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Abstract. In a finite quantum state space with a monotone metric, a family
of torsion-free affine connections is introduced, in analogy with the classical
a-connections defined by Amari. The dual connections with respect to the
metric are found and it is shown that these are, in general, not torsion-free.
The torsion and the Riemannian curvature are computed and the existence
of efficient estimators is treated. Finally, geodesics are used to define a
divergence function.

1 The classical case

Let S = {p(z,0) | 0 € © C R™} be a smooth family of classical probability
distributions on a sample space X. Then S can naturally be viewed as a
differentiable manifold. The differential-geometrical aspects of a statistical
manifold and their statistical implications were studied by many authors.
The Riemannian structure is given by the Fisher information metric tensor

9i;(0) = Ey[0;log p(z, 0)0; log p(z, 0)]

where 0; denotes a%' In 1972, Chentsov in [6] introduced a family of affine
connections in & and proved that the Fisher information and these connec-
tions were unique (up to a constant factor) in the manifold of distributions on
a finite number of atoms, in the sense that these are invariant with respect to
transformations of the sample space. In [1], Amari defined a one-parameter
family of a-connections in S, which turned out to be the same as defined by



Chentsov. These may be introduced using the following a-representations of
the tangent space:
Let g, be a one-parameter family of functions, given by

{12ax12a a#1

galt) = logr a=1

Let lo(x,0) = go(p(x,0)). The vector space spanned by the functions 0;l,(z, 0),
1 =1,...,pis called the a-representation of the tangent space. The metric
tensor g;; is then

9:;(0) = /@la(x,@)@jlfa(a:,e)dP
The a-connections are defined by

e

ijk

0) = / 0,0l (2, 0)9l_a(z, 0)dP

From this, it is clear that these connections are torsion-free, i. e. S, =

ok — D5 = 0, Vi, j,k, V0. Let now V and V* be two covariant derivatives
on S, then we say that the covariant derivatives (the affine connections) are
dual with respect to the metric if

Xg(Y.Z) =g(VxY,Z) + g(Y,VxZ)

or, in coefficients,
Oigjr = Lijr + Tl
It is easy to see that the a and —a connections are mutually dual.

Further, let n be another coordinate system in §. The natural basis of
the tangent space Tp at P € S is {0;}, 0; = a% for the coordinate system

6 and {0}, 0" = a%- for n. We say that 0 and 7 are mutually dual if their
natural bases are biorthogonal, i.e. if

g<ai? aj) = 55
The metric tensor in the basis {9'} is given by
9(09) =g",  (97) = (g5)""

The next Theorem (the Theorem 3.4 in [1]) gives the necessary and sufficient
condition for existence of such pair of coordinate systems.
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Theorem 1.1 If a Riemannian manifold S has a pair of dual coordinate
systems (0,m), then there exist potential functions ¥ (6) and ¢(n) such that

gij = 0;0;(0), g7 =0'¥¢(n) (1)

Conversely, if either potential function v or ¢ exist such that (1) holds, there
exists a pair of dual coordinate systems. The dual coordinate systems are
related by the Legendre transformations

0; = 8%(7;) ni = 0i(0)

and the two potential functions satisfy the identity

w(0) + é(n) = 3 0im; =0 (2)

The most interesting results of [1] concern the case that the manifold S is
a-flat, i.e. the Riemannian curvature tensor of the a-connection vanishes.
Then S is also —a-flat. It is known that for flat manifolds, an affine co-
ordinate system exists, i.e. the coefficients of the connection vanish. The
next Theorem (Theorem 3.5 in [1]) reveals the dualistic structure of a-flat
manifolds.

Theorem 1.2 When a Riemannian manifold S is flat with respect to a pair
of torsion-free dual affine connections V and V*, there exists a pair (6,n)
of dual coordinate systems such that 0 is a V-affine and n is a V*-affine
coordinate system.

This result can be directly applied to the exponential and mixture families
p(z,0) = exp{d_bici(x) — (0)}

and
p(z,0) = Z bici(z) + (1 — Z 0;)cni1(x)
which are +1-flat, and the extended a-families

n+1

lo(x,0) = Z 0;ci(x)



which are ta-flat (note that the extended a-families are not normed to 1).

Let us consider an a-flat family S with the dual coordinate systems (6, )
and let ¥ (0) and ¢(n) be the potential functions. In [1], a divergence is
introduced in S. It is called the a-divergence and it is given by

Da(8,0') = 0(0) + 6(1) — 3 b

The divergence is not a usual distance, but it has some important properties:

(i) it is strictly positive, D, (6,0") > 0 with D,(0,0") = 0 iff 6 = ¢’

)
(ii) it is jointly convex in € and 6’
(iii) Dy(6,0") = D_,(0',0)

)

(iv) it satisfies the relation

1
Da(g, 0 + d@) = Da(e + de, 0) = 5 Zgw(ﬁ)d@dﬁj
ij

hence it induces the Riemannian distance, given by the Fisher infor-
mation.

Moreover, the divergences are shown to satisfy a generalized Pythagorean
relation.

There were some attempts to introduce a similar family of affine struc-
tures in the differentiable manifold of states of an n-level quantum system
with a monotone metric. The main difficulty here is that, as was first shown
in [7], there is no unique quantum analogue of the Fisher information metric
and, moreover, the connections are in general not torsion-free. Hasegawa in
9] studied the case of quantum exponential and mixture families with the
Kubo-Mori metric. In [13], the exponential and mixture connections (i.e.
the case a = £1) were defined also for arbitrary monotone metric and a
divergence function was introduced. The aim of this paper is to use a similar
method to define the a-connections and divergence functions for each « and
to investigate the dualistic properties of the manifold.



2 The state space

Let M denote the differentiable manifold of all n-dimensional complex her-
mitean matrices and let M+ = {M € M | M > 0}. Let Ty be the tangent
space at M, then Ty can be identified with M considered as a vector space.
We introduce a Riemannian structure in M™, defining an inner product in
where J); is a suitable superoperator on matrices. The state space of an
n-level quantum system can be identified with the submanifold

D={DeM" | TrD=1}

The tangent space T C Tp is the real vector space of all self-adjoint traceless
matrices. If we consider the restriction of the Riemannian structure A onto
D, it is natural to require that A is monotone, in the sense that if 7" is a
stochastic map, then

Mran(T(X), T(X)) < (X, X), VM e M, X e M

As it was proved in [14], this is true iff Jj; is of the form

(ST

Jar = (RE f(La Ry RE) ! (3)

where f : RT™ — R is an operator monotone function such that f(¢t) = ¢f(t7!)
for every ¢t > 0 and Ly (A) = MA and Ry (A) = AM, for each matrix A.
We also adopt a normalization condition f(1) = 1. Notice that we have
Ju(X) = M~ X whenever X and M commute, in particular, Jy (M) = 1.
Let T}, be the cotangent space of D at D, then T}, is the vector space of
all observables A with zero mean at D (i.e. TrDA = 0). It is easy to see
that
T ={Jp(H) | H € Tp} (4)

The metric A induces an inner product in 77, namely,
p(Ar, Az2) = MN(Jp' (A1), Jp' (A2)) = Tr A Jp ' (As)

It can be interpreted as a generalized covariance of the observables A; and
As.



Example 2.1 Let the metric be determined by Jp(H) = G, where GD +
DG = 2H, then it is called the metric of the symmetric logarithmic deriva-
tive. This metric is monotone, with the corresponding operator monotone

function f(z) = 1%, see [5, 11, 15].

Example 2.2 Another important example of a monotone metric is the well-
known Kubo-Mori metric determined by Jp(H) = 4 log(D + tH)|;—o. The
monotone metric is given by

2

= Otds

MAp(H,K)=TrHJp(K) Tr (D + tH)log(D + sK)|ts—o

Note that this metric is induced by the relative entropy D(p, o) = Tr p(log p—
log o) when the density matrices p and o are infinitesimally distant from each
other.

Example 2.3 [11, 16] Let Jp(H) =
metric is monotone, with f(z) = %,
logarithmic derivative.

s(D™'H + HD™). The corresponding
and it is called the metric of the right

For more about monotone metrics and their use see [15, 16, 10].

3 The g-representation

Let g : R — R be a smooth (strictly) monotone function. We define an
operator Ly[M] : Thy — Ty by

LyIM)(H) = L g(M + s)].co

The following Lemma was proved in [17]. As it is frequently used in the
sequel, we repeat the proof here.

Lemma 3.1 (i) L,[M] is a linear map.

(11) Lyog|M] = L¢(g(M)|Ly[M]. In particular, if g is invertible then Lg[M]
is invertible and Ly[M]™' = L,-1[g(M)].

(111) L4[M] is self-adjoint, with respect to the inner product (A, B) = Tr AB
in M.



(iv) Ly[M|(M) = g'(M)M, where g'(x) = Lg(x).

(v) Ly|M]~YI) = (¢'(M))~, I is the identity matriz.
Proof. It is convenient to use the orthogonal (with respect to the inner
product (A, B) above) decomposition of the tangent space introduced in [9],
Ty = C(M)® C(M)*, where C(M) = {X e M : XM = MX} and
C(M)* ={i[M,X] : X e M}.
Let H € Ty be decomposed as H = H® + i[M, X], then, according to [4]
(p. 124), Lg(M + sH)|s—0 = g'(M)H®+i[g(M), X]. The statements (i) and
(ii) follow easily from this equality. Let K € Ty, K = K¢+ i[M,Y], then
T KL(M](H) = Te Ko/ (M)H" —Tx [M,Y][g(M), X] =
= Tr¢g(M)K°H® —Tr[g(M),Y][M, X] =Tr L,[M|(K)H
which proves (iii). Further,
(iv) Lo[M](M) = Zg((1 + 5)M)|s—0 = g'(M)M
(v) From (ii),

d

Ly[MITHI) = Ly [9(M)](1) = =g

g

“Ho(M) + sI)]s—o = (¢ (M)~

In what follows, we omit the indication of the point in square brackets if
no confusion is possible. The vector space

Th ={Ly(H) | H € Tp}

will be called the g-representation of the tangent space Tp. The correspond-
ing inner product in T} is

M(G1, Ga) = Ap(L; M (Gh), L (Ga)) = Tr G Ky (G)

where K, = Lg_lijg_l. Similarly as before, the g-representation of the
cotangent space is the space of all linear functionals on 7% and it is given by

Th ={K,G) |G €T} = {Lg1(A) | A€ Tp}
The inner product
¢h(B1, By) = M5 (K, (By), K, ' (B2)) = Tr BiK, ' (Bs)

will be called the generalized g-covariance of By and Bs.
Clearly, if g is the identity function, we obtain the usual tangent and
cotangent spaces Tp and T7,.



Lemma 3.2

GeT) +— Tr(d(D)'G=0
BeT) <+« Tr¢g(D)DB=0

Proof. Both statements follow easily from Tr H = 0, H € Tp and Lemma
3.1 (v) and (iv), respectively.

Example 3.1 The quantum analogue of Amari’s a-representations is ob-
tained if we put

9(x) = ga(z).
In the sequel, we use the letter o to indicate the function g¢,, e.g. a-
representation, T, etc. For aw # 1, (g,(D)) ™' = 4%g_o(D) and ¢/, (D)D =
1529,(D) and thus

Gelp <= Trg .(D)G=0
BeTy <= Trg.(D)B=0,

An application of Lemma 3.2 also for « = %1 shows that T5* = T, for
each «, so that K, = L 'JpL," is an isomorphism K, : T5 — Tp. This
shows that the a- and —a-representations are in some sense dual, as in the
classical case. In particular, if we put Jp = J, = L_,L,, then K, = L_,L;*
and we see that in this case K;! = K_,. The corresponding family of
metrics was studied in [10] and it was shown that the metric is monotone
for v € [—3,3]. Moreover, for « = £1 we obtain the Kubo-Mori metric and
a = 43 corresponds to the right logarithmic derivative.

4 The affine connections, torsion and curva-
ture

Let g : R — R be a smooth strictly monotone function and let M, M’ € M™.
Clearly, both T%, and T§; for each M can be identified with M, so that
there is a natural isomorphism 7%, — 79, given by the identity mapping.
This isomorphism induces an affine connection on M™. Let us denote the
corresponding covariant derivative by V9.



Let 1,...,2n41 be a coordinate system in M™. Let us denote 9; = 0

and let H; = 9;M(z), G; = Ly(H;) = 8ig(M(z)), i =1,...,N + 1. Then "
Lg(@%jﬁi) = 0;0;9(M(zx))
Hence, the coefficients of the affine connection are
Df(@) = Ao (VY Hy, Hy) = Tr0,0;9(M () Ky (G)
1,7,k =1,..., N+1. From this, it follows that this connection is torsion-free.

If we use the functions g,, we obtain a one-parameter family of torsion-
free connections V¢, analogical to Amari’s family of a-connections. It is easy
to see that, unlike the classical case, the connections Ve and V™ are not
dual in general.

To obtain the dual connection, consider the affine connection on M
induced by a similar identification 7% — T%5. The covariant derivative will
be denoted by V¢, this notation will be justified below. We have

Ly (V9 Hy) = 0,0,(G(x))
The coefficients of this connection are
Pl = MV Hj, Hi) = @7 (L T (Vi Hj), Ky (Gr)) = Trd:Ky(G5)Gr (5)
Proposition 4.1 V¢ and V7 are dual.
Proof. Fori,5,k=1,..., N 4+ 1, we have

&-A(IZTJ-, ﬁk) == 82-)\9(C~?j, ék) == azTI' GJKg(ék) -
Tr ;G K,(Gy) + Tr G0, K, (Gy) = I+ Flk,]

Remark 4.1 Notice that for g = id, we obtain the mixture and exponential
V™ and V© connections defined in [13].

The components of the torsion tensor are
Se =T7 — T, = Tr {0,K,(G;()) — 0;K,(Gy(x)) }Gi
so that this connection is torsion-free iff
0K, (Gy) = 0,;K,(Gy), Yi,j=1,...,N+1

Obviously, this is not always the case.



Example 4.1 Let us consider the connection V**, a € [—3,3] and let the
metric tensor be determined by .J,. Then we have K, (G;(z)) = L_o(H,(x)) =
0jg-a(M (z)), so that the connection is torsion-free. Moreover, L' J, = L_,
and thus

L_o(V H;) = 0,0;9-0(M(x))

From this, it follows that with this choice of the metric tensor, V** = V@
as in the classical case. In particular, the exponential connection V~*
is torsion-free and V¥* = V! with the Kubo-Mori metric. Similarly,
VE* = VT and the connections are torsion-free, with the metric of the
right logarithmic derivative.

Consider now D as an N-dimensional submanifold in M and let t{,... ¢ty
be a coordinate system in D. As there is no danger of confusion, we use the

symbol 9; also for ;2. Let H; = 9;D(t), G; = 9;9(D(t)), i = 1,...,N. The

affine structure in D is obtained by projecting the above affine connections
orthogonaly onto D. Clearly, each density matrix D is orthogonal to the
tangent space Tp in Tp. Indeed, if H € Tp,

Ap(H,D) =TrHJp(D) =Tr H =0

Moreover, Ap(D, D) = 1. Using (iv) and (v) of Lemma 3.1, it follows that
the covariant derivative is given by
Lg(vifjHi) = 0;0;9(D:) — ¢'(Dy) D Tr (gl(Dt))ilaiajﬁDt)
Ly Ip(VipHy) = 0iKy(G;(t)) — (¢'(De) ™" Tr /(Do) De0i K 4(Gy (1))

and the coefficients are

F?jk(t) = TrKg(Gk)aiE)jg(Dt)
7 () = TrGroKy(G(1))

And now, some differential geometry [1, 2]. Let R be the Riemannian
curvature tensor of an affine connection V on an m-dimensional manifold M
and let R* be the curvature tensor of the dual connection. Let X, Y, Z, W
be vector fields. Then we have (see Lauritzen in [2])

R(X,Y,Z,W)=—R*(X,Y,W, Z) (6)

In particular, R = 0 iff R* = 0. Further, let A’ be a p-dimensional submani-
fold in M with a coordinate system z. Let X;,..., X, be the natural basis
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of the tangent space, associated with x and let Y7,...,Y,,_, be orthonormal
vector fields on M normal to NV. Recall that the Euler-Shouten imbedding
curvature is given by

H’le:)\(@XlXju}/z)u Z?jzluvpa lzl?am_p
Let us denote

H;‘jl:)\(@}in,}ﬁ), ihwj=1,....p, l=1,...,m—p
The submanifold N is called autoparallel if its imbedding curvature vanishes,
i.e. the parallel shift of a vector in T,(N) along a curve p(s) in NV stays in
Typs)(N). Let V be the orthogonal projection of V onto N.

Proposition 4.2 Let R be the Riemannian curvature tensor of V and let V
be torsion-free. Then

Riji = Rijw + > (Hiw 1y, — H H) (7)
fora, g,k l=1,...p.

Proof. The proof of this statement for the case of a metric connection,
i.e. V = V* can be found in [12], the general case is obtained by an easy
modification of this proof.
Let us now return to the submanifold D in M™*. The Euler-Shouten
imbedding curvature is
HY

ij1

=Tr(¢'(D)"'%0;9(D), i,j=1,...,N

and

Proposition 4.3 Let g = g,. Then

o 14+«

Hijl = — 9 TI'HZ‘Ja<Hj>
o l—a

Hijl = — TI‘HzJD(HJ)

11



Proof. Let a # +1. Compute, using Lemma 3.2,
l+a

Hgl = 9 Tr g-a(D)0:0;9(D)
14+«
= 9 {8jTrg—a(D)aigoc(D) —Tr ajg—a(D)aiga(D)}
1+«
= — 9 Tr L_Q(Hj)La<HZ')
and
. l—-a
HY Tr g,(D)0; Ko (G)
1—
= {0t gu(D)L; o (H,) — Tr dy9a(D) Ly Tp(H,)}
11—«

= — 2 TI"HJJD(Hl)

The proof in case o = +1 is nearly the same.
Let RY be the Riemannian curvature tensor of V9 in M™. Clearly, M™
can be parametrized in such a way that

N+1

g(M(z)) = G, (8)

=1

In this case, we will say that M™ is parametrized as an extended g-family.
We have 0;0;9(M(z)) = 0, hence I'};,(z) = 0, for i,j,k = 1,..., N +1 and
for each z. It means that this parametrization is affine and therefore RY = 0.
Thus also R%* = 0. From the identity (7), the curvature tensor RY in D is

equal to
g _ g g* g gx*
Ry = Hj Hiy — Hy Hypy

If g = ga,

1 —a?

(D) = 1 {Tr H;Jo(Hy)Tr H;Jp(H;) — Tr H; Jo(Hy,)Tr H; JJp(H)) }

We see that R = 0 if a = £1. It is also clear that R* = R™“. Statistical
manifolds with this property are called conjugate symmetric and were studied
by Lauritzen (see [2]). Here we have to be aware that R~ # R**. The
curvature tensor R** can be computed using the identity (6).
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Let M’ be a submanifold in M™ such that the Riemannian curvature
tensor of the projection V' of V* onto M’ vanishes. Then M’ is flat so that
there exists an affine coordinate system 6. The dual connection is curvature-
free and if it is also torsion-free then it follows from Theorem 1.2 that there
exists a dual V®*-affine coordinate system 7. This is the case if, for ex-
ample, J = J, or if M’ is one dimensional, see Section 6. However, if the
dual connection is not torsion-free, there is no coordinate system dual to 6.
Indeed, if n is a dual coordinate system, then it follows from Amari’s proof
of Theorem 1.2 that 1 is V**-affine, i.e. the components of the connection
vanish, I'?®% (n) = 0 Vn, Vi, j, k. But then we have for the components of the

ik
1 ax _ Tax _ Tax
torsion tensor S;; = 157 ik = 0.

5 A statistical interpretation

Throughout this paragraph, we will suppose that o # 1. We will investi-
gate a statistical interpretation of the a-representations of the tangent and
cotangent space and the a-connections.

Let D' C D be a smooth p-dimensional submanifold and let 6y,...,6,
be the coordinate system in D’. Let Ty be the tangent space of D" at 6,
H! = a%D(Q), G! = Ly(H]) and let V'9 and V'9* denote the orthogonal
projections of the affine connections onto D’. In [17], locally unbiased es-
timators were defined and a generalized Cramer-Rao inequality was proved
for the generalized covariance. We give an analogical definition of the a-
expectation and a-unbiasedness.

Definition 5.1 Let B = (By,. .., B,) be a collection of observables. We will
say that B s a locally a-unbiased estimator of 6 at 0y if

(1) Tr go(Dgy)B; = i fori=1,....p
(1) %Trga(Dg)Bilgo =TrGB; =6, 1,5,=1,...,p
The value Tr go(D)A will be called the a-expectation of the observable A.

As follows from Example 3.1, the a-representation of the cotangent space
TH* can be interpreted as the space of all observables with zero a-expectation
at D with inner product given by the generalized a-covariance ¢®. The
following Lemma is obvious.

13



Lemma 5.1 Let A = (Ay,...,Ay,) be a locally unbiased estimator of 6 at
6o. Then B = L '(A) = (L Y (Ay),..., LY (A)) is a locally a-unbiased

estimator of 6 at 6,. Moreover, p(A;, A;) = ¢*(B;,B;) and Tr H/A; =
TrGiB;, i,57=1,...,p.

The generalized Cramér-Rao inequality from [17] can now be rewritten
in the following form.

Theorem 5.1 Let \ij = M(H}, H}) = X\*(G},G%) and let B = (By, ..., By)
be a locally a-unbiased estimator of 6 at 0. Then

0h(B) > (Aij) ™

in the sense of the order on positive definite matrices. Moreover, equality is
attained iff B is the biorthogonal basis of Téa*.

An estimator B which is (a-)unbiased (at each point) and such that
its variance attains the Cramer-Rao bound is called (a-)efficient. Clearly,
such estimator does not always exist. The following necessary and sufficient
condition a generalization of a result stated (without proof) in [13].

Theorem 5.2 The a-efficient estimator exists iff D' is a V**-autoparallel
submanifold and the coordinate system 6y,...,0, is V' *-affine.

Proof. Let D’ be V**-autoparallel and let the coordinate system be V-
affine, i.e. V}%H; =0,72,7=1,...,p. Let us choose a point in the parameter
space (6 = 0) and let B = (By,..., B,) be the biorthogonal basis of T,%*.
We prove that B is an a-efficient estimator.

Let X;(f) be a V**-parallel vector field such that L 'Jy(X;(0)) = B,
i=1,...,p, ie. Xi = J, ' Lo{Bi — g_o(D(0))Tr go(D(0))B;}. As D' is
V**-autoparallel, X;(0) € Ty, V. Compute

0/Tr go(D(0))B; = Tr Gi(0) B; = Tr Gi(0) L, Jo(X;(0)) = A(H], X;)
here we have used the identity Tr G}(6)g_(D(6)) = 0. Further,
OAH], X;) = NV HL, X;) + MHL VX)) (9)
Since the parametrization is V' ®-affine, we have V}?;CH{ = 0, Vi, k. More-

over, X;(0) € T} and X; is V**-parallel, hence X, is V'“*-parallel, so that
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V5 X; = 0. It follows that 8, Tr G4(0)B; = 0 for all 6. Since Tr G}(0)B; =
(5ij,Lwe have Tr G},(0) B; = 6;; for each 6. We see that Tr g,(D(0))B; = 0 and
0;Tr go(D(8))B; = 0;; for each 0, it follows that B is a-unbiased at each point
0. From Theorem 5.1, it now suffices to prove that B; —60,;9_(D(0)) € T,**.
But this follows easily from the fact that X;(0) € Ty and Tr g,(D(0))B; = 6;.

Conversely, let B be the a-efficient estimator, then B is a-unbiased and
the matrices B; — 0;,9_o(D(0)), i = 1,...,p form the biorthogonal basis of
T,* V0. Let X; = J; ' LY (Bi—0;9-o(D(0))), then X; is a V**-parallel vector
field and X; € Ty V0, hence X; is V'@*_parallel. Moreover,

MH;, X;) = Tr GiB; = 6y

From (9) it now follows that )\(V;‘}‘éH{,Xj) = 0. But the matrices X;(0),
j=1,...,p form a basis of 7). We may conclude that V}?}QH{ =0, 1,k=

1,...,p, so that the parametrization is V *-affine.

To see that D’ is V**-autoparallel, it suffices to observe that the parallel
vector fields X;(0), i =1,...,p form a basis of the tangent space Tj for each
6.

6 Geodesics and divergence functions

Let us consider a V*-autoparallel submanifold in D for « = +1. Then it
is V-flat, hence there is an affine coordinate system 6. If a # £1, we will
consider the autoparallel submanifolds in M™. As it was said at the end of
Section 4, in general there is no hope for a dual coordinate system to ex-
ist, unless the dual connection is torsion-free. It means that we cannot use
Amari’s theory to define a divergence. However, one dimensional subman-
ifolds are always torsion-free, so that a divergence function exists for each
VA and V**-geodesic. As suggested in [13], we use these functions to define
a divergence function in D (M™).
Clearly, for each a, a V**-geodesic is a solution of

L', () = A (10)

where A € M, it means that each geodesic is determined by the observable
A.
The V**-geodesic is given by
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(1) Jp(pr) =A—TrpA fora = -1
(ii) Li'J, (o) = A—pTr A for a =1

(1) L' Jp (5r) = A= 5259 a(p) Tr galpe) A for o # 1

Note that A can be replaced by A+c¢; in (i), A+cip; in (ii) and A+cig—a(pr)
in (iii), ¢; € R, so that we may always suppose that A € T,

The relation between V- and V**-geodesics is clarified in the following
proposition.

t
Tr o

Proposition 6.1 Let p, be a solution of L;*J,,(p) = A. Then p, = is

a V¥ geodesic.

Proof.
From (3), J,, = Tr p;J;,. Compute

Tr 51&

Jﬂt(pt) - Jﬁt(lgt) - = ‘]ﬁt (ﬁt) —Tr thﬁt(bt)

Tr pr

here we used the fact that Jp(D) = I (twice) and that Jp is self-adjoint.
Further,

L o (pe) = A= LIH(I)Tr La(pe) A

We use Lemma 3.1 (iv) and (v) to complete the proof.

Remark 6.1 Let p; be as in (i). For each ¢, the coefficient of the affine
connection is equal to

. d D\ - d .
D=2 (t) = MV, pe, pr) = Tr %{th(m)}m =Tr %{A —Trp:A}pr =0

It follows that the parameter ¢ is V~*-affine. Similarly, for p; as in (ii), ¢
is V1*-affine. In the case o # #£1, the V**-geodesic is not flat, hence we
consider (as in the classical case) geodesics in M™T. If p; is the solution of
(10), t is Vo _affine. Moreover, all affine coordinate systems are connected
via affine transformations ¢ — at+b. This coordinate transformation changes
the initial point and rescales the observable A as %A.

Lemma 6.1 Let a = —1 and let p; and p; be as above. Then 1 (t) = log Tr py
1s a potential function for p;.
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Proof. We have to prove that j%@b(t) = Ap¢, pr). Compute

d Tr j,
— = = Trp,A
dtw( ) Tr j rpt
Moreover,
d2
AP, pr) = Tr pedy, (pr) = Tr ppA = @w(t)

Lemma 6.2 Let o = 1, then (t) = Trp,log ps is a potential function for
Pt

Proof. We may assume that A € T)*, i.e. Tr A = 0. We have Li*(log p) =
pi log py, hence

Y(t) = Tr Ly (log pr) = Tr pyJ,, Ly ' (log pr)

and

d . _ d _
3¢w:=ﬂm%mm%m+ﬂm@%mm%m=

= TrAlogp; + Tr piL1(p:) = Tr Alog py

here we have used the fact that Jp(A) = D~'A whenever A commutes with
D, thus J,,(ptlog p:) = log pr, and Ly(p;) = I. The rest of the proof is the
same as above.

Lemma 6.3 Let a # +1 and let p, = py. Then (t) = 2=Trp, is the
potential function .

Proof.

d . 11—«
%TT pr = Tr pyJ,, (pe) = TrpeLa(A) =

Tr g (pt)A

and
d? 1—a 1—a

gpitpe=—5— I La(pr)A = TA(%[%)-

According to Theorem 1.2, p; is also V* (V*)-flat and there is a dual
V* (V%) - affine coordinate s. As we have seen in the proofs of the above
lemmas, the dual coordinate is given by s(t) = £1(t) = Tr go(p;) A for each

17



a. Moreover, there is a divergence function D? : p x p — R. A divergence

measure in D (M) can then be defined as follows. Let pg,p; € D. Let

O be the unique V**-geodesic connecting these two states. If o # +1, the

a-divergence is D, (po, p1) = D2(0,1). If @ = +1, we use the V**-geodesic

pr = (Tr pr) =" .

Proposition 6.2 (i) Let « = —1 and let py,p1 € D. Let p; be as above
and let A be the unique observable determining p;. Then

Da(ﬂo,ﬂl) =Trp A
(i) If « =1, then
Dao(po, p1) = Tr polog po + Tr (A — p1) log py

(111) Let o # £1, po, p1 € M*. Then

2
Da(po: pr) = 17— (Trpo = Tr p1) + Tr ga(p1) A

Proof. From the definition of the divergence function and the identity (2),
we obtain

Df(t1,ta) = (t1) — (t2) + (ta — t1)s2

The rest of the proof is easy.

Let now p; be a geodesic connecting two states py and p; and let py,, pg, be
two states lying on p;. Using Remark 6.1, it is easy to see that D (py,, pr,) =
Dr(ty,ts). It also follows that for each p we may put D,(p,p) = 0. There
are some properties of the divergence D, which follow from the properties of
De:

(i) Positivity: Dy(p,0) > 0 and D,(p,0) =0iff p=0o

(ii) Let 0 = p+ dtH. Let A = L;'Jp(H) and let p; be the geodesic
determined by A such that p;, = p. Then

Da(p, p+ dtH) = D5(to, to + dt) = dt*\(H, H)

and
Do(p + dtH, p) = Df(to + dt, to) = D% (to, to + dt)

It means that the a-divergence induces the metric.
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Example 6.1 Let A be determined by J, = L_,L, for some o € (—3,3).
As we have seen, in this case V¥ = V™% and this connection is torsion-free.
Hence we have the same situation as in the classical case. Let o = &1 and
let us consider the exponential family

p(0) = exp{i 0: A — ¥(0)}

Then it is +1-flat and ¥ (0) = log Tr exp(#;A;) is the potential function.
Hence the coordinate systems (6, {n; = 0;¢(0)} are mutually dual, 6 is V-
affine and 7 is V~%-affine. The divergence is given by

Di(po, pr) = Tr p1(log p1 — log po)

which is the relative entropy. Similarly, for the mixture family

p(n) = po+ Zm’Ai, TrA; =0

i=1

the function ¢ (n) = Tr p(n) log p(n) is the potential function, so that there is
a pair of dual affine coordinate systems (7, ), see also [9]. The divergence is

D_1(po, p1) = D1(p1, po)

For av # 41, we consider the extended a-family

p(6) = 92" (>-6A,)

i+1

0 02 1 B Sy
9000 = 55 75T 9% (Ek:@kflk) = 72T L A= Trga(p(6)) As
and
O Trg (o)A = - Trg a(gs (X 0:A) A =
80j g—al\p i 86J 9—a\Y, - 41k i

= TrL oL '(A)Ar = 2 (A, A))
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hence () is the potential function. Thus there is a pair of dual affine
coordinate systems and a divergence

Da(po, p1) = Tr ga(p1)(9-a(p1) — 9-a(po))

This a-divergence was defined also in [8] It is easy to see that the above
divergence functions are the same as those from Proposition 6.2.

Example 6.2 ([5, 13]) Let a = —1 and let A be the metric of the symmetric
logarithmic derivative. Then it is easy to see that

pr = expl5 (LA — (O o exp{ 504 — v(1))}

where () = log Tr pg exp t A, is a solution of (i). Hence it is a V~1*-geodesic
and the coordinate t is V*-affine. It follows that p, is also V~!-flat and there
is a V~l-affine coordinate system s(t) = Tr p;A. Further, the divergence is
11 1, 1
D_1(po, p1) = 2Tr p1log py * (05 P15 )2 Po °

Clearly, this divergence coincides with the relative entropy if py and p; com-
mute. Moreover, p; has the Gibbs state exp(tA — 1 (t)) as a special case.

Example 6.3 Let @« = —1 and let A\ be the metric of the right logarithmic
derivative. Then it is easy to see that

po = F2 exp{tQp(A)}F?
where Qp is a linear operator given by Qz'(A) = %(F*%AF% + F2AF-2) is
a solution of (10). If py and p; are two states,
pe = pi exp{(t = 1)Qp, (A) — (1) }pi

with ¢(t) = log Tr py exp{(t — 1)Q,,(A)} is a V™ *-geodesic. Choose A so
that

1 1
pi exp{—Q,, (A)}p = po

p¢ is then the V~-geodesic connecting these two states. We see that the

divergence is given by

1

3

1
D™ (po, p1) = Trp1 A = Tr py log p3 py 3

This version of the relative entropy appeared also in [3].
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