Geometry of quantum states: dual connections and divergence functions

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK–814 73 Slovakia

Abstract. In a finite quantum state space with a monotone metric, a family of torsion-free affine connections is introduced, in analogy with the classical α -connections defined by Amari. The dual connections with respect to the metric are found and it is shown that these are, in general, not torsion-free. The torsion and the Riemannian curvature are computed and the existence of efficient estimators is treated. Finally, geodesics are used to define a divergence function.

1 The classical case

Let $S = \{p(x, \theta) \mid \theta \in \Theta \subseteq \mathbb{R}^m\}$ be a smooth family of classical probability distributions on a sample space \mathcal{X} . Then S can naturally be viewed as a differentiable manifold. The differential-geometrical aspects of a statistical manifold and their statistical implications were studied by many authors. The Riemannian structure is given by the Fisher information metric tensor

$$g_{ij}(\theta) = E_{\theta}[\partial_i \log p(x,\theta)\partial_j \log p(x,\theta)]$$

where ∂_i denotes $\frac{\partial}{\partial \theta_i}$. In 1972, Chentsov in [6] introduced a family of affine connections in \mathcal{S} and proved that the Fisher information and these connections were unique (up to a constant factor) in the manifold of distributions on a finite number of atoms, in the sense that these are invariant with respect to transformations of the sample space. In [1], Amari defined a one-parameter family of α -connections in \mathcal{S} , which turned out to be the same as defined by Chentsov. These may be introduced using the following α -representations of the tangent space:

Let g_{α} be a one-parameter family of functions, given by

$$g_{\alpha}(x) = \begin{cases} \frac{2}{1-\alpha}x^{\frac{1-\alpha}{2}} & \alpha \neq 1\\ \log x & \alpha = 1 \end{cases}$$

Let $l_{\alpha}(x,\theta) = g_{\alpha}(p(x,\theta))$. The vector space spanned by the functions $\partial_i l_{\alpha}(x,\theta)$, $i = 1, \ldots, p$ is called the α -representation of the tangent space. The metric tensor g_{ij} is then

$$g_{ij}(\theta) = \int \partial_i l_\alpha(x,\theta) \partial_j l_{-\alpha}(x,\theta) dP$$

The α -connections are defined by

$$\Gamma^{\alpha}_{ijk}(\theta) = \int \partial_i \partial_j l_{\alpha}(x,\theta) \partial_k l_{-\alpha}(x,\theta) dP$$

From this, it is clear that these connections are torsion-free, i. e. $S_{ijk}^{\alpha} = \Gamma_{ijk}^{\alpha} - \Gamma_{jik}^{\alpha} = 0, \forall i, j, k, \forall \theta$. Let now ∇ and ∇^* be two covariant derivatives on S, then we say that the covariant derivatives (the affine connections) are dual with respect to the metric if

$$Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X^* Z)$$

or, in coefficients,

$$\partial_i g_{jk} = \Gamma_{ijk} + \Gamma^*_{ikj}$$

It is easy to see that the α and $-\alpha$ connections are mutually dual.

Further, let η be another coordinate system in \mathcal{S} . The natural basis of the tangent space T_P at $P \in \mathcal{S}$ is $\{\partial_i\}$, $\partial_i = \frac{\partial}{\partial \theta_i}$ for the coordinate system θ and $\{\partial^i\}$, $\partial^i = \frac{\partial}{\partial \eta_i}$ for η . We say that θ and η are mutually dual if their natural bases are biorthogonal, i.e. if

$$g(\partial_i, \partial^j) = \delta_i^j$$

The metric tensor in the basis $\{\partial^i\}$ is given by

$$g(\partial^i, \partial^j) = g^{ij}, \qquad (g^{ij}) = (g_{ij})^{-1}$$

The next Theorem (the Theorem 3.4 in [1]) gives the necessary and sufficient condition for existence of such pair of coordinate systems.

Theorem 1.1 If a Riemannian manifold S has a pair of dual coordinate systems (θ, η) , then there exist potential functions $\psi(\theta)$ and $\phi(\eta)$ such that

$$g_{ij} = \partial_i \partial_j \psi(\theta), \qquad g^{ij} = \partial^i \partial^j \phi(\eta)$$
 (1)

Conversely, if either potential function ψ or ϕ exist such that (1) holds, there exists a pair of dual coordinate systems. The dual coordinate systems are related by the Legendre transformations

$$\theta_i = \partial^i \phi(\eta) \qquad \eta_i = \partial_i \psi(\theta)$$

and the two potential functions satisfy the identity

$$\psi(\theta) + \phi(\eta) - \sum_{i} \theta_{i} \eta_{j} = 0$$
(2)

The most interesting results of [1] concern the case that the manifold S is α -flat, i.e. the Riemannian curvature tensor of the α -connection vanishes. Then S is also $-\alpha$ -flat. It is known that for flat manifolds, an affine coordinate system exists, i.e. the coefficients of the connection vanish. The next Theorem (Theorem 3.5 in [1]) reveals the dualistic structure of α -flat manifolds.

Theorem 1.2 When a Riemannian manifold S is flat with respect to a pair of torsion-free dual affine connections ∇ and ∇^* , there exists a pair (θ, η) of dual coordinate systems such that θ is a ∇ -affine and η is a ∇^* -affine coordinate system.

This result can be directly applied to the exponential and mixture families

$$p(x, \theta) = \exp\{\sum_{i} \theta_{i} c_{i}(x) - \psi(\theta)\}$$

and

$$p(x,\theta) = \sum_{i} \theta_i c_i(x) + (1 - \sum_{i} \theta_i) c_{n+1}(x)$$

which are ± 1 -flat, and the extended α -families

$$l_{\alpha}(x,\theta) = \sum_{i}^{n+1} \theta_i c_i(x)$$

which are $\pm \alpha$ -flat (note that the extended α -families are not normed to 1).

Let us consider an α -flat family \mathcal{S} with the dual coordinate systems (θ, η) and let $\psi(\theta)$ and $\phi(\eta)$ be the potential functions. In [1], a divergence is introduced in \mathcal{S} . It is called the α -divergence and it is given by

$$D_{\alpha}(\theta, \theta') = \psi(\theta) + \phi(\eta') - \sum_{i} \theta_{i} \eta'_{i}$$

The divergence is not a usual distance, but it has some important properties:

- (i) it is strictly positive, $D_{\alpha}(\theta, \theta') \geq 0$ with $D_{\alpha}(\theta, \theta') = 0$ iff $\theta = \theta'$
- (ii) it is jointly convex in θ and θ'
- (iii) $D_{\alpha}(\theta, \theta') = D_{-\alpha}(\theta', \theta)$
- (iv) it satisfies the relation

$$D_{\alpha}(\theta, \theta + d\theta) = D_{\alpha}(\theta + d\theta, \theta) = \frac{1}{2} \sum_{ij} g_{ij}(\theta) d\theta_i d\theta_j$$

hence it induces the Riemannian distance, given by the Fisher information.

Moreover, the divergences are shown to satisfy a generalized Pythagorean relation.

There were some attempts to introduce a similar family of affine structures in the differentiable manifold of states of an *n*-level quantum system with a monotone metric. The main difficulty here is that, as was first shown in [7], there is no unique quantum analogue of the Fisher information metric and, moreover, the connections are in general not torsion-free. Hasegawa in [9] studied the case of quantum exponential and mixture families with the Kubo-Mori metric. In [13], the exponential and mixture connections (i.e. the case $\alpha = \pm 1$) were defined also for arbitrary monotone metric and a divergence function was introduced. The aim of this paper is to use a similar method to define the α -connections and divergence functions for each α and to investigate the dualistic properties of the manifold.

2 The state space

Let \mathcal{M} denote the differentiable manifold of all *n*-dimensional complex hermitean matrices and let $\mathcal{M}^+ = \{M \in \mathcal{M} \mid M > 0\}$. Let \tilde{T}_M be the tangent space at M, then \tilde{T}_M can be identified with \mathcal{M} considered as a vector space. We introduce a Riemannian structure in \mathcal{M}^+ , defining an inner product in \tilde{T}_M by

$$\lambda_M(X,Y) = \operatorname{Tr} X J_M(Y)$$

where J_M is a suitable superoperator on matrices. The state space of an n-level quantum system can be identified with the submanifold

$$\mathcal{D} = \{ D \in \mathcal{M}^+ \mid \operatorname{Tr} D = 1 \}$$

The tangent space $T_D \subset T_D$ is the real vector space of all self-adjoint traceless matrices. If we consider the restriction of the Riemannian structure λ onto \mathcal{D} , it is natural to require that λ is monotone, in the sense that if T is a stochastic map, then

$$\lambda_{T(M)}(T(X), T(X)) \le \lambda_M(X, X), \ \forall M \in \mathcal{M}^+, X \in \mathcal{M}$$

As it was proved in [14], this is true iff J_M is of the form

$$J_M = (R_M^{\frac{1}{2}} f(L_M R_M^{-1}) R_M^{\frac{1}{2}})^{-1}$$
(3)

where $f: R^+ \to R$ is an operator monotone function such that $f(t) = tf(t^{-1})$ for every t > 0 and $L_M(A) = MA$ and $R_M(A) = AM$, for each matrix A. We also adopt a normalization condition f(1) = 1. Notice that we have $J_M(X) = M^{-1}X$ whenever X and M commute, in particular, $J_M(M) = I$.

Let T_D^* be the cotangent space of \mathcal{D} at D, then T_D^* is the vector space of all observables A with zero mean at D (i.e. $\operatorname{Tr} DA = 0$). It is easy to see that

$$T_D^* = \{J_D(H) \mid H \in T_D\}$$

$$\tag{4}$$

The metric λ induces an inner product in T_D^* , namely,

$$\varphi(A_1, A_2) = \lambda(J_D^{-1}(A_1), J_D^{-1}(A_2)) = \operatorname{Tr} A_1 J_D^{-1}(A_2)$$

It can be interpreted as a generalized covariance of the observables A_1 and A_2 .

Example 2.1 Let the metric be determined by $J_D(H) = G$, where GD + DG = 2H, then it is called the metric of the symmetric logarithmic derivative. This metric is monotone, with the corresponding operator monotone function $f(x) = \frac{1+x}{2}$, see [5, 11, 15].

Example 2.2 Another important example of a monotone metric is the wellknown Kubo-Mori metric determined by $J_D(H) = \frac{d}{dt} \log(D + tH)|_{t=0}$. The monotone metric is given by

$$\lambda_D(H,K) = \operatorname{Tr} H J_D(K) = \frac{\partial^2}{\partial t \partial s} \operatorname{Tr} \left(D + tH \right) \log(D + sK)|_{t,s=0}$$

Note that this metric is induced by the relative entropy $D(\rho, \sigma) = \text{Tr } \rho(\log \rho - \log \sigma)$ when the density matrices ρ and σ are infinitesimally distant from each other.

Example 2.3 [11, 16] Let $J_D(H) = \frac{1}{2}(D^{-1}H + HD^{-1})$. The corresponding metric is monotone, with $f(x) = \frac{2x}{x+1}$, and it is called the metric of the right logarithmic derivative.

For more about monotone metrics and their use see [15, 16, 10].

3 The *g*-representation

Let $g: R \to R$ be a smooth (strictly) monotone function. We define an operator $L_g[M]: \tilde{T}_M \to \tilde{T}_{g(M)}$ by

$$L_g[M](H) = \frac{d}{ds}g(M+sH)|_{s=0}$$

The following Lemma was proved in [17]. As it is frequently used in the sequel, we repeat the proof here.

Lemma 3.1 (i) $L_g[M]$ is a linear map.

- (ii) $L_{f \circ g}[M] = L_f[g(M)]L_g[M]$. In particular, if g is invertible then $L_g[M]$ is invertible and $L_g[M]^{-1} = L_{g^{-1}}[g(M)]$.
- (iii) $L_g[M]$ is self-adjoint, with respect to the inner product $\langle A, B \rangle = \text{Tr } AB$ in \mathcal{M} .

(iv) $L_gM = g'(M)M$, where $g'(x) = \frac{d}{dx}g(x)$.

(v)
$$L_g[M]^{-1}(I) = (g'(M))^{-1}$$
, I is the identity matrix.

Proof. It is convenient to use the orthogonal (with respect to the inner product $\langle A, B \rangle$ above) decomposition of the tangent space introduced in [9], $\tilde{T}_M = C(M) \oplus C(M)^{\perp}$, where $C(M) = \{X \in \mathcal{M} : XM = MX\}$ and $C(M)^{\perp} = \{i[M, X] : X \in \mathcal{M}\}.$

Let $H \in \tilde{T}_M$ be decomposed as $H = H^c + i[M, X]$, then, according to [4] (p. 124), $\frac{d}{ds}g(M+sH)|_{s=0} = g'(M)H^c + i[g(M), X]$. The statements (i) and (ii) follow easily from this equality. Let $K \in \tilde{T}_M$, $K = K^c + i[M, Y]$, then

$$\operatorname{Tr} KL_g[M](H) = \operatorname{Tr} K^c g'(M) H^c - \operatorname{Tr} [M, Y][g(M), X] =$$
$$= \operatorname{Tr} g'(M) K^c H^c - \operatorname{Tr} [g(M), Y][M, X] = \operatorname{Tr} L_g[M](K) H$$

which proves (iii). Further,

- (iv) $L_gM = \frac{d}{ds}g((1+s)M)|_{s=0} = g'(M)M$
- (v) From (ii),

$$L_g[M]^{-1}(I) = L_{g^{-1}}[g(M)](I) = \frac{d}{ds}g^{-1}(g(M) + sI)|_{s=0} = (g'(M))^{-1}$$

In what follows, we omit the indication of the point in square brackets if no confusion is possible. The vector space

$$T_D^g = \{ L_g(H) \mid H \in T_D \}$$

will be called the g-representation of the tangent space T_D . The corresponding inner product in T_D^g is

$$\lambda_D^g(G_1, G_2) = \lambda_D(L_g^{-1}(G_1), L_g^{-1}(G_2)) = \operatorname{Tr} G_1 K_g(G_2)$$

where $K_g = L_g^{-1} J_D L_g^{-1}$. Similarly as before, the *g*-representation of the cotangent space is the space of all linear functionals on T_D^g and it is given by

$$T_D^{g*} = \{ K_g(G) \mid G \in T_D^g \} = \{ L_{g^{-1}}(A) \mid A \in T_D^* \}$$

The inner product

$$\varphi_D^g(B_1, B_2) = \lambda_D^g(K_g^{-1}(B_1), K_g^{-1}(B_2)) = \operatorname{Tr} B_1 K_g^{-1}(B_2)$$

will be called the generalized g-covariance of B_1 and B_2 .

Clearly, if g is the identity function, we obtain the usual tangent and cotangent spaces T_D and T_D^* .

Lemma 3.2

$$G \in T_D^g \iff \operatorname{Tr} (g'(D))^{-1}G = 0$$
$$B \in T_D^{g*} \iff \operatorname{Tr} g'(D)DB = 0$$

Proof. Both statements follow easily from $\text{Tr } H = 0, H \in T_D$ and Lemma 3.1 (v) and (iv), respectively.

Example 3.1 The quantum analogue of Amari's α -representations is obtained if we put

$$g(x) = g_{\alpha}(x).$$

In the sequel, we use the letter α to indicate the function g_{α} , e.g. α -representation, T_D^{α} , etc. For $\alpha \neq \pm 1$, $(g'_{\alpha}(D))^{-1} = \frac{1+\alpha}{2}g_{-\alpha}(D)$ and $g'_{\alpha}(D)D = \frac{1-\alpha}{2}g_{\alpha}(D)$ and thus

$$G \in T_D^{\alpha} \iff \operatorname{Tr} g_{-\alpha}(D)G = 0$$
$$B \in T_D^{\alpha*} \iff \operatorname{Tr} g_{\alpha}(D)B = 0,$$

An application of Lemma 3.2 also for $\alpha = \pm 1$ shows that $T_D^{\alpha*} = T_D^{-\alpha}$ for each α , so that $K_{\alpha} = L_{\alpha}^{-1}J_DL_{\alpha}^{-1}$ is an isomorphism $K_{\alpha}: T_D^{\alpha} \to T_D^{-\alpha}$. This shows that the α - and $-\alpha$ -representations are in some sense dual, as in the classical case. In particular, if we put $J_D = J_{\alpha} = L_{-\alpha}L_{\alpha}$, then $K_{\alpha} = L_{-\alpha}L_{\alpha}^{-1}$ and we see that in this case $K_{\alpha}^{-1} = K_{-\alpha}$. The corresponding family of metrics was studied in [10] and it was shown that the metric is monotone for $\alpha \in [-3,3]$. Moreover, for $\alpha = \pm 1$ we obtain the Kubo-Mori metric and $\alpha = \pm 3$ corresponds to the right logarithmic derivative.

4 The affine connections, torsion and curvature

Let $g: R \to R$ be a smooth strictly monotone function and let $M, M' \in \mathcal{M}^+$. Clearly, both T_M^g and T_M^{g*} for each M can be identified with \mathcal{M} , so that there is a natural isomorphism $\tilde{T}_M^g \to \tilde{T}_{M'}^g$ given by the identity mapping. This isomorphism induces an affine connection on \mathcal{M}^+ . Let us denote the corresponding covariant derivative by $\tilde{\nabla}^g$. Let x_1, \ldots, x_{N+1} be a coordinate system in \mathcal{M}^+ . Let us denote $\partial_i = \frac{\partial}{\partial x_i}$ and let $\tilde{H}_i = \partial_i M(x), \ \tilde{G}_i = L_g(\tilde{H}_i) = \partial_i g(M(x)), \ i = 1, \ldots, N+1$. Then

$$L_g(\tilde{\nabla}^g_{\tilde{H}_j}\tilde{H}_i) = \partial_i \partial_j g(M(x))$$

Hence, the coefficients of the affine connection are

$$\tilde{\Gamma}_{ijk}^g(x) = \lambda_x(\tilde{\nabla}_{\tilde{H}_i}^g \tilde{H}_j, \tilde{H}_k) = \operatorname{Tr} \partial_i \partial_j g(M(x)) K_g(\tilde{G}_k)$$

 $i, j, k = 1, \ldots, N+1$. From this, it follows that this connection is torsion-free.

If we use the functions g_{α} , we obtain a one-parameter family of torsionfree connections $\tilde{\nabla}^{\alpha}$, analogical to Amari's family of α -connections. It is easy to see that, unlike the classical case, the connections $\tilde{\nabla}^{\alpha}$ and $\tilde{\nabla}^{-\alpha}$ are not dual in general.

To obtain the dual connection, consider the affine connection on \mathcal{M}^+ induced by a similar identification $\tilde{T}_M^{g*} \to \tilde{T}_{M'}^{g*}$. The covariant derivative will be denoted by $\tilde{\nabla}^{g*}$, this notation will be justified below. We have

$$L_g^{-1}J_M(\tilde{\nabla}_{\tilde{H}_i}^{g*}\tilde{H}_j) = \partial_i K_g(\tilde{G}_j(x))$$

The coefficients of this connection are

$$\tilde{\Gamma}_{ijk}^{g*} = \lambda(\tilde{\nabla}_{\tilde{H}_i}^{g*}\tilde{H}_j, \tilde{H}_k) = \varphi^g(L_g^{-1}J_M(\tilde{\nabla}_{\tilde{H}_i}^{g*}\tilde{H}_j), K_g(\tilde{G}_k)) = \operatorname{Tr}\partial_i K_g(\tilde{G}_j)\tilde{G}_k \quad (5)$$

Proposition 4.1 $\tilde{\nabla}^g$ and $\tilde{\nabla}^{g*}$ are dual.

Proof. For i, j, k = 1, ..., N + 1, we have

$$\partial_i \lambda(\tilde{H}_j, \tilde{H}_k) = \partial_i \lambda^g(\tilde{G}_j, \tilde{G}_k) = \partial_i \operatorname{Tr} \tilde{G}_j K_g(\tilde{G}_k) = = \operatorname{Tr} \partial_i \tilde{G}_j K_g(\tilde{G}_k) + \operatorname{Tr} \tilde{G}_j \partial_i K_g(\tilde{G}_k) = \tilde{\Gamma}_{ijk}^g + \tilde{\Gamma}_{ikj}^{g*}.$$

Remark 4.1 Notice that for g = id, we obtain the mixture and exponential $\nabla^{(m)}$ and $\nabla^{(e)}$ connections defined in [13].

The components of the torsion tensor are

$$\tilde{S}_{ijk}^{g*} = \tilde{\Gamma}_{ijk}^{g*} - \tilde{\Gamma}_{jik}^{g*} = \operatorname{Tr} \left\{ \partial_i K_g(\tilde{G}_j(x)) - \partial_j K_g(\tilde{G}_i(x)) \right\} \tilde{G}_k$$

so that this connection is torsion-free iff

$$\partial_i K_g(\hat{G}_j) = \partial_j K_g(\hat{G}_i), \quad \forall i, j = 1, \dots, N+1$$

Obviously, this is not always the case.

Example 4.1 Let us consider the connection $\tilde{\nabla}^{\alpha*}$, $\alpha \in [-3,3]$ and let the metric tensor be determined by J_{α} . Then we have $K_{\alpha}(\tilde{G}_j(x)) = L_{-\alpha}(\tilde{H}_j(x)) = \partial_j g_{-\alpha}(M(x))$, so that the connection is torsion-free. Moreover, $L_{\alpha}^{-1}J_{\alpha} = L_{-\alpha}$ and thus

$$L_{-\alpha}(\nabla^{\alpha*}_{\tilde{H}_i}H_j) = \partial_i \partial_j g_{-\alpha}(M(x))$$

From this, it follows that with this choice of the metric tensor, $\tilde{\nabla}^{\alpha*} = \tilde{\nabla}^{-\alpha}$ as in the classical case. In particular, the exponential connection $\tilde{\nabla}^{-1*}$ is torsion-free and $\tilde{\nabla}^{\pm 1*} = \tilde{\nabla}^{\mp 1}$ with the Kubo-Mori metric. Similarly, $\tilde{\nabla}^{\pm 3*} = \tilde{\nabla}^{\mp 3}$ and the connections are torsion-free, with the metric of the right logarithmic derivative.

Consider now \mathcal{D} as an N-dimensional submanifold in \mathcal{M} and let t_1, \ldots, t_N be a coordinate system in \mathcal{D} . As there is no danger of confusion, we use the symbol ∂_i also for $\frac{\partial}{\partial t_i}$. Let $H_i = \partial_i D(t)$, $G_i = \partial_i g(D(t))$, $i = 1, \ldots, N$. The affine structure in \mathcal{D} is obtained by projecting the above affine connections orthogonaly onto \mathcal{D} . Clearly, each density matrix D is orthogonal to the tangent space T_D in \tilde{T}_D . Indeed, if $H \in T_D$,

$$\lambda_D(H, D) = \operatorname{Tr} H J_D(D) = \operatorname{Tr} H = 0$$

Moreover, $\lambda_D(D, D) = 1$. Using (iv) and (v) of Lemma 3.1, it follows that the covariant derivative is given by

$$L_g(\nabla_{H_j}^g H_i) = \partial_i \partial_j g(D_t) - g'(D_t) D_t \operatorname{Tr} (g'(D_t))^{-1} \partial_i \partial_j g(D_t)$$

$$L_g^{-1} J_D(\nabla_{H_i}^{g*} H_j) = \partial_i K_g(G_j(t)) - (g'(D_t))^{-1} \operatorname{Tr} g'(D_t) D_t \partial_i K_g(G_j(t))$$

and the coefficients are

$$\Gamma_{ijk}^{g}(t) = \operatorname{Tr} K_{g}(G_{k})\partial_{i}\partial_{j}g(D_{t}) \Gamma_{ijk}^{g*}(t) = \operatorname{Tr} G_{k}\partial_{i}K_{g}(G_{j}(t))$$

And now, some differential geometry [1, 2]. Let \tilde{R} be the Riemannian curvature tensor of an affine connection $\tilde{\nabla}$ on an *m*-dimensional manifold \mathcal{M} and let \tilde{R}^* be the curvature tensor of the dual connection. Let X, Y, Z, Wbe vector fields. Then we have (see Lauritzen in [2])

$$\hat{R}(X, Y, Z, W) = -\hat{R}^*(X, Y, W, Z)$$
 (6)

In particular, $\tilde{R} = 0$ iff $\tilde{R}^* = 0$. Further, let \mathcal{N} be a *p*-dimensional submanifold in \mathcal{M} with a coordinate system *x*. Let X_1, \ldots, X_p be the natural basis

of the tangent space, associated with x and let Y_1, \ldots, Y_{m-p} be orthonormal vector fields on \mathcal{M} normal to \mathcal{N} . Recall that the Euler-Shouten imbedding curvature is given by

$$H_{ijl} = \lambda(\tilde{\nabla}_{X_i}X_j, Y_l), \quad i, j = 1, \dots, p, \ l = 1, \dots, m - p$$

Let us denote

$$H_{ijl}^* = \lambda(\tilde{\nabla}_{X_i}^* X_j, Y_l), \quad i, j = 1, \dots, p, \ l = 1, \dots, m - p$$

The submanifold \mathcal{N} is called autoparallel if its imbedding curvature vanishes, i.e. the parallel shift of a vector in $T_x(\mathcal{N})$ along a curve $\rho(s)$ in \mathcal{N} stays in $T_{\rho(s)}(\mathcal{N})$. Let ∇ be the orthogonal projection of $\tilde{\nabla}$ onto \mathcal{N} .

Proposition 4.2 Let R be the Riemannian curvature tensor of ∇ and let $\tilde{\nabla}$ be torsion-free. Then

$$\tilde{R}_{ijkl} = R_{ijkl} + \sum_{\nu} (H_{ik\nu} H^*_{jl\nu} - H_{jk\nu} H^*_{il\nu})$$
(7)

for i, j, k, l = 1, ..., p.

Proof. The proof of this statement for the case of a metric connection, i.e. $\nabla = \nabla^*$, can be found in [12], the general case is obtained by an easy modification of this proof.

Let us now return to the submanifold \mathcal{D} in \mathcal{M}^+ . The Euler-Shouten imbedding curvature is

$$H_{ij1}^g = \operatorname{Tr} \left(g'(D)\right)^{-1} \partial_i \partial_j g(D), \quad i, j = 1, \dots, N$$

and

$$H_{ij1}^{g*} = \operatorname{Tr} g'(D) D\partial_i K_g(G_j), \quad i, j = 1, \dots, N$$

Proposition 4.3 Let $g = g_{\alpha}$. Then

$$H_{ij1}^{\alpha} = -\frac{1+\alpha}{2} \operatorname{Tr} H_i J_{\alpha}(H_j)$$
$$H_{ij1}^{\alpha*} = -\frac{1-\alpha}{2} \operatorname{Tr} H_i J_D(H_j)$$

Proof. Let $\alpha \neq \pm 1$. Compute, using Lemma 3.2,

$$H_{ij1}^{\alpha} = \frac{1+\alpha}{2} \operatorname{Tr} g_{-\alpha}(D) \partial_i \partial_j g_{\alpha}(D)$$

= $\frac{1+\alpha}{2} \{ \partial_j \operatorname{Tr} g_{-\alpha}(D) \partial_i g_{\alpha}(D) - \operatorname{Tr} \partial_j g_{-\alpha}(D) \partial_i g_{\alpha}(D) \}$
= $-\frac{1+\alpha}{2} \operatorname{Tr} L_{-\alpha}(H_j) L_{\alpha}(H_i)$

and

$$H_{ij1}^{\alpha*} = \frac{1-\alpha}{2} \operatorname{Tr} g_{\alpha}(D) \partial_{i} K_{\alpha}(G_{j})$$

$$= \frac{1-\alpha}{2} \{ \partial_{i} \operatorname{Tr} g_{\alpha}(D) L_{\alpha}^{-1} J_{D}(H_{j}) - \operatorname{Tr} \partial_{i} g_{\alpha}(D) L_{\alpha}^{-1} J_{D}(H_{j}) \}$$

$$= -\frac{1-\alpha}{2} \operatorname{Tr} H_{j} J_{D}(H_{i})$$

The proof in case $\alpha = \pm 1$ is nearly the same.

Let \tilde{R}^g be the Riemannian curvature tensor of $\tilde{\nabla}^g$ in \mathcal{M}^+ . Clearly, \mathcal{M}^+ can be parametrized in such a way that

$$g(M(x)) = \sum_{i=1}^{N+1} x_i G_i$$
(8)

In this case, we will say that \mathcal{M}^+ is parametrized as an extended g-family. We have $\partial_i \partial_j g(M(x)) = 0$, hence $\tilde{\Gamma}^g_{ijk}(x) = 0$, for $i, j, k = 1, \ldots, N + 1$ and for each x. It means that this parametrization is affine and therefore $\tilde{R}^g = 0$. Thus also $\tilde{R}^{g*} = 0$. From the identity (7), the curvature tensor R^g in \mathcal{D} is equal to

$$R_{ijkl}^g = H_{jk1}^g H_{il1}^{g*} - H_{ik1}^g H_{jl1}^{g*}$$

If $g = g_{\alpha}$,

$$R_{ijkl}^{\alpha}(D) = \frac{1-\alpha^2}{4} \{ \operatorname{Tr} H_j J_{\alpha}(H_k) \operatorname{Tr} H_i J_D(H_l) - \operatorname{Tr} H_i J_{\alpha}(H_k) \operatorname{Tr} H_j J_D(H_l) \}$$

We see that $R^{\alpha} = 0$ if $\alpha = \pm 1$. It is also clear that $R^{\alpha} = R^{-\alpha}$. Statistical manifolds with this property are called conjugate symmetric and were studied by Lauritzen (see [2]). Here we have to be aware that $R^{-\alpha} \neq R^{\alpha*}$. The curvature tensor $R^{\alpha*}$ can be computed using the identity (6).

Let \mathcal{M}' be a submanifold in \mathcal{M}^+ such that the Riemannian curvature tensor of the projection $\nabla^{\alpha'}$ of $\tilde{\nabla}^{\alpha}$ onto \mathcal{M}' vanishes. Then \mathcal{M}' is flat so that there exists an affine coordinate system θ . The dual connection is curvaturefree and if it is also torsion-free then it follows from Theorem 1.2 that there exists a dual $\nabla^{\alpha'*}$ -affine coordinate system η . This is the case if, for example, $J = J_{\alpha}$ or if \mathcal{M}' is one dimensional, see Section 6. However, if the dual connection is not torsion-free, there is no coordinate system dual to θ . Indeed, if η is a dual coordinate system, then it follows from Amari's proof of Theorem 1.2 that η is $\nabla^{\alpha'*}$ -affine, i.e. the components of the connection vanish, $\Gamma_{ijk}^{\alpha*}(\eta) = 0 \ \forall \eta, \ \forall i, j, k$. But then we have for the components of the torsion tensor $S_{ijk}^{\alpha*} = \Gamma_{ijk}^{\alpha*} - \Gamma_{jik}^{\alpha*} = 0$.

5 A statistical interpretation

Throughout this paragraph, we will suppose that $\alpha \neq 1$. We will investigate a statistical interpretation of the α -representations of the tangent and cotangent space and the α -connections.

Let $\mathcal{D}' \subseteq \mathcal{D}$ be a smooth *p*-dimensional submanifold and let $\theta_1, \ldots, \theta_p$ be the coordinate system in \mathcal{D}' . Let T'_{θ} be the tangent space of \mathcal{D}' at θ , $H'_i = \frac{\partial}{\partial \theta_i} D(\theta), \ G'_i = L_g(H'_i)$ and let ∇'^g and ∇'^{g*} denote the orthogonal projections of the affine connections onto \mathcal{D}' . In [17], locally unbiased estimators were defined and a generalized Cramèr-Rao inequality was proved for the generalized covariance. We give an analogical definition of the α expectation and α -unbiasedness.

Definition 5.1 Let $B = (B_1, \ldots, B_p)$ be a collection of observables. We will say that B is a locally α -unbiased estimator of θ at θ_0 if

(i) Tr $g_{\alpha}(D_{\theta_0})B_i = \theta_{0i}$ for $i = 1, \ldots, p$

(*ii*)
$$\frac{\partial}{\partial \theta_i} \operatorname{Tr} g_\alpha(D_\theta) B_i|_{\theta_0} = \operatorname{Tr} G'_j B_i = \delta_{ij}, \ i, j, = 1, \dots, p$$

The value $\operatorname{Tr} g_{\alpha}(D)A$ will be called the α -expectation of the observable A.

As follows from Example 3.1, the α -representation of the cotangent space $T_D^{\alpha*}$ can be interpreted as the space of all observables with zero α -expectation at D with inner product given by the generalized α -covariance φ^{α} . The following Lemma is obvious.

Lemma 5.1 Let $A = (A_1, \ldots, A_p)$ be a locally unbiased estimator of θ at θ_0 . Then $B = L_{\alpha}^{-1}(A) = (L_{\alpha}^{-1}(A_1), \ldots, L_{\alpha}^{-1}(A_p))$ is a locally α -unbiased estimator of θ at θ_0 . Moreover, $\varphi(A_i, A_j) = \varphi^{\alpha}(B_i, B_j)$ and $\operatorname{Tr} H'_iA_j = \operatorname{Tr} G'_iB_j$, $i, j = 1, \ldots, p$.

The generalized Cramér-Rao inequality from [17] can now be rewritten in the following form.

Theorem 5.1 Let $\lambda_{ij} = \lambda(H'_i, H'_j) = \lambda^{\alpha}(G'_i, G'_j)$ and let $B = (B_1, \ldots, B_p)$ be a locally α -unbiased estimator of θ at 0. Then

$$\varphi_D^{\alpha}(B) \ge (\lambda_{ij})^{-1}$$

in the sense of the order on positive definite matrices. Moreover, equality is attained iff B is the biorthogonal basis of $T_0^{\prime \alpha *}$.

An estimator B which is $(\alpha$ -)unbiased (at each point) and such that its variance attains the Cramèr-Rao bound is called $(\alpha$ -)efficient. Clearly, such estimator does not always exist. The following necessary and sufficient condition a generalization of a result stated (without proof) in [13].

Theorem 5.2 The α -efficient estimator exists iff \mathcal{D}' is a $\nabla^{\alpha*}$ -autoparallel submanifold and the coordinate system $\theta_1, \ldots, \theta_p$ is ∇'^{α} -affine.

Proof. Let \mathcal{D}' be $\nabla^{\alpha*}$ -autoparallel and let the coordinate system be ∇'^{α} affine, i.e. $\nabla'^{\alpha}_{H'_i}H'_j = 0, i, j = 1, \ldots, p$. Let us choose a point in the parameter
space $(\theta = 0)$ and let $B = (B_1, \ldots, B_p)$ be the biorthogonal basis of $T'^{\alpha*}_0$.
We prove that B is an α -efficient estimator.

Let $X_i(\theta)$ be a $\nabla^{\alpha*}$ -parallel vector field such that $L_{\alpha}^{-1}J_0(X_i(0)) = B_i$, $i = 1, \ldots, p$, i.e. $X_i = J_{\theta}^{-1}L_{\alpha}\{B_i - g_{-\alpha}(D(\theta))\operatorname{Tr} g_{\alpha}(D(\theta))B_i\}$. As \mathcal{D}' is $\nabla^{\alpha*}$ -autoparallel, $X_j(\theta) \in T'_{\theta}, \forall \theta$. Compute

$$\partial_i \operatorname{Tr} g_\alpha(D(\theta)) B_j = \operatorname{Tr} G'_i(\theta) B_j = \operatorname{Tr} G'_i(\theta) L_\alpha^{-1} J_\theta(X_j(\theta)) = \lambda(H'_i, X_j)$$

here we have used the identity $\operatorname{Tr} G'_i(\theta)g_{-\alpha}(D(\theta)) = 0$. Further,

$$\partial_k \lambda(H'_i, X_j) = \lambda(\nabla_{H'_k}^{\prime \alpha} H'_i, X_j) + \lambda(H'_i, \nabla_{H'_k}^{\prime \alpha *} X_j)$$
(9)

Since the parametrization is ∇'^{α} -affine, we have $\nabla'^{\alpha}_{H'_k}H'_i = 0$, $\forall i, k$. Moreover, $X_j(\theta) \in T'_{\theta}$ and X_j is $\nabla^{\alpha*}$ -parallel, hence X_j is $\nabla'^{\alpha*}$ -parallel, so that $\nabla_{H'_i}^{\alpha*} X_j = 0$. It follows that $\partial_k \operatorname{Tr} G'_i(\theta) B_j = 0$ for all θ . Since $\operatorname{Tr} G'_i(0) B_j = \delta_{ij}$, we have $\operatorname{Tr} G'_i(\theta) B_j = \delta_{ij}$ for each θ . We see that $\operatorname{Tr} g_\alpha(D(0)) B_j = 0$ and $\partial_i \operatorname{Tr} g_\alpha(D(\theta)) B_j = \delta_{ij}$ for each θ , it follows that B is α -unbiased at each point θ . From Theorem 5.1, it now suffices to prove that $B_j - \theta_j g_{-\alpha}(D(\theta)) \in T_{\theta}^{\prime\alpha*}$. But this follows easily from the fact that $X_j(\theta) \in T'_{\theta}$ and $\operatorname{Tr} g_\alpha(D(\theta)) B_j = \theta_j$.

Conversely, let B be the α -efficient estimator, then B is α -unbiased and the matrices $B_i - \theta_i g_{-\alpha}(D(\theta))$, $i = 1, \ldots, p$ form the biorthogonal basis of $T_{\theta}^{\prime \alpha *} \forall \theta$. Let $X_i = J_{\theta}^{-1} L_{\alpha}^{-1}(B_i - \theta_i g_{-\alpha}(D(\theta)))$, then X_i is a $\nabla^{\alpha *}$ -parallel vector field and $X_i \in T_{\theta}^{\prime} \forall \theta$, hence X_i is $\nabla^{\prime \alpha *}$ -parallel. Moreover,

$$\lambda(H'_i, X_j) = \operatorname{Tr} G'_i B_j = \delta_{ij}$$

From (9) it now follows that $\lambda(\nabla_{H'_k}^{\alpha}H'_i, X_j) = 0$. But the matrices $X_j(\theta)$, $j = 1, \ldots, p$ form a basis of T'_{θ} . We may conclude that $\nabla_{H'_k}^{\alpha}H'_i = 0$, $i, k = 1, \ldots, p$, so that the parametrization is ∇'^{α} -affine.

To see that \mathcal{D}' is $\nabla^{\alpha*}$ -autoparallel, it suffices to observe that the parallel vector fields $X_i(\theta)$, $i = 1, \ldots, p$ form a basis of the tangent space T'_{θ} for each θ .

6 Geodesics and divergence functions

Let us consider a ∇^{α} -autoparallel submanifold in \mathcal{D} for $\alpha = \pm 1$. Then it is ∇^{α} -flat, hence there is an affine coordinate system θ . If $\alpha \neq \pm 1$, we will consider the autoparallel submanifolds in \mathcal{M}^+ . As it was said at the end of Section 4, in general there is no hope for a dual coordinate system to exist, unless the dual connection is torsion-free. It means that we cannot use Amari's theory to define a divergence. However, one dimensional submanifolds are always torsion-free, so that a divergence function exists for each $\nabla^{\pm 1*}$ and $\tilde{\nabla}^{\alpha*}$ -geodesic. As suggested in [13], we use these functions to define a divergence function in \mathcal{D} (\mathcal{M}^+).

Clearly, for each α , a $\tilde{\nabla}^{\alpha*}$ -geodesic is a solution of

$$L_{\alpha}^{-1}J_{\rho_t}(\dot{\rho}_t) = A \tag{10}$$

where $A \in \mathcal{M}$, it means that each geodesic is determined by the observable A.

The $\nabla^{\alpha*}$ -geodesic is given by

(i)
$$J_{\rho_t}(\dot{\rho}_t) = A - \operatorname{Tr} \rho_t A$$
 for $\alpha = -1$

(ii)
$$L_1^{-1} J_{\rho_t}(\dot{\rho}_t) = A - \rho_t \operatorname{Tr} A$$
 for $\alpha = 1$

(iii)
$$L_{\alpha}^{-1}J_{\rho_t}(\dot{\rho}_t) = A - \frac{1-\alpha^2}{4}g_{-\alpha}(\rho_t)\operatorname{Tr} g_{\alpha}(\rho_t)A$$
 for $\alpha \neq \pm 1$

Note that A can be replaced by $A+c_t$ in (i), $A+c_t\rho_t$ in (ii) and $A+c_tg_{-\alpha}(\rho_t)$ in (iii), $c_t \in R$, so that we may always suppose that $A \in T_t^{\alpha*}$.

The relation between $\nabla^{\alpha*}$ - and $\tilde{\nabla}^{\alpha*}$ -geodesics is clarified in the following proposition.

Proposition 6.1 Let $\tilde{\rho}_t$ be a solution of $L_{\alpha}^{-1}J_{\rho_t}(\dot{\rho}_t) = A$. Then $\rho_t = \frac{\tilde{\rho}_t}{\operatorname{Tr}\tilde{\rho}_t}$ is a $\nabla^{\alpha*}$ geodesic.

Proof.

From (3), $J_{\rho_t} = \operatorname{Tr} \tilde{\rho_t} J_{\tilde{\rho}_t}$. Compute

$$J_{\rho_t}(\dot{\rho}_t) = J_{\tilde{\rho}_t}(\dot{\tilde{\rho}}_t) - \frac{\operatorname{Tr} \tilde{\rho}_t}{\operatorname{Tr} \tilde{\rho}_t} = J_{\tilde{\rho}_t}(\dot{\tilde{\rho}}_t) - \operatorname{Tr} \rho_t J_{\tilde{\rho}_t}(\dot{\tilde{\rho}}_t)$$

here we used the fact that $J_D(D) = I$ (twice) and that J_D is self-adjoint. Further,

$$L_{\alpha}^{-1}J_{\rho_t}(\dot{\rho}_t) = A - L_{\alpha}^{-1}(I)\operatorname{Tr} L_{\alpha}(\rho_t)A$$

We use Lemma 3.1 (iv) and (v) to complete the proof.

Remark 6.1 Let ρ_t be as in (i). For each t, the coefficient of the affine connection is equal to

$$\Gamma^{-1*}(t) = \lambda(\nabla_{\dot{\rho}_t}^{-1*}\dot{\rho}_t, \dot{\rho}_t) = \operatorname{Tr} \frac{d}{dt} \{J_{\rho_t}(\dot{\rho}_t)\}\dot{\rho}_t = \operatorname{Tr} \frac{d}{dt} \{A - \operatorname{Tr} \rho_t A\}\dot{\rho}_t = 0$$

It follows that the parameter t is ∇^{-1*} -affine. Similarly, for ρ_t as in (ii), t is ∇^{1*} -affine. In the case $\alpha \neq \pm 1$, the $\nabla^{\alpha*}$ -geodesic is not flat, hence we consider (as in the classical case) geodesics in \mathcal{M}^+ . If ρ_t is the solution of (10), t is $\tilde{\nabla}^{\alpha*}$ -affine. Moreover, all affine coordinate systems are connected via affine transformations $t \mapsto at+b$. This coordinate transformation changes the initial point and rescales the observable A as $\frac{1}{a}A$.

Lemma 6.1 Let $\alpha = -1$ and let ρ_t and $\tilde{\rho}_t$ be as above. Then $\psi(t) = \log \operatorname{Tr} \tilde{\rho}_t$ is a potential function for ρ_t .

Proof. We have to prove that $\frac{d^2}{dt^2}\psi(t) = \lambda(\dot{\rho}_t, \dot{\rho}_t)$. Compute

$$\frac{d}{dt}\psi(t) = \frac{\operatorname{Tr}\dot{\tilde{\rho}}_t}{\operatorname{Tr}\tilde{\rho}_t} = \operatorname{Tr}\rho_t A$$

Moreover,

$$\lambda(\dot{\rho}_t, \dot{\rho}_t) = \operatorname{Tr} \dot{\rho}_t J_{\rho_t}(\dot{\rho}_t) = \operatorname{Tr} \dot{\rho}_t A = \frac{d^2}{dt^2} \psi(t)$$

Lemma 6.2 Let $\alpha = 1$, then $\psi(t) = \operatorname{Tr} \rho_t \log \rho_t$ is a potential function for ρ_t .

Proof. We may assume that $A \in T^{1*}_{\rho_0}$, i.e. $\operatorname{Tr} A = 0$. We have $L^{-1}_1(\log \rho_t) = \rho_t \log \rho_t$, hence

$$\psi(t) = \operatorname{Tr} L_1^{-1}(\log \rho_t) = \operatorname{Tr} \rho_t J_{\rho_t} L_1^{-1}(\log \rho_t)$$

and

$$\frac{d}{dt}\psi(t) = \operatorname{Tr}\dot{\rho}_t J_{\rho_t} L_1^{-1}(\log\rho_t) + \operatorname{Tr}\rho_t \frac{d}{dt} J_{\rho_t} L_1^{-1}(\log\rho_t) =$$
$$= \operatorname{Tr} A \log\rho_t + \operatorname{Tr}\rho_t L_1(\dot{\rho}_t) = \operatorname{Tr} A \log\rho_t$$

here we have used the fact that $J_D(A) = D^{-1}A$ whenever A commutes with D, thus $J_{\rho_t}(\rho_t \log \rho_t) = \log \rho_t$, and $L_1(\rho_t) = I$. The rest of the proof is the same as above.

Lemma 6.3 Let $\alpha \neq \pm 1$ and let $\rho_t = \tilde{\rho}_t$. Then $\psi(t) = \frac{2}{1-\alpha} \operatorname{Tr} \rho_t$ is the potential function.

Proof.

$$\frac{d}{dt}\operatorname{Tr}\rho_t = \operatorname{Tr}\dot{\rho}_t J_{\rho_t}(\rho_t) = \operatorname{Tr}\rho_t L_\alpha(A) = \frac{1-\alpha}{2}\operatorname{Tr}g_\alpha(\rho_t)A$$

and

$$\frac{d^2}{dt^2} \operatorname{Tr} \rho_t = \frac{1-\alpha}{2} \operatorname{Tr} L_\alpha(\dot{\rho_t}) A = \frac{1-\alpha}{2} \lambda(\dot{\rho_t}, \dot{\rho_t}).$$

According to Theorem 1.2, ρ_t is also ∇^{α} ($\tilde{\nabla}^{\alpha}$)-flat and there is a dual ∇^{α} ($\tilde{\nabla}^{\alpha}$) - affine coordinate s. As we have seen in the proofs of the above lemmas, the dual coordinate is given by $s(t) = \frac{d}{dt}\psi(t) = \operatorname{Tr} g_{\alpha}(\rho_t)A$ for each

 α . Moreover, there is a divergence function $D^{\rho}_{\alpha}: \rho \times \rho \to R$. A divergence measure in $\mathcal{D}(\mathcal{M}^+)$ can then be defined as follows. Let $\rho_0, \rho_1 \in \mathcal{D}$. Let $\tilde{\rho}_t$ be the unique $\tilde{\nabla}^{\alpha*}$ -geodesic connecting these two states. If $\alpha \neq \pm 1$, the α -divergence is $D_{\alpha}(\rho_0, \rho_1) = D^{\tilde{\rho}}_{\alpha}(0, 1)$. If $\alpha = \pm 1$, we use the $\nabla^{\alpha*}$ -geodesic $\rho_t = (\operatorname{Tr} \tilde{\rho}_t)^{-1} \tilde{\rho}_t$.

Proposition 6.2 (i) Let $\alpha = -1$ and let $\rho_0, \rho_1 \in \mathcal{D}$. Let ρ_t be as above and let A be the unique observable determining ρ_t . Then

$$D_{\alpha}(\rho_0,\rho_1) = \operatorname{Tr} \rho_1 A$$

(ii) If $\alpha = 1$, then

$$D_{\alpha}(\rho_0, \rho_1) = \operatorname{Tr} \rho_0 \log \rho_0 + \operatorname{Tr} (A - \rho_1) \log \rho_1$$

(iii) Let $\alpha \neq \pm 1$, $\rho_0, \rho_1 \in \mathcal{M}^+$. Then

$$D_{\alpha}(\rho_0, \rho_1) = \frac{2}{1-\alpha} (\operatorname{Tr} \rho_0 - \operatorname{Tr} \rho_1) + \operatorname{Tr} g_{\alpha}(\rho_1) A$$

Proof. From the definition of the divergence function and the identity (2), we obtain

$$D^{\rho}_{\alpha}(t_1, t_2) = \psi(t_1) - \psi(t_2) + (t_2 - t_1)s_2$$

The rest of the proof is easy.

Let now ρ_t be a geodesic connecting two states ρ_0 and ρ_1 and let ρ_{t_1} , ρ_{t_2} be two states lying on ρ_t . Using Remark 6.1, it is easy to see that $D_{\alpha}(\rho_{t_1}, \rho_{t_2}) = D_{\alpha}^{\rho}(t_1, t_2)$. It also follows that for each ρ we may put $D_{\alpha}(\rho, \rho) = 0$. There are some properties of the divergence D_{α} which follow from the properties of D_{α}^{ρ} :

- (i) Positivity: $D_{\alpha}(\rho, \sigma) \geq 0$ and $D_{\alpha}(\rho, \sigma) = 0$ iff $\rho = \sigma$
- (ii) Let $\sigma = \rho + dtH$. Let $A = L_{\alpha}^{-1}J_D(H)$ and let ρ_t be the geodesic determined by A such that $\rho_{t_0} = \rho$. Then

$$D_{\alpha}(\rho, \rho + dtH) = D_{\alpha}^{\rho}(t_0, t_0 + dt) = dt^2\lambda(H, H)$$

and

$$D_{\alpha}(\rho + dtH, \rho) = D_{\alpha}^{\rho}(t_0 + dt, t_0) = D_{\alpha}^{\rho}(t_0, t_0 + dt)$$

It means that the α -divergence induces the metric.

Example 6.1 Let λ be determined by $J_{\alpha} = L_{-\alpha}L_{\alpha}$ for some $\alpha \in (-3,3)$. As we have seen, in this case $\nabla^{\alpha*} = \nabla^{-\alpha}$ and this connection is torsion-free. Hence we have the same situation as in the classical case. Let $\alpha = \pm 1$ and let us consider the exponential family

$$\rho(\theta) = \exp\{\sum_{i=1}^{m} \theta_i A_i - \psi(\theta)\}\$$

Then it is ± 1 -flat and $\psi(\theta) = \log \operatorname{Tr} \exp(\theta_i A_i)$ is the potential function. Hence the coordinate systems $(\theta, \{\eta_i = \partial_i \psi(\theta)\})$ are mutually dual, θ is ∇^{α} -affine and η is $\nabla^{-\alpha}$ -affine. The divergence is given by

$$D_1(\rho_0, \rho_1) = \operatorname{Tr} \rho_1(\log \rho_1 - \log \rho_0)$$

which is the relative entropy. Similarly, for the mixture family

$$\rho(\eta) = \rho_0 + \sum_{i=1}^m \eta_i A_i, \qquad \text{Tr} A_i = 0$$

the function $\psi(\eta) = \text{Tr }\rho(\eta)\log\rho(\eta)$ is the potential function, so that there is a pair of dual affine coordinate systems (η, θ) , see also [9]. The divergence is

$$D_{-1}(\rho_0, \rho_1) = D_1(\rho_1, \rho_0)$$

For $\alpha \neq \pm 1$, we consider the extended α -family

$$\rho(\theta) = g_{\alpha}^{-1}(\sum_{i+1}^{m} \theta_i A_i)$$

Let $\psi(\theta) = \frac{2}{1-\alpha} \operatorname{Tr} \rho(\theta)$. Then

$$\frac{\partial}{\partial \theta_i}\psi(\theta) = \frac{\partial}{\partial \theta_i} \frac{2}{1-\alpha} \operatorname{Tr} g_{\alpha}^{-1}(\sum_k \theta_k A_k) = \frac{2}{1-\alpha} \operatorname{Tr} L_{\alpha}^{-1} A_i = \operatorname{Tr} g_{-\alpha}(\rho(\theta)) A_i$$

and

$$\frac{\partial}{\partial \theta_j} \operatorname{Tr} g_{-\alpha}(\rho(\theta)) A_i = \frac{\partial}{\partial \theta_j} \operatorname{Tr} g_{-\alpha}(g_{\alpha}^{-1}(\sum_k \theta_i A_k)) A_i =$$
$$= \operatorname{Tr} L_{-\alpha} L_{\alpha}^{-1}(A_j) A_k = \lambda^{\alpha}(A_i, A_j)$$

hence $\psi(\theta)$ is the potential function. Thus there is a pair of dual affine coordinate systems and a divergence

$$D_{\alpha}(\rho_0,\rho_1) = \operatorname{Tr} g_{\alpha}(\rho_1)(g_{-\alpha}(\rho_1) - g_{-\alpha}(\rho_0))$$

This α -divergence was defined also in [8] It is easy to see that the above divergence functions are the same as those from Proposition 6.2.

Example 6.2 ([5, 13]) Let $\alpha = -1$ and let λ be the metric of the symmetric logarithmic derivative. Then it is easy to see that

$$\rho_t = \exp\{\frac{1}{2}(tA - \psi(t))\}\rho_0 \exp\{\frac{1}{2}(tA - \psi(t))\}$$

where $\psi(t) = \log \operatorname{Tr} \rho_0 \exp tA$, is a solution of (i). Hence it is a ∇^{-1*} -geodesic and the coordinate t is $\nabla^{\alpha*}$ -affine. It follows that ρ_t is also ∇^{-1} -flat and there is a ∇^{-1} -affine coordinate system $s(t) = \operatorname{Tr} \rho_t A$. Further, the divergence is

$$D_{-1}(\rho_0, \rho_1) = 2 \operatorname{Tr} \rho_1 \log \rho_0^{-\frac{1}{2}} (\rho_0^{\frac{1}{2}} \rho_1 \rho_0^{\frac{1}{2}})^{\frac{1}{2}} \rho_0^{-\frac{1}{2}}$$

Clearly, this divergence coincides with the relative entropy if ρ_0 and ρ_1 commute. Moreover, ρ_t has the Gibbs state $\exp(tA - \psi(t))$ as a special case.

Example 6.3 Let $\alpha = -1$ and let λ be the metric of the right logarithmic derivative. Then it is easy to see that

$$\tilde{\rho}_t = F^{\frac{1}{2}} \exp\{tQ_F(A)\}F^{\frac{1}{2}}$$

where Q_F is a linear operator given by $Q_F^{-1}(A) = \frac{1}{2}(F^{-\frac{1}{2}}AF^{\frac{1}{2}} + F^{\frac{1}{2}}AF^{-\frac{1}{2}})$ is a solution of (10). If ρ_0 and ρ_1 are two states,

$$\rho_t = \rho_1^{\frac{1}{2}} \exp\{(t-1)Q_{\rho_1}(A) - \psi(t)\}\rho_1^{\frac{1}{2}}$$

with $\psi(t) = \log \operatorname{Tr} \rho_1 \exp\{(t-1)Q_{\rho_1}(A)\}$ is a ∇^{-1*} -geodesic. Choose A so that

$$\rho_1^{\frac{1}{2}} \exp\{-Q_{\rho_1}(A)\}\rho_1^{\frac{1}{2}} = \rho_0$$

 ρ_t is then the ∇^{-1*} -geodesic connecting these two states. We see that the divergence is given by

$$D^{-1}(\rho_0, \rho_1) = \operatorname{Tr} \rho_1 A = \operatorname{Tr} \rho_1 \log \rho_1^{\frac{1}{2}} \rho_0^{-1} \rho_1^{\frac{1}{2}}$$

This version of the relative entropy appeared also in [3].

References

- Amari, S. Differential-geometrical methods in statistic, Lecture Notes in Statistics 28(1985)
- [2] S. Amari, O.E. Barndorff-Nielsen, R.E. Kass, S.L. Lauritzen, C.R. Rao Differential geometry in statistical inference. IMS Lecture notes-Monograph series 10(1987)
- [3] Belavkin, V.P. and Staszewski, P. C*-algebraic generalizations of relative entropy and entropy, Ann. Inst. Henri Poincaré A37 (1982) 51–58
- [4] Bhatia, R. Matrix analysis, Springer, New York, 1997
- [5] Braunstein, S.L. and Caves, C.M. Geometry of quantum states, in *Quantum Communication, Computing and Measurement*, eds. Hirota et al., Plenum Press, New York (1994)
- [6] Chentsov, N.N. Statistical decision rules and optimal inferences, Translation of Math. Monog. 53 (Amer. Math. Society, Providence 1982)
- [7] Chentsov, N.N. and Morozova, Markov invariant geometry on state manifolds (in Russian), Itogi Nauki i Tekhniki 36 (1990), 69–102
- [8] Hasegawa, H. α -divergence of the non-commutative information geometry, Rep. Math. Phys. 33 (1993) 87–93
- [9] Hasegawa, H. Exponential and mixture families in quantum statistics: Dual structure and unbiased parameter estimation, Rep. Math. Phys. 39 (1997) 49–68
- [10] Hasegawa, H. and Petz, D. Non-commutative extension of information geometry II, Quantum Communication, Computing and Measurement, Eds. Hirota et al., Plenum Press, New York, (1997)
- [11] Holevo, A.S., Probabilistic and statistical aspects of quantum theory, North-Holland, Amsterdam, 1982
- [12] S. Kobayashi, K. Nomizu Foundation of Differential Geometry, Volume II, Interscience, John Wiley & Sons, New York, London, 1963

- [13] Nagaoka, H. Differential geometrical aspects of quantum state estimation and relative entropy, in *Quantum Communication, Computing and Measurement*, eds. Hirota et al., Plenum Press, New York (1994)
- [14] Petz, D. and Sudár, Cs., Geometries of quantum states, J. Math. Phys. 37(1996), 2662–2673
- [15] Petz, D. Information geometry of quantum states, in *Quantum Probability Communications*, vol. 10, ed. R.L. Hudson et al, World Scientific, 135–158
- [16] Petz, D. Monotone metrics on matrix spaces, Linear Algebra Appl. 244(1996),81–96
- [17] Petz, D. and Jenčová, A. On quantum Fisher information, to appear