Recoverability of quantum channels via hypothesis testing

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ILAS 2023

Recoverability

Recoverability = possibility to reverse the action of a quantum channel on a set of states $\frac{1}{2}$

- exactly (sufficiency, reversibility) or approximately
- characterized by preservation (or decrease) of some important quantities of quantum information theory.

This talk: quantities related to hypothesis testing

Quantum relative entropy

 ${\cal H}$ a Hilbert space, ${\cal T}({\cal H})$ trace class, ${\cal S}({\cal H})$ density operators

Relative entropy: For
$$\rho, \sigma \in S(\mathcal{H})$$

$$D(\rho \| \sigma) = \begin{cases} \operatorname{Tr} \left[\rho(\log(\rho) - \log(\sigma)) \right], & \operatorname{supp}(\rho) \leq \operatorname{supp}(\sigma) \\ \\ \infty, & \text{otherwise.} \end{cases}$$

Data processing inequality (DPI)

 $D(\Phi(\rho) \| \Phi(\sigma)) \le D(\rho \| \sigma)$

for any quantum channel $\Phi : \mathcal{T}(\mathcal{H}) \to \mathcal{T}(\mathcal{K})$ (CPTP map)

Equality in DPI

Theorem (Petz, 1986, 1988) Let $\rho, \sigma \in S(\mathcal{H}), D(\rho \| \sigma) < \infty$. Then $D(\Phi(\rho) \| \Phi(\sigma)) = D(\rho \| \sigma)$ if and only if there is a recovery channel Ψ :

$$\Psi\circ\Phi(\rho)=\rho,\qquad\Psi\circ\Phi(\sigma)=\sigma.$$

In this case, Φ is sufficient for $\{\rho, \sigma\}$ (related to classical sufficient statistics).

Universal recovery channel

• Petz recovery map: $\Phi_{\sigma} : \mathcal{T}(\operatorname{supp}(\Phi(\sigma))) \to \mathcal{T}(\mathcal{H})$,

$$\Phi_{\sigma}(\cdot) = \sigma^{1/2} \Phi^*(\Phi(\sigma)^{-1/2} \cdot \Phi(\sigma)^{-1/2}) \sigma^{1/2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

•
$$\Phi_{\sigma}$$
 is a channel, $\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$.

Theorem (Petz, 1986, 1988)
Let
$$\rho \in S(\mathcal{H}), D(\rho \| \sigma) < \infty$$
. We have
 $D(\Phi(\rho) \| \Phi(\sigma)) = D(\rho \| \sigma) \iff \Phi_{\sigma} \circ \Phi(\rho) = \rho.$

Structure of sufficient channels

Assume that σ is faithful ($supp(\sigma) = I$).

The set

 $\mathcal{C} = \{\Psi: \mathcal{T}(\mathcal{H}) \to \mathcal{T}(\mathcal{H}) \text{ channel}, \ \Psi(\rho) = \rho, \Psi(\sigma) = \sigma\}$

is a convex, closed semigroup.

• By mean ergodic theorem: there is some $E \in C$, such that

$$E \circ \Phi = \Phi \circ E = E, \qquad \forall \Phi \in \mathcal{C}.$$

• The adjoint E^* is a conditional expectation on $B(\mathcal{H})$: the range of E^* is a subalgebra and we have

 $E^{*}(E^{*}(X)YE^{*}(Z)) = E^{*}(X)E^{*}(Y)E^{*}(Z), \quad X, Y, Z \in B(\mathcal{H}).$

Structure of sufficient channels

 $\mathcal{M}_{\rho,\sigma} := E^*(B(\mathcal{H}))$ is the minimal sufficient subalgebra There are (up to a unitary):

• a decomposition $\mathcal{H}=igoplus_n\mathcal{H}_n^L\otimes\mathcal{H}_n^R$ such that

$$\mathcal{M}_{\rho,\sigma} = \bigoplus_{n} B(\mathcal{H}_{n}^{L}) \otimes I_{\mathcal{H}_{n}^{R}},$$

• states $\sigma_n^R \in S(\mathcal{H}_n^R)$, $\sigma_n^L, \rho_n^L \in S(\mathcal{H}_n^L)$ and (discrete) probability distributions $p = \{p_n\}, q = \{q_n\}$ such that

$$\rho = \bigoplus_{n} p_n(\rho_n^L \otimes \sigma_n^R), \qquad \sigma = \bigoplus_{n} q_n(\sigma_n^L \otimes \sigma_n^R)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

the pair {p, q} the classical part of {ρ, σ}.

Structure of sufficient channels

Theorem

 Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

•
$$\mathcal{M}_{\rho,\sigma} \simeq \mathcal{M}_{\Phi(\rho),\Phi(\sigma)}$$

• the restriction $\Phi^*|_{\mathcal{M}_{\Phi(\rho),\Phi(\sigma)}}$ is an isomorphism onto $\mathcal{M}_{\rho,\sigma}$.

In that case, for any recovery channel $\Psi,$

$$\Psi^*|_{\mathcal{M}_{\rho,\sigma}} = (\Phi^*|_{\mathcal{M}_{\Phi(\rho),\Phi(\sigma)}})^{-1}.$$

This is a strong condition on the structure of the channel.

Recoverability (approximate version)

Theorem (Fawzi, Renner 2015; Wilde 2015; Junge et al. 2018)

There exists a channel $\Phi_{\sigma}^{u} : \mathcal{T}(\mathcal{K}) \to \mathcal{T}(\mathcal{H})$ such that $\Phi_{\sigma}^{u} \circ \Phi(\sigma) = \sigma$ and for any $\rho \in \mathcal{S}(\mathcal{H})$,

$$D(\rho \| \sigma) \ge D(\Phi(\rho) \| \Phi(\sigma)) - 2 \log F(\rho, \Phi_{\sigma}^{u} \circ \Phi(\rho))$$
$$\ge D(\Phi(\rho) \| \Phi(\sigma)) + \frac{1}{4} \| \rho - \Phi_{\sigma}^{u} \circ \Phi(\rho) \|_{1}^{2}.$$

The universal recovery channel Φ_{σ}^{u} can be chosen as

$$\Phi^{u}_{\sigma}(\cdot) = \int_{-\infty}^{\infty} \sigma^{-it} \Phi_{\sigma}(\Phi(\sigma)^{it} \cdot \Phi(\sigma)^{-it}) \sigma^{it} \frac{\pi}{\cosh(2\pi t) + 1} dt.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Other characterization of sufficiency (recoverability)

Equality in DPI and recoverability were studied for other quantities:

- standard *f*-divergences
- max (min) *f*-divergences
- optimized *f*-divergences
- standard (Petz) Rényi divergences
- sandwiched Rényi divergences
- quantum Fisher information

We are interested in quantities related to quantum hypothesis testing (state discrimination).

Quantum hypothesis testing

Suppose $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ are given, one of them is the true state:

- we test the hypothesis $H_0 = \sigma$ against $H_1 = \rho$
- a test: an effect $0 \le T \le I$,

 $\operatorname{Tr}\left[T\omega\right]$ – probability of rejecting H_0 in the state ω

error probabilities:

$$\alpha(T) = \operatorname{Tr}[\sigma T], \qquad \beta(T) = \operatorname{Tr}[\rho(I-T)]$$

• Bayes error probabilities for $\lambda \in [0, 1]$:

$$P_e(\lambda, \sigma, \rho, T) := \lambda \alpha(T) + (1 - \lambda)\beta(T)$$

Quantum Neyman-Pearson lemma

Put
$$P_{s,\pm} := \operatorname{supp}((
ho - s\sigma)_{\pm})$$
, $P_{s,0} := I - P_{s,+} - P_{s,-}$.

A test T is Bayes optimal for $\lambda \in (0,1)$ if and only if

$$T = P_{s,+} + X, \quad 0 \le X \le P_{s,0}, \qquad s = \frac{\lambda}{1-\lambda}$$

and then

$$P_e(\lambda, \sigma, \rho) := \min_{0 \le T \le I} P_e(\lambda, \sigma, \rho, T)$$

= $(1 - \lambda)(1 - \operatorname{Tr} [(\rho - s\sigma)_+])$
= $(1 - \lambda)(s - \operatorname{Tr} [(\rho - s\sigma)_-])$
= $\frac{1}{2}(1 - (1 - \lambda)\|\rho - s\sigma\|_1).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Data processing inequalities

We clearly have for any quantum channel Φ and $\lambda \in [0,1]$:

$$P_e(\lambda, \Phi(\sigma), \Phi(\rho)) \ge P_e(\lambda, \sigma, \rho),$$

or equivalently, for any $s \in \mathbb{R}$:

$$\begin{split} \|\Phi(\rho) - s\Phi(\sigma)\|_{1} &\leq \|\rho - s\sigma\|_{1};\\ \operatorname{Tr}\left[(\Phi(\rho) - s\Phi(\sigma))_{+}\right] &\leq \operatorname{Tr}\left[(\rho - s\sigma)_{+}\right];\\ \operatorname{Tr}\left[(\Phi(\rho) - s\Phi(\sigma))_{-}\right] &\leq \operatorname{Tr}\left[(\rho - s\sigma)_{-}\right]. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equality in DPI

The following are equivalent:

•
$$P_e(\lambda, \Phi(\sigma), \Phi(\rho)) = P_e(\lambda, \sigma, \rho), \lambda \in [0, 1];$$

• $\|\Phi(\rho) - s\Phi(\sigma)\|_1 = \|\rho - s\sigma\|_1, s \in \mathbb{R};$
• $\operatorname{Tr} [(\Phi(\rho) - s\Phi(\sigma))_+] = \operatorname{Tr} [(\rho - s\sigma)_+], s \in \mathbb{R};$
• $\operatorname{Tr} [(\Phi(\rho) - s\Phi(\sigma))_-] = \operatorname{Tr} [(\rho - s\sigma)_-], s \in \mathbb{R};$
• $\Phi^*(Q_{s,+}) = P_{s,+}, s \in \mathbb{R};$
• $\Phi^*(Q_{s,-}) = P_{s,-}, s \in \mathbb{R}.$
($Q_{s,\pm} = \operatorname{supp}((\Phi(\rho) - s\Phi(\sigma))_{\pm}))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• sufficiency/recoverability?

Previous results on equality in DPI

More assumptions are needed:

- equality in DPI for all pairs in a larger set of states,
- or for $\Phi^{\otimes n}$, $\rho^{\otimes n}$ and $\sigma^{\otimes n}$, for all $n \in \mathbb{N}$,
- Φ has commutative range.

For the asymptotic case (quantities related to error exponents):

• equality in DPI for Chernoff or Hoeffding distances implies sufficiency of the channel

Recoverability (approximate case): no results

Blume-Kohout et al., 2010; Ticozzi & Viola, 2010; AJ, 2010, 2012; Luczak, 2015 📑 🗠 🔍

An integral formula for relative entropy

Theorem (Frenkel, arxiv:2208.12194)

For any $\rho, \sigma \in \mathcal{S}(\mathcal{H})$:

$$D(\rho \| \sigma) = \int_{-\infty}^{\infty} \frac{dt}{|t|(1-t)^2} \operatorname{Tr}\left[((1-t)\rho + t\sigma)_{-}\right]$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• proved for $\dim(\mathcal{H}) < \infty$

• extends to infinite dimensions.

An integral formula for relative entropy

A slight reformulation:

For $\mu, \lambda \geq 0$ such that $\mu \sigma \leq \rho \leq \lambda \sigma$:

$$D(\rho \| \sigma) = \int_{\mu}^{\lambda} \frac{ds}{s} \operatorname{Tr} \left[(\rho - s\sigma)_{-} \right] + \log(\lambda) + 1 - \lambda$$

- we may always put $\mu=0$,
- if $\dim(\mathcal{H}) < \infty$: if such λ does not exist, then $D(\rho \| \sigma) = \infty$,
- in general:

$$D(\rho \| \sigma) = \lim_{\lambda \searrow 0} D(\rho \| \lambda \rho + (1 - \lambda)\sigma)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sufficient channels via hypothesis testing

Theorem

Let $\rho, \sigma \in S(\mathcal{H})$ be any states, $\sigma_0 = \frac{1}{2}(\rho + \sigma)$, Φ a channel. The following are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $P_e(\lambda, \Phi(\sigma), \Phi(\rho)) = P_e(\lambda, \sigma, \rho)$, $\lambda \in [0, 1]$;
- $\|\Phi(\rho) s\Phi(\sigma)\|_1 = \|\rho s\sigma\|_1, \ s \in \mathbb{R};$
- $D(\rho \| \sigma_0) = D(\Phi(\rho), \Phi(\sigma_0));$
- $\Phi^u_{\sigma_0} \circ \Phi(\rho) = \rho;$
- Φ is sufficient with respect to $\{\rho, \sigma\}$.

Recoverability via hypothesis testing

We will need a further assumption on ρ, σ :

$$D_H(\rho \| \sigma) := \inf \{ \frac{\lambda}{\mu}, \ \lambda, \mu > 0, \mu \sigma \le \rho \le \lambda \sigma \} < \infty$$

- D_H is the Hilbert projective metric,
- $D_H(\rho \| \sigma) = D_{\max}(\rho \| \sigma) + D_{\max}(\sigma \| \rho)$,
- if $\dim(\mathcal{H}) < \infty,$ the assumption is equivalent to

$$\operatorname{supp}(\rho) = \operatorname{supp}(\sigma),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• if $\dim(\mathcal{H}) = \infty$: a much stronger assumption.

Recoverability via hypothesis testing

Theorem

Let $\rho,\sigma\in\mathcal{S}(\mathcal{H}),$ Φ a channel. If there is some $\epsilon\geq 0$ such that

$$\|\Phi(\rho) - s\Phi(\sigma)\|_1 \ge \|\rho - s\sigma\|_1 - \epsilon, \qquad \forall s \ge 0,$$

then

$$\|\Phi_{\sigma}^{u} \circ \Phi(\rho) - \rho\|_{1} \leq \sqrt{2\epsilon} D_{H}(\rho, \sigma)^{1/2}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Compatible channels

The channels

$$\Phi_1: \mathcal{T}(\mathcal{H}) \to \mathcal{T}(\mathcal{K}_1), \qquad \Phi_2: \mathcal{T}(\mathcal{H}) \to \mathcal{T}(\mathcal{K}_2)$$

are compatible if there is a joint channel

$$\Lambda:\mathcal{T}(\mathcal{H})\to\mathcal{T}(\mathcal{K}_1\otimes\mathcal{K}_2)$$

such that

$$\Phi_1 = \operatorname{Tr}_{\mathcal{K}_2} \circ \Lambda, \qquad \Phi_2 = \operatorname{Tr}_{\mathcal{K}_1} \circ \Lambda.$$

Sufficiency and compatibility of channels

Theorem

Let $\rho, \sigma \in \mathcal{S}(\mathcal{H})$ with $\{p,q\}$ - the classical part of $\{\rho,\sigma\}$.

 If Φ₁ and Φ₂ are compatible channels and Φ₁ is sufficient for {ρ, σ}, then there are some states τ_n such that

$$\Phi_2(\rho) = \sum_n p_n \tau_n, \qquad \Phi_2(\sigma) = \sum_n q_n \tau_n.$$

 If the above condition holds for any channel compatible with Φ₁, then Φ₁ is sufficient for {ρ, σ}.

cf. Kaniowski et al, 2015; Kuramochi, 2018

Broadcasting

A broadcasting channel: for $\rho \in \mathcal{S}(\mathcal{H})$

• no-broadcasting:

 $\operatorname{Tr}_2 \circ \Lambda(\rho) = \operatorname{Tr}_1 \circ \Lambda(\rho) = \rho$ for all ρ is impossible

• restricted to $\rho \in \mathcal{S} \subset \mathcal{S}(\mathcal{H})$:

broadcasting is possible $\iff S$ is commutative.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Broadcasting and distinguishability

Put $\mathcal{S} = \{\rho, \sigma\}$ and require that for all $\lambda \in [0, 1]$,

$$\begin{aligned} P_e(\lambda, \operatorname{Tr}_1 \circ \Lambda(\rho), \operatorname{Tr}_1 \circ \Lambda(\sigma)) &= P_e(\lambda, \operatorname{Tr}_2 \circ \Lambda(\rho), \operatorname{Tr}_2 \circ \Lambda(\sigma)) \\ &= P_e(\lambda, \rho, \sigma). \end{aligned}$$

- possible only if ho and σ commute
- If $P_e(\lambda, \operatorname{Tr}_2 \circ \Lambda(\rho), \operatorname{Tr}_2 \circ \Lambda(\sigma)) = P_e(\lambda, \rho, \sigma)$ for all λ , then $P_e(\lambda, \operatorname{Tr}_1 \circ \Lambda(\rho), \operatorname{Tr}_1 \circ \Lambda(\sigma)) \ge P_e(\lambda, p, q), \quad \forall \lambda \in [0, 1],$ $\{p, q\}$ is the classical part of $\{\rho, \sigma\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・