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A general theory of comparison of quantum
channels (and beyond)

Anna Jenčová

Abstract—We present a general theory of comparison of
quantum channels, concerning with the question of sim-
ulability or approximate simulability of a given quantum
channel by allowed transformations of another given channel.
We introduce a modification of conditional min-entropies,
with respect to the set F of allowed transformations, and
show that under some conditions on F, these quantities
characterize approximate simulability. If F is the set of free
superchannels in a quantum resource theory of processes,
the modified conditional min-entropies form a complete set
of resource monotones. If the transformations in F consist
of a preprocessing and a postprocessing of specified forms,
approximate simulability is also characterized in terms of
success probabilities in certain guessing games, where a
preprocessing of a given form can be chosen and the
measurements are restricted. These results are applied to
several specific cases of simulability of quantum channels,
including postprocessings, preprocessings and processing of
bipartite channels by LOCC superchannels and by partial
superchannels, as well as simulability of sets of quantum
measurements.

These questions are first studied in a general setting that
is an extension of the framework of general probabilistic
theories (GPT), suitable for dealing with channels. Here
we prove a general theorem that shows that approximate
simulability can be characterized by comparing outcome
probabilities in certain tests. This result is inspired by
the classical Le Cam randomization criterion for statistical
experiments and contains its finite dimensional version as a
special case.

Index Terms—superchannels, quantum channel simula-
tion, modified min-entropy, success probabilities

I. INTRODUCTION

For a pair of quantum channels Φ1 and Φ2, we consider
the following problem: is it possible to simulate Φ2 by
transforming Φ1 by a quantum network of a specified
type? Since quantum channels are the fundamental objects
in quantum information theory, this question subsumes
a variety of special cases already studied extensively
in the literature: comparison of statistical experiments
[1], [2], simulability of measurements [3], [4] or more
general comparison of channels [5], [6], [7], [8], [9], [10],
[11], [12]. In fact, this kind of questions goes back to
the classical theory of comparison of classical statistical
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experiments [13], [14] (see also [15]). This problem can be
also put into the setting of resource theories of processes
[16], [17], [18], [19] by choosing the allowed maps to
be the free operations in the theory, whence it becomes
the important question of convertibility of one device to
another using free operations.

Transformations between quantum channels are given
by superchannels, consisting of a preprocessing and a
postprocessing channel connected by an ancilla, [20], [9].
So the question is the equality or approximate equality
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where Λ is a superchannel from a given family.
Two types of characterizations of simulability are

mostly discussed: either by inequalities in (some modifica-
tion of) conditional min-entropy (e.g. [8], [9]), or in terms
of success probabilities in some discrimination tasks [5],
[12]. These two characterizations are closely related, in
fact, the latter can be seen as an operational interpretation
of the former. These conditions provide a complete set of
monotones in the given resource theory.

In the more general situation where the target channel is
simulated only approximately, there are different possible
approaches as to e.g. the distance measures used to assess
the accuracy of the approximation. A common choice is
the diamond norm, which is natural since it is well known
as the distinguishability norm for channels [21]. With this
choice the problem becomes a direct extension of the
problem of the classical theory of comparison of statistical
experiments. This framework also includes some more
specific cases such as quantum dichotomies [22] (pairs
of states), where we can restrict to channels that simulate
one of the states exactly, but the other may differ from the
target.

Similarly as in the case of exact simulations, the aim of
this paper is to characterize the diamond norm accuracy
of the approximation in two ways: by inequalities in terms
of quantities that can be seen as modifications of the
conditional min entropy and by comparison of success
probabilities in some types of guessing games. The crucial
observation for the first type of characterisation is the fact
that the conditional min entropy is related to a norm: for
any state ρ on a composite system AB, we have

Hmin(B|A)ρ = − log ∥ρ∥⋄B|A.
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Using the Choi isomorphism, the set of operators on the
bipartite Hilbert space HAB can be seen as the dual space
of the set of linear maps B(HA) → B(HB) and with this
identification, ∥ · ∥⋄A|B is the dual norm to the diamond
norm. A corresponding fact for semifinite von Neumann
algebras was also used in [23] to extend the conditional
min entropy characterization of the majorization ordering
of bipartite states to the infinite dimensional setting.

The above duality relation of Hmin and the diamond
norm is based on affine duality of convex sets, this was
observed also in [24] and used to extend Hmin to quantum
networks and their SDP optimization. While our primary
interest lies in simulability of quantum channels, in the
first part we will work in a broader setting that in a
sense is an extension of general probabilistic theories
(GPTs), suitable for discussion of various types of quan-
tum channels and networks. The setting is introduced
as a category called BS and the allowed transformations
are specified as a convex subcategory F. The operational
theories of [25] and higher-order theories of [26] can be
identified with special objects in BS, in particular, this
includes the sets of channels, superchannels and networks
of different types. Moreover, the distinguishability norms
and the duality described above are naturally defined
here. The proof of the main results, in the GPT setting
and for quantum channels, is based on the properties of
these norms summarized in Proposition 1, together with
the minimax theorem. The advantage of this approach is
that it captures the basic mathematical structure that lies
behind the result and, more importantly, it is applicable
to a variety of specific cases. We also remark that it can
be applied e.g. to the case when multiple copies of the
channels are studied, under various parallel or sequential
schemes.

For two elements b1, b2 of objects of F, the (one-way)
F-conversion distance δF(b1∥b2) is defined as the minimal
distance we can get to b2 by allowed transformations of
b1. The main result in the GPT setting (Theorem 2) can
be interpreted as the fact that δF can be characterized
by comparing the outcome probabilities of certain tests
applied to b1 and b2. It is also noted that our setting
includes comparison of classical statistical experiments
(in the simple finite dimensional case), here Theorem
2 becomes the Le Cam randomization criterion [14] of
the classical statistical decision theory. The result is then
applied to the case of quantum channels, where we obtain
a characterization of δF in terms of quantities that can be
interpreted as modifications of the conditional min entropy
(Theorem 3). In the setting of resource theories, where
morphisms in F coincide with free superchannels, we show
that under some mild assumptions these quantities form a
complete set of resource monotones (see e.g. [16], [17],
[18], [19]).

We then turn to the characterization of δF in terms of
guessing games. Here we use a connection between the
conditional min entropy and success probabilities that is
specific to the quantum case, so this is studied only for

quantum channels (apart from examples 5 and 7 where sta-
tistical experiments and measurements are treated within
the GPT framework). This connection is obtained from
an isomorphism between quantum channels and bipartite
measurements which is close to the Choi isomorphism.
We assume that the superchannels in F consist of prepro-
cessings and postprocessings belonging to given sets Cpre
and Cpost. In this case, we find some sufficient conditions
(Theorem 4) under which δF is characterized by success
probabilities in guessing games of the following general
form. Given an ensemble E = {λi, ρi} of states ρi with
prior probabilities λi, the guessing game is depicted in the
diagram:

ρi

α

Φ Mi′ i′E
λi

Here Φ is the channel in question (Φ1 or Φ2), we may
choose the preprocessing α and the measurement M from
some allowed sets Cpre and Mpost. We also permit an
ancilla between α and M , but this might be restricted by
the allowed sets.

These results are applied to some special cases: post-
processing, preprocessing, processing of bipartite channels
by LOCC superchannels and by partial superchannels. We
remark that, similarly as LOCC, Theorem 4 can be applied
to other cases of restricted resource theories, such as PPT
or SEP. In these cases, Cpre, Cpost and Mpost consist
of LOCC (PPT/SEP) channels resp. measurements, see
Section III-E.

In the case of postprocessings, we obtain previously
known results [10]: δF is characterized by comparing
the success probabilities of ensembles (Φi ⊗ id)(E), see
Section III-C. For preprocessings, there is only one fixed
measurement M in the guessing game but the preprocess-
ings can be chosen freely. We also characterize the related
preprocessing pseudodistance as a Hausdorff distance of
ranges of the two channels tensored with identity, Section
III-D. The description of the guessing game for partial
processings can be found in Section III-F. As another
example, we treat classical simulability for sets of quantum
measurements and show that it can be formulated by
processing of a certain bipartite channel by a classical-
to-classical partial superchannel. We show that approxi-
mate simulability is characterized by success probabilities,
where no ancilla is needed in the guessing game, see
Section III-G.

The outline of the paper is as follows. We start with the
general GPT formulation in Section II. Here the category
BS is introduced and the properties of the corresponding
norms and their duality are discussed. We then treat
the comparison in GPT, the main result is formulated
in Theorem 2. In Section III we specialize to quantum
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channels. We first introduce the basic notions and show
that the sets of channels and superchannels are objects in
the category BS. We also recall the connections between
the diamond norm, Hmin and success probabilities of
guessing games (Section III-A7) that are crucial in further
sections. The main results of this part are Theorem 3,
characterizing δF in terms of modified conditional min
entropies, and Theorem 4, characterizing δF by success
probabilities. Applications of these results are contained
in Sections III-C - III-G.

II. THE GPT FORMULATION

General probabilistic theories (GPT) form a frame-
work for description of a large class of physical the-
ories involving probabilistic processes, see [27] for an
introduction and background. This framework is built
upon basic notions of states and effects and under some
general assumptions on the theories, it can be put into
the setting of the theory of (finite dimensional) ordered
vector spaces. The classical and quantum theories are
special cases of a GPT (see Example 2 below), which
allows to study some well known quantum phenomena
in a broader context. This is especially useful in the
investigation of the mathematical foundations of quantum
theory. For us, it is important that this setting describes
the basic mathematical structure underlying the problem
of approximate channel simulability and can be applied in
many different situations.

The basic object in GPT is the set of states of a
physical system in the theory, represented as a compact
convex subset of an Euclidean space. Such a set can be
always seen as a base of a closed convex cone in a finite
dimensional real vector space. It is clear that the set of
channels, or physical transformations of the systems in
the theory, has a convex structure as well and can be, at
least formally, treated as a ”state space” in the convenient
framework of GPT. For example, the set of quantum
channels was considered in this way in [28]. However,
observe that the set of quantum channels is, by definition,
a special subset of the cone of completely positive maps,
but it no longer forms a base of this cone. We will therefore
need a somewhat more general representation of compact
convex sets, described in the next paragraph.

A. Base sections and corresponding norms

Let V be a finite dimensional real vector space and let
V+ ⊂ V be a closed convex cone which is pointed (V+ ∩
(−V+) = {0}) and generating (V = V+−V+). Below, we
will say that V+ is a proper cone. The cone V+ defines a
partial order in V , defined by x ≤ y if y − x ∈ V+. Thus
the pair (V,V+) is an ordered vector space.

A convex subset B ⊂ V+ is called a base section in
(V,V+) if

(i) B is the base of the cone V+ ∩ span(B);
(ii) B ∩ int(V+) ̸= ∅.

Base sections were studied in [11, Appendix] and in
[29] in the special case of the space of hermitian linear
operators with the cone of positive operators. In this
paragraph, we summarize some of the results.

For the ease of the presentation, it will be convenient
to introduce the category BS whose objects are finite
dimensional real vector spaces V endowed with a fixed
proper cone V+ ⊂ V and a base section B(V) in (V,V+).
The morphisms Λ : V → W in BS are linear maps such
that Λ(V+) ⊆ W+ and Λ(B(V)) ⊆ B(W), [30].

For V ∈ BS, we define the dual object V∗ ∈ BS as the
dual vector space with the dual cone

V∗+ := {φ ∈ V∗, ⟨φ, c⟩ ≥ 0, ∀c ∈ V+}

and the dual base section

B(V∗) = B̃(V) := {φ ∈ V∗+, ⟨φ, b⟩ = 1, ∀b ∈ B(V)}.

Note that indeed, V∗+ is a proper cone in V∗ and B(V∗)
is a base section in (V∗,V∗+). Moreover, V∗∗ ≃ V in
BS, where the isomorphism is given by the natural vector
space isomorphism V → V∗∗.

Let us denote

[−B(V), B(V)] := {x ∈ V, ∃b ∈ B(V),−b ≤ x ≤ b}
= {c1 − c2, c1, c2 ∈ V+, c1 + c2 ∈ B(V)}.

Then we have

[0, B(V)] :={x ∈ V+, ∃b ∈ B(V), x ≤ b}
=V+ ∩ [−B(V), B(V)]. (1)

We now define a norm in V as

∥x∥V := max
ψ∈[−B(V∗),B(V∗)]

⟨ψ, x⟩.

The following proposition summarizes some properties of
these norms. Note that since B(V) and B(V∗) are given
by positivity and linear constraints, part (iii) below can
be formulated as the primal and dual conic program for
computing the norm ∥ · ∥V .

Proposition 1. Let V ∈ BS. Then
(i) The unit ball of ∥ · ∥V is [−B(V), B(V)], so that

∥x∥V = min
b∈B(V)

min{λ > 0, −λb ≤ x ≤ λb};

(ii) the norms ∥ · ∥V and ∥ · ∥V∗ are mutually dual;
(iii) if c ∈ V+, then

∥c∥V = max
φ∈B(V∗)

⟨φ, c⟩

= min
b∈B(V)

min{λ > 0, c ≤ λb};

(iv) if b1, b2 ∈ B(V), then
1

2
∥b1 − b2∥V = max

φ∈[0,B(V)]
⟨φ, b1 − b2⟩.

(v) Let Λ : V → W be a morphism in BS. Then Λ
is a contraction with respect to the corresponding
norms:

∥Λ(x)∥W ≤ ∥x∥V , ∀x ∈ V.
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We next discuss some basic examples of objects in BS.

Example 1 (GPT state spaces). The state spaces of GPT
can be also seen as objects in BS. Indeed, let K be
any compact convex subset in RN , then there is a finite
dimensional real vector space V with a proper cone V+,
such that K is a base of V+. This means that there is
some functional u ∈ int((V+)∗) such that

K = {c ∈ V+, ⟨u, c⟩ = 1}.

The space V with V+ and B(V) = K is clearly an object
in BS. For the dual object, we have B(V∗) = {u}. The
norm ∥ ·∥V is the base norm with respect to K and ∥ ·∥V∗

is the order unit norm with respect to u. In this way, the
category BS is a common generalization of order unit and
base normed spaces.

Example 2 (Classical and quantum state spaces). The pro-
totypical examples in GPT are the classical state space of
probability distributions over a finite set, and the quantum
state space of all density density operators on a finite
dimensional Hilbert space. In the classical GPT, we have
V = Rn, with the simplicial cone V+ = (R+)n and
K = {(p1, . . . , pn) ∈ V+,

∑
i pi = 1} is the probability

simplex. The morphisms in BS between such spaces are
precisely the stochastic maps, given by stochastic matrices.
The norm ∥ ·∥V = ∥ ·∥1 is the L1-norm. The dual ordered
vector space is affinely isomorphic to (V,V+) and the unit
functional u = 1n := (1, . . . , 1). The dual norm is the
L∞-norm ∥ · ∥V∗ = ∥ · ∥∞. In the quantum case, (V,V+)
is the space of hermitian operators on a finite dimensional
Hilbert space with the cone of positive operators and
the morphisms are positive trace preserving maps. The
dual ordered vector space is again affinely isomorphic to
(V,V+) and the unit functional is the trace, u = Tr . The
two dual norms are the trace norm and the operator norm,
respectively.

Example 3 (Quantum channels). The prototypical example
of an object in BS is the set of quantum channels which
is a base section in the vector space of hermitian maps
with the cone of completely positive maps. More details
will be given in Section III-A5.

Example 4 (BS morphisms). Let V and W be two objects
in BS and let L = L(V,W) be the space of linear maps
V → W . With L+ the cone of positive maps and B(L) =
BS(V,W) the set of all morphisms V → W , it is easily
seen that L is again an object in BS. It is this property
that makes this category especially useful for description
of channels and higher order theories.

In general, an object in BS can be interpreted as a set of
special states or devices of a physical theory, so we can
consider the problem of testing or performing measure-
ments over such sets. A test (or yes-no measurement) is
identified with an affine map B(V) → [0, 1], assigning to
each element the probability of the ”yes” outcome. Such
maps correspond to elements φ ∈ [0, B(V∗)], similarly
to the GPT setting, these elements will be called effects.

Any measurement with k outcomes is given by a k-tuple
of effects {φi}ki=1 such that

∑
i φi ∈ B(V∗). Note that in

the case of quantum channels this corresponds precisely
to the quantum testers of [20].

It is not difficult to see that the restriction of ∥ · ∥V to
span(B(V)) coincides with the base norm with respect
to the base B(V) of the cone V+ ∩ span(B(V)). The
advantage of our extended definition is that the dual
space is now an object of the same category. As the
base norm, ∥ · ∥V has an operational interpretation as a
distinguishability norm for elements in B(V). It can be
seen that this holds also if the discrimination procedures
are given by the effects as above, indeed, using Proposition
1 (iv) we see that that the optimal probability of correctly
distinguishing two elements b, b′ ∈ B(V) each of which
has a prior probability 1/2 is 1

2 (1 +
1
2∥b− b′∥V).

More generally, an ensemble on V is a finite sequence
E = {λi, xi}ki=1 of elements xi ∈ B(V) and prior
probabilities λi. The interpretation is that xi is prepared
with probability λi and the task is to guess which element
was prepared. Any guessing procedure is described by a
k-outcome measurement ψ = {ψi}, the value ⟨ψi, xj⟩ is
interpreted as the probability of guessing i if the true state
was xj . The average success probability using ψ = (ψi)
is

Psucc(E , ψ) :=
∑
i

λi⟨ψi, xi⟩

and the optimal success probability for E is

Psucc(E) := max
ψ

Psucc(E , ψ).

B. Comparison in GPT

We now formulate the comparison problem in the above
setting and prove a general theorem which in later sections
will be applied to quantum channels. Assume that a
subcategory F in BS is given, such that for any V,W ∈ F,
the set F(V,W) of all morphisms V → W in F is convex
(we will say in this case that F is a convex subcategory).
For two objects V1,V2 ∈ F, let b1 ∈ B(V1), b2 ∈ B(V2).
The (one-way) F-conversion distance δF(b1∥b2) is defined
as the minimum distance we can get to b2 by images of
b1 under all morphisms V1 → V2 in F:

δF(b1∥b2) := inf
Λ∈F(V1,V2)

∥Λ(b1)− b2∥V2
.

We also define the F-distance of b1 and b2 as

∆F(b1, b2) := max{δF(b1∥b2), δF(b2∥b1)}.

Proposition 2. ∆F is a pseudometric on the set {b ∈
B(V), V ∈ F}.

Proof. The only thing to prove is the triangle inequality.
So let V1,V2,V3 ∈ F and let bi ∈ Vi, i = 1, 2, 3. Let

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIT.2021.3070120

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



5

Θ ∈ F(V2,V3) and let for µ > 0, Λµ ∈ F(V1,V2) be such
that δF(b1∥b2) + µ ≥ ∥Λµ(b1)− b2∥V2

. Then

δF(b1∥b3) ≤ ∥Θ ◦ Λµ(b1)− b3∥V3

≤ ∥Θ(Λµ(b1)− b2)∥V3 + ∥Θ(b2)− b3∥V3

≤ µ+ δF(b1∥b2) + ∥Θ(b2)− b3∥V3 .

Since this holds for all Θ ∈ F(V2,V3) and all µ > 0, we
get the result.

□

The following data processing inequalities for δF follow
easily from Prop. 1 (v) (cf. [10, Prop. 3]).

Proposition 3. Let V1,V2,V3 ∈ F, bi ∈ B(Vi), i = 1, 2, 3.
Then

(i) For any Λ ∈ F(V1,V2), δF(Λ(b1)∥b3) ≥ δF(b1∥b3);
(ii) For any Θ ∈ F(V2,V3), δF(b1∥Θ(b2)) ≤ δF(b1∥b2);

We now turn to the main result of this section, con-
tained in Theorem 2 below. Note that since the elements
φ ∈ V∗+, ψ ∈ W∗+ in (ii) and (iii) of this theorem
can always be normalized and the positive part of the
unit ball of ∥ · ∥V∗ coincides with the set of all tests
on B(V), this theorem says that the conversion distance
can be characterized by comparing the probabilities of the
”yes” outcome for certain tests applied to b1 and b2.

For the proof of Theorem 2, we will need the following
minimax theorem (cf. [15, Thm.48.5]).

Theorem 1 (Minimax theorem). Let T be a convex and
compact subset of a locally convex space and let Y be a
convex subset of a vector space. Let f : T × Y → R be
convex in y and continuous and concave in t. Then

inf
y∈Y

sup
t∈T

f(t, y) = sup
t∈T

inf
y∈Y

f(t, y).

Theorem 2. Let V1,V2 ∈ F and let b1 ∈ B(V1), b2 ∈
B(V2). Let ϵ ≥ 0. Then the following are equivalent.

(i) δF(b1∥b2) ≤ ϵ;
(ii) for all φ ∈ V∗+

2 , there is some Θ ∈ F̄(V1,V2) such
that

⟨φ, b2⟩ ≤ ⟨φ,Θ(b1)⟩+
ϵ

2
∥φ∥V∗ ,

here F̄(V1,V2) is the closure of F(V1,V2) in
BS(V1,V2);

(iii) for all W ∈ F and all ψ ∈ W∗+, we have

sup
Θ∈F(V2,W)

⟨ψ,Θ(b2)⟩

≤ sup
Θ′∈F(V1,W)

⟨ψ,Θ′(b1)⟩+
ϵ

2
∥ψ∥W∗ .

Proof. Let ϵ′ > ϵ and let Λ0 ∈ F(V1,V2) be such that
∥Λ0(b1)− b2∥V2

≤ ϵ′. Let W ∈ F and let ψ ∈ W∗+. For
any Θ ∈ F(V2,W), we have

⟨ψ,Θ(b2)⟩ =⟨ψ,Θ ◦ Λ0(b1)⟩+ ⟨ψ,Θ(b2 − Λ0(b1))⟩
≤ sup

Θ′∈F(V1,W)

⟨ψ,Θ′(b1)⟩

+
1

2
∥Θ(b2 − Λ0(b1))∥W∥ψ∥V∗

≤ sup
Θ′∈F(V1,W)

⟨ψ,Θ′(b1)⟩+
ϵ′

2
∥ψ∥V∗ ,

where we have used Prop. 1 (iv) and (v). Since this holds
for all Θ ∈ F(V2,W) and ϵ′ > ϵ, this proves that (i)
implies (iii). Since (iii) obviously implies (ii), it is enough
to prove (ii) =⇒ (i).

By Prop. 1 (iv), we have

1

2
δF(b1∥b2) = inf

Λ∈F(V1,V2)
sup

φ∈[0,B(V∗
2 )]

⟨φ, b2 − Λ(b1)⟩.

Note that by Prop. 1 (i), the set [0, B(V∗
2 )] = V∗+

2 ∩
[−B(V∗

2 ), B(V∗
2 )] is convex and compact and the map

(φ,Λ) 7→ ⟨φ, b2 − Λ(b1)⟩ is linear in both components,
so that we may apply the minimax theorem (Thm. 1).
Assume that (ii) holds, then

1

2
δF(b1∥b2) = sup

φ∈[0,B(V∗
2 )]

inf
Λ∈F(V1,V2)

⟨φ, b2 − Λ(b1)⟩

= sup
φ∈[0,B(V∗

2 )]

(⟨φ, b2⟩ − sup
Λ∈F(V1,V2)

⟨φ,Λ(b1)⟩)

≤ ϵ

2
.

□

We next some examples of an application of Theorem
2, the first two of which show the relation to the theory of
comparison of statistical experiments. In these examples,
V ∈ BS is such that K = B(V) is a base of V+. The
dual object V∗ is the order unit space (V∗,V∗+, u), where
u ∈ V∗+ is the functional determined by ⟨u, x⟩ = 1 for
all x ∈ K.

Example 5 (Statistical experiments). A (finite) statistical
experiment in V is a finite set x1, . . . , xk ∈ K. The set
of all experiments with fixed k and V is an object in
BS. Indeed, let Vk = ⊕ki=1V and Vk+ = ⊕ki=1V+, then
Kk = ⊕ki=1K is a base section in the ordered vector
space (Vk,Vk+). As for the dual object, Vk∗ = ⊕ki=1V∗

and Vk∗+ = ⊕ki=1V∗+. Moreover, it is easily checked that
the dual section is

B(Vk∗) = K̃k = {(p1u, . . . , pku), pi ∈ [0, 1],
∑
i

pi = 1}

and

∥v∥Vk = max
i

∥vi∥V , v = (vi) ∈ Vk

∥ψ∥Vk∗ =
∑
i

∥ψi∥V∗ , ψ = (ψi) ∈ Vk∗.
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Let F be the subcategory whose objects are statistical
experiments with fixed k and morphisms in F(Vk,Wk)
are given by Φk with Φ ∈ F(V,W) ⊆ BS(V,W) for
some convex subset F(V,W).

Let x = (xi) ∈ B(Vk), y = (yi) ∈ B(Wk), then the
F-conversion distance has the form

δF(x∥y) = inf
Φ∈F

max
i

∥Φ(xi)− yi∥V .

Under an obvious normalization, Theorem 2 (iii) says that
δF(x∥y) ≤ ϵ if and only if for any (ψi) ∈ Vk∗+ with∑
i ∥ψi∥V∗ ≤ 1, we have

sup
Φ∈F

∑
i

⟨ψi,Φ(yi)⟩ ≤ sup
Φ′∈F

∑
i

⟨ψi,Φ′(yi)⟩+
ϵ

2
.

Since the norm ∥·∥V∗ is the order unit norm with respect to
u, any (ψi) of the above form satisfies 0 ≤ ψi ≤ ∥ψi∥V∗u
and

∑
i ψi ≤

∑
i ∥ψi∥V∗u ≤ u. Adding a positive

element ψk+1 = u −
∑
i ψi, the collection (ψi)

k+1
i=1

becomes a measurement with k + 1 outcomes and the
value 1

k

∑
i⟨ψi,Φ(yi)⟩ =: P̃succ(E , (ψi)) becomes the

success probability for the ensemble E = { 1
k ,Φ(yi)} in the

inconclusive discrimination with the measurement (ψi),
here ψk+1 represents the inconclusive outcome. Now we
see that δF(x∥y) ≤ ϵ if and only if for any measurement
(ψi)

k+1
i=1 ,

sup
Φ∈F

P̃succ({
1

k
,Φ(yi)}, (ψi))

≤ sup
Φ′∈F

P̃succ({
1

k
,Φ′(xi)}, (ψi)) +

ϵ

2k
,

extending the result [12, Cor. 15].

Example 6 (Le Cam randomization criterion for classical
statistical experiments). In the setting of the previous
example, let us further restrict F to Vk for classical state
spaces V (see Example 2) and let F be the set of all
stochastic maps. Here the objects of F are sets of classical
statistical experiments with k elements. If (pi) is such an
experiment and qi = Φ(pi) for some stochastic map Φ,
we say that (qi) is a randomization of (pi), so that F
is the category of (finite dimensional) classical statistical
experiments with randomizations. Moreover, δF((pi)∥(qi))
is the Le Cam deficiency of (pi) with respect to (qi) and
∆F becomes the the Le Cam distance [14].

The basic idea of comparison of statistical experiments
that goes back to Blackwell [13] is to compare classical
statistical experiments by the performance of decision
rules. Here the task is to choose a decision d from a
finite set {1, . . . , D} using data that is known to be drawn
according to one of the distributions in {p1, . . . , pk} ⊂
∆m. The decision rules are given by stochastic maps
Θ : ∆m → ∆D, where Θ(p)(d) is the probability that
d is chosen if the data was sampled from the distribution
p ∈ ∆m. To each pair i = 1, . . . , k and d = 1, . . . , D a
value g(i, d) ≥ 0 is assigned expressing the gain obtained
if d was chosen while the true distribution was pi. Under

a prior distribution λ = (λ1, . . . , λk), the average gain of
the decision rule Θ is given by

G({pi}, λ, g,Θ) =
∑
i

∑
d

λiΘ(pi)(d)g(i, d)

= ⟨ψ,Θ({pi})⟩,

where ψ ∈ (RD+)k is given by ψid = λig(i, d), note
also that we have ∥ψ∥Vk∗ =

∑
i λimaxd g(i, d). The

celebrated Le Cam randomization criterion [14] says that
the deficiency of the experiment (pi) with respect to (qi)
can be obtained by comparing the optimal values of G
achievable by the two experiments, more precisely that
δF((p

i)∥(qi)) ≤ ϵ if and only if for all gain functions g
and prior distributions λ, we have

sup
Θ
G({qi}, λ, g,Θ)

≤ sup
Θ′

G({pi}, λ, g,Θ′) +
ϵ

2

∑
i

λimax
d

g(i, d).

In the finite dimensional setting, this is precisely the
statement of Theorem 2. Therefore, Theorem 2 can be
seen as the most general GPT form of the Le Cam
randomization theorem.

Similarly, restricting the objects V to quantum state
spaces and letting F be the set of all quantum channels, we
obtain the quantum version of the randomization criterion,
cf. [1].

Example 7 (Measurements). A measurement (with k out-
comes) is a collection M = (Mi) ∈ Vk∗+,

∑
iMi = u. It

easy to see that the set Mk(V) of all such measurements
is a base section in (Vk∗,Vk∗+) we will denote this object
of BS by VkM. The dual object is Vk,Vk+ with the base
section

M̃k(V) = {(x, . . . , x), x ∈ K}

Note that for v ∈ Vk+, the dual norm is

∥v∥Vk∗
M

= max
M∈Mk(V)

∑
i

⟨Mi, vi⟩.

Dividing v by c :=
∑
i⟨u, vi⟩ and noting that c−1vi =

λixi with xi ∈ K and some probabilities λi, we obtain
an ensemble: E := {λi, xi} such that

∥v∥Vk∗
M

= cPsucc(E).

Again, let F be the subcategory with objects VkM (with
k fixed) and morphisms Φ∗k : VkM → Wk

M for Φ ∈
F(W,V) ⊆ BS(W,V). The Theorem 2 tells us that
δF(M∥N) ≤ ϵ if and only if, for any ensemble E on
V ,

Psucc(E , N) ≤ sup
Φ∈F

Psucc(Φ(E), N) +
ϵ

2
Psucc(E),

extending the result of [12, Thm. 14].

More examples will be treated in the next section.
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III. COMPARISON OF QUANTUM CHANNELS

In this section we will present the sets of quantum
channels and superchannels as objects in BS and show
how Theorem 2 applies, under some conditions on the
subcategory F. We need some preparation first.

A. Basic ingredients

In what follows, HA,HB , . . . will always denote a
finite dimensional Hilbert space, labelled by the system
it represents. The Hilbert space will often be referred to
by its label, so we denote by B(A) the set of bounded
operators on HA, similarly, Bh(A) denotes the set of
self-adjoint operators, B+(A) the set of positive operators
and S(A) the set of states on HA. We will also put
dA := dim(HA) and IA denotes the identity operator on
HA. The trivial Hilbert space C will be labeled by 1.

For W ∈ B(A0), we will use the notation (cf. [20])

|W ⟩⟩ :=
∑
i

W |i⟩A0
⊗|i⟩A0

=
∑
i

|i⟩A0
⊗WT|i⟩A0

, (2)

here WT denotes the transpose of W in the standard basis
{|i⟩}.

1) Linear maps and Choi representation: Let
L(A0, A1) denote the set of hermitian linear maps
B(A0) → B(A1), that is, linear maps satisfying

Φ(X∗) = Φ(X)∗, X ∈ B(A0).

Let L+(A0, A1) denote the subset of completely positive
maps in L(A0, A1) and C(A0, A1) the set of quantum
channels, that is, trace preserving maps in L+(A0, A1).

The Choi matrix of Φ ∈ L(A0, A1) is defined as
CΦ := (Φ ⊗ idA0

)(|IA0
⟩⟩⟨⟨IA0

|). The map Φ 7→ CΦ

establishes a linear isomorphism between L(A0, A1) and
Bh(A1A0) that maps L+(A0, A1) onto B+(A1A0) and
C(A0, A1) onto the set

{X ∈ B+(A1A0), TrA1
[X] = IA0

}.

2) Diagrams: We will make use of the common dia-
grammatic representation of maps in L(A0, A1) as

φ
A0 A1

If some of the systems is trivial, the corresponding wire
will be omitted. The special symbols

A

A

A

A

will represent |IA⟩⟩⟨⟨IA| as a preparation (a map 1 → AA)
and as an effect (a map AA → 1) respectively. In this
way, we may write the Choi isomorphism as

φ
A0

A0

A1

= Cφ

A1

A0

and its inverse as

T

A1

A0

A0

= φT

A0 A1

We will use similar symbols for the maximally entangled
state ψA := d−1

A |IA⟩⟩⟨⟨IA|:

A

A

A

A

3) The link product: The Choi matrix of a composition
of maps is given by the link product of the respective
Choi matrices, [20]. For general multipartite matrices X ∈
B(AB) and Y ∈ B(BC), the link product is defined as

X ∗ Y = TrB [(X ⊗ IC)(IA ⊗ Y TB )]

here (·)TB denotes the partial transpose on the system B.
Diagrammatically:

X ∗ Y

A

C

=

X

Y

A

B

B

C

The link product is commutative (up to the order of the
spaces) and associative provided that the three matrices
have no labels in common. The order of the spaces is
not taken into account, applying an appropriate unitary
conjugation swapping the spaces in the tensor products if
necessary, so, for example, if X ∈ B(AB1B2) and Y ∈
B(B2B1C), then

X ∗ Y ≡ X ∗ UB1,B2
(Y ), (3)

where UB1,B2
is the conjugation by the unitary swap

UB1,B2
: HB1B2

→ HB2B1
.

4) Superchannels and 2-combs: A quantum superchan-
nel is a special type of causal quantum network that
transforms channels into channels, with possibly different
input and output systems. Any superchannel Λ that maps
C(A0, A1) into C(A′

0, A
′
1) is a channel in C(A′

0A1, A
′
1A0),

consisting of a pre-processing channel Λpre ∈ C(A′
0, RA0)

and a post-processing channel Λpost ∈ C(RA1, A
′
1), where

R is some ancilla [20]. We will write Λ = Λpre∗Λpost for
this concatenation of channels. The set of all such super-
channels will be denoted by C2(A,A′), where we used the
abbreviation A = A0A1, A′ = A′

0A
′
1. Diagrammatically,

Λ can be represented as
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Λpre

Λpost

A
′

0 A0

R

A1

A
′

1 =

Λpre Λpost

A
′

0 R

A0 A1

A
′

1

and acts on a map ϕ as

Λpre

φ
Λpost

A′

0 R

A0 A1

A′

1

The Choi matrices of superchannels are called 2-combs
in [20]. Using the link product and its properties, we have
CΛ = CΛpre ∗CΛpost and CΛ(Φ) = CΛ∗CΦ = CΛpre ∗CΦ∗
CΛpost . An element C ∈ B+(A

′
1A0A

′
0A1) is a 2-comb if

and only if

TrA′
1
[C] = IA1

⊗ C2, TrA0
[C2] = IA′

0
, (4)

which means that C2 is the Choi matrix of some channel
in C(A′

0, A0).
5) Diamond norm and the conditional min-entropy:

It is not difficult to see that L(A0, A1) with the cone
L+(A0, A1) and B(L(A0, A1)) = C(A0, A1) is an object
in BS, similarly for the set of superchannels. It was
observed in [29] that in these cases the structures described
in Section II-A yield some well known quantities. This will
be discussed in the present and the next section, see [29]
for more details.

We will use the identification of the dual space
L∗(A0, A1) with Bh(A0A1), with duality for X ∈
Bh(A0A1) and ϕ ∈ L(A0, A1) given by

⟨X,ϕ⟩ := ⟨⟨IA1 |(ϕ⊗ id)(X)|IA1⟩⟩ = Tr [XCϕ∗ ]

= Tr [XCT
ϕT ] = X ∗ CϕT = X ∗ Cϕ. (5)

Diagrammatically, this can be expressed as

⟨X,ϕ⟩ = X
φ

A0

A1

A1

= X

φT

A0

A1 A0

Here ϕ∗, ϕT ∈ L(A1, A0) are maps determined by

Tr [Xϕ∗(Y )] = Tr [ϕ(X)Y ], ϕT(Y ) = (ϕ∗(Y T))T

for X ∈ Bh(A0) and Y ∈ Bh(A1). The last equality in
(5) follows from (3) and CϕT = UA1,A0

(Cϕ). Note that
by (5) we also have

⟨X,ϕ⟩ = Tr [XUA1,A0(Cϕ)
T]

= Tr [U∗
A1,A0

(XT)Cϕ]. (6)

With these identifications, the dual cone is
L∗
+(A0, A1) ≃ B+(A0A1) and the dual section

B(L∗(A0, A1)) = C̃(A0, A1)

= {σA0 ⊗ IA1 , σA0 ∈ S(A0)}.

The corresponding base section norm is the diamond norm

∥Φ∥L(A0,A1) = ∥Φ∥⋄ := max
ρ∈S(A0A0)

∥(Φ⊗ id)(ρ)∥1,

for Φ ∈ L(A0, A1), well known as the distinguishability
norm for quantum channels, [21], [31].
Remark 1. Using the Choi representation, we may also
identify L∗(A0, A1) ≃ L(A1, A0), with duality ⟨·, ·⟩∗
given as

⟨ψ, ϕ⟩∗ := ⟨Cψ, ϕ⟩ = τ(ϕ ◦ ψ),

where the functional τ : L(A0, A0) → R is given by

τ(ξ) =
∑
i,j

Tr [|i⟩⟨j|ξ(|i⟩⟨j|)] = ⟨⟨IA0 |Cϕ|IA0⟩⟩,

in diagram

τ(ξ) =
ξ

A0

A0

A0

= Cξ

A0

A0

Choosing the Hilbert-Schmidt inner product and the basis
{|i⟩⟨j|} in B(A0), we see that τ is the usual trace of ele-
ments in L(A0, A0) as linear maps. In this identification,
the dual section becomes the set of replacement channels
in C(A1, A0), mapping all states in S(A1) to a fixed state
σA0

∈ S(A0).
Let us introduce the notation

∥ · ∥⋄A1|A0
:= ∥ · ∥L∗(A0,A1)

for the dual norm. By Prop. 1 (iii), we have for ρ ∈
B+(A0A1):

∥ρ∥⋄A1|A0
= min
σA0

∈S(A0)
min{λ > 0, ρ ≤ λσA0 ⊗ IA1}

= 2−Hmin(A1|A0)ρ (7)

where Hmin denotes the conditional min-entropy [32],
[33]. We also have

∥ρ∥⋄A1|A0
= max
α∈C(A0,A1)

⟨ρ, α⟩

= max
α∈C(A0,A1)

⟨⟨IA1 |(α⊗ id)(ρ)|IA1⟩⟩. (8)

Note that the last equality corresponds to the operational
interpretation of the conditional min-entropy as (up to
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multiplication by dA) the maximum fidelity with the
maximally entangled state ψA1 that can be obtained by
applying a quantum channel to part A0 of the state ρA0A1

[33].
The following result follows easily from the first equal-

ity in (7).

Lemma 1. Let ρ ∈ B+(A0A1). Then there is some V ∈
B(A0), Tr [V V ∗] = 1, and G ∈ B+(A0A1) such that

ρ = (χV ⊗ id)(G), ∥G∥ = ∥ρ∥⋄A1|A0
.

Here χV := V · V ∗ ∈ L+(A0, A0) and ∥ · ∥ denotes the
operator norm.

6) Diamond 2-norm and conditional 2-min entropy:
As we have seen, the set of superchannels C2(A,A′) is a
subset of C(A′

0A1, A
′
1A0). In fact, it is itself a base section.

More precisely, put L2(A,A
′) := L(A′

0A1, A
′
1A0) with

L+
2 (A,A

′) := L+(A
′
0A1, A

′
1A0) and B(L2(A,A

′)) =
C2(A,A′), then L2(A,A

′) ∈ BS. Using the same identifi-
cation of the dual space as before, we have L∗(A,A′) =
Bh(A

′
1A0A

′
0A1) and the dual section is

B(L2(A,A
′)) = {σ ∗ Cγ ⊗ IA′

1
,

σ ∈ S(A′
0R), γ ∈ C(A0R,A1), R an ancilla}.

Using the identification of the dual space as in Remark
1, this corresponds to a set of superchannels where the
preprocessing is a replacement channel, of the form

I

σ γ
A′

1

R

A′

0 A0

A1

The norm ∥·∥L2(A,A′) is the distinguishability norm ∥·∥2⋄
for quantum networks, see [34], [35] for the definition. Let
us denote

∥ · ∥2⋄A′|A := ∥ · ∥L∗
2(A,A

′),

then for ρ ∈ B+(A
′
0A1A

′
1A0), we have

∥ρ∥2⋄A′|A = min
σ,γ

min{λ > 0, ρ ≤ λ(σ ∗ Cγ)⊗ IA′
1
}

=: 2−H
(2)
min(A

′|A)ρ = max
Θ∈C2(A,A′)

⟨ρ,Θ⟩

= max
Θ∈C2(A,A′)

⟨⟨IA0A′
1
|(Θ⊗ id)(ρ)|IA0A′

1
⟩⟩.

Here H(2)
min will be called the conditional 2-min entropy.

Note that this quantity coincides with the extended con-
ditional min-entropy of [9] but we prefer the present
notation since it can be extended to any N ∈ N in an
obvious way using the set of N -combs, see also [24].
The last equality shows an operational interpretation as
the maximum fidelity (again up to multiplication by the
dimension) with the maximally entangled state ψA0B1 that
can be obtained by applying a structured quantum channel
to the part A′

0A1 of ρA′
0A1A′

1A0
as depicted in the diagram

ρ

Θpre

Θpost

A′

0

A1

A′

1

A0

A0

A′

1

7) Guessing games: Let E = {λi, ρi}ki=1 be an en-
semble of states ρi ∈ S(A) and prior probabilities λi.
Quantum measurements with k outcomes are given by
operators M = {M1, . . . ,Mk}, where Mj ∈ B+(A),∑
jMj = IA, the set of all such measurements for the

system A will be denoted by Mk(A). It is well known that
the optimal success probability Psucc(E) is related to the
conditional min entropy as follows, [33]. Let us define the
quantum-classical state ρE =

∑
i λiρi ⊗ |i⟩⟨i| ∈ S(AR),

where dR = k. Then for any channel α ∈ C(A,R), we
have

⟨ρE , α⟩ = Psucc(E ,M) = ⟨ρE ,ΦM ⟩, (9)

where M ∈ Mk(A), Mi = α∗(|i⟩⟨i|) and ΦM ∈
C(A,R) is the quantum-to-classical (q-c) channel given
by ΦM (σ) =

∑
iTr [σMi]|i⟩⟨i|. It follows that

∥ρE∥⋄R|A = Psucc(E), (10)

see also Example 7. It was proved in [10, Prop. 2] that
the dual norm ∥ · ∥⋄R|A can be interpreted as a success
probability not only for quantum-classical states. Since this
result and the related constructions will be repeatedly used
below, we give the proof here.

Lemma 2. For any state ρ ∈ S(AR) there is an ensemble
ERρ on AR such that

∥ρ∥⋄R|A = dRPsucc(ERρ ).

The proof is based on a relation between quantum
channels A → R and measurements on AR, close to the
Choi representation of channels. Let {UR1 , . . . , URd2R} be
the group of generalized Pauli unitaries on R and let URx
denote the conjugation by URx , so that we have∑

x

URx (X) = dRTr [X]IR.

Let
BRx := (URx ⊗ id)(ψR) = d−1

R |URx ⟩⟩⟨⟨URx |

then BR = {BR1 , . . . ,BRd2R} defines the Bell measurement
on RR. For a channel β ∈ C(A,R), let Mβ ∈ Md2R

(AR)
be defined as

Mβ
x = (β∗ ⊗ id)(BRx ), x = 1, . . . , d2R. (11)
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Conversely, for any M ∈ Md2R
(AR), let βM ∈ C(A,R)

be the channel obtained from the measurement M in the
teleportation scheme, that is

βM (σ) =
∑
x

URx (TrAR̃[(σ ⊗ ψR)(Mx ⊗ IR)]) (12)

for σ ∈ S(A) (here we take R̃ ≃ R and view ψR as a
state on R̃R and M as a measurement on AR̃). It is easily
seen that we have MβM

= M and βM
β

= β. Note that
we have βM =

∑
x β

M
x , where {βMx } is an instrument

whose elements are depicted as

Mx

UR

x

R

R R

βM
x

A

Proof of Lemma 2. For ρ ∈ S(AR) we introduce the
equiprobable ensemble

ERρ = {d−2
R , ρx}

d2R
x=1, ρx = (idA ⊗ ŨRx )(ρ),

where ŨRx denotes the conjugation by (URx )T. Note that
for any channel β ∈ C(A,R) and x = 1, . . . , d2R, we have

d−1
R ⟨ρ, β⟩ = ρ

βA

R

R

=

ρ

Ũx

β

Ũ∗

x

A

R

R

R

ρx Mβ
x

Multiplying by the probability d−2
R and summing up over

x we obtain

d−1
R ⟨ρ, β⟩ = Psucc((β ⊗ idR)(ERρ ),BR)

= Psucc(ERρ ,Mβ). (13)

Also conversely, it is readily checked that for any mea-
surement M ∈ Md2R

(AR) we have

Psucc(Eρ,M) =
∑
x

Tr [ρxMx] = d−1
R

∑
x

⟨ρ, βMx ⟩

= d−1
R ⟨ρ, βM ⟩. (14)

Using (8), this proves Lemma 2.
□

As an application, we have the following expression for
the diamond norm distance of quantum channels in terms
of the success probabilities in guessing games.

Corollary 1. Let Φ1,Φ2 ∈ C(A0, A1). Then

1

2
∥Φ1 − Φ2∥⋄ =

sup
E,M

Psucc((Φ1 ⊗ idR)(E),M)− Psucc((Φ2 ⊗ idR)(E),M)

Psucc(E)
,

where the supremum is taken over all ensembles E on
A0R, all measurements M on A1R and any ancilla R.
Moreover, the supremum is attained with R ≃ A1 and the
Bell measurement M = BA1 .

Proof. Let s denote the supremum on the left hand side
of the equality to be proved. Let E = {λj , ρj}kj=1 be an
ensemble on A0R and M ∈ Mk(A1R). Put ρ = ρE ∈
S(A0RR

′), with dR′ = k. Then by (9)

Psucc((Φi ⊗ id)(E),M) = Psucc(E , (Φ∗
i ⊗ id)(M))

= ⟨ρ,Φ(Φ∗
i ⊗id)(M)⟩,

i = 1, 2. Note that the q-c channel Φ(Φ∗
i ⊗id)(M) = ΦM ◦

(Φi ⊗ idR) and therefore

Psucc((Φ1 ⊗ id)(E),M)− Psucc((Φ2 ⊗ id)(E),M)

= ⟨ρE ,ΦM ◦ (Φ1 ⊗ idR)− ΦM ◦ (Φ2 ⊗ idR)⟩

≤ 1

2
∥ρE∥⋄R|A∥ΦM ◦ [(Φ1 − Φ2)⊗ idR]∥⋄

≤ 1

2
Psucc(E)∥Φ1 − Φ2∥⋄,

here we used Proposition 1. This shows that s ≤ 1
2∥Φ1 −

Φ2∥⋄.
For the converse, note that by Proposition 1 (iii) and

(iv), we have

1

2
∥Φ1 − Φ2∥⋄ = sup

ρ∈B+(A0A1)

⟨ρ,Φ1 − Φ2⟩
∥ρ∥⋄A1|A0

= sup
ρ∈S(A0A1)

⟨ρ,Φ1 − Φ2⟩
∥ρ∥⋄A1|A0

. (15)

Let now R ≃ A1 and M = BA1 . For ρ ∈ S(A0A1),
we take the ensemble EA1

ρ on A0A1. By (15), (13) and
Lemma 2, we obtain

1

2
∥Φ1−Φ2∥⋄ = sup

ρ∈S(A0A1)

[
Psucc((Φ1⊗id)(EA1

ρ ),BA1)

− Psucc((Φ2 ⊗ id)(EA1
ρ ),BA1)

]
Psucc(ERρ )−1 ≤ s.

This finishes the proof.
□

Remark 2. The above construction implies another op-
erational interpretation of ∥ρ∥⋄R|A. To see this, let E =
{λi,Φi} be an ensemble of quantum channels, Φi ∈
C(R,R). The guessing procedures for ensembles of chan-
nels can be described by pairs (ρ,M), consisting of an
input state ρ ∈ S(AR) with some ancilla A and M is a
measurement on AR, such triples are also called quantum
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testers [34]. The average success probability for the tester
(ρ,M) is then

Psucc(E , ρ,M) := Psucc(E(ρ),M)

where E(ρ) = {λi, (Φi ⊗ id)(ρ)}.
Any state ρ ∈ S(AR) can be seen as the input state

of some tester. We claim that the norm ∥ρ∥⋄R|A can be
interpreted as (dR times) the maximal success probability
that can be obtained by all testers with input state ρ

for equiprobable ensembles E = {d−2
R ,Φi}

d2R
x=1 of unital

channels Φx ∈ C(R,R). Indeed, let M ∈ Md2R
(AR) be

any measurement, we have

Psucc(E , ρ,M) = d−2
R

∑
x

Tr [(id⊗ Φx)(ρ)Mx]

= d−1
R Tr [ρC],

where C = d−1
R

∑
i(id⊗Φ∗

x)(Mx) ∈ B+(AR). Since Φ∗
x

is trace preserving, we see that TrR[C] = d−1
R TrR[I] =

IA. Hence there is a channel α ∈ C(R,A) such that C =
Cα∗ . Finishing the above computation, we obtain

Psucc(E , ρ,M) = d−1
R Tr [ρCα∗ ] = d−1

R ⟨ρ, α⟩
≤ d−1

R ∥ρ∥R|A.

As we have seen, equality is attained for Φx = ŨRx .

B. General comparison theorems for quantum channels

We are now ready to apply the results of Section II-B
to the comparison of a pair of quantum channels Φ1

and Φ2. For this, we consider a subcategory F in BS
whose objects are some spaces of channels (as in Sec.
III-A5) and morphisms between them are given by some
convex subsets of superchannels, (so F is in fact a convex
subcategory of the category of quantum channels with
superchannels).

If L(A0, A1) is an object in F we will say that A =
A0A1 is an input-output space admissible in F. We will
use the notation

F(A,A′) := F(L(A0, A1),L(A′
0, A

′
1)) ⊆ C2(A,A′)

for a pair of admissible spaces A, A′.
Let A, A′ be admissible in F and let Φ1 ∈ C(A0, A1),

Φ2 ∈ C(A′
0, A

′
1). The F-conversion distance becomes

δF(Φ1∥Φ2) = inf
Λ∈F(A,A′)

∥Λ(Φ1)− Φ2∥⋄.

For ρ ∈ B+(A
′
0A1A

′
1A0), we define

∥ρ∥FA′|A := sup
Θ∈F(A,A′)

⟨ρ,Θ⟩.

This notation may be somewhat misleading, since for a
general subcategory F there is no guarantee that ∥ · ∥FA′|A
can be extended to a norm. However, there are some
choices that lead to the norms introduced in Sections
III-A5 and III-A6. Indeed, with the choice of a subcategory
where all objects are spaces of states (that is, all admissible
input spaces are A0 = 1) and the morphisms are all

(super)channels between them, we obtain ∥ · ∥FA′|A =
∥ · ∥⋄A′

1|A1
. If F coincides with the category of quantum

channels with superchannels, we similarly get ∥ρ∥FA′|A =

∥ρ∥2⋄A′|A. Since F(A,A′) ⊆ C2(A,A′) ⊆ C(A′
0A1, A

′
1A0),

the following inequalities are immediate:

∥ρ∥FA′|A ≤ ∥ρ∥2⋄A′|A ≤ ∥ρ∥⋄A′
1A0|A′

0A1
.

Moreover, the quantity

HF
min(A

′|A)ρ := − log(∥ρ∥FA′|A)

can be seen as a modified conditional min entropy, since
it coincides with Hmin and H(2)

min in the above cases.
More generally, it may happen that F(A,A′) is a base

section in L2(A,A
′), possibly with respect to some sub-

cone L+
F (A,A

′) ⊆ L+
2 (A,A

′). Then ∥ · ∥FA′|A coincides
with the base section norm with respect to the dual section,
see Proposition 1 (iii). Consequently, ∥ · ∥FA′|A satisfies
the properties in Proposition 1, so that there is a dual
expression for this norm. In particular, it can be expressed
as a conic program.

Example 8. Let F be the subcategory whose objects
are spaces L(A0B0, A1B1) of bipartite channels and the
morphisms in F are PPT-superchannels defined by the
property that they stay completely positive when pre and
postcomposed by the partial transpose supermap, see [18]
for more details. In this case, F(AB,A′B′) is a base
section in L2 with respect to the subcone L+

2,PPT ⊊ L+
2

of PPT-supermaps, [18, Definition V.2]. Similarly, if the
morphisms are given by separable superchannels, charac-
terized by the condition that the Choi matrix is separable,
then F(AB,A′B′) is a base section with respect to the
cone L+

2,SEP of separable supermaps. Note that these sets
of superchannels might be different from their restricted
variants that will be considered below.

Another such example is the subcategory with spaces of
channels as objects and morphisms given by no-signaling
superchannels which can be easily described by properties
of their Choi matrices: besides the condition (4) of a 2-
comb they also satisfy an analogical condition with input
and output spaces exchanged. In this case, F(A,A′) is a
base section in the cone L+

2 (A,A
′).

For any choice of F, ∥ · ∥FA′|A is obviously convex and
monotone under morphisms in F, more precisely, for any
Λ ∈ F(A′, A′′), we have

∥ρ∥FA′|A ≥ ∥ρ ∗ CΛ∥FA′′|A.

Further properties depend on the details of the structure
of F, e.g. with respect to the tensor products.

The importance of these quantities is seen from the fol-
lowing general comparison theorem for quantum channels,
which is a straightforward reformulation of Theorem 2
from the GPT setting.

Theorem 3. Let ϵ ≥ 0. The following are equivalent.
(i) δF(Φ1∥Φ2) ≤ ϵ;
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(ii) for any ρ ∈ S(A′
0A

′
1), there is some Θ ∈ F̄(A,A′)

such that

⟨ρ,Φ2⟩ ≤ ⟨ρ,Θ(Φ1)⟩+
ϵ

2
∥ρ∥⋄A′

1|A′
0

(here F̄(A,A′) is the closure of the set F(A,A′));
(iii) for any R = R0R1 admissible in F and any ρ ∈

S(R0R1),

∥ρ ∗ CΦ2∥FR|A′ ≤ ∥ρ ∗ CΦ1∥FR|A +
ϵ

2
∥ρ∥⋄R1|R0

.

Moreover, in (iii) it is enough to assume R0 ≃ A′
0, R1 ≃

A′
1.

Proof. We only need to observe that for any Θ ∈ F(A,R)
and ρ ∈ S(R), we have

⟨ρ,Θ(Φ1)⟩ = ρ∗CΘ(Φ1) = (ρ∗CΦ1
)∗CΘ = ⟨ρ∗CΦ1

,Θ⟩,

similarly for Φ2. The proof now follows directly from
Theorem 2 and the definition of ∥ · ∥FR|A (∥ · ∥FR|A′ ). □

Remark 3. There is an ambiguity around ρ∗CΦi
that might

cause some confusion: it may happen that parts of R0 or
R1 coincide with some parts of the input or output spaces
of Φi, so it is unclear how to apply the link product. In
some cases, such as in some of the sections below, the
subcategory F does not permit any processing on some
parts of the input and/or output spaces. In this case, these
parts are always fixed and are viewed as the same, so that
they are connected in the link product. In diagram, if the
fixed input of the channels is B0 and the fixed output is
B1, we obtain in this case

⟨ρ,Θ(Φ)⟩ = ⟨ρ ∗ CΦ,Θ⟩ =

ρ

Φ

Θpre

Θpost

R1

R0

B0

B1

ρ ∗ CΦ Θ

In all other cases all the involved spaces are treated as
independent, so that the link product is in fact the tensor
product, ρ ∗ CΦi = ρ⊗ CΦi , in diagram

⟨ρ,Θ(Φ)⟩ = ⟨ρ⊗ CΦ,Θ⟩ =

ρ

Φ

Θpre

Θpost

R1

R0

ρ⊗ CΦ Θ

The questions of simulability/convertibility of quantum
channels naturally appear in the quantum resource theory
of processes, [17], [16], [18], [19]. In this case, the subset
O(A0, A1) := F(1, A) ⊆ C(A0, A1) is the set of free
channels and F(A,A′) is the set of free superchannels, that
is, transformations that can be performed at no cost. The
subcategory is usually assumed to have further properties,
such as that it behaves well under tensor products (i.e. it
is a symmetric monoidal subcategory in the category of
quantum channels with superchannels). Note that a convex
symmetric monoidal category is called a convex resource
theory in [36].

Assume that the resource theory is such that all free
channels can be converted one into another by free super-
channels, then for each ρ ∈ S(R0R1) the map

φρ : Φ 7→ ∥ρ ∗ CΦ∥FR|A

is constant over Φ ∈ O, namely φρ(Φ) = supΨ∈O⟨ρ,Ψ⟩
for any Φ ∈ O. Therefore each φρ can be easily nor-
malized to be 0 on O. Furthermore, if any channel Φ
can be converted into a channel arbitrarily close to O
by some elements in F, then Theorem 3 implies that
φρ(Φ) ≥ supΨ∈O⟨ρ,Ψ⟩ and the set of normalized φρ
becomes a complete family of resource monotones. In fact,
the case ϵ = 0 is closely related to [18, Theorem III.3].

Specific examples of the subcategory F will be studied
in detail in the next sections: postprocessings and pre-
processings of quantum channels, processings of bipartite
channels by LOCC and by partial superchannels. In all
these cases, the superchannels in F consist of pre- and
postprocessings belonging to some specified families of
channels Cpre and Cpost. More precisely, for R = R0R1,
S = S0S1 admissible in F, any superchannel Θ ∈
F(R,S) has the form Θ = Λpre ∗ Λpost, where Λpre ∈
Cpre(S0, UR0) and Λpost ∈ Cpost(UR1, S1), where U is
some ancilla. To ensure that F is a convex subcategory, we
have to assume that for any input-output spaces R,S, T
admissible in F and any ancillas U, V available in Cpre
and Cpost, we have

(a) idR0
∈ Cpre(R0, R0), idR1

∈ Cpost(R1, R1);
(b) both Cpre and Cpost are closed under composition,
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that is,

α ∈ Cpre(S0, UR0), α
′ ∈ Cpre(T0, V S0)

=⇒ (idV ⊗ α) ◦ α′ ∈ Cpre(T0, V UR0)

and

β ∈ Cpost(UR1, S1), β
′ ∈ Cpost(V S1, T1)

=⇒ β′ ◦ (idV ⊗ β) ∈ Cpost(V UR1, T1);

(c) the sets Cpre(S0, UR0) and Cpost(UR1, S1) are con-
vex.

Further conditions may be needed to ensure convexity,
such as

(d) Cpre/post are closed under appending/discarding a
classical register, more precisely, that we have
|i⟩⟨i| ⊗ (·) ∈ Cpre(R0, UR0) and

∑
i⟨i| · |i⟩ ⊗ Φi ∈

Cpost(UV R1, S1) if Φi ∈ Cpost(V R1, S1), ∀i.
We will write

F = Cpre ∗ Cpost

to emphasize that the morphisms in F have this form.
This is a natural assumption in the framework of resource
theories, where Cpre = Cpost = O is the set of free
channels [36], [18]. We will study the subcategory of
LOCC superchannels, where the objects are spaces of
bipartite channels and O = CLOCC. We may similarly
consider the category of restricted PPT superchannels,
where O = CPPT, or restricted separable superchannels
where O = CSEP, [18], [19].

We will use the decomposition F = Cpre ∗ Cpost
to characterize δF by success probabilities in modified
guessing games of the form depicted in the diagram

ρi

α

Φ Mi′

R0

R1

U

A′′

0
A′′

1
i′E

λi

Here E = {λi, ρi} is an ensemble on an admissible
space R = R0R1, a preprocessing α can be chosen from
Cpre(R0, UA

′′
1), M is a measurement chosen from a family

Mpost(UA
′′
1R1) of allowed measurements and A′′

0 , A′′
1 are

the input and output spaces of Φ, which is either Φ1 or
Φ2. The optimal success probability with this scheme is

P
Cpre(R0,·A′′

0 ),Φ,Mpost
succ (E) :=

sup
α∈Cpre,M∈Mpost

Psucc((α⊗ id)(E), (Φ∗ ⊗ id)(M)),

here Cpre(R0, ·A′′
0) indicates that we allow any ancilla U

that is permitted by the structure of Cpre and Mpost. We
will also assume that the family Mpost is closed under

preprocessings by Cpost, more precisely, for any R,S, T
admissible in F and any ancillas U, V , we have

β ∈ Cpost(UR1, S1), M ∈ Mpost(V S1T1)

=⇒ (idV T1 ⊗ β∗)(M) ∈ Mpost(UV R1T1).

Theorem 4. Let F = Cpre∗Cpost and let Mpost be a family
of measurements closed under preprocessings by Cpost. If
δF(Φ1∥Φ2) ≤ ϵ, then for any R = R0R1 admissible in F
and any ensemble E on R0R1 we have

P
Cpre(R0,·A′

0),Φ2,Mpost
succ (E)

≤ P Cpre(R0,·A0),Φ1,Mpost
succ (E) + ϵ

2
Psucc(E).

Moreover, if the Bell measurement BA
′
1 ∈ Mpost(A

′
1A

′
1)

and for any measurement M ∈ Mpost(·A1A
′
1) with d2A′

1

outcomes we have βM ∈ Cpost, then the converse also
holds, with R0 ≃ A′

0 and R1 ≃ A′
1.

Proof. Assume that there is some Λ ∈ F̄(A,A′) such that
∥Λ(Φ1)−Φ2∥⋄ ≤ ϵ. Let E be an ensemble on R0R1 and
let α ∈ Cpre(R0, UA

′
0), M ∈ Mpost(UA

′
1R1). Then

∥Λ(Φ1) ◦ α− Φ2 ◦ α∥⋄ = ∥(Λ(Φ1)− Φ2) ◦ α∥⋄ ≤ ϵ

and using Corollary 1, we have

Psucc((α⊗ id)(E), (Φ∗
2 ⊗ id)(M))

≤ Psucc((α⊗ id)(E), (Λ(Φ1)
∗⊗ id)(M))+

ϵ

2
Psucc(E).

Let Λ = Λpre∗Λpost, with Λpre ∈ Cpre(A′
0, V A0), Λpost ∈

Cpost(V A1, A
′
1). Then α′ = Λpre ◦ α ∈ Cpre(R0, UV A0)

and M ′ = Λ∗
post(M) ∈ Mpost(UV A1R1), so that

Psucc((α⊗ id)(E), (Λ(Φ1)
∗ ⊗ id)(M))

= Psucc((α
′ ⊗ id)(E), (Φ∗

1 ⊗ id)(M ′))

≤ P Cpre(R0,·A0),Φ1,Mpost
succ .

We now prove the converse, assuming the two additional
conditions. Suppose that the inequality holds with R0 ≃
A′

0 and R1 ≃ A′
1. Let ρ ∈ S(A′

0A
′
1) and let E = EA

′
1

ρ be
as in Section III-A7, then by (13), we have

⟨ρ,Φ2⟩ = dA′
1
Psucc(E , (Φ∗

2 ⊗ id)(BA
′
1))

≤ dA′
1
P

Cpre(A
′
0,·A

′
0),Φ2,Mpost

succ (E)

≤ dA′
1
P

Cpre(A
′
0,·A0),Φ1,Mpost

succ (E) + ϵ

2
dA′

1
Psucc(E),

here we have used that idA′
0
∈ Cpre(A′

0, A
′
0) and BA

′
1 ∈

Mpost(A
′
1A

′
1). Choose any α ∈ Cpre(A′

0, UA0) and
M ∈ Mpost(UA1A

′
1) and consider the success probabil-

ity Psucc((α ⊗ id)(E), (Φ∗
1 ⊗ id)(M)). Since the channel

Φ1 ◦ α acts only on A′
0, we wee that

Psucc((α⊗ id)(E), (Φ∗
1 ⊗ id)(M)) = Psucc(E

A′
1

ρ̃ ,M),

with ρ̃ = (Φ1 ◦ α ⊗ id)(ρ). By (14) and the assumption,
we have β = βM ∈ Cpost(UA1, A

′
1) and

dA′
1
Psucc(E

A′
1

ρ̃ ,M) = ⟨ρ̃, β⟩
= ⟨(Φ1 ◦ α⊗ id)(ρ), β⟩ = ⟨ρ,Θ(Φ1)⟩,
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with Θ = α∗β ∈ F(A,A′). Using the definition of ∥·∥FA′|A
and Lemma 2 we now obtain

⟨ρ,Φ2⟩ ≤ ∥ρ ∗ CΦ1
∥FA′|A +

ϵ

2
∥ρ∥⋄A′

1|A′
0
.

By the condition (ii) in Theorem 3 this finishes the proof.
□

C. Comparison by postprocessings

Comparison of quantum channels by postprocessings
was already considered in [10] (see also [37] for a longer
version with complete proofs), where quantum versions of
the randomization theorem (Example 6) were studied and
the results below were obtained. We consider this case for
completeness, just to show that they fit into the setting of
Theorem 3.

Assume that the channels Φ1 ∈ C(A0, A1) and Φ2 ∈
C(A0, A

′
1) have the same input space A0. The postpro-

cessing deficiency of Φ1 with respect to Φ2 was defined
in [10] as

δpost(Φ1∥Φ2) := min
Λ∈C(A1,A′

1)
∥Λ ◦ Φ1 − Φ2∥⋄.

Let F be the subcategory with admissible spaces of the
form A0R1, with a fixed input system A0, and morphisms
L(A0, R1) → L(A0, S1) given by postprocessings Φ 7→
Λ◦Φ for some Λ ∈ C(R1, S1). The sought approximation
now becomes

Φ1 Λ
A0 A1

A
′

1 ≈ Φ2

A0
A

′

1

It is clear that δpost(Φ1∥Φ2) = δF(Φ1∥Φ2) and we may
apply the results of the previous section. Note also that
F = Cpre ∗ Cpost, where Cpre = {idA0

} and Cpost = C.

Theorem 5. Let Φ1 ∈ C(A0, A1), Φ2 ∈ C(A0, A
′
1) and

let ϵ ≥ 0. The following are equivalent.
(i) δpost(Φ1∥Φ2) ≤ ϵ;

(ii) For any ancilla R1 and ρ ∈ S(A0R1), we have

∥(Φ2 ⊗ idR1)(ρ)∥⋄R1|A′
1

≤ ∥(Φ1 ⊗ idR1)(ρ)∥⋄R1|A1
+
ϵ

2
∥ρ∥⋄R1|A0

;

(iii) For any ancilla R1 and any ensemble E on A0R1,
we have

Psucc((Φ2 ⊗ idR1)(E))

≤ Psucc((Φ1 ⊗ idR1
)(E)) + ϵ

2
Psucc(E).

Moreover, in (ii) and (iii), it is enough to use R1 ≃ A′
1.

Proof. Note that for any ρ ∈ S(A0R1) we have ρ∗CΦi
=

(Φi ⊗ id)(ρ) (see Remark 3). It follows that

∥ρ ∗ CΦ2∥FA0R1|A0A′
1
= sup

Λ∈C(A′
1,R1)

⟨(Φ2 ⊗ id)(ρ),Λ⟩

= ∥(Φ2 ⊗ id)(ρ)∥⋄R1|A′
1

and similarly for Φ1. This shows the equivalence (i) ⇐⇒
(ii) and the fact that we may assume R1 ≃ A′

1, by a direct

application of Theorem 3. The rest of the proof follows by
Theorem 4 with Mpost being the set of all measurements.

□

As we have seen, the guessing games have a simple
form here, with no preprocessings and no restrictions on
the measurement M :

ρi
Φ

Mi′

A0

R1

E
λi

i′

Note that classical-to-quantum channels can be iden-
tified with statistical experiments, see Example 5 in the
more general GPT case. This provides another possi-
ble characterization for classical-to-quantum channels, in
terms of guessing games with an inconclusive outcome,
where no ancilla is needed.

For ϵ = 0, we obtain an ordering on the set of channels
that was treated also in [6], [7], [5], [8]. It was observed
in [2] that in this case we may assume that the ensembles
in (iii) consist of separable states, see [37, Theorem 2] for
a proof close to the present setting. Equivalently, we may
restrict to separable states in (ii). This also corresponds to
the results of [8].

For similar results in the infinite dimensional case, see
[23].

D. Comparison by preprocessings

This time the admissible spaces for F are R0A1

with fixed output system A1 and the morphisms in
F(R0A1, S0A1) are restricted to preprocessings Φ 7→ Φ◦Λ
for some Λ ∈ C(S0, R0), so our problem has the form

Λ Φ1

A
′

0 A0 A1 ≈ Φ2

A
′

0 A1

Here F = Cpre ∗ Cpost, where Cpre = C and Cpost =
{idA1

}. We have

δF = δpre(Φ1∥Φ2) := min
Λ∈C(A′

0,A0)
∥Φ1 ◦ Λ− Φ2∥⋄.

We will also consider the corresponding F-distance, which
will be denoted by

∆pre := max{δpre(Φ1∥Φ2), δpre(Φ2∥Φ1)}.

A part of the following theorem was proved in [11].

Theorem 6. Let Φ1 ∈ C(A0, A1), Φ2 ∈ C(A′
0, A1) and

let ϵ ≥ 0. The following are equivalent.

(i) δpre(Φ1∥Φ2) ≤ ϵ;
(ii) For any ancilla R0 and ρ ∈ S(R0A1), we have

∥(idR0 ⊗ ΦT
2 )(ρ)∥⋄A′

0|R0

≤ ∥(idR0 ⊗ ΦT
1 )(ρ)∥⋄A0|R0

+
ϵ

2
∥ρ∥⋄A1|R0

,
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(iii) For any ancilla R0, any ensemble E on R0A1 and
any fixed measurement M on A1A1, we have

P
C(R0,A

′
0),Φ2,{M}

succ (E)

≤ P C(R0,A0),Φ1,{M}
succ (E) + ϵ

2
Psucc(E).

Moreover, in (ii) and (iii), it is enough to use R0 ≃ A′
0.

The guessing games in (iii) are depicted in the diagram

ρi

α Φ

Mi′

R0

R1

A1

i′E
λi

Here the preprocessing α can be chosen freely and the
measurement M is fixed.

Proof. The equivalence (i) ⇐⇒ (ii) follow from Thm. 3
and

⟨ρ,Φ ◦ α⟩ = (ρ ∗ CΦ) ∗ Cα = ⟨(idR0
⊗ ΦT)(ρ), α⟩

(see Remark 3). In diagram:

ρ
α Φ

R0

A1

A1

= ρ
α

Φ
T

R0

A1

The implication (i) =⇒ (iii) follows by Theorem 4,
with Mpost = {M}. To finish the proof, we put M = BA1

and observe that we have βM = idA1 ∈ Cpost.
□

Let us consider the more general situation when F =
O∗{idA1} where O(S0, R0) ⊂ C(S0, R0) is some suitable
subset. Then

δF(Φ1∥Φ2) = inf
Λ∈O(A′

0,A0)
∥Φ1 ◦ Λ− Φ2∥⋄.

It can be seen as in the above proof that we have
δF(Φ1∥Φ2) ≤ ϵ if and only if for any ensemble E on
A′

0A1 and any fixed measurement M on A1A1 we have

Psucc((Φ2 ⊗ id)(E),M)

≤ sup
Λ∈O

Psucc((Φ1 ◦ Λ⊗ id)(E),M) +
ϵ

2
Psucc(E).

Let now Φ1 = idA1
, Φ2 = Φ ∈ C(A0, A1), then

δF(id∥Φ) = inf
Λ∈O(A0,A1)

∥Λ− Φ∥⋄,

that is, the distance of Φ to the set O. If O is the set
of free channels in a resource theory for quantum chan-
nels, then this distance is a resource measure, [16]. The
above considerations now give the following operational
characterization of this distance.

Corollary 2. infΛ∈F(A0,A1) ∥Λ − Φ∥⋄ ≤ ϵ if and only if
for any ensemble E on A0A1 and any measurement M on
A1A1 we have

Psucc((Φ⊗ id)(E),M)

≤ sup
Λ∈O

Psucc((Λ⊗ id)(E),M) +
ϵ

2
Psucc(E).

1) ∆pre as the distance of ranges: In this paragraph, we
obtain a characterization of δpre and the pseudo-distance
∆pre in terms of the ranges of channels. Recall that the
range of a channel Φ ∈ C(A0, A1) is defined as

R(Φ) = Φ(S(A0)).

Our first result in this direction is based on the following
simple lemma. The proof is rather standard and is included
for the convenience of the reader.

Lemma 3. Let σ ∈ S(AR) and let Z ∈ B(R) be such
that σR = TrA[σ] = ZZ∗. Then there is some channel
β ∈ C(R,A) such that σ = (β ⊗ id)(|ZT⟩⟩⟨⟨ZT|).

Proof. Let p = supp(σ) and let pR = supp(σR), then
p ≤ I ⊗ pR and we may put

C := (I⊗U∗σ
−1/2
R )σ(I⊗σ−1/2

R U)+d−1
A IA⊗(I−U∗pRU),

where U ∈ B(R) is a unitary such that Z = σ
1/2
R U and the

inverse is restricted to pR. Since C ≥ 0 and TrA[C] = IR,
there is some β ∈ C(R,A) such that C = Cβ . We have

σ = (I ⊗ Z)Cβ(I ⊗ Z∗) = (β ⊗ id)(|ZT⟩⟩⟨⟨ZT|).

□

Corollary 3. Let Φ1 ∈ C(A0, A1), Φ2 ∈ C(A′
0, A1). Then

δpre(Φ1∥Φ2)

= sup
ξ∈S(A′

0R)

inf
σ∈S(A0R)
σR=ξR

∥(Φ1 ⊗ id)(σ)− (Φ2 ⊗ id)(ξ)∥1

where R ≃ A′
0.

Proof. Let Λ ∈ C(A′
0, A0) be such that ∥Φ1 ◦Λ−Φ2∥⋄ ≤

ϵ. Then for any ξ ∈ S(A′
0R), we have

∥(Φ1 ◦Λ⊗ id)(ξ)−(Φ2⊗ id)(ξ)∥1 ≤ ∥Φ1 ◦Λ−Φ2∥⋄ ≤ ϵ.

Put σ = (Λ⊗ id)(ξ), then we also have σR = ξR, so that
the supremum on the right hand side is upper bounded by
δpre. For the converse, let ρ ∈ S(A′

0A1). By Lemma 1,
there is some V ∈ B(A′

0), Tr [V V
∗] = 1 and an element

G ∈ B+(A
′
0A1) such that (recall that χV = V · V ∗)

ρ = (χV ⊗ id)(G), ∥ρ∥⋄A1|A′
0
= ∥G∥.

Using (5) and (6), we have

⟨ρ,Φ2⟩ = ⟨(χV ⊗ id)(G),Φ2⟩ = ⟨G,Φ2 ◦ χV ⟩
= Tr [CΦ2◦χV

G̃] = Tr [(Φ2 ⊗ id)(|V ⟩⟩⟨⟨V |)G̃],
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where G̃ = U∗
A1,A′

0
(GT). Note that ξ := |V ⟩⟩⟨⟨V | ∈

S(A′
0A

′
0), with Tr1[ξ] = V T(V T)∗. Assume that there

is some σ ∈ S(A0A
′
0) with σA′

0
= Tr1[ξ] and

∥(Φ2 ⊗ id)(ξ)− (Φ1 ⊗ id)(σ)∥1 ≤ ϵ.

By Lemma 3, there is some channel β ∈ C(A′
0, A0) such

that σ = (β ⊗ id)(|V ⟩⟩⟨⟨V |). We now have

⟨ρ,Φ2 − Φ1 ◦ β⟩ = ⟨G, (Φ2 − Φ1 ◦ β) ◦ χV ⟩
= Tr [((Φ2 ⊗ id)(ξ)− (Φ1 ⊗ id)(σ))G̃]

≤ 1

2
∥(Φ2 ⊗ id)(ξ)− (Φ1 ⊗ id)(σ)∥1∥G∥

≤ ϵ

2
∥ρ∥⋄A1|A′

0
,

here the inequalities follow from the fact that G̃ ∈
B+(A1A

′
0), properties of the trace norm ∥ · ∥1 and ∥G̃∥ =

∥G∥ = ∥ρ∥⋄A1|A′
0
. From Theorem 3 (ii), we obtain that

δpre(Φ1∥Φ2) ≤ ϵ.
□

Using the above corollary, we immediately obtain that
for any R with dR ≥ dA′

0
, δpre(Φ1∥Φ2) = 0 is equivalent

to the inclusion

R(Φ2 ⊗ idR) ⊆ R(Φ1 ⊗ idR).

In the case of q-c channels, that is for measurements
(POVMs), this result was proved in [38], where also a
counterexample was given, showing that inclusion of the
ranges of the channels is not enough for existence of even
a positive preprocessing, so that tensoring with idR is
necessary in general.

We next show that the pseudo-distance ∆pre can be
expressed as a distance of ranges. Recall that for two sub-
sets S, T of a metric space with metric m, the Hausdorff
distance is defined by

mH(S, T ) = max{sup
s∈S

inf
t∈T

m(s, t), sup
t∈T

inf
s∈S

m(s, t)}.

A natural choice for a metric on the set of states would
be the trace distance

∥σ − ρ∥1 = Tr |σ − ρ|, σ, ρ ∈ S(A1R).

As it turns out, we will have to add a term for the distance
of the restrictions to R. For σ1, σ2 ∈ S(R), let p(σ1, σ2)
denote the purified distance

p(σ1, σ2) =
√
1− F (σ1, σ2)2

= inf
V1V

∗
1 =σ1,

V2V
∗
2 =σ2

1

2
||V T

1 ⟩⟩⟨⟨V T
1 | − |V T

2 ⟩⟩⟨⟨V T
2 |∥1,

where F denotes the fidelity F (σ1, σ2) = ∥σ1/2
1 σ

1/2
2 ∥1.

Corollary 4. For Φ1 ∈ C(A0, A1) and Φ2 ∈ C(A′
0, A1),

we have

∆pre(Φ1,Φ2) = mH(R(Φ1 ⊗ idR),R(Φ2 ⊗ idR)),

where dR = max{dA0 , dA′
0
} and mH is the Hausdorff

distance with respect to the metric m in S(A1R), given
as

m(ξ, σ) = ∥ξ − σ∥1 + 2p(ξR, σR)

Proof. From Corollary 3, we easily obtain that
mH(R(Φ1 ⊗ idR),R(Φ2 ⊗ idR)) ≤ ∆pre(Φ1,Φ2).
For the converse, put

ϵ := mH(R(Φ1 ⊗ idR),R(Φ2 ⊗ idR)).

The idea of the proof is similar to the previous proof.
Let ρ ∈ S(RA1), α ∈ C(R,A′

0) and let V and G be
connected to ρ as in the proof of Corollary 3. Let also
ξ := (α ⊗ id)(|V ⟩⟩⟨⟨V |) ∈ S(A′

0R). Then there is some
σ ∈ S(A0R) such that

m((Φ2 ⊗ id)(ξ), (Φ1 ⊗ id)(σ)) ≤ ϵ.

Note that unlike the previous proof, we may now have
ξR ̸= σR. Let W ∈ B(R) be such that WT(WT)∗ = σR
and

2p(ξR, σR) = ∥|V ⟩⟩⟨⟨V | − |W ⟩⟩⟨⟨W |∥1

(such W always exists since ∥ · ∥1 is unitarily invariant).
By Lemma 3, there is a channel γ ∈ C(R,A0) such that

σ = (γ ⊗ id)(|W ⟩⟩⟨⟨W |) = Cγ◦χW
.

We now have

⟨ρ,Φ2 ◦ α− Φ1 ◦ γ⟩ = ⟨G, (Φ2 ◦ α− Φ1 ◦ γ) ◦ χV ⟩
= ⟨G,Φ2 ◦ α ◦ χV − Φ1 ◦ γ ◦ χW ⟩

+ ⟨G,Φ1 ◦ γ ◦ (χW − χV )⟩
= Tr [((Φ2 ⊗ id)(ξ)− (Φ1 ⊗ id)(σ))G̃]

+ Tr [(Φ1 ◦ γ ⊗ id)(|W ⟩⟩⟨⟨W | − |V ⟩⟩⟨⟨V |)G̃]

≤ 1

2
∥ρ∥⋄A1|R

(
∥(Φ2 ⊗ id)(ξ)− (Φ1 ⊗ id)(σ)∥1

+ m̃B(ξR, σR)

)
≤ ϵ

2
∥ρ∥⋄A1|R.

The last inequality implies that δpre(Φ1∥Φ2) ≤ ϵ and we
similarly obtain that also δpre(Φ2∥Φ1) ≤ ϵ.

□

E. Comparison of bipartite channels by LOCC superchan-
nels

In this section, the objects in F are spaces of bipartite
quantum channels L(A0B0, A1B1) and the morphisms are
restricted to LOCC superchannels, that is,

F = CLOCC
2 := CLOCC ∗ CLOCC

where CLOCC is the set of A|B LOCC channels. To
be more precise, in this case the admissible spaces are
of the form RARB = RA0 R

B
0 R

A
1 R

B
1 and the mor-

phisms in F(RARB , SASB) have the form Λpre ∗ Λpost

with Λpre ∈ CLOCC(S
A
0 |SB0 , UARA0 |RB0 UB), Λpost ∈

CLOCC(U
ARA1 |RB1 UB , SA1 |SB1 ), so that also the ancilla
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consists of two parts U = UAUB . The task becomes to
simulate the channel Φ2 as

A
′

0

B
′

0

U
A

A0

B0

U
B

A1

B1

A
′

1

B
′

1

A

B

Λpre Φ1 Λpost

LOCC LOCC

In this case,

δF(Φ1∥Φ2) = δLOCC(Φ1∥Φ2) := inf
Λ∈CLOCC

2

∥Λ(Φ1)−Φ2∥⋄

is the LOCC conversion distance Φ1 → Φ2. We will
use the notation ∥ρ∥2−LOCC

S|R := ∥ρ∥FS|R for ρ ∈
B+(R

ARBSASB).

Theorem 7. Let Φ1 ∈ C(A0B0, A1B1) and Φ2 ∈
C(A′

0B
′
0, A

′
1B

′
1), ϵ ≥ 0. The following are equivalent.

(i) δLOCC(Φ1∥Φ2) ≤ ϵ;
(ii) for any spaces RARB and any ρ ∈ S(RARB), we

have

∥ρ⊗ CΦ2
∥2−LOCC
RARB |A′B′

≤ ∥ρ⊗ CΦ1∥2−LOCC
RARB |AB +

ϵ

2
∥ρ∥⋄RA

1 R
B
1 |RA

0 R
B
0

(iii) For any spaces RARB and any ensemble E on
RARB , we have

P
CLOCC(RA

0 R
B
0 ,·A

′
0B

′
0·)Φ2,MLOCC

succ (E)

≤ P
CLOCC(RA

0 R
B
0 ,·A0B0·),Φ1,MLOCC

succ (E)+ ϵ

2
Psucc(E)

where MLOCC is the set of LOCC measurements.
Moreover, in (ii) and (iii) it is enough to take RA0 ≃ A′

0,
RA1 ≃ A′

1, RB0 ≃ B′
0, RB1 ≃ B′

1.

The guessing games in (iii) have the form

RA

1

RA

0

RB

0

RB

1

UA

UB

i′E
λi

A

B

ρi Φα Mi′

LOCC

LOCC

Here α can be any LOCC preprocessing channel and
M any LOCC measurement.

Proof. The equivalence of (i) and (ii) is proved exactly as
before from Theorem 3 and Remark 3. To prove the con-
dition (iii), we invoke Theorem 4 with Mpost = MLOCC,
this is obviously closed under CLOCC. To prove the two
additional conditions in Theorem 4, observe that the group
of generalized Pauli unitaries on A′

1B
′
1 has the form

{UA
′
1B

′
1

x,y = U
A′

1
x ⊗UB

′
1

y , x = 1, . . . , d2A′
1
, y = 1, . . . , d2B′

1
}

and we have B
A′

1B
′
1

x,y = B
A′

1
x ⊗ B

B′
1

y ∈
MLOCC(A

′
1A

′
1|B′

1B
′
1). It is now enough to show that

for any measurement M ∈ MLOCC(A
′
1U

AA1|B1U
BB′

1)
with outcomes labeled by x, y we have
βM ∈ CLOCC(U

AA1|B1U
B , A′

1|B′
1). Recall that

βM is a channel associated with the instrument {βMx,y},
where the operations βMx,y have the form

Mx,y

A′

1

B′

1

A′

1

B′

1

βM
x,y

TA

TB

U
A′

1

x

U
B′

1

y

here TA = UAA1 and TB = B1U
B . It is quite obvious

that βM is LOCC if M is.
□

Note that we have a similar situations for example
for restricted PPT or SEP superchannels, where Cpre =
Cpost = CPPT or CSEP.

F. Comparison of bipartite channels by partial superchan-
nels

In this section, the objects of F are again spaces of
bipartite channels, but this time the morphisms are given
by applying arbitrary superchannels on the A part, in
diagram

Λpre

Φ1

Λpost
A

′

0 A0

B0

A1

B1

A
′

1

≈ Φ2

A
′

0

B
′

0

A
′

1

B
′

1

More precisely, the admissible spaces for F are of the
form RB, where R = R0R1 are arbitrary and B = B0B1

with B0, B1 fixed. The morphisms F(RB,SB) in F are
given by elements of C2(R,S). Here we have F = Cpre ∗
Cpost with Cpre = C ⊗ {idB0

} and Cpost = C ⊗ {idB1
}.
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For Φ1 ∈ C(A0B0, A1B1) and Φ2(A
′
0B0, A

′
1B1) we

denote

δA|A′(Φ1∥Φ2) := δF(Φ1∥Φ1)

= min
Θ∈C2(A,A′)

∥(Θ⊗ idB)(Φ1)− Φ2∥⋄.

Theorem 8. Let Φ1 ∈ C(A0B0, A1B1), Φ2 ∈
C(A′

0B0, A
′
1B1) and let ϵ ≥ 0. The following are equiva-

lent.
(i) δA|A′(Φ1∥Φ2) ≤ ϵ;

(ii) For any spaces R0, R1 and ρ ∈ S(R0B0R1B1), we
have

∥ρ ∗ CΦ2
∥2⋄R|A′ ≤ ∥ρ ∗ CΦ1

∥2⋄R|A +
ϵ

2
∥ρ∥⋄R1B1|R0B0

;

(iii) For any spaces R0, R1, k, l ∈ N, any ensemble E
with kl elements on R0B0R1B1, any fixed measure-
ment M ∈ Ml(B1B1), we have

P
C(R0,A

′
0·),Φ2,Mk⊗M

succ (E)

≤ P C(R0,A0·),Φ1,Mk⊗M
succ (E) + ϵ

2
Psucc(E).

Moreover, in (ii) and (iii) it is enough to put R0 ≃ A′
0,

R1 ≃ A′
1.

The guessing games have the form depicted in the
diagram:

ρi,j

α

Φ

Ni′

Mj′

R1

R0

B0

B1

U

B1

i′, j′E
λi,j

Here E = {λi,j , ρi,j}i=1,...,k
j=1,...,l

is an and ensemble of states

on R0B0R1B1 and M ∈ Ml(B1B1) is a fixed measure-
ment. The preprocessing α and the measurement N with
k outcomes can be chosen freely, with no restriction on
the ancilla U .

Proof. As before, the equivalence (i) ⇐⇒ (ii) follows
from Thm. 3 and the definition of the norm ∥ · ∥2⋄, taking
into account Remark 3.

For the implication (i) =⇒ (iii) we use Theorem 4
with Mpost = Mk ⊗M , which is clearly closed under
preprocessings from Cpost. For the converse, let l = d2B1

,
k = d2a′1

and put the fixed measurement to My = BB1
y .

Then BA
′
1B1 = BA

′
1 ⊗ BB1 ∈ Mk ⊗ M = Mpost.

Moreover, any measurement in Mk⊗M on UA1B1A
′
1B1

has the form Ñ = N ⊗BB1 for some N ∈ Mk(UA1A
′
1).

The channel βÑ ∈ C(UA1B1, A
′
1B1) clearly satisfies

βÑ = βN ⊗ βBB1
= βN ⊗ idB1

∈ Cpost.

The proof is finished by the second part of Theorem 4.
□

The case ϵ = 0 was also treated in [9]. By a careful
comparison of the results there to the present setting, one
can see that Theorem 7 in [9] corresponds to our condition
(ii), but restricted to ρ of the form

ρ =

d2B0∑
x=1

d2B1∑
y=1

|x⟩⟨x| ⊗ Ey ⊗ Λy|x,

where |x⟩⟨x| is a normalized rank 1 basis of B0, Ey is
an informationally complete POVM on B1 and Λy|x ∈
L+(R0, R1) is such that

∑
y Λy|x is a channel for any x.

The possibility of such a restriction seems specific to the
case ϵ = 0, as it is basically a consequence of the fact that
to check equality of two channels it is enough to input
some basis states and measure by an IC POVM. Apart
from some special cases (e.g. the one treated below), this
cannot be extended to ϵ > 0 since in general one needs
entangled states to attain the diamond norm.

G. Classical simulability of measurements

As a further application, we investigate the problem
of classical simulability of measurements. In this prob-
lem, two sets of measurements M = {M1, . . . ,Mk},
M i ∈ Ml(C), i = 1, . . . , k and N = {N1, . . . , Nm},
Ny ∈ Mn(C), y = 1, . . . ,m are given. We will say that
M can simulate N if all elements in N can be obtained
as convex combinations of postprocessings of elements in
M, [4]. It can be seen that we may exchange the order
of convex combinations and postprocessings, and always
obtain the same notion of simulability. Our aim is to
study an approximate version with respect to some suitable
norm. In particular, we will show that this problem can be
put into the setting of Section III-F: we represent M and
N by bipartite channels and express the simulations as
applications of superchannels to one of the parts.

We will need the following type of guessing games.
Let E = {λx, ρx}nx=1 be an ensemble of states of A, but
assume that only one fixed measurement M ∈ Ml(A)
can be performed and the true state has to be guessed
using its outcome. Any guessing procedure is described by
conditional probabilities {p(x|j)}, giving the probability
of guessing x ∈ {1, . . . , n} if j ∈ {1, . . . , l} was
measured. This defines a measurement N ∈ Mn(A) given
as

Nx =
∑
j

p(x|j)Mj , x = 1, . . . , n.

Such measurement is a postprocessing of M . The average
probability of a correct guess using this procedure is

Psucc(E , N) = Psucc(E ,M, p) :=
∑
x,j

λxp(x|j)Tr [ρxMj ]

and the maximal success probability is denoted by (cf. [3])

PQsucc(E ,M) := sup
{p(x|j)}

Psucc(E ,M, p).
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Any set of conditional probabilities can be identified with
the classical-to-classical (c-c) channel in C(S,R), dS = l,
dR = n determined by the Choi matrix

Cp :=
∑
x,j

p(x|j)|x⟩⟨x| ⊗ |j⟩⟨j|.

This channel will be denoted by p. We then have ΦN =
p◦ΦM for the q-c channels given by the measurements M
and N . Moreover, for any α ∈ C(S,R), there are condi-
tional probabilities {p(x|j) := ⟨x|α(|j⟩⟨j|)|x⟩}, such that

⟨(ΦM ⊗ id)(ρE), α⟩ = ⟨ρE , α ◦ ΦM ⟩
= ⟨ρE , p ◦ ΦM ⟩ = Psucc(E ,M, p), (16)

This proves the following result.

Lemma 4. For any ensemble E on A and M ∈ MdS (A),

PQsucc(E ,M) = ∥(ΦM ⊗ id)(ρE)∥⋄S|A = Psucc(ΦM (E)).

Let now M and N be sets of measurements as above.
By definition, M can simulate N if for each Ny ∈ N there
are probabilities q(i|y) such that

ΦNy =
∑
i

q(i|y)pi,y ◦ ΦMi

for some c-c channels pi,y determined by sets of con-
ditional probabilities {pi,y(x|j), x = 1, . . . , n, j =
1, . . . , l}, i = 1, . . . , k, y = 1, . . . ,m. That is,

Ny
x =

∑
i,j

p(i, x|j, y)M i
j , (17)

wfor x = 1, . . . , n,, y = 1, . . . ,m, here p(i, x|j, y) :=
q(i|y)pi,y(x|j) are conditional probabilities. Let ΦM be a
channel in C(A0C,A1), dA0

= k, dA1
= l with the Choi

matrix

CM :=
∑
i,j

|j⟩⟨j| ⊗ |i⟩⟨i| ⊗ (M i
j)

T.

Note that ΦM is a bipartite channel as in the setting of
Theorem 8, with B0 = C and B1 = 1, moreover, the
first input and the output of ΦM is classical. Similarly,
N is represented by the channel ΦN ∈ C(A′

0C,A
′
1), with

dA′
0
= m, dA′

1
= n. It can be easily checked that (17) can

be expressed as
Cp ∗ CM = CN,

where p ∈ C(A′
0A1, A0A

′
1) is the c-c channel given by

{p(i, x|j, y)}. Using (4), we ca see that p is a superchannel
if and only if there are conditional probabilities {q(i|y)}
such that∑

x

p(x, i|y, j) = q(i|y), ∀i, y, ∀j.

By putting pi,y(x|j) := q(i|y)−1p(x, i|y, j) if q(i|y) > 0
and choosing any conditional probabilities for pi,y other-
wise, we obtain the following result.

Lemma 5. A c-c channel p ∈ C(A′
0A1, A0A

′
1) is a

superchannel if and only if there are conditional prob-
abilities {pi,y(x|j)} and {q(i|y)}, with i = 1, . . . , dA0

,
j = 1, . . . , dA1

, x = 1, . . . , dA′
1
, y = 1, . . . , dA′

0
such that

p(x, i|y, j) = q(i|y)pi,y(x|j).

We obtain that N is simulable by M if and only if ΦN =
p(ΦM) for some c-c superchannel p, in diagram

ΦN

A
′

0

C

A
′

1

=

Λpre

ΦM

Λpost

A
′

0

A0

C

A1

A
′

1

here the double lines denote classical inputs and outputs.
We now introduce the following notion of approximate

simulability: for ϵ ≥ 0, we say that N is ϵ-simulable by
M if M can simulate some set of measurements N′ =
{(M ′)1, . . . , (M ′)m} ⊂ Mn(C) such that

∥ΦN − ΦN′∥⋄ ≤ ϵ.

The next result shows that approximate simulability is
expressed by the conversion distance δA|A′(ΦM∥ΦN).

Proposition 4. Let M = {M1, . . . ,Mk} ⊂ Ml(C), N =
{N1, . . . , Nm} ⊂ Mn(C), ϵ ≥ 0. Let A0, A1, A′

0, A
′
1 be

systems such that dA0
= k, dA1

= l, dA′
0
= m, dA′

1
= n.

Then N is ϵ-simulable by M if and only if

δA|A′(ΦM∥ΦN) ≤ ϵ.

Proof. Assume that N is ϵ-simulable by M. As shown
above, there is some c-c superchannel p ∈ C2(A,A′) such
that ∥p(ΦM) − ΦN∥⋄ ≤ ϵ and hence δA|A′(ΦM∥ΦN) ≤ ϵ.
For the converse, for any system D, let ∆D ∈ C(D,D)
denote the channel that maps any X ∈ B(D) to its
diagonal elements in the basis |i⟩D:

∆D(X) =

dD∑
i=1

⟨i|X|i⟩|i⟩⟨i|.

For any Θ ∈ C2(A,A′), we have

∥Θ(ΦM)− ΦN∥⋄ ≥ ∥∆A′
1
◦ (Θ(ΦM)− ΦN) ◦∆A′

0
∥⋄

= ∥∆A′
1
◦Θ(ΦM) ◦∆A′

0
− ΦN∥⋄,

so that the minimum in δA|A′(ΦM∥ΦN) is attained at some
c-c superchannel p and we have seen that p(ΦM) = ΦN′

for some set N′ of measurements that are simulated by M.
It follows that N is ϵ-simulable by M.

□
We are ready to apply the results of Section III-F and

prove that ϵ-simulability can be characterized by guessing
games. Note that in this case, it is enough to use ensembles
on the system C (so R0 = R1 = 1 in Theorem 8 (iii)).
For M consisting of a single element and ϵ = 0, this result
was proved in [3].
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Corollary 5. Let M and N be sets of measurements as
above, ϵ ≥ 0. Then N is ϵ-simulable by M if and only if
for any ensemble E on C,

max
1≤y≤m

PQsucc(E , Ny) ≤ max
1≤i≤k

PQsucc(E ,M i) +
ϵ

2
Psucc(E).

Proof. We start by expressing the success probabilities
of part (iii) of Theorem 8 for R0 = R1 = 1. Let
E = {λa, ρa} be an ensemble on C. Since B0 = C and
B1 = 1, the guessing games with ΦM can be represented
as in the diagram

σ

ρa
ΦM

Fa′

U

A0

C

A1

a′

E
λa

Here, as a preprocessing, we pick a quantum-classical state
σ ∈ S(UA0) seen as a channel in C(1, SA0) and we also
pick a measurement F on UA1. The success probability
is then by (9)

Psucc(σ ⊗ E ,Φ∗
M(F )) = ⟨ρE ,Θ(ΦM)⟩,

with Θ := σ∗ΦF ∈ C2(A,Q), where Q = Q0Q1, Q0 = 1,
Q1 is the output system of ΦF . Since Θ is obviously
a c-c superchannel, by Lemma 5 there are conditional
probabilities pi(a|j) and probabilities q(i) such that Θ = p
with p(a, i|j) = q(i)pi(a|j). We obtain

⟨ρE ,Θ(ΦM)⟩ = ρE ∗ Cp ∗ CM

=
∑
i

q(i)
∑
j,a

λapi(a|j)Tr [ρaM i
j ]

=
∑
i

q(i)Psucc(E ,M i, pi).

Since any c-c superchannel in C2(A,Q) consists of a
preprocessing and postprocessing of the above form, we
see that

P C(1,·A0),ΦM,M
succ (E) = sup

σ,F
Psucc(σ ⊗ E ,Φ∗

M(F ))

= sup
p∈C2(A,Q)

⟨ρE , p(ΦM)⟩

= sup
q,{pi}

∑
i

q(i)Psucc(E ,M i, pi)

= sup
q

∑
i

q(i)PQsucc(E ,M i)

= max
1≤i≤m

PQsucc(E ,M i),

where the second supremum is taken over all c-c super-
channels. Since we have a similar equality for ΦN, we
obtain the ’only if’ part.

For the converse, let ρ ∈ S(A′
0CA1). It is easy to

see from the shape of the Choi matrix CN that there

are probabilities λ(y), conditional probabilities µ(x|y) and
states ρyx ∈ S(C) such that

⟨ρ,ΦN⟩ = ρ ∗ CN =
∑
y

λ(y)
∑
x

µ(x|y)Tr [ρyxNy
x ]

=
∑
y

λ(y)Psucc(Ey, Ny),

here Ey = {µ(x|y), ρyx}nx=1. For each y, Psucc(Ey, Ny) ≤
PQsucc(Ey, Ny), so that by the assumption, there is some
1 ≤ iy ≤ k and conditional probabilities py(x|j) such that

Psucc(Ey, Ny) ≤ Psucc(Ey,M iy , py) +
ϵ

2
Psucc(Ey).

Put q(i|y) = δi,iy , then q(i|y) are conditional probabilities.
Put p(i, x|y, j) = q(i|y)py(x|j), then p is a c-c superchan-
nel in C2(A,A′). It can be easily computed that

⟨ρ, p(ΦM)⟩ = ρ ∗ Cp ∗ CM

=
∑
i,j,x,y

λ(y)µ(x|y)Tr [ρyxM i
j ]p(i, x|y, j)

=
∑
y,x,j

λ(y)µ(x|y)Tr [ρyxM
iy
j ]py(x|j)

=
∑
y

λ(y)Psucc(Ey,M iy , py)

It follows that

⟨ρ,ΦN⟩ ≤ ⟨ρ, p(ΦM)⟩+
ϵ

2

∑
y

λ(y)Psucc(Ey).

Let now F y ∈ Mn(C) be such that Psucc(Ey) =
Psucc(Ey, F y) and let F = {F 1, . . . , Fm}. As we have
seen before,∑

y

λ(y)Psucc(Ey) =
∑
y

λ(y)Psucc(Ey, F y)

= ⟨ρ,ΦF⟩ ≤ ∥ρ∥⋄A′
1|A′

0C
.

By Theorem 3 (ii), this finishes the proof.
□

IV. CONCLUSION

We have introduced a general framework for com-
parison of channels, in quantum information theory as
well as in the broader setting of GPT. The framework is
based on the category BS, which is a special category
of ordered (finite dimensional) vector spaces, modelled
on the set of channels. In this setting, we defined a
notion of an F-conversion distance δF with respect to a
convex subcategory F and proved a general result giving
an operational characterization of this distance. This result
was then applied to quantum channels, where we proved
that the F-conversion distance can be characterized by a
set of modified conditional min-entropies. In the setting of
quantum resource theories of processes, these quantities
form a complete set of resource monotones. Under some
conditions of the subcategory F, the modified conditional
min-entropies can be obtained by a conic program.
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In the case when elements of F can be characterized
as concatenations Θpre ∗ Θpost with Θpre ∈ Cpre and
Θpost ∈ Cpost for some suitable sets of channels, we
also characterized the F-conversion distance in terms of
success probabilities in some guessing games. We dis-
cussed several choices of such subcategories: postpro-
cessings, preprocessings, LOCC and partial superchannels
on bipartite channels. We also noted that our results
hold for other classes of restricted superchannels, such
as PPT or SEP. As another application, we studied the
problem of approximate classical simulability for sets of
measurements.

The advantage of the general formulation in the GPT
setting of Section II is that our results can be applied not
only to pairs of channels but also to more specialized
networks. In particular, one can study the problem of
converting m copies of a channel to n copies of another,
using parallel or sequential schemes (see also [17]). If the
m copies of a channel, or more generally an m-tuple of
channels are used in parallel, we can treat their tensor
product simply as a channel and some variants of the
present theory may be applied. If we use a sequential
scheme with respect to some fixed ordering, the tensor
product is a special case of an m-comb [20]. Similarly
to 2-combs, spaces of m-combs are also objects of the
category BS, so convertibility in this setting can be treated
using Theorem 2. On the other hand, if there is no fixed
ordering in the use of the channels, then we may see the
tensor product of the channels as a product element in an
object obtained from a symmetric monoidal structure in
BS. Note also that the choice of the subcategory F not
only restricts the allowed transformations (by the choice
of morphisms) but also determines the distance measure
in δF (by the choice of the objects).

This work concerns only the one shot situation, when
the channels in question are used only once. To go beyond
the one shot setting in the general framework, we need
to discuss possible symmetric monoidal structures (tensor
products) in BS, their properties and the corresponding
behaviour of the related norms. Another important direc-
tion is an extension to infinite dimensions. The present
framework strongly depends on the finite dimensional
setting, but some corresponding results for post- and
preprocessings for quantum channels on semifinite von
Neumann algebras were proved in [23].
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