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Abstract. In a finite quantum state space with a monotone metric, a family
of torsion-free affine connections is introduced, in analogy with the classical
α-connections defined by Amari. The dual connections with respect to the
metric are found and it is shown that these are, in general, not torsion-free.
The torsion and the Riemannian curvature are computed and the existence
of efficient estimators is treated. Finally, geodesics are used to define a
divergence function.

1 The classical case

Let S = {p(x, θ) | θ ∈ Θ ⊆ Rm} be a smooth family of classical probability
distributions on a sample space X . Then S can naturally be viewed as a
differentiable manifold. The differential-geometrical aspects of a statistical
manifold and their statistical implications were studied by many authors.
The Riemannian structure is given by the Fisher information metric tensor

gij(θ) = Eθ[∂i log p(x, θ)∂j log p(x, θ)]

where ∂i denotes ∂
∂θi

. In 1972, Chentsov in [6] introduced a family of affine
connections in S and proved that the Fisher information and these connec-
tions were unique (up to a constant factor) in the manifold of distributions on
a finite number of atoms, in the sense that these are invariant with respect to
transformations of the sample space. In [1], Amari defined a one-parameter
family of α-connections in S, which turned out to be the same as defined by
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Chentsov. These may be introduced using the following α-representations of
the tangent space:

Let gα be a one-parameter family of functions, given by

gα(x) =

{
2

1−α
x

1−α
2 α 6= 1

log x α = 1

Let lα(x, θ) = gα(p(x, θ)). The vector space spanned by the functions ∂ilα(x, θ),
i = 1, . . . , p is called the α-representation of the tangent space. The metric
tensor gij is then

gij(θ) =
∫
∂ilα(x, θ)∂jl−α(x, θ)dP

The α-connections are defined by

Γα
ijk(θ) =

∫
∂i∂jlα(x, θ)∂kl−α(x, θ)dP

From this, it is clear that these connections are torsion-free, i. e. Sα
ijk =

Γα
ijk − Γα

jik = 0, ∀i, j, k, ∀θ. Let now ∇ and ∇∗ be two covariant derivatives
on S, then we say that the covariant derivatives (the affine connections) are
dual with respect to the metric if

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ)

or, in coefficients,
∂igjk = Γijk + Γ∗ikj

It is easy to see that the α and −α connections are mutually dual.
Further, let η be another coordinate system in S. The natural basis of

the tangent space TP at P ∈ S is {∂i}, ∂i = ∂
∂θi

for the coordinate system

θ and {∂i}, ∂i = ∂
∂ηi

for η. We say that θ and η are mutually dual if their
natural bases are biorthogonal, i.e. if

g(∂i, ∂
j) = δj

i

The metric tensor in the basis {∂i} is given by

g(∂i, ∂j) = gij, (gij) = (gij)
−1

The next Theorem (the Theorem 3.4 in [1]) gives the necessary and sufficient
condition for existence of such pair of coordinate systems.
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Theorem 1.1 If a Riemannian manifold S has a pair of dual coordinate
systems (θ, η), then there exist potential functions ψ(θ) and φ(η) such that

gij = ∂i∂jψ(θ), gij = ∂i∂jφ(η) (1)

Conversely, if either potential function ψ or φ exist such that (1) holds, there
exists a pair of dual coordinate systems. The dual coordinate systems are
related by the Legendre transformations

θi = ∂iφ(η) ηi = ∂iψ(θ)

and the two potential functions satisfy the identity

ψ(θ) + φ(η)−
∑

i

θiηj = 0 (2)

The most interesting results of [1] concern the case that the manifold S is
α-flat, i.e. the Riemannian curvature tensor of the α-connection vanishes.
Then S is also −α-flat. It is known that for flat manifolds, an affine co-
ordinate system exists, i.e. the coefficients of the connection vanish. The
next Theorem (Theorem 3.5 in [1]) reveals the dualistic structure of α-flat
manifolds.

Theorem 1.2 When a Riemannian manifold S is flat with respect to a pair
of torsion-free dual affine connections ∇ and ∇∗, there exists a pair (θ, η)
of dual coordinate systems such that θ is a ∇-affine and η is a ∇∗-affine
coordinate system.

This result can be directly applied to the exponential and mixture families

p(x, θ) = exp{
∑

i

θici(x)− ψ(θ)}

and
p(x, θ) =

∑
i

θici(x) + (1−
∑

i

θi)cn+1(x)

which are ±1-flat, and the extended α-families

lα(x, θ) =
n+1∑

i

θici(x)
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which are ±α-flat (note that the extended α-families are not normed to 1).
Let us consider an α-flat family S with the dual coordinate systems (θ, η)

and let ψ(θ) and φ(η) be the potential functions. In [1], a divergence is
introduced in S. It is called the α-divergence and it is given by

Dα(θ, θ′) = ψ(θ) + φ(η′)−
∑

i

θiη
′
i

The divergence is not a usual distance, but it has some important properties:

(i) it is strictly positive, Dα(θ, θ′) ≥ 0 with Dα(θ, θ′) = 0 iff θ = θ′

(ii) it is jointly convex in θ and θ′

(iii) Dα(θ, θ′) = D−α(θ′, θ)

(iv) it satisfies the relation

Dα(θ, θ + dθ) = Dα(θ + dθ, θ) =
1

2

∑
ij

gij(θ)dθidθj

hence it induces the Riemannian distance, given by the Fisher infor-
mation.

Moreover, the divergences are shown to satisfy a generalized Pythagorean
relation.

There were some attempts to introduce a similar family of affine struc-
tures in the differentiable manifold of states of an n-level quantum system
with a monotone metric. The main difficulty here is that, as was first shown
in [7], there is no unique quantum analogue of the Fisher information metric
and, moreover, the connections are in general not torsion-free. Hasegawa in
[9] studied the case of quantum exponential and mixture families with the
Kubo-Mori metric. In [13], the exponential and mixture connections (i.e.
the case α = ±1) were defined also for arbitrary monotone metric and a
divergence function was introduced. The aim of this paper is to use a similar
method to define the α-connections and divergence functions for each α and
to investigate the dualistic properties of the manifold.
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2 The state space

Let M denote the differentiable manifold of all n-dimensional complex her-
mitean matrices and let M+ = {M ∈ M | M > 0}. Let T̃M be the tangent
space at M , then T̃M can be identified with M considered as a vector space.
We introduce a Riemannian structure in M+, defining an inner product in
T̃M by

λM(X, Y ) = TrXJM(Y )

where JM is a suitable superoperator on matrices. The state space of an
n-level quantum system can be identified with the submanifold

D = {D ∈M+ | TrD = 1}

The tangent space TD ⊂ T̃D is the real vector space of all self-adjoint traceless
matrices. If we consider the restriction of the Riemannian structure λ onto
D, it is natural to require that λ is monotone, in the sense that if T is a
stochastic map, then

λT (M)(T (X), T (X)) ≤ λM(X,X), ∀M ∈M+, X ∈M

As it was proved in [14], this is true iff JM is of the form

JM = (R
1
2
Mf(LMR

−1
M )R

1
2
M)−1 (3)

where f : R+ → R is an operator monotone function such that f(t) = tf(t−1)
for every t > 0 and LM(A) = MA and RM(A) = AM , for each matrix A.
We also adopt a normalization condition f(1) = 1. Notice that we have
JM(X) = M−1X whenever X and M commute, in particular, JM(M) = I.

Let T ∗D be the cotangent space of D at D, then T ∗D is the vector space of
all observables A with zero mean at D (i.e. TrDA = 0). It is easy to see
that

T ∗D = {JD(H) | H ∈ TD} (4)

The metric λ induces an inner product in T ∗D, namely,

ϕ(A1, A2) = λ(J−1
D (A1), J

−1
D (A2)) = TrA1J

−1
D (A2)

It can be interpreted as a generalized covariance of the observables A1 and
A2.
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Example 2.1 Let the metric be determined by JD(H) = G, where GD +
DG = 2H, then it is called the metric of the symmetric logarithmic deriva-
tive. This metric is monotone, with the corresponding operator monotone
function f(x) = 1+x

2
, see [5, 11, 15].

Example 2.2 Another important example of a monotone metric is the well-
known Kubo-Mori metric determined by JD(H) = d

dt
log(D + tH)|t=0. The

monotone metric is given by

λD(H,K) = TrHJD(K) =
∂2

∂t∂s
Tr (D + tH) log(D + sK)|t,s=0

Note that this metric is induced by the relative entropyD(ρ, σ) = Tr ρ(log ρ−
log σ) when the density matrices ρ and σ are infinitesimally distant from each
other.

Example 2.3 [11, 16] Let JD(H) = 1
2
(D−1H +HD−1). The corresponding

metric is monotone, with f(x) = 2x
x+1

, and it is called the metric of the right
logarithmic derivative.

For more about monotone metrics and their use see [15, 16, 10].

3 The g-representation

Let g : R → R be a smooth (strictly) monotone function. We define an
operator Lg[M ] : T̃M → T̃g(M) by

Lg[M ](H) =
d

ds
g(M + sH)|s=0

The following Lemma was proved in [17]. As it is frequently used in the
sequel, we repeat the proof here.

Lemma 3.1 (i) Lg[M ] is a linear map.

(ii) Lf◦g[M ] = Lf [g(M)]Lg[M ]. In particular, if g is invertible then Lg[M ]
is invertible and Lg[M ]−1 = Lg−1 [g(M)].

(iii) Lg[M ] is self-adjoint, with respect to the inner product 〈A,B〉 = TrAB
in M.
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(iv) Lg[M ](M) = g′(M)M , where g′(x) = d
dx
g(x).

(v) Lg[M ]−1(I) = (g′(M))−1, I is the identity matrix.

Proof. It is convenient to use the orthogonal (with respect to the inner
product 〈A,B〉 above) decomposition of the tangent space introduced in [9],
T̃M = C(M) ⊕ C(M)⊥, where C(M) = {X ∈ M : XM = MX} and
C(M)⊥ = {i[M,X] : X ∈M}.

Let H ∈ T̃M be decomposed as H = Hc + i[M,X], then, according to [4]
(p. 124), d

ds
g(M + sH)|s=0 = g′(M)Hc + i[g(M), X]. The statements (i) and

(ii) follow easily from this equality. Let K ∈ T̃M , K = Kc + i[M,Y ], then

TrKLg[M ](H) = TrKcg′(M)Hc − Tr [M,Y ][g(M), X] =

= Tr g′(M)KcHc − Tr [g(M), Y ][M,X] = TrLg[M ](K)H

which proves (iii). Further,

(iv) Lg[M ](M) = d
ds
g((1 + s)M)|s=0 = g′(M)M

(v) From (ii),

Lg[M ]−1(I) = Lg−1 [g(M)](I) =
d

ds
g−1(g(M) + sI)|s=0 = (g′(M))−1

In what follows, we omit the indication of the point in square brackets if
no confusion is possible. The vector space

T g
D = {Lg(H) | H ∈ TD}

will be called the g-representation of the tangent space TD. The correspond-
ing inner product in T g

D is

λg
D(G1, G2) = λD(L−1

g (G1), L
−1
g (G2)) = TrG1Kg(G2)

where Kg = L−1
g JDL

−1
g . Similarly as before, the g-representation of the

cotangent space is the space of all linear functionals on T g
D and it is given by

T g∗
D = {Kg(G) |G ∈ T g

D} = {Lg−1(A) | A ∈ T ∗D}

The inner product

ϕg
D(B1, B2) = λg

D(K−1
g (B1), K

−1
g (B2)) = TrB1K

−1
g (B2)

will be called the generalized g-covariance of B1 and B2.
Clearly, if g is the identity function, we obtain the usual tangent and

cotangent spaces TD and T ∗D.
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Lemma 3.2

G ∈ T g
D ⇐⇒ Tr (g′(D))−1G = 0

B ∈ T g∗
D ⇐⇒ Tr g′(D)DB = 0

Proof. Both statements follow easily from TrH = 0, H ∈ TD and Lemma
3.1 (v) and (iv), respectively.

Example 3.1 The quantum analogue of Amari’s α-representations is ob-
tained if we put

g(x) = gα(x).

In the sequel, we use the letter α to indicate the function gα, e.g. α-
representation, Tα

D, etc. For α 6= ±1, (g′α(D))−1 = 1+α
2
g−α(D) and g′α(D)D =

1−α
2
gα(D) and thus

G ∈ Tα
D ⇐⇒ Tr g−α(D)G = 0

B ∈ Tα∗
D ⇐⇒ Tr gα(D)B = 0,

An application of Lemma 3.2 also for α = ±1 shows that Tα∗
D = T−α

D for
each α, so that Kα = L−1

α JDL
−1
α is an isomorphism Kα : Tα

D → T−α
D . This

shows that the α- and −α-representations are in some sense dual, as in the
classical case. In particular, if we put JD = Jα = L−αLα, then Kα = L−αL

−1
α

and we see that in this case K−1
α = K−α. The corresponding family of

metrics was studied in [10] and it was shown that the metric is monotone
for α ∈ [−3, 3]. Moreover, for α = ±1 we obtain the Kubo-Mori metric and
α = ±3 corresponds to the right logarithmic derivative.

4 The affine connections, torsion and curva-

ture

Let g : R→ R be a smooth strictly monotone function and let M,M ′ ∈M+.
Clearly, both T g

M and T g∗
M for each M can be identified with M, so that

there is a natural isomorphism T̃ g
M → T̃ g

M ′ given by the identity mapping.
This isomorphism induces an affine connection on M+. Let us denote the
corresponding covariant derivative by ∇̃g.
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Let x1, . . . , xN+1 be a coordinate system in M+. Let us denote ∂i = ∂
∂xi

and let H̃i = ∂iM(x), G̃i = Lg(H̃i) = ∂ig(M(x)), i = 1, . . . , N + 1. Then

Lg(∇̃g

H̃j
H̃i) = ∂i∂jg(M(x))

Hence, the coefficients of the affine connection are

Γ̃g
ijk(x) = λx(∇̃g

H̃i
H̃j, H̃k) = Tr ∂i∂jg(M(x))Kg(G̃k)

i, j, k = 1, . . . , N+1. From this, it follows that this connection is torsion-free.
If we use the functions gα, we obtain a one-parameter family of torsion-

free connections ∇̃α, analogical to Amari’s family of α-connections. It is easy
to see that, unlike the classical case, the connections ∇̃α and ∇̃−α are not
dual in general.

To obtain the dual connection, consider the affine connection on M+

induced by a similar identification T̃ g∗
M → T̃ g∗

M ′ . The covariant derivative will
be denoted by ∇̃g∗, this notation will be justified below. We have

L−1
g JM(∇̃g∗

H̃i
H̃j) = ∂iKg(G̃j(x))

The coefficients of this connection are

Γ̃g∗
ijk = λ(∇̃g∗

H̃i
H̃j, H̃k) = ϕg(L−1

g JM(∇̃g∗
H̃i
H̃j), Kg(G̃k)) = Tr ∂iKg(G̃j)G̃k (5)

Proposition 4.1 ∇̃g and ∇̃g∗ are dual.

Proof. For i, j, k = 1, . . . , N + 1, we have

∂iλ(H̃j, H̃k) = ∂iλ
g(G̃j, G̃k) = ∂iTr G̃jKg(G̃k) =

= Tr ∂iG̃jKg(G̃k) + Tr G̃j∂iKg(G̃k) = Γ̃g
ijk + Γ̃g∗

ikj.

Remark 4.1 Notice that for g = id, we obtain the mixture and exponential
∇(m) and ∇(e) connections defined in [13].

The components of the torsion tensor are

S̃g∗
ijk = Γ̃g∗

ijk − Γ̃g∗
jik = Tr {∂iKg(G̃j(x))− ∂jKg(G̃i(x))}G̃k

so that this connection is torsion-free iff

∂iKg(G̃j) = ∂jKg(G̃i), ∀i, j = 1, . . . , N + 1

Obviously, this is not always the case.
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Example 4.1 Let us consider the connection ∇̃α∗, α ∈ [−3, 3] and let the
metric tensor be determined by Jα. Then we haveKα(G̃j(x)) = L−α(H̃j(x)) =
∂jg−α(M(x)), so that the connection is torsion-free. Moreover, L−1

α Jα = L−α

and thus
L−α(∇̃α∗

H̃i
H̃j) = ∂i∂jg−α(M(x))

From this, it follows that with this choice of the metric tensor, ∇̃α∗ = ∇̃−α

as in the classical case. In particular, the exponential connection ∇̃−1∗

is torsion-free and ∇̃±1∗ = ∇̃∓1 with the Kubo-Mori metric. Similarly,
∇̃±3∗ = ∇̃∓3 and the connections are torsion-free, with the metric of the
right logarithmic derivative.

Consider now D as an N -dimensional submanifold inM and let t1, . . . , tN
be a coordinate system in D. As there is no danger of confusion, we use the
symbol ∂i also for ∂

∂ti
. Let Hi = ∂iD(t), Gi = ∂ig(D(t)), i = 1, . . . , N . The

affine structure in D is obtained by projecting the above affine connections
orthogonaly onto D. Clearly, each density matrix D is orthogonal to the
tangent space TD in T̃D. Indeed, if H ∈ TD,

λD(H,D) = TrHJD(D) = TrH = 0

Moreover, λD(D,D) = 1. Using (iv) and (v) of Lemma 3.1, it follows that
the covariant derivative is given by

Lg(∇g
Hj
Hi) = ∂i∂jg(Dt)− g′(Dt)DtTr (g′(Dt))

−1∂i∂jg(Dt)

L−1
g JD(∇g∗

Hi
Hj) = ∂iKg(Gj(t))− (g′(Dt))

−1Tr g′(Dt)Dt∂iKg(Gj(t))

and the coefficients are

Γg
ijk(t) = TrKg(Gk)∂i∂jg(Dt)

Γg∗
ijk(t) = TrGk∂iKg(Gj(t))

And now, some differential geometry [1, 2]. Let R̃ be the Riemannian
curvature tensor of an affine connection ∇̃ on an m-dimensional manifold M
and let R̃∗ be the curvature tensor of the dual connection. Let X, Y , Z, W
be vector fields. Then we have (see Lauritzen in [2])

R̃(X, Y, Z,W ) = −R̃∗(X, Y,W,Z) (6)

In particular, R̃ = 0 iff R̃∗ = 0. Further, let N be a p-dimensional submani-
fold in M with a coordinate system x. Let X1, . . . , Xp be the natural basis
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of the tangent space, associated with x and let Y1, . . . , Ym−p be orthonormal
vector fields on M normal to N . Recall that the Euler-Shouten imbedding
curvature is given by

Hijl = λ(∇̃Xi
Xj, Yl), i, j = 1, . . . , p, l = 1, . . . ,m− p

Let us denote

H∗
ijl = λ(∇̃∗

Xi
Xj, Yl), i, j = 1, . . . , p, l = 1, . . . ,m− p

The submanifold N is called autoparallel if its imbedding curvature vanishes,
i.e. the parallel shift of a vector in Tx(N ) along a curve ρ(s) in N stays in
Tρ(s)(N ). Let ∇ be the orthogonal projection of ∇̃ onto N .

Proposition 4.2 Let R be the Riemannian curvature tensor of ∇ and let ∇̃
be torsion-free. Then

R̃ijkl = Rijkl +
∑
ν

(HikνH
∗
jlν −HjkνH

∗
ilν) (7)

for i, j, k, l = 1, . . . , p.

Proof. The proof of this statement for the case of a metric connection,
i.e. ∇ = ∇∗, can be found in [12], the general case is obtained by an easy
modification of this proof.

Let us now return to the submanifold D in M+. The Euler-Shouten
imbedding curvature is

Hg
ij1 = Tr (g′(D))−1∂i∂jg(D), i, j = 1, . . . , N

and
Hg∗

ij1 = Tr g′(D)D∂iKg(Gj), i, j = 1, . . . , N

Proposition 4.3 Let g = gα. Then

Hα
ij1 = −1 + α

2
TrHiJα(Hj)

Hα∗
ij1 = −1− α

2
TrHiJD(Hj)
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Proof. Let α 6= ±1. Compute, using Lemma 3.2,

Hα
ij1 =

1 + α

2
Tr g−α(D)∂i∂jgα(D)

=
1 + α

2
{∂jTr g−α(D)∂igα(D)− Tr ∂jg−α(D)∂igα(D)}

= −1 + α

2
TrL−α(Hj)Lα(Hi)

and

Hα∗
ij1 =

1− α

2
Tr gα(D)∂iKα(Gj)

=
1− α

2
{∂iTr gα(D)L−1

α JD(Hj)− Tr ∂igα(D)L−1
α JD(Hj)}

= −1− α

2
TrHjJD(Hi)

The proof in case α = ±1 is nearly the same.
Let R̃g be the Riemannian curvature tensor of ∇̃g in M+. Clearly, M+

can be parametrized in such a way that

g(M(x)) =
N+1∑
i=1

xiGi (8)

In this case, we will say that M+ is parametrized as an extended g-family.
We have ∂i∂jg(M(x)) = 0, hence Γ̃g

ijk(x) = 0, for i, j, k = 1, . . . , N + 1 and

for each x. It means that this parametrization is affine and therefore R̃g = 0.
Thus also R̃g∗ = 0. From the identity (7), the curvature tensor Rg in D is
equal to

Rg
ijkl = Hg

jk1H
g∗
il1 −Hg

ik1H
g∗
jl1

If g = gα,

Rα
ijkl(D) =

1− α2

4
{TrHjJα(Hk)TrHiJD(Hl)− TrHiJα(Hk)TrHjJD(Hl)}

We see that Rα = 0 if α = ±1. It is also clear that Rα = R−α. Statistical
manifolds with this property are called conjugate symmetric and were studied
by Lauritzen (see [2]). Here we have to be aware that R−α 6= Rα∗. The
curvature tensor Rα∗ can be computed using the identity (6).
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Let M′ be a submanifold in M+ such that the Riemannian curvature
tensor of the projection ∇α′ of ∇̃α onto M′ vanishes. Then M′ is flat so that
there exists an affine coordinate system θ. The dual connection is curvature-
free and if it is also torsion-free then it follows from Theorem 1.2 that there
exists a dual ∇α′∗-affine coordinate system η. This is the case if, for ex-
ample, J = Jα or if M′ is one dimensional, see Section 6. However, if the
dual connection is not torsion-free, there is no coordinate system dual to θ.
Indeed, if η is a dual coordinate system, then it follows from Amari’s proof
of Theorem 1.2 that η is ∇α′∗-affine, i.e. the components of the connection
vanish, Γα∗

ijk(η) = 0 ∀η, ∀i, j, k. But then we have for the components of the
torsion tensor Sα∗

ijk = Γα∗
ijk − Γα∗

jik = 0.

5 A statistical interpretation

Throughout this paragraph, we will suppose that α 6= 1. We will investi-
gate a statistical interpretation of the α-representations of the tangent and
cotangent space and the α-connections.

Let D′ ⊆ D be a smooth p-dimensional submanifold and let θ1, . . . , θp

be the coordinate system in D′. Let T ′θ be the tangent space of D′ at θ,
H ′

i = ∂
∂θi
D(θ), G′

i = Lg(H
′
i) and let ∇′g and ∇′g∗ denote the orthogonal

projections of the affine connections onto D′. In [17], locally unbiased es-
timators were defined and a generalized Cramèr-Rao inequality was proved
for the generalized covariance. We give an analogical definition of the α-
expectation and α-unbiasedness.

Definition 5.1 Let B = (B1, . . . , Bp) be a collection of observables. We will
say that B is a locally α-unbiased estimator of θ at θ0 if

(i) Tr gα(Dθ0)Bi = θ0i for i = 1, . . . , p

(ii) ∂
∂θj

Tr gα(Dθ)Bi|θ0 = TrG′
jBi = δij, i, j,= 1, . . . , p

The value Tr gα(D)A will be called the α-expectation of the observable A.

As follows from Example 3.1, the α-representation of the cotangent space
Tα∗

D can be interpreted as the space of all observables with zero α-expectation
at D with inner product given by the generalized α-covariance ϕα. The
following Lemma is obvious.
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Lemma 5.1 Let A = (A1, . . . , Ap) be a locally unbiased estimator of θ at
θ0. Then B = L−1

α (A) = (L−1
α (A1), . . . , L

−1
α (Ap)) is a locally α-unbiased

estimator of θ at θ0. Moreover, ϕ(Ai, Aj) = ϕα(Bi, Bj) and TrH ′
iAj =

TrG′
iBj, i, j = 1, . . . , p.

The generalized Cramér-Rao inequality from [17] can now be rewritten
in the following form.

Theorem 5.1 Let λij = λ(H ′
i, H

′
j) = λα(G′

i, G
′
j) and let B = (B1, . . . , Bp)

be a locally α-unbiased estimator of θ at 0. Then

ϕα
D(B) ≥ (λij)

−1

in the sense of the order on positive definite matrices. Moreover, equality is
attained iff B is the biorthogonal basis of T

′α∗
0 .

An estimator B which is (α-)unbiased (at each point) and such that
its variance attains the Cramèr-Rao bound is called (α-)efficient. Clearly,
such estimator does not always exist. The following necessary and sufficient
condition a generalization of a result stated (without proof) in [13].

Theorem 5.2 The α-efficient estimator exists iff D′ is a ∇α∗-autoparallel
submanifold and the coordinate system θ1, . . . , θp is ∇′α-affine.

Proof. Let D′ be ∇α∗-autoparallel and let the coordinate system be ∇′α-
affine, i.e. ∇′α

H′
i
H ′

j = 0, i, j = 1, . . . , p. Let us choose a point in the parameter

space (θ = 0) and let B = (B1, . . . , Bp) be the biorthogonal basis of T
′α∗
0 .

We prove that B is an α-efficient estimator.
Let Xi(θ) be a ∇α∗-parallel vector field such that L−1

α J0(Xi(0)) = Bi,
i = 1, . . . , p, i.e. Xi = J−1

θ Lα{Bi − g−α(D(θ))Tr gα(D(θ))Bi}. As D′ is
∇α∗-autoparallel, Xj(θ) ∈ T ′θ, ∀θ. Compute

∂iTr gα(D(θ))Bj = TrG′
i(θ)Bj = TrG′

i(θ)L
−1
α Jθ(Xj(θ)) = λ(H ′

i, Xj)

here we have used the identity TrG′
i(θ)g−α(D(θ)) = 0. Further,

∂kλ(H ′
i, Xj) = λ(∇′α

H′
k
H ′

i, Xj) + λ(H ′
i,∇

′α∗
H′

k
Xj) (9)

Since the parametrization is ∇′α-affine, we have ∇′α
H′

k
H ′

i = 0, ∀i, k. More-

over, Xj(θ) ∈ T ′θ and Xj is ∇α∗-parallel, hence Xj is ∇′α∗-parallel, so that

14



∇′α∗
H′

i
Xj = 0. It follows that ∂kTrG′

i(θ)Bj = 0 for all θ. Since TrG′
i(0)Bj =

δij, we have TrG′
i(θ)Bj = δij for each θ. We see that Tr gα(D(0))Bj = 0 and

∂iTr gα(D(θ))Bj = δij for each θ, it follows that B is α-unbiased at each point
θ. From Theorem 5.1, it now suffices to prove that Bj − θjg−α(D(θ)) ∈ T ′α∗

θ .
But this follows easily from the fact that Xj(θ) ∈ T ′θ and Tr gα(D(θ))Bj = θj.

Conversely, let B be the α-efficient estimator, then B is α-unbiased and
the matrices Bi − θig−α(D(θ)), i = 1, . . . , p form the biorthogonal basis of
T

′α∗
θ ∀θ. Let Xi = J−1

θ L−1
α (Bi−θig−α(D(θ))), then Xi is a∇α∗-parallel vector

field and Xi ∈ T ′θ ∀θ, hence Xi is ∇′α∗-parallel. Moreover,

λ(H ′
i, Xj) = TrG′

iBj = δij

From (9) it now follows that λ(∇′α
H′

k
H ′

i, Xj) = 0. But the matrices Xj(θ),

j = 1, . . . , p form a basis of T ′θ. We may conclude that ∇′α
H′

k
H ′

i = 0, i, k =

1, . . . , p, so that the parametrization is ∇′α-affine.
To see that D′ is ∇α∗-autoparallel, it suffices to observe that the parallel

vector fields Xi(θ), i = 1, . . . , p form a basis of the tangent space T ′θ for each
θ.

6 Geodesics and divergence functions

Let us consider a ∇α-autoparallel submanifold in D for α = ±1. Then it
is ∇α-flat, hence there is an affine coordinate system θ. If α 6= ±1, we will
consider the autoparallel submanifolds in M+. As it was said at the end of
Section 4, in general there is no hope for a dual coordinate system to ex-
ist, unless the dual connection is torsion-free. It means that we cannot use
Amari’s theory to define a divergence. However, one dimensional subman-
ifolds are always torsion-free, so that a divergence function exists for each
∇±1∗ and ∇̃α∗-geodesic. As suggested in [13], we use these functions to define
a divergence function in D (M+).

Clearly, for each α, a ∇̃α∗-geodesic is a solution of

L−1
α Jρt(ρ̇t) = A (10)

where A ∈ M, it means that each geodesic is determined by the observable
A.

The ∇α∗-geodesic is given by
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(i) Jρt(ρ̇t) = A− Tr ρtA for α = −1

(ii) L−1
1 Jρt(ρ̇t) = A− ρtTrA for α = 1

(iii) L−1
α Jρt(ρ̇t) = A− 1−α2

4
g−α(ρt)Tr gα(ρt)A for α 6= ±1

Note thatA can be replaced byA+ct in (i), A+ctρt in (ii) andA+ctg−α(ρt)
in (iii), ct ∈ R, so that we may always suppose that A ∈ Tα∗

t .
The relation between ∇α∗- and ∇̃α∗-geodesics is clarified in the following

proposition.

Proposition 6.1 Let ρ̃t be a solution of L−1
α Jρt(ρ̇t) = A. Then ρt = ρ̃t

Tr ρ̃t
is

a ∇α∗ geodesic.

Proof.
From (3), Jρt = Tr ρ̃tJρ̃t . Compute

Jρt(ρ̇t) = Jρ̃t( ˙̃ρt)−
Tr ˙̃ρt

Tr ρ̃t

= Jρ̃t( ˙̃ρt)− Tr ρtJρ̃t( ˙̃ρt)

here we used the fact that JD(D) = I (twice) and that JD is self-adjoint.
Further,

L−1
α Jρt(ρ̇t) = A− L−1

α (I)TrLα(ρt)A

We use Lemma 3.1 (iv) and (v) to complete the proof.

Remark 6.1 Let ρt be as in (i). For each t, the coefficient of the affine
connection is equal to

Γ−1∗(t) = λ(∇−1∗
ρ̇t

ρ̇t, ρ̇t) = Tr
d

dt
{Jρt(ρ̇t)}ρ̇t = Tr

d

dt
{A− Tr ρtA}ρ̇t = 0

It follows that the parameter t is ∇−1∗-affine. Similarly, for ρt as in (ii), t
is ∇1∗-affine. In the case α 6= ±1, the ∇α∗-geodesic is not flat, hence we
consider (as in the classical case) geodesics in M+. If ρt is the solution of
(10), t is ∇̃α∗-affine. Moreover, all affine coordinate systems are connected
via affine transformations t 7→ at+b. This coordinate transformation changes
the initial point and rescales the observable A as 1

a
A.

Lemma 6.1 Let α = −1 and let ρt and ρ̃t be as above. Then ψ(t) = log Tr ρ̃t

is a potential function for ρt.
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Proof. We have to prove that d2

dt2
ψ(t) = λ(ρ̇t, ρ̇t). Compute

d

dt
ψ(t) =

Tr ˙̃ρt

Tr ρ̃t

= Tr ρtA

Moreover,

λ(ρ̇t, ρ̇t) = Tr ρ̇tJρt(ρ̇t) = Tr ρ̇tA =
d2

dt2
ψ(t)

Lemma 6.2 Let α = 1, then ψ(t) = Tr ρt log ρt is a potential function for
ρt.

Proof. We may assume that A ∈ T 1∗
ρ0

, i.e. TrA = 0. We have L−1
1 (log ρt) =

ρt log ρt, hence

ψ(t) = TrL−1
1 (log ρt) = Tr ρtJρtL

−1
1 (log ρt)

and

d

dt
ψ(t) = Tr ρ̇tJρtL

−1
1 (log ρt) + Tr ρt

d

dt
JρtL

−1
1 (log ρt) =

= TrA log ρt + Tr ρtL1(ρ̇t) = TrA log ρt

here we have used the fact that JD(A) = D−1A whenever A commutes with
D, thus Jρt(ρt log ρt) = log ρt, and L1(ρt) = I. The rest of the proof is the
same as above.

Lemma 6.3 Let α 6= ±1 and let ρt = ρ̃t. Then ψ(t) = 2
1−α

Tr ρt is the
potential function .

Proof.

d

dt
Tr ρt = Tr ρ̇tJρt(ρt) = Tr ρtLα(A) =

1− α

2
Tr gα(ρt)A

and
d2

dt2
Tr ρt =

1− α

2
TrLα(ρ̇t)A =

1− α

2
λ(ρ̇t, ρ̇t).

According to Theorem 1.2, ρt is also ∇α (∇̃α)-flat and there is a dual
∇α (∇̃α) - affine coordinate s. As we have seen in the proofs of the above
lemmas, the dual coordinate is given by s(t) = d

dt
ψ(t) = Tr gα(ρt)A for each
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α. Moreover, there is a divergence function Dρ
α : ρ × ρ → R. A divergence

measure in D (M+) can then be defined as follows. Let ρ0, ρ1 ∈ D. Let
ρ̃t be the unique ∇̃α∗-geodesic connecting these two states. If α 6= ±1, the
α-divergence is Dα(ρ0, ρ1) = Dρ̃

α(0, 1). If α = ±1, we use the ∇α∗-geodesic
ρt = (Tr ρ̃t)

−1ρ̃t.

Proposition 6.2 (i) Let α = −1 and let ρ0, ρ1 ∈ D. Let ρt be as above
and let A be the unique observable determining ρt. Then

Dα(ρ0, ρ1) = Tr ρ1A

(ii) If α = 1, then

Dα(ρ0, ρ1) = Tr ρ0 log ρ0 + Tr (A− ρ1) log ρ1

(iii) Let α 6= ±1, ρ0, ρ1 ∈M+. Then

Dα(ρ0, ρ1) =
2

1− α
(Tr ρ0 − Tr ρ1) + Tr gα(ρ1)A

Proof. From the definition of the divergence function and the identity (2),
we obtain

Dρ
α(t1, t2) = ψ(t1)− ψ(t2) + (t2 − t1)s2

The rest of the proof is easy.
Let now ρt be a geodesic connecting two states ρ0 and ρ1 and let ρt1 , ρt2 be

two states lying on ρt. Using Remark 6.1, it is easy to see that Dα(ρt1 , ρt2) =
Dρ

α(t1, t2). It also follows that for each ρ we may put Dα(ρ, ρ) = 0. There
are some properties of the divergence Dα which follow from the properties of
Dρ

α:

(i) Positivity: Dα(ρ, σ) ≥ 0 and Dα(ρ, σ) = 0 iff ρ = σ

(ii) Let σ = ρ + dtH. Let A = L−1
α JD(H) and let ρt be the geodesic

determined by A such that ρt0 = ρ. Then

Dα(ρ, ρ+ dtH) = Dρ
α(t0, t0 + dt) = dt2λ(H,H)

and
Dα(ρ+ dtH, ρ) = Dρ

α(t0 + dt, t0) = Dρ
α(t0, t0 + dt)

It means that the α-divergence induces the metric.
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Example 6.1 Let λ be determined by Jα = L−αLα for some α ∈ (−3, 3).
As we have seen, in this case ∇α∗ = ∇−α and this connection is torsion-free.
Hence we have the same situation as in the classical case. Let α = ±1 and
let us consider the exponential family

ρ(θ) = exp{
m∑

i=1

θiAi − ψ(θ)}

Then it is ±1-flat and ψ(θ) = log Tr exp(θiAi) is the potential function.
Hence the coordinate systems (θ, {ηi = ∂iψ(θ)} are mutually dual, θ is ∇α-
affine and η is ∇−α-affine. The divergence is given by

D1(ρ0, ρ1) = Tr ρ1(log ρ1 − log ρ0)

which is the relative entropy. Similarly, for the mixture family

ρ(η) = ρ0 +
m∑

i=1

ηiAi, TrAi = 0

the function ψ(η) = Tr ρ(η) log ρ(η) is the potential function, so that there is
a pair of dual affine coordinate systems (η, θ), see also [9]. The divergence is

D−1(ρ0, ρ1) = D1(ρ1, ρ0)

For α 6= ±1, we consider the extended α-family

ρ(θ) = g−1
α (

m∑
i+1

θiAi)

Let ψ(θ) = 2
1−α

Tr ρ(θ). Then

∂

∂θi

ψ(θ) =
∂

∂θi

2

1− α
Tr g−1

α (
∑
k

θkAk) =
2

1− α
TrL−1

α Ai = Tr g−α(ρ(θ))Ai

and

∂

∂θj

Tr g−α(ρ(θ))Ai =
∂

∂θj

Tr g−α(g−1
α (

∑
k

θiAk))Ai =

= TrL−αL
−1
α (Aj)Ak = λα(Ai, Aj)
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hence ψ(θ) is the potential function. Thus there is a pair of dual affine
coordinate systems and a divergence

Dα(ρ0, ρ1) = Tr gα(ρ1)(g−α(ρ1)− g−α(ρ0))

This α-divergence was defined also in [8] It is easy to see that the above
divergence functions are the same as those from Proposition 6.2.

Example 6.2 ([5, 13]) Let α = −1 and let λ be the metric of the symmetric
logarithmic derivative. Then it is easy to see that

ρt = exp{1

2
(tA− ψ(t))}ρ0 exp{1

2
(tA− ψ(t))}

where ψ(t) = log Tr ρ0 exp tA, is a solution of (i). Hence it is a ∇−1∗-geodesic
and the coordinate t is ∇α∗-affine. It follows that ρt is also ∇−1-flat and there
is a ∇−1-affine coordinate system s(t) = Tr ρtA. Further, the divergence is

D−1(ρ0, ρ1) = 2Tr ρ1 log ρ
− 1

2
0 (ρ

1
2
0 ρ1ρ

1
2
0 )

1
2ρ

− 1
2

0

Clearly, this divergence coincides with the relative entropy if ρ0 and ρ1 com-
mute. Moreover, ρt has the Gibbs state exp(tA− ψ(t)) as a special case.

Example 6.3 Let α = −1 and let λ be the metric of the right logarithmic
derivative. Then it is easy to see that

ρ̃t = F
1
2 exp{tQF (A)}F

1
2

where QF is a linear operator given by Q−1
F (A) = 1

2
(F− 1

2AF
1
2 +F

1
2AF− 1

2 ) is
a solution of (10). If ρ0 and ρ1 are two states,

ρt = ρ
1
2
1 exp{(t− 1)Qρ1(A)− ψ(t)}ρ

1
2
1

with ψ(t) = log Tr ρ1 exp{(t − 1)Qρ1(A)} is a ∇−1∗-geodesic. Choose A so
that

ρ
1
2
1 exp{−Qρ1(A)}ρ

1
2
1 = ρ0

ρt is then the ∇−1∗-geodesic connecting these two states. We see that the
divergence is given by

D−1(ρ0, ρ1) = Tr ρ1A = Tr ρ1 log ρ
1
2
1 ρ

−1
0 ρ

1
2
1

This version of the relative entropy appeared also in [3].
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