On characterizations of quantum incompatibility and steering

Anna Jenčová

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Quantum Kyoto 2022

POVMs and compatibility

We work with operators on a Hilbert space with $\operatorname{dim}(\mathcal{H})=d$.

- A POVM with k-outcomes:

$$
M_{1}, \ldots, M_{k} \geq 0, \quad \sum_{i} M_{i}=I
$$

- A collection of POVMs:

$$
M_{\cdot \mid x}=\left\{M_{1 \mid x}, \ldots, M_{k_{x} \mid x}\right\}, \quad x \in[n]=\{1, \ldots, n\} .
$$

- The POVMs are compatible if all can be simulated by post-processing of a single joint POVM

$$
N_{1}, \ldots, N_{m}
$$

POVMs and compatibility

- marginals: outcomes of N in $\left[k_{1}\right] \times \cdots \times\left[k_{n}\right]$

- more general post-processings: $\{p(i \mid j, x)\}, p(i \mid j, x) \geq 0$, $\sum_{i} p(i \mid j, x)=1$:

$$
M_{i \mid x}=\sum_{j=1}^{m} p(i \mid j, x) N_{j}, \quad i=1, \ldots, k_{x}, x=1, \ldots, n
$$

Characterizations of compatibility

- SDP
D. Cavalcanti, P. Skrypzcyk, PRA, 2016
- success probabilities in guessing games
C. Carmeli, T. Heinosaari, A. Toigo, PRL, 2019
- tensor product of convex cones

AJ, PRA, 2018

- free spectrahedra, matrix convex sets
A. Bluhm, I. Nechita, JMP, 2018; Quantum, 2022
- tensor crossnorms
A. Bluhm, AJ, I. Nechita, CMP, 2022; A. Bluhm, I. Nechita, JMP, 2022
- Fisher information map
H. Zhu, Sci. Rep. 2015; H. Zhu, M. Hayashi, L. Chen, PRL, 2016;
T. Heinosaari, M.A. Jivulescu, I. Nechita, arXiv:2202.00725

Assemblages and quantum steering

Alice chooses a POVM from a given set $\left\{M_{i \mid x}\right\}_{x \in[n]}$

$$
\downarrow x, i
$$

Bob obtains an assemblage of conditional states:

$$
\left\{\rho_{i \mid x}:=\operatorname{Tr}_{A}\left[\left(M_{i \mid x} \otimes I_{B}\right)\left(\rho_{A B}\right)\right]\right\}
$$

with the same average state:

$$
\sum_{i} \rho_{i \mid x}=\rho_{B}, \quad \forall x
$$

Assemblages and quantum steering

- In general, an assemblage is a set of ensembles with the same average state

$$
\left\{\rho_{i \mid x}\right\}, \quad \rho_{i \mid x} \geq 0, \quad \sum_{i} \rho_{i \mid x}=\rho \in \mathcal{S}, \quad x \in[n]
$$

- The assemblage admits a LHS model if
- In the steering scenario: If no LHS model exists, then $\rho_{A B}$ must be entangled and $\left\{M_{\cdot \mid x}\right\}$ must be incompatible.

Assemblages and POVMs

There is another connection between POVMs and assemblages:

$$
\left\{M_{\cdot \mid x}\right\} \stackrel{\rho^{1 / 2} \cdot \rho^{l_{2}}}{\stackrel{\rho^{-1 / 2} \cdot \rho^{-1 / 2}}{\rightleftarrows}}\left\{\rho_{\cdot \mid x}\right\}
$$

- $\left\{M_{\cdot \mid x}\right\}$ is a set of measurements $\Longleftrightarrow\left\{\rho_{\cdot \mid x}\right\}$ is an assemblage with average state ρ,
- the measurements are compatible \Longleftrightarrow the assemblage admits a LHS.
- many results can be transferred from (in)compatibility to steering and back.

[^0]
Incompatibility and steering in GPTs

- General probabilistic theories: describing physical systems with probabilistic features
- The quantum state space \mathcal{S} is replaced by a compact convex set K
- states \equiv elements of K
- effects \equiv affine maps $f: K \rightarrow[0,1]$
- measurements \equiv collections f_{1}, \ldots, f_{k} of effects, $\sum_{i} f_{i}=1_{K}$.
- Analogous notions of compatibility and steering exist in GPTs.
A. Bluhm, AJ, I. Nechita, CMP, 2022; AJ, arXiv:2202.09109

The post-processing preorder on POVMs

Let $M=\left\{M_{1}, \ldots, M_{k}\right\}, N=\left\{N_{1}, \ldots, N_{l}\right\}$ be POVMs.

We write $M \leq N$ if M is a post-processing of N :

$$
N_{i}=\sum_{j=1}^{l} p(i \mid j) N_{j}, \quad i=1, \ldots, k
$$

for some conditional probabilities $p(i \mid j)$.

POVMs $\left\{M_{\cdot \mid x}\right\}_{x \in[N]}$ are compatible if and only if they have a common upper bound w. r. to \leq :

$$
\exists \text { a POVM } N, \quad M_{\cdot \mid x} \leq N, \quad \forall x
$$

The post-processing preorder on POVMs

- \leq is a preorder on POVMs (reflexive, transitive)
- any preorder defines an equivalence relation:

$$
M \sim N \text { if } M \leq N \text { and } N \leq M
$$

- \leq becomes a partial order on the equivalence classes

The induced partial order on POVMs|~ fully characterizes compatibility of measurements

A map on POVMs

Let $\mathcal{S}=\mathcal{S}(\mathcal{H})$ be the set of states. We define a map
$\eta:$ POVMs $\rightarrow \mathcal{P}(\mathcal{S}) \equiv$ probability measures over \mathcal{S}

- a simple probability measure (concentrated in finitely many points)

Properties of η

- η has range in $\mathcal{P}_{\tau}(\mathcal{S}) \equiv \nu \in \mathcal{P}(\mathcal{S})$ with barycenter $\bar{\mu}=\tau:=\frac{1}{d} I$
- affine (with respect to a special convex structure): for POVMs M_{1}, \ldots, M_{k} and N_{1}, \ldots, N_{l},

$$
\begin{aligned}
& \eta\left(\lambda M_{1}, \ldots, \lambda M_{k},(1-\lambda) N_{1}, \ldots,(1-\lambda) N_{l}\right) \\
& \quad=\lambda \eta\left(M_{1}, \ldots, M_{k}\right)+(1-\lambda) \eta\left(N_{1}, \ldots, N_{l}\right)
\end{aligned}
$$

- surjective onto $\mathcal{P}_{\tau}(\mathcal{S})$ (if extended all POVMs on Borel subsets of \mathcal{S}):
for any $\mu \in \mathcal{P}_{\tau}(\mathcal{S})$, there is a POVM

$$
\eta\left(M_{\mu}\right)=\mu, \quad M_{\mu}(B)=d \int_{B} \rho d \mu, B \subset \mathcal{S} .
$$

Post-processing preorder and Choquet order

Let M and N be POVMs. Then

- $M \sim N$ if and only if $\eta(M)=\eta(N)$;
- $M \leq N$ if and only if $\eta(M) \prec \eta(N)$, where \prec is the Choquet order in $\mathcal{P}(\mathcal{S})$.

The Choquet order in $\mathcal{P}(\mathcal{S})$

Definition

Let $\nu, \mu \in \mathcal{P}(\mathcal{S})$. The Choquet order is defined as

$$
\nu \prec \mu \text { if } \int f d \nu \leq \int f d \mu
$$

for all continuous convex functions $f: \mathcal{S} \rightarrow \mathbb{R}$

A dual characterization
$\nu \prec \mu \Longleftrightarrow$ if $\nu=\sum_{i} \lambda_{i} \nu_{i}$, then $\mu=\sum_{i} \lambda_{i} \mu_{i}$, with $\bar{\mu}_{i}=\bar{\nu}_{i}$.
($\bar{\mu}=\int \rho d \mu(\rho)$ is the barycenter of μ.)

The Choquet order for simple measures

Let $\nu=\sum_{i=1}^{k} \lambda_{i} \delta_{\rho_{i}}, \mu \in \mathcal{P}(\mathcal{S})$.

- We may restrict to functions of the form

$$
f_{A}(\rho):=\max _{1 \leq i \leq k} \operatorname{Tr}\left[A_{i} \rho\right], \quad A=\left(A_{1}, \ldots, A_{k}\right), \quad A_{1}=A_{i}^{*}
$$

- The condition becomes

$$
\sum_{i=1}^{k} \lambda_{i} \operatorname{Tr}\left[A_{i} \rho\right] \leq \int f_{A} d \mu, \quad \forall A=\left(A_{1}, \ldots, A_{k}\right), A_{i}=A_{i}^{*}
$$

- If we assume $\bar{\nu}=\bar{\mu}$, we may restrict to $A=\left(A_{1}, \ldots, A_{k}\right)$ with $\sum_{i} A_{i}=0$.

The Choquet order for simple measures

$$
\text { Let } \nu=\sum_{i=1}^{k} \lambda_{i} \delta_{\rho_{i}}, \mu \in \mathcal{P}(\mathcal{S}) \text {. }
$$

Dual characterization:

$$
\nu \prec \mu \Longleftrightarrow \mu=\sum_{i} \lambda_{i} \mu_{i}
$$

with $\bar{\mu}_{i}=\rho_{i}$.

$\Longrightarrow \mu$ is concentrated 'closer' to the set $P(\mathcal{H})$ of pure states

Minimal and maximal elements

- minimal elements with respect to \prec

$$
\delta_{\sigma}, \quad \sigma \in \mathcal{S}
$$

- maximal elements with respect to \prec
boundary measures, concentrated on the set $\mathcal{P}(\mathcal{H})$ of pure states
- every $\nu \in \mathcal{P}(\mathcal{S})$ is upper bounded by a boundary measure.

Post-processing preorder on POVMs

Equivalent conditions for $\left\{M_{1}, \ldots, M_{k}\right\} \leq\left\{N_{1}, \ldots, N_{l}\right\}$:

For all $f: \mathcal{S} \rightarrow \mathbb{R}$, continuous convex:

$$
\sum_{i} \operatorname{Tr}\left[M_{i}\right] f\left(\frac{M_{i}}{\operatorname{Tr}\left[M_{i}\right]}\right) \leq \sum_{j} \operatorname{Tr}\left[N_{j}\right] f\left(\frac{N_{j}}{\operatorname{Tr}\left[N_{j}\right]}\right)
$$

For all $A_{1}, \ldots, A_{k} \in B(\mathcal{H})^{s a}, \sum_{i} A_{i}=0$:

$$
\sum_{i=1}^{k} \operatorname{Tr}\left[A_{i} M_{i}\right] \leq \sum_{j} \max _{i} \operatorname{Tr}\left[A_{i} N_{j}\right]
$$

Compatibility of POVMs

Let $\mathcal{M}=\left\{M_{\cdot \mid x}\right\}_{x \in X}$ be a set of POVMs.

- \mathcal{M} is compatible if and only if there is some $\mu \in \mathcal{P}_{\tau}(\mathcal{S})$, such that

$$
\eta\left(M_{\cdot \mid x}\right) \prec \mu
$$

- M_{μ} is then a joint POVM
- μ can be assumed concentrated on pure states
- $\left\{M_{\cdot \mid x}\right\}$ are compatible if and only if any finite subset is compatible
- restrictions on μ by unitary invariance.

Incompatibility witnesses

Let $\mathcal{M}=\left\{M_{\cdot \mid x}\right\}_{x \in X}$ be a set of POVMs.
$\left\{M_{\cdot \mid x}\right\}$ are compatible if and only if

$$
\sum_{i} \frac{\operatorname{Tr}\left[M_{i \mid x}\right]}{d} f\left(\frac{M_{i \mid x}}{\operatorname{Tr}\left[M_{i \mid x}\right]}\right) \leq \int f d \mu
$$

for some some $\mu \in \mathcal{P}_{\tau}(\mathcal{S})$ and all $x \in X, f: \mathcal{S} \rightarrow \mathbb{R}$ continuous, convex.

Incompatibility witnesses: functions f such that the inequalities are violated.

Linear incompatibility witnesses

$M=\left\{M_{1 \mid x}, \ldots, M_{k_{x} \mid x}\right\}_{x \in[n]}$ a set of POVMs.
Let $A=\left\{A_{1 \mid x}, \ldots, A_{k_{x} \mid x}\right\}_{x \in[n]}, \sum_{i} A_{i \mid x}=0$, same shape as M.

If $\left\{M_{\cdot \mid x}\right\}$ are compatible, $\eta\left(M_{\cdot \mid x}\right) \prec \mu$, then

$$
\begin{aligned}
\frac{1}{d} \sum_{x, i} \operatorname{Tr}\left[A_{i \mid x} M_{i \mid x}\right] & \leq \sum_{x} \int f_{A \cdot \mid x} d \mu \\
& \leq \sup _{\nu, \bar{\nu}=\tau} \int \sum_{x} f_{A \cdot \mid x} d \nu=\widehat{\sum_{x} f_{A \cdot \mid x}}(\tau)
\end{aligned}
$$

$\hat{f}: \mathcal{S} \rightarrow \mathbb{R}$ is the upper envelope of $f: \mathcal{S} \rightarrow \mathbb{R}:$

$$
\hat{f}(\rho):=\inf \{\operatorname{Tr}[B \rho], \operatorname{Tr}[B \cdot] \geq f\}=\sup _{\nu, \bar{\nu}=\rho} \int f d \nu, \quad \rho \in \mathcal{S} .
$$

Linear incompatibility witnesses

- Linear incompatibility witnesses of shape $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right)$:

$$
\mathcal{W}_{\mathbf{k}}:=\left\{\left\{A_{1 \mid x}, \ldots, A_{k_{x} \mid x}\right\}_{x \in[n]}, \sum_{i} A_{i \mid x}=0, \widehat{\sum_{x} f_{A \cdot \mid x}}(\tau) \leq 1\right\}
$$

- If $\left\{M_{1 \mid x}, \ldots, M_{k_{x} \mid x}\right\}_{x \in[n]}$ are compatible, then

$$
\sum_{x, i} \operatorname{Tr}\left[A_{i \mid x} M_{i \mid x}\right] \leq d, \quad \forall A \in \mathcal{W}_{\mathbf{k}}
$$

- $A \in \mathcal{W}_{\mathbf{k}}$ is sharp if the inequality is violated by some set of POVMs of shape $\mathbf{k} \Longleftrightarrow$

$$
\sum_{x} \hat{f}_{A_{\cdot \mid x}}(\tau)>1
$$

Linear incompatibility witnesses

- The set \mathcal{W}_{k} of linear witnesses is complete:
$\left\{M_{1 \mid x}, \ldots M_{k_{x} \mid x}\right\}_{x \in[n]}$ compatible if and only if

$$
\widehat{\left\{M_{i \mid x}\right\}}:=\sup _{\left\{A_{i \mid x}\right\} \in \mathcal{W}_{\mathbf{k}}} \sum_{x, i} \frac{1}{d} \operatorname{Tr}\left[A_{i \mid x} M_{i \mid x}\right] \leq 1
$$

- all the quantities for $\left\{M_{i \mid x}\right\}$ and $\left\{A_{i \mid x}\right\}$ are computable by SDP
- $\widehat{\left\{M_{i \mid x}\right\}}$ has an interpretation as a compatibility degree.

Another choice of f

Quadratic incompatibility witnesses:
For $C=C^{*}$, let $f_{C}(\rho)=(\operatorname{Tr}[C \rho])^{2}=\langle\langle C \mid \rho\rangle\rangle\langle\langle\rho \mid C\rangle\rangle$.
Compatibility implies that

$$
\sum_{i} \operatorname{Tr}\left[M_{i \mid x}\right] f_{C}\left(\frac{M_{i \mid x}}{\operatorname{Tr}\left[M_{i \mid x}\right]}\right) \leq d \int f_{C} d \mu, \quad \forall x, C
$$

This can be rewritten as

$$
\left.\mathcal{G}\left(M_{\cdot \mid x}\right):=\sum_{i} \frac{\left.\left|M_{i \mid x}\right\rangle\right\rangle\left\langle\left\langle M_{i \mid x}\right|\right.}{\operatorname{Tr}\left[M_{i \mid x}\right]} \leq d \int|\rho\rangle\right\rangle\left\langle\langle\rho| d \mu=: H_{\mu}, \quad \forall x\right.
$$

H_{μ} is a superoperator, $\operatorname{Tr}\left[H_{\mu}\right] \leq d \Longrightarrow$

$$
g\left(\left\{M_{i \mid x}\right\}\right):=\inf \left\{\operatorname{Tr}[H], \mathcal{G}\left(M_{\cdot \mid x}\right) \leq H, \forall x\right\} \leq d
$$

H. Zhu, M. Hayashi, L. Chen, PRL, 2016

A compatibility degree (robustness)

For $\lambda \in[0,1]$ and a set $\left\{M_{i \mid x}\right\}$ of POVMs, put

$$
M_{i \mid x}^{\lambda}=\lambda M_{i \mid x}+(1-\lambda) \frac{1}{k_{x}} I .
$$

The compatibility degree:

$$
s\left(\left\{M_{i \mid x}\right\}\right):=\sup \left\{\lambda \in[0,1],\left\{M_{\cdot \mid x}^{\lambda}\right\} \text { are compatible }\right\} .
$$

Since $\sum_{i, x} \operatorname{Tr}\left[M_{i \mid x}^{\lambda} A_{i \mid x}\right]=\lambda \sum_{i, x} \operatorname{Tr}\left[M_{i \mid x} A_{i \mid x}\right]$, we see that

$$
s\left(\left\{M_{i \mid x}\right\}\right)=\min \left\{1,{\widehat{\left\{M_{i \mid x}\right\}}}^{-1}\right\} .
$$

Compatibility degree for shape \mathbf{k}

Compatibility degree for all POVMs of shape \mathbf{k} :

$$
\begin{array}{r}
s_{\mathbf{k}}:=\sup \left\{\lambda \in[0,1], \quad\left\{M_{i \mid x}^{\lambda}\right\}\right. \text { is compatible } \\
\\
\text { for all } \left.\left\{M_{i \mid x}\right\} \text { of shape } \mathbf{k}\right\}
\end{array}
$$

$$
=\inf _{\left\{M_{i \mid x}\right\}} s\left(\left\{M_{i \mid x}\right\}\right)=\min _{A \in \mathcal{W}_{\mathbf{k}}} \frac{\widehat{\sum_{x} f_{A \cdot \mid x}}(\tau)}{\sum_{x} \hat{f}_{A \cdot \mid x}(\tau)}
$$

Compatibility degree for k-outcome POVMs

Universal compatibility degree for k-outcome POVMs:

$$
\begin{aligned}
& s_{k}:=\sup \left\{\lambda \in[0,1], \quad\left\{M_{i \mid x}^{\lambda}\right\}\right. \text { is compatible for any } \\
& \left.\qquad\left\{M_{1 \mid x}, \ldots, M_{k \mid x}\right\}_{x \in[n]}, n \in \mathbb{N}\right\} .
\end{aligned}
$$

Compatibility degree for k-outcome POVMs

For $0<\lambda \leq s_{k}$:

- any finite subset of $\left\{\left\{M_{i}^{\lambda}\right\},\left\{M_{i}\right\}\right.$ is a k-outcome POVM $\}$ is compatible
- there is a boundary measure $\mu \in \mathcal{P}_{\tau}(\mathcal{S})$ such that

$$
\eta\left(\left\{M_{i}^{\lambda}\right\}\right) \prec \mu, \quad \forall\left\{M_{i}\right\}
$$

- $\left\{\left\{M_{i}^{\lambda}\right\}\right\}$ is invariant under unitary conjugations \Longrightarrow we may assume that μ is the Haar measure over $\mathcal{P}(\mathcal{H})$.
- for all $A_{1}, \ldots, A_{k}, \sum_{i} A_{i}=0$ and all POVMs M_{1}, \ldots, M_{k} :

$$
\sum_{i} d^{-1} \operatorname{Tr}\left[A_{i} M_{i}^{\lambda}\right]=\lambda d^{-1} \sum_{i} \operatorname{Tr}\left[A_{i} M_{i}\right] \leq \int f_{A} d \mu
$$

Compatibility degree for k-outcome POVMs

For $\lambda \leq s_{k}$:

- Taking supremum over POVMs M_{1}, \ldots, M_{k} :

$$
\lambda \hat{f}_{A}(\tau) \leq \int f_{A} d \mu, \quad f_{A}(\rho)=\max _{i} \operatorname{Tr}\left[A_{i} \rho\right]
$$

We obtain

$$
s_{k}=\inf _{\left\{A_{i}\right\}} \int_{P(\mathcal{H})} \max _{i}\langle\psi| A_{i}|\psi\rangle d \mu(|\psi\rangle\langle\psi|),
$$

infimum over $A_{1}, \ldots, A_{k} \in B(\mathcal{H}), \sum_{i} A_{i}=0, \hat{f}_{A}(\tau)=1$.

Compatibility of dichotomic POVMs

- Dichotomic POVMs:

$$
\left\{M_{x}, I-M_{x}\right\}_{x \in[n]}, \quad 0 \leq M_{x} \leq I .
$$

- Linear incompatibility witnesses for dichotomic POVMs:

$$
\left\{A_{x},-A_{x}\right\}_{x \in[n]}, \quad f_{A_{\cdot \mid x}}(\rho)=\left|\operatorname{Tr}\left[A_{x} \rho\right]\right|, \rho \in \mathcal{S}
$$

- The inequality becomes

$$
\sum_{x} \frac{1}{d} \operatorname{Tr}\left[A_{x}\left(2 M_{x}-I\right)\right] \leq 1, \quad\left(\sum_{x}^{\left|\operatorname{Tr}\left[A_{x} \cdot\right]\right|}\right)(\tau) \leq 1 .
$$

Compatibility of dichotomic POVMs

We identify

- dichotomic POVMs $\equiv\left\{F_{x}\right\}_{x \in[n]},\left\|F_{x}\right\| \leq 1$
- dichotomic witnesses $\equiv\left\{A_{x}\right\}_{x \in[n]},\left(\widehat{\left.\left.\sum_{x} \mid \widehat{\operatorname{Tr}\left[A_{x}\right.} \cdot\right] \mid\right)(\tau) \leq 1, ~(~}\right.$
- the tuples $\left\{A_{x}\right\}_{x \in[n]},\left\{F_{x}\right\}_{x \in[n]}$ with elements in $\mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}$.

Dichotomic witnesses and compatibility of dichotomic POVMs are characterized by tensor crossnorms in $\mathbb{R}^{n} \otimes$ $B(\mathcal{H})^{s a}$.

Tensor crossnorms

Let X, Y be Banach spaces. A norm $\|\cdot\|$ in $X \otimes Y$ is a tensor crossnorm if and only if for all $x \in X, y \in Y, \varphi \in X^{*}, \psi \in Y^{*}$,

$$
\|x \otimes y\| \leq\|x\|_{X}\|y\|_{Y}, \quad\|\varphi \otimes \psi\| \leq\|\varphi\|_{X^{*}}\|\psi\|_{Y^{*}}
$$

Minimal and maximal crossnorms: for $z \in X \otimes Y$,

- injective crossnorm

$$
\|z\|_{\epsilon(X, Y)}=\sup \left\{\langle\varphi \otimes \psi, z\rangle, \varphi \in X^{*}, \psi \in Y^{*},\|\varphi\|_{X^{*}}^{*},\|\psi\|_{Y^{*}}^{*} \leq 1\right\}
$$

- projective crossnorm

$$
\|z\|_{\pi(X, Y)}=\inf \left\{\sum_{i}\left\|x_{i}\right\|_{X}\left\|y_{i}\right\|_{Y}, z=\sum_{i} x_{i} \otimes y_{i}\right\}
$$

Dichotomic witnesses and crossnorms

- Let $A=A^{*}, f_{A}(\rho)=|\operatorname{Tr}[A \rho]|$, then

$$
\left.\hat{f}_{A}(\tau)=d^{-1}\|A\|_{1} \quad \text { (the norm in the Schatten class } S_{1}^{d}\right)
$$

- For $\left\{A_{x}\right\}_{x \in[n]} \in \mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}$,

$$
\sum_{x} \hat{f}_{A_{x}}(\tau)=d^{-1} \sum_{x}\left\|A_{x}\right\|_{1}=d^{-1}\left\|\left\{A_{x}\right\}\right\|_{\pi\left(\ell_{1}^{n}, S_{1}^{d}\right)}
$$

- Let us define

$$
\left\|\left\{A_{x}\right\}\right\|_{w}:=d \widehat{\sum_{x} f_{A_{x}}}(\tau)
$$

this is a tensor crossnorm in $\ell_{1}^{n} \otimes S_{1}^{d}$.

Dichotomic witnesses and crossnorms

Let $\left\{A_{x}\right\} \in \mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}$.

- $\left\{A_{x}\right\}$ is an incompatibility witness if and only if

$$
\left\|\left\{A_{x}\right\}\right\|_{w} \leq d
$$

- $\left\{A_{x}\right\}$ is a strict incompatibility witness if and only if

$$
\left\|\left\{A_{x}\right\}\right\|_{\pi\left(\ell_{1}^{n}, S_{1}^{d}\right)}>d .
$$

Compatible dichotomic POVMs and crossnorms

Put $\|\cdot\|_{c}:=\|\cdot\|_{w}^{*}$ - the dual norm.

- $\|\cdot\|_{c}$ is a tensor crossnorm in $\ell_{\infty}^{n} \otimes S_{\infty}^{d}$
- For $\left\{F_{x}\right\} \in \mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}, F_{x}=2 M_{x}-I$ for some effects M_{x} if and only if

$$
\left\|\left\{F_{x}\right\}\right\|_{\epsilon\left(\ell_{\infty}^{n}, S_{\infty}^{d}\right)}=\max _{x}\left\|F_{x}\right\| \leq 1 .
$$

- $F_{x}=2 M_{x}-I$ for some compatible effects M_{x} if and only if

$$
\left\|\left\{F_{x}\right\}\right\|_{c} \leq 1 .
$$

Compatibility norms and matrix convex sets

The unit ball of $\|\cdot\|_{\pi\left(\ell_{\infty}^{n}, S_{\infty}^{d}\right)}$:
The matrix cube in dimension d :

$$
\mathcal{C}_{d}=\left\{\left(F_{1}, \ldots, F_{n}\right), F_{x}=F_{x}^{*},\left\|F_{x}\right\| \leq 1\right\}
$$

$\bigcup_{d} \mathcal{C}_{d}$-maximal matrix convex set over n-cube.
The unit ball of $\|\cdot\|_{c}$:

$$
\begin{aligned}
\mathcal{C}_{d}^{c}\left\{\left(F_{1}, \ldots, F_{n}\right), F_{x}=F_{x}^{*},\left\|F_{x}\right\|\right. & \leq 1 \\
\exists V, V^{*} V & \left.=I,\left\{V^{*} F_{x} V\right\} \text { commute }\right\}
\end{aligned}
$$

$\bigcup_{d} \mathcal{C}_{d}^{c}$ - minimal matrix convex set over n-cube.

The compatibility degrees

Compatibility degree for n dichotomic measurements:

$$
s_{2, n}=\min _{Z \in \mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}} \frac{\|Z\|_{\epsilon\left(\ell_{1}^{n}, S_{1}^{d}\right)}}{\|Z\|_{c}}=\min _{Z \in \mathbb{R}^{n} \otimes B(\mathcal{H})^{s a}} \frac{\|Z\|_{w}}{\|Z\|_{\pi\left(\ell_{\infty}^{n}, S_{\infty}^{d}\right)}} .
$$

Also obtained as inclusion constants for matrix convex sets
A. Bluhm, I. Nechita, JMP, 2018

The compatibility degrees

Universal compatibility degree for dichotomic measurements:

$$
\begin{aligned}
s_{2} & =\min _{\|A\|_{1}=d} \int_{\mathcal{P}(\mathcal{H})} \mid\langle\psi| A|\psi\rangle d \mu(|\psi\rangle\langle\psi|) \\
& =4^{-n}\binom{2 n}{n}, \quad n=\lfloor d / 2\rfloor .
\end{aligned}
$$

First obtained using inclusion constant for minimal and maximal matrix convex sets.
A. Bluhm, I. Nechita, Quantum, 2022

Compatibility of unbiased qubit effects

Unbiased qubit effects:

$$
M_{x}=\frac{1}{2}\left(I+\vec{a}_{x} \cdot \vec{\sigma}\right), \quad \vec{a}_{x} \in \mathbb{R}^{3},\left\|\vec{a}_{x}\right\|_{2} \leq 1
$$

Then

$$
\left\|\left\{2 M_{x}-I\right\}\right\|_{c}=\left\|\left\{\vec{a}_{x}\right\}\right\|_{\pi\left(\ell_{\infty}^{n}, \ell_{2}^{3}\right)}
$$

- $n=2$: Busch compatibility condition

$$
\|\{\vec{a}, \vec{b}\}\|_{\pi}=\frac{1}{2}\left(\|\vec{a}+\vec{b}\|_{2}+\|\vec{a}-\vec{b}\|_{2}\right)
$$

P. Busch, Phys. Rev. D, 1986

- general case:

$$
\left\|\left\{\vec{a}_{x}\right\}\right\|_{\pi}=\max _{\substack{\left\|\sum_{x} t_{x} \vec{y}_{x}\right\|_{2} \leq 1, \forall t \in\{ \pm 1\}^{n}}} \sum_{x}\left\langle\vec{a}_{x}, \vec{y}_{x}\right\rangle
$$

Compatibility degrees for qubit effects

- Compatibility degree for n qubit effects

$$
s_{2, n}=\min _{\left\{\vec{a}_{x}\right\}} \frac{\left\|\left\{\vec{a}_{x}\right\}\right\|_{\epsilon}}{\left\|\left\{\vec{a}_{x}\right\}\right\|_{\pi}}=\min _{\sum_{x}\left\|\vec{y}_{x}\right\|_{2} \leq 1} \max _{t \in\{ \pm 1\}^{n}}\left\|\sum_{x} t_{x} \vec{y}_{x}\right\|_{2}
$$

- the ϵ / π-ratio
- Solutions and bounds for some n

$$
s_{2,2}=\frac{1}{\sqrt{2}}, \quad s_{2,3}=\frac{1}{\sqrt{3}}, \quad \frac{1}{\sqrt{3}}>s_{2, n} \geq \frac{1}{2}=\lim _{n \rightarrow \infty} s_{2, n}, n \geq 4 .
$$

- Universal compatibility degree for dichotomic qubit effects:

$$
s_{2}=\frac{1}{2}=\pi_{1}\left(\ell_{2}^{3}\right) 1 \text {-summing constant }
$$

[^0]: H. Y. Ku et al, Nature communications, 2022

