: a map W : S — V(K)™ such
that

Tr FW <0




Incompatibility witnesses

Any W :S — V(K)T is determined by images of vertices:

Why,...,nx = W(s”07~--’”k)

W is ETB iff there are ¢/ € V(K)* such that

_ i
Wn07'~'7nk - Z wn,-
i




Incompatibility witnesses

A witness must be non-ETB, but this is not enough

Characterization of witnesses: W : S — V(K)T is a wit-
ness iff no translation of W along K is ETB.

Translation along K: W : S — V(K)*, such that

for some (1k,v) = 0.



Incompatibility witnesses in Bloch ball




Incompatibility witnesses for two-outcome measurements

We have another characterization if S is a hypercube [y 1:
Let W : Ok — V(K)+

pick a vertex: spy . 5,
all adjacent edges: ey, ..., e

€0
S0,1,1 $51,1,1
s S Iw(e)lix > 2(1x, W(3))
Lo P
50,1,0,8------ EEET EELEEEEES 1,1,0
50,0,06— S1 o“-




Examples of extremal witnesses for pairs of effects

It is enough to use extremal incompatibility witnesses:
extremal as maps S — V/(K)™

Some examples for S = [:
Square-bit: K =01

» extremal non-ETB maps = symmetries of the square

| PN

dihedral group Djy:

» group of order 8

» 2 generators: r, s

[ 1y]
| 7]

» non-ETB, no nontrivial translations: witnesses



Examples of extremal witnesses for pairs of effects

Quantum states: K = G(H)

extremal non-ETB maps: parallelograms in B(H)* with rank
one vertices:

[x00) (Xo0| + |x11) (x11] = p = |x01) (X01| + |X10) (X10]5

» incompatibility witness if perimeter (in trace norm) > 2Tr p

» for compatibility of pairs of effects, it is enough to consider
restrictions to 2-dimensional subspaces



Incompatibility degree

Can we quantify incompatibility?

(M.M. Wolf et al., PRL 2009; P. Busch et al., EPL 2013; T. Heinosaari et al.,
J. Phys. A 2016; D. Cavalcanti, P. Szkrzypczyk, PRA 2016)

>

Incompatibility degree: the least amount of noise that has to
be added to obtain a compatible collection.

different definitions by the choice of noise

we choose coin-toss measurements = constant maps
fh(x)=peA
Collection of coin-tosses = constant map

FS:K—>s:(p0,...,pk)€S

always compatible (ETB)



Incompatibility degree

Let F,Fs: K—S,seS.

We put

IDs(F) = min{\, (1 — A)F + AF, is ETB},
ID(F) :=

= inf IDs(F
s€S 5( )
(T. Heinosaari et al. PLA 2014)




Incompatibility degree by incompatibility witnesses
For s € int(S), let us denote
We = {W:S = V(K)*, W(s) € K}
and

gs(F) = Wn”éilgv Tr FW.

Then

0  ifgs(F)>0

D7) = —as(F)

T—ay(F) otherwise.

This expression is related to (dual) linear programs for
incompatibility degree
e.g. (M. Wolf, D. Perez-Garcia, C. Fernandez, PRL 2009)



ID attainable for pairs of quantum effects

Using extremal witnesses [ — B(H)™, we can prove:

For quantum state spaces, we have

1
ID(F)=1— —
F:8 ()0 (F) V2

- for IDs, s the barycenter of U, proved already in
(M. Banik et al., PRA 2013)



Maximal incompatibility in GPT

For any s € S, it is known that

k
ID(F) < ——
5( )—k+1

k
The joint measurement for k+1F + 1 Fs
» choose one measurement in F uniformly at random
> replace all others by coin-tosses

_k_

We say that F is maximally incompatible if ID(F) = 5.



Maximal incompatibility for effects

For two-outcome measurements, we have a nice characterization:

Let F: K — Oy

F is maximally incompatible if and only if F is a retraction.
The corresponding section is the witness W : [y — K such
that ID(F) is attained.

There exist k maximally incompatible effects on K if and only
if there exists a projection K — K whose range is affinely
isomorphic to the hypercube [.




Maximal incompatibility: examples

» Polysimplices: Let M : S — gy,

M=(m, . .. .mk), ni € {0,...,1}

ng?

Then M is maximally incompatible.

» Quantum channels: There are m = dim(#H ) maximally
incompatible effects on Cx ar

compose the retraction R : Ca o — A]' with M as above.

(cf. M. Sedlak et al., PRA 2016; AJ, M. Plavala, PRA 2017)



Bell non-locality in GPT

Bell scenario:

k
79 O IR

u\»o — @

ja  plia,jsliasiz)  JB

The conditional probabilities satisfy the no-signalling conditions:
> pliasslia,is) = pelislis), Via
Ja

> " plia-dslia, is) = pa(ialia), Vis
Js



Bell non-locality in GPT

In our setting:
Fa=(£0,... . f&), Fg = (£3,...,fL8), y € Ka®Kp

(Fa® FB)(Y) € SA ®max SB

There is a correspondence S ®max S = no-signalling conditional
probabilities:

S < p(_jA,jB|iA, iB) = (mj':’/: ® m}i)(s)

- the no-signalling polytope



Bell non-locality in GPT

Local hidden variable model:

A
Ja(v)
fA,..., ’e va‘"? 5
N~ —— @
qa(jalia, A) 1 1 q(jBlin, A)
JA JB

plin. sl i8) = > _ a(N)aa(ialia, ) as(islis, \)
A

(H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)



Bell witnesses and Bell inequalities

v

P(J'A,J'B’/'A7 ’B) admit LHV iff s € S4 ®min Sa:
- the local polytope

v

Bell witnesses: entangled elements in A(Sa ®@min Sg)™
Extremal: finitely many pu1,..., un

v

v

Bell inequalities:

S €SA®minSe — (ui,s) >0, i=1,...,N

» u; = M; extremal affine maps Sp — A(Sg)™

Let s = (Fa® Fg)(y). If Fa or Fg is compatible or y sepa-
rable, then s € Sp ®min SB.




The CHSH inequality

|fSA:SB:DZ

» the CHSH witnesses: pg = isomorphisms
Mo : v(O)T — A(O)"
» the CHSH inequality:
0 < (u, (Fa® Fg)(¥))

— % (1 — %(30 @ (bo + b1) + a1 ® (bo — bl)a)/))

3121*2(&')0, b,': 1*2(%)0



Bell inequalities and the incompatibility degree

Relation of violation of Bell inequalities to incompatibility degree:

If F4 is incompatible, then for any y € Ka®Kg, any Bell
witness p and s € int(Sp), we have

(1, Fa @ Fp(y)) 2 |12l maxqs(Fa)-




Bell inequalities and the incompatibility degree

» Maximal violation of CHSH inequality: CHSH bound

» Quantum case: Tsirelson bound

Equality case for the CHSH bound: If K = &(#) and
Sa = 0O, then there is some Hg ~ Ha, Fg : 6(Hp) — O
and y € 6(H ap) such that

(16, Fa ® Fa(y)) = 505(Fa)

S is the barycenter of [J

(cf. M. M. Wolf et al., PRL 2009; P. Busch, N. Stevens, PRA 2014)



Bell inequalities and the incompatibility degree

Sketch of a proof using incompatibility witnesses:
> (1, Fa® Fp(y)) = Tr FaAW = (Tr FsW)qs(Fa), with

*

F
Sa—2 ASE)T —E= A(Kg)t —= V(Ka)*

w

W is an incompatibility witness if Bell inequality is violated.
(M is a map related to pand T to y.)

Bell inequalities are obtained from special incompatibility
witnesses.




Bell inequalities and the incompatibility degree

» For the equality:
M, Fg ~
Oa——= A(O)" —2> B(Hp)" — B(Ha)"

w

All incompatibility witnesses are obtained from CHSH
inequalities.




Bell inequalities and the incompatibility degree

In general:
F*
Sa—2L A(S)t —2= A(Kg)t —= V(Ka)*t

w

if Sa#0of Sg #0, M: V(Sa)t — A(Sg)™ is never an
isomorphism: weaker witnesses

—

there exists incompatible collections that do not violate Bell
inequalities

(M. T. Quintino, T. Vértesi, N. Brunner, PRL 2014)



Steering in GPT

» Quantum steering: (E. Schrédinger, Proc. Camb. Phil. Soc. 1936)
» Rigorous definition (in GPT setting):

£ fF

——o

p(ji) J )i

» assemblage: {p(j|i), xjji}, xjji € Kg, p(j|i) probabilities

> pllix(jl) = ys € K, Vi

J



Steering in GPT

Local hidden state (LHS) model:
A

fO, . fF / \
AN %

1 1

q(jli, A) g i

p(lix =D a(Na(ili, Axa.

A
(cf. H. M. Wiseman, S. J. Jones, A. C. Doherty, PRL 2007)



Assemblages and tensor products

Let Fq = (fo,...,fk).
(FA & IdB)(y) €S X max KB
» assemblages = elements 3 € S ®ax KB:

v

p(jli)x;; = (m} ® idg, B)

» admits LHS model if and only if 3 is separable
» for ,3 = (FA & idB)(y):
no steering if y is separable or F4 are compatible.
» steering witnesses: all entangled elements in A(S ®min Kg)™

> steering degree



