Reversibility conditions for quantum operations

Anna Jenčová

MPI MIS Leipzig, May 22, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Some basic references

- D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys. 105(1986), 123–131
- D. Petz, Sufficiency of channels over von Neumann algebras, Quart. J. Math. Oxford, **39**(1988), 907–1008
- M. Mosonyi, D. Petz, Structure of sufficient quantum coarse grainings, Lett. Math. Phys. **68** (2004), 19-30
- A. Jenčová, D. Petz, Sufficiency in quantum statistical inference. Commun. Math. Phys. 263, 259276 (2006)
- F. Hiai, M. Mosonyi, D. Petz, C. Beny, Quantum f-divergences and error correction, Rev. Math. Phys. 23, 691–747 (2011)
- A. Jenčová, Reversibility conditions for quantum operations, arXiv:1107.0453

Introduction

A quantum system is represented by a C^* -algebra $\mathcal{A} \subseteq B(\mathcal{H})$:

- Observables = self-adjoint operators: A^h
- States of the system = positive unital functionals: $\mathcal{S}(\mathcal{A})$

Suppose another system is represented by another algebra \mathcal{B} , with state space $\mathcal{S}(\mathcal{B})$.

A quantum operation is a map $T : S(A) \to S(B)$ representing a physical transformation of the states.

Introduction

Suppose $\mathcal{S} \subset \mathcal{S}(\mathcal{A}), \ T : \mathcal{S}(\mathcal{A}) \to \mathcal{S}(\mathcal{B})$ a quantum operation.

S can be seen as carrying some information, this is lost under T:

- in quantum statistics, S represents a statistical model, T a stochastic map (e.g. a restriction to a subalgebra)
- in error correction, S represents a code, T a noisy channel

Reversibility/sufficiency: the set S can be completely recovered by a quantum operation $S : S(B) \to S(A)$.

The setting

• Let \mathcal{A} be a finite dimensional C^* -algebra,

$$\mathcal{A} \equiv \bigoplus_{k=1}^{n} B(\mathcal{H}_{k}) \subseteq B(\mathcal{H}), \quad \dim(\mathcal{H}) < \infty$$

Let Tr be the trace inherited from $B(\mathcal{H})$.

• *A* is a (finite dim) Hilbert space, with the Hilbert-Schmidt inner product

$$\langle a, b \rangle = \operatorname{Tr} a^* b, \qquad a, b \in \mathcal{A}$$

• State space = density operators:

$$\mathcal{S}(\mathcal{A}) = \{ \rho \ge 0, \operatorname{Tr} \rho = 1 \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quantum operations

 Quantum operations = completely positive trace preserving maps (channels) T : A → B:

$$T(a) = \sum_i V_i^* a V_i, \ a \in \mathcal{A}, \quad \sum_i V_i V_i^* = I_{\mathcal{A}}$$

• The adjoint $T^* : \mathcal{B} \to \mathcal{A}$ with respect to the HS inner product,

$$\langle a, T^*(b) \rangle = \langle T(a), b \rangle, \qquad a, b \in \mathcal{A}$$

is completely positive and unital, $T^*(I_{\mathcal{B}}) = I_{\mathcal{A}}$.

Reversibility (sufficiency)

Let $T : A \to B$ be a quantum operation and let $S \subset S(A)$ be a set of states.

Definition

We say that T is reversible (or sufficient) for S if there is a quantum operation $S : B \to A$, such that

$$S \circ T(\sigma) = \sigma, \qquad \sigma \in S$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions

We will suppose:

- 1. $T: \mathcal{A} \to \mathcal{B}$ is a quantum operation
- 2. $S \subset S(A)$ and there is an invertible element $\rho \in S$, such that $T(\rho)$ is invertible.

Let (S, T) be such that $S \subset S(A)$ and T a quantum operation. Then there is a projection $p \in A$, such that

- $\mathcal{S}' = co(\mathcal{S}) \subseteq \mathcal{S}(p\mathcal{A}p),$
- with $T' = T|_{pAp}$, (S', T') satisfy 1. and 2.
- T is reversible for S if and only if T' is reversible for S'.

The dual map

Let $T : A \to B$ be a quantum operation and $\rho \in S(A)$ be such that ρ and $T(\rho)$ are invertible. The map $T_{\rho}^* : B \to A$

$$T^*_
ho(b):=
ho^{1/2}T^*(T(
ho)^{-1/2}bT(
ho)^{-1/2})
ho^{1/2},\ b\in\mathcal{B}$$

is called the dual of T with respect to ρ .

- *T*^{*}_ρ is a quantum operation
- $T^*_{\rho} \circ T(\rho) = \rho$

Relative entropy

Let $\sigma, \rho \in \mathcal{S}(\mathcal{A})$. Relative entropy is defined by

$$S(\sigma, \rho) = \begin{cases} \operatorname{Tr} \sigma(\log \sigma - \log \rho) & \text{if } \operatorname{supp} \sigma \leq \operatorname{supp} \rho \\ \infty & \text{otherwise} \end{cases}$$

• Monotonicity If $T : A \rightarrow B$ is a quantum operation, then

$$S(\sigma, \rho) \ge S(T(\sigma), T(\rho))$$

• If T is reversible, then

$$S(\sigma, \rho) = S(T(\sigma), T(\rho)), \qquad \sigma \in S$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A theorem of Petz (1986)

Theorem

Suppose both ρ and $T(\rho)$ are invertible. TFAE:

(i) *T* is reversible for
$$\{\sigma, \rho\}$$
.
(ii) $S(\sigma, \rho) = S(T(\sigma), T(\rho))$.
(iii) $T^*_{\rho} \circ T(\sigma) = \sigma$.

The dual map T_{ρ}^* plays the role of the recovery map S.

Corollary

Under assumptions 1. and 2., T is reversible for S if and only if T is reversible for all pairs $\{\sigma_1, \sigma_2\} \subset S$.

Conditions for reversibility

There are several conditions characterizing reversibility:

- 1. Quantum *f*-divergences (relative entropy, Rényi relative entropy,...)
- 2. Radon-Nikodym derivative
- 3. Factorization of states in S (quantum factorization criterion)
- 4. Distinguishability measures obtained from hypothesis testing: L_1 distance, quantum Chernoff bound, quantum Hoeffding bound

5. Quantum Fisher information and quantum χ^2 -distance

Quantum *f*-divergence

Let $\sigma, \rho \in \mathcal{S}(\mathcal{A})$, ρ is invertible.

- \mathcal{A} is a Hilbert space, with the HS inner product
- Relative modular operator: $\Delta_{\sigma,\rho}: \mathcal{A} \to \mathcal{A}$, positive,

$$\Delta_{\sigma,\rho}(a) = \sigma a \rho^{-1}$$

- Let $f : \mathbb{R}^+ \to \mathbb{R}$ be a function
- Quantum *f*-divergence:

$$S_f(\sigma, \rho) = \langle \rho^{1/2}, f(\Delta_{\sigma, \rho})(\rho^{1/2}) \rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Operator convex functions

• A function $f : \mathbb{R}^+ \to \mathbb{R}$ is operator convex if

$$f(tA+(1-t)B) \leq tf(A)+(1-t)f(B)$$

for $t \in [0,1]$, $A, B \in B(\mathcal{H})^+$, $\dim(\mathcal{H}) < \infty$

• Integral representation (Hiai, Mosonyi, Petz, Beny 2011):

$$f(x) = f(0) + \alpha x + \beta x^2 + \int_{(0,\infty)} (\frac{x}{1+t} - \frac{x}{x+t}) d\mu_f(t),$$

 $\alpha \in \mathbb{R}, \ \beta \ge 0 \ \text{and} \ \mu_f \ \text{is a non-negative measure on} \ (0, \infty)$ satisfying $\int (1+t)^{-2} d\mu_f(t) < \infty$.

Monotonicity and convexity

If f is operator convex, then S_f is non-increasing under quantum operations:

$$S_f(\sigma, \rho) \ge S_f(T(\sigma), T(\rho))$$

• S_f is jointly convex:

$$S_f(\sum_i p_i \sigma_i, \sum_i p_i \rho_i) \leq \sum_i p_i S(\sigma_i, \rho_i)$$

where $p_i \ge 0$, $\sum p_i = 1$, $\sigma_i, \rho_i \in \mathcal{S}(\mathcal{A})$. • $S_f(\sigma, \rho) \ge f(1)$

 S_f is a distance (distinguishability) measure on $\mathcal{S}(\mathcal{A})$.

・ロト・西ト・西ト・西ト・日・

Examples

Relative entropy,

$$f(x) = x \log x = \int_0^\infty \left(\frac{x}{1+t} - \frac{x}{x+t}\right) dt$$

• For $lpha\in [0,1]$, $\mathcal{S}_{lpha}(\sigma,
ho)=1-\mathrm{Tr}\,\sigma^{lpha}
ho^{1-lpha}$, here

$$f_lpha(x) = 1-x^lpha = 1-x+\int_0^\infty \left(rac{x}{1+t}-rac{x}{x+t}
ight) d\mu_lpha(t)$$

$$d\mu_{\alpha}(t) = rac{\sin(lpha \pi)}{\pi} t^{lpha - 1} dt.$$

• Rényi relative entropy with $lpha \in (0,1)$,

$${\it R}_lpha(\sigma,
ho)=rac{1}{lpha-1}\log(1-{\it S}_lpha(\sigma,
ho))$$

• $S_f(\sigma, \rho) = \operatorname{Tr} \rho(L_\sigma + R_\rho)^{-1}(\rho)$, here

$$f(x) = \frac{1}{1+x}, \qquad \mu_f = \delta_{\{1\}}$$

Reversibility

Theorem

Under the conditions 1.and 2., TFAE:

- (i) T is reversible for S.
- (ii) $S_f(\sigma, \rho) = S_f(T(\sigma), T(\rho))$ for all $\sigma \in S$ and all operator convex f
- (iii) (Hiai, Mosonyi, Petz,Bény, 2011)

 $S_f(\sigma, \rho) = S_f(T(\sigma), T(\rho))$ for all $\sigma \in S$ and some operator convex f with $|\text{supp } \mu_f| \ge \dim(\mathcal{H})^2 + \dim(\mathcal{K})^2$.

(iv) $T^*_{\rho} \circ T(\sigma) = \sigma$ for all $\sigma \in S$.

An example and a counterexample

 Since supp μ_α = (0,∞) for α ∈ (0,1), T is reversible for S if and only if

$$\operatorname{Tr} \sigma^{\alpha} \rho^{1-\alpha} = \operatorname{Tr} T(\sigma)^{\alpha} T(\rho)^{1-\alpha}, \qquad \sigma \in \mathcal{S}$$

for some $\alpha \in (0,1)$ (Petz 1988, Petz & AJ 2006).

It can be shown that the equality

$$S_f(\sigma, \rho) = S_f(T(\sigma), T(\rho)), \qquad \sigma \in S$$

for the function

$$f(x) = \frac{1}{1+x}, \qquad \operatorname{supp} \mu_f = \{1\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

does not imply reversibility of T.

A quantum Radon-Nikodym derivative

Let $\sigma, \rho \in \mathcal{S}(\mathcal{A})$, ρ invertible.

• The (commutant) Radon-Nikodym derivative

$$d = d(\sigma, \rho) := \rho^{-1/2} \sigma \rho^{-1/2}$$

•
$$d \ge 0$$
, $||d|| = \inf\{\lambda > 0, \ \sigma \le \lambda\rho\}$, $||d|| = 1$ iff $\sigma = \rho$.

• For $T : A \to B$ a quantum operation, let $T_{\rho} := (T_{\rho}^*)^* : A \to B$ be the adjoint of T_{ρ}^* , so that

$$T_{\rho}(\mathbf{a}) = T(\rho)^{-1/2} T(\rho^{1/2} \mathbf{a} \rho^{1/2}) T(\rho)^{-1/2}$$

Then

$$T_{\rho}(d(\sigma,\rho)) = d(T(\sigma),T(\rho))$$

Reversibility

Theorem

Under the conditions 1.and 2., let $T^* : \mathcal{B} \to \mathcal{A}$ be the adjoint of *T*. TFAE:

(i) *T* is reversible for *S*.
(ii)
$$T^*(d(T(\sigma), T(\rho))) = d(\sigma, \rho), \sigma \in S$$
.
(iii) $\Phi(d(\sigma, \rho)) = d(\sigma, \rho), \sigma \in S$, where $\Phi = T^* \circ T_{\rho}$.

Note that $\Phi^* = T^*_{\rho} \circ T : \mathcal{A} \to \mathcal{A}$ is a quantum operation, such that $\Phi^*(\rho) = \rho$. Moreover, (iii) means that $d(\sigma, \rho)$ is a fixed point of Φ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The fixed point algebra

Let $\Phi : \mathcal{A} \to \mathcal{A}$ be a map such that Φ^* is a quantum operation. Suppose that $\Phi^*(\rho) = \rho$ for some invertible $\rho \in \mathcal{S}(\mathcal{A})$.

Denote $\mathcal{F}_{\Phi} = \{a \in \mathcal{A}, \Phi(a) = a\}.$

- \mathcal{F}_{Φ} is a subalgebra in \mathcal{A} .
- $\rho^{it}\mathcal{F}_{\Phi}\rho^{-it} \subseteq \mathcal{F}_{\Phi}, t \in \mathbb{R}.$
- ρ can be decomposed as

$$\rho = \rho^A \rho^B$$

where $\rho^{A} \in \mathcal{F}_{\Phi}^{+}$ and $\rho^{B} \in (\mathcal{F}_{\Phi}^{\prime} \cap \mathcal{A})^{+}$.

An extension of ${\mathcal S}$

- Let T be reversible for S, $\sigma \in S$, $d = d(\sigma, \rho)$.
- Then $d \in \mathcal{F}_{\Phi}$.
- Hence if $\sigma_t := \rho^{it} \sigma \rho^{-it}$, then

$$d_t := d(\sigma_t, \rho) = \rho^{it} d\rho^{-it} \in \mathcal{F}_{\Phi}.$$

Corollary

T is reversible for *S* if and only if *T* is reversible for $\{\rho^{it}S\rho^{-it}, t \in \mathbb{R}\}.$

Factorization of states in ${\cal S}$

Theorem

Under the conditions 1.and 2., TFAE:

(i) *T* is reversible for *S*.
(ii) There is some ρ^B ∈ (*F*'_Φ ∩ *A*)⁺, such that for σ ∈ *S*,
σ = σ^Aρ^B

with $\sigma^{A} \in \mathcal{F}_{\Phi}$. (iii) There is some $\rho^{B} \in \mathcal{A}^{+}$, such that for all $\sigma \in S$, $\sigma = T^{*}(\sigma_{0}^{A})\rho^{B}, \quad T(\sigma) = \sigma_{0}^{A}T(\rho^{B}),$

where $\sigma_0^A \in \mathcal{B}^+$.

Quantum hypothesis testing

Let $\sigma, \rho \in \mathcal{S}(\mathcal{A})$, ρ invertible. Let $H_0 = \rho$, $H_1 = \sigma$.

- Any test of H_0 against H_1 is given by some $0 \le M \le I$ in \mathcal{A} .
- M corresponds to rejecting the H_0 hypothesis.
- error of 1. kind:
 rejecting true probability α(M) = Tr Mρ.
- error of 2. kind: not rejecting false - probability β(M) = Tr (I – M)σ.
- For some $\lambda \in [0, 1]$, minimize

$$\lambda \alpha(M) + (1 - \lambda)\beta(M)$$

to obtain the Bayes optimal test.

Quantum Neyman-Pearson lemma (Helstrom, Holevo)

Let $\lambda \in [0,1]$. The minimum Bayes error probability is

$$\begin{aligned} \Pi_{\lambda} &:= \inf_{0 \leq M \leq I} (\lambda \alpha(M) + (1 - \lambda) \beta(M)) \\ &= \frac{1}{2} (1 - \| (1 - \lambda) \sigma - \lambda \rho \|_1), \end{aligned}$$

where $||a||_1 = \text{Tr} |a| = \text{Tr} (a^*a)^{1/2}$ is the L_1 -norm. It satisfies monotonicity

$$\|a\|_1 \ge \|T(a)\|_1, \qquad a \in \mathcal{A}$$

if T is a quantum operation.

Reversibility and L_1 -norm

Let
$$\tilde{\mathcal{S}} = \bigcup \{ \rho^{is} \mathcal{S} \rho^{-is}, s \in \mathbb{R} \}$$
 be the extended family.

Theorem

Suppose 1. and 2. hold. Then

(i) T is reversible for S if and only if

$$\|\sigma - t
ho\|_1 = \|T(\sigma) - tT(
ho)\|_1, \quad \sigma \in \widetilde{\mathcal{S}}, \ t \ge 0$$

(ii) If \mathcal{B} is abelian, then T is reversible for \mathcal{S} if and only if

$$\|\sigma - t\rho\|_1 = \|T(\sigma) - tT(\rho)\|_1, \quad \sigma \in \mathcal{S}, \ t \ge 0$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Moreover, in this case, all elements in S commute.

Hypothesis testing for n copies

Let $\sigma, \rho \in \mathcal{S}(\mathcal{A})$

• Let $n \in \mathbb{N}$, n copies $\sigma^{\otimes n}$, $\rho^{\otimes n} \in \mathcal{S}(\mathcal{A}^{\otimes n})$

•
$$H_0 = \rho^{\otimes n}, \ H_1 = \sigma^{\otimes n}$$

- A test $0 \leq M_n \leq I$, $M_n \in \mathcal{A}^{\otimes n}$
- Minimum Bayes error probability

$$\Pi_{\lambda,n} = rac{1}{2}(1 - \|(1 - \lambda)\sigma^{\otimes n} - \lambda
ho^{\otimes n}\|_1)$$

• As $n \to \infty$, $\Pi_{\lambda,n} \to 0$ exponentially fast

Quantum Chernoff distance

Theorem

(Audenaert et al. (2008)) For all $\lambda \in [0, 1]$.

$$\lim_{n} -\frac{1}{n} \log \Pi_{\lambda,n} = -\log \left(\inf_{0 \le s \le 1} \operatorname{Tr} \sigma^{s} \rho^{1-s} \right) =: \xi_{QCB}(\sigma, \rho)$$

 ξ_{QCB} is called the quantum Chernoff distance. Properties:

non-increasing under quantum operations:

$$\xi_{QCB}(\sigma,\rho) \ge \xi_{QCB}(T(\sigma),T(\rho))$$

- $\xi_{QCB}(\sigma, \rho) = 0$ if and only if $\sigma = \rho$.
- not a quantum *f*-divergence

QCB and reversibility

Suppose $\sigma, \rho \in \mathcal{S}(\mathcal{A})$, ρ and $\mathcal{T}(\rho)$ invertible.

• There is some $s_0 \in [0,1]$ such that

$$\inf \operatorname{Tr} T(\sigma)^{s} T(\rho)^{1-s} = \operatorname{Tr} T(\sigma)^{s_0} T(\rho)^{1-s_0}$$

We have

$$\begin{array}{ll} \xi_{QCB}(T(\sigma),T(\rho)) &=& -\log\operatorname{Tr} T(\sigma)^{s_0}T(\rho)^{1-s_0} \\ &\leq& -\log\operatorname{Tr} \sigma^{s_0}\rho^{1-s_0} \leq \xi_{QCB}(\sigma,\rho) \end{array}$$

• Suppose $\xi_{QCB}(T(\sigma), T(\rho)) = \xi_{QCB}(\sigma, \rho)$, then

$$\operatorname{Tr} \sigma^{s_0} \rho^{1-s_0} = \operatorname{Tr} T(\sigma)^{s_0} T(\rho)^{1-s_0}$$

QCB and reversibility

- Suppose s₀ ∈ (0, 1). Then the equality implies that T is reversible for {σ, ρ}.
- Suppose $s_0 = 0, 1$. Then if $T(\sigma)$ is invertible, $\xi_{QCB}(\sigma, \rho) = \xi_{QCB}(T(\sigma), T(\rho)) = 0$, hence $\sigma = \rho$.
- If σ is invertible, then T is reversible for $\{\sigma, \rho\}$ iff

$$\xi_{QCB}(\sigma,\rho) = \xi_{QCB}(T(\sigma),T(\rho)).$$

 There are examples with σ not invertible, where the equality holds while T is not reversible.

QCB and reversibility

Theorem

Under the conditions 1. and 2., TFAE:

If all elements in S are invertible, we may replace co(S) by S in (ii).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantum Hoeffding distance

Asymmetric setting:

- The error probability $\alpha(M)$ is bounded, $\alpha(M) \leq \epsilon$
- The error probability $\beta(M)$ is optimized under this constraint:

 $\beta_{\epsilon} := \inf \{ \beta(M), \ 0 \le M \le I, \alpha(M) \le \epsilon \}$

n copies, $M_n \in \mathcal{A}^{\otimes n}$ a sequence of tests of $\rho^{\otimes n}$ against $\sigma^{\otimes n}$.

• We require that $\alpha(M_n)$ decays exponentially fast: $\alpha(M_n) \le e^{-nr}$ for some r > 0.

Let

$$\beta_{n,r} := \inf \{ \beta(M_n), \ 0 \le M_n \le I, \alpha(M_n) \le e^{-nr} \}$$

Quantum Hoeffding distance

Theorem

(Audenaert et al. (2008))

$$\lim_{n} -\frac{1}{n} \log \beta_{n,r} = \sup_{0 \le s < 1} \frac{-sr - \log \operatorname{Tr} \sigma^{s} \rho^{1-s}}{1-s} =: H_{r}(\sigma, \rho)$$

 $H_r(\sigma,\rho)$ is the quantum Hoeffding distance. Suppose ρ and σ are both invertible. Then

- $H_r(\sigma, \rho) \ge H_r(T(\sigma), T(\rho))$ for a quantum operation T
- $H_0(\sigma,\rho) := \lim_{r \to 0+} H_r(\rho,\sigma) = S(\sigma,\rho)$
- The function r → H_r(σ, ρ) is strictly convex and decreasing for r ∈ [0, S(ρ, σ)]
- $H_r(\sigma, \rho) = 0$ for all $r \ge S(\rho, \sigma)$

QHD and reversibility

If σ , ρ and $T(\rho)$ are invertible, then T is reversible for $\{\sigma, \rho\}$ iff $H_r(\sigma, \rho) = H_r(T(\sigma), T(\rho))$ for some $r \in [0, S(T(\rho), T(\sigma))]$.

Theorem

Suppose the conditions 1. and 2. hold. Let $X \subset S$ be such that $S \subseteq \overline{co}(X \cup \{\rho\})$ and $T(\rho) \notin \overline{T(X)}$. Then there is some $r_0 > 0$, such that TFAE:

If all $\sigma \in S$ are invertible, we may replace co(S) by X in (iii) and $r_0 = \inf_{\sigma \in X} S(T(\rho), T(\sigma))$.

Quantum Fisher information

Let $\mathcal{D} = \mathcal{D}(\mathcal{A})$ be the set of invertible elements in $\mathcal{S}(\mathcal{A})$.

- \mathcal{D} is a differentiable manifold.
- Tangent space at $\rho \in \mathcal{D}$: $\mathcal{T}_{\rho} = \{x = x^* \in \mathcal{A}, \ \mathrm{Tr} \, x = 0\}$
- A Riemannian metric in D: g_ρ is an inner product in T_ρ, ρ → g_ρ is smooth
- Let $T : \mathcal{A} \to \mathcal{B}$ be a quantum operation, then

$$T(\mathcal{D}) \subseteq \mathcal{D}(\mathcal{B}), \quad T(\mathcal{T}_{
ho}) \subseteq \mathcal{T}_{T(
ho)}$$

Monotone metric if

$$\lambda_{
ho}(x,x) \geq \lambda_{T(
ho)}(T(x),T(x)), \qquad x \in \mathcal{T}_{
ho}, \
ho \in \mathcal{D},$$

A quantum Fisher information is a monotone Riemannian metric on \mathcal{D} .

Characterization of the quantum Fisher information

A function $f : \mathbb{R}^+ \to \mathbb{R}$ is operator monotone if $f(A) \le f(B)$ whenever $0 \le A \le B$, $A, B \in B(\mathcal{K})$, dim $(\mathcal{K}) < \infty$.

Theorem

(Petz (1996)) A Riemannian metric g on \mathcal{D} is monotone if and only if

$$g_
ho(x,y)={
m Tr}\,x J_
ho^{-1}(y),\qquad x,y\in \mathcal{T}_
ho$$

where $J_{\rho} = f(L_{\rho}R_{\rho}^{-1})R_{\rho}$ and $f : \mathbb{R}^{+} \to \mathbb{R}^{+}$ is an operator monotone function, such that $f(t) = tf(t^{-1})$.

We denote the metric corresponding to f by g^{f} .

Examples

• The SLD (Bures) metric: $f(t) = \frac{1+t}{2}$

$$g_{\rho}^{f}(x,y) = 2 \mathrm{Tr} \left(L_{\rho} + R_{\rho} \right)^{-1}(x) y$$

• The BKM metric: $f(t) = \frac{t-1}{\log t}$

$$g_{\rho}^{f}(x,y) = \int_{0}^{\infty} \operatorname{Tr} x(\rho+s)^{-1} y(\rho+s)^{-1} ds$$

• The RLD metric: $f(t) = \frac{2t}{1+t}$

$$g_{\rho}^{f}(x,y) = \frac{1}{2} \operatorname{Tr} x (L_{\rho}^{-1} + R_{\rho}^{-1})(y)$$

Integral representation (Hansen (2005))

Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be operator monotone. Then

$$\frac{1}{f(t)} = \int_0^\infty \frac{1}{s+t} d\nu_f(s)$$

where ν_f is a positive Borel measure with support in $[0, \infty)$, such that $\int (1+s^2)^{-1} d\nu_f(s) < \infty$, $\int s(1+s^2)^{-1} d\nu + f(s) < \infty$. It follows that

$$g_{\rho}^{f}(x,y) = \int_{0}^{\infty} \operatorname{Tr} x(sR_{\rho} + L_{\rho})^{-1}(y) d\nu_{f}(s)$$

Quantum χ^2 -divergence

The quantum χ^2 -divergence is given by

$$\chi^2_{1/f}(\sigma,\rho) = g^f_\rho(\sigma-\rho,\sigma-\rho)$$

where g^f is a quantum Fisher information. By monotonicity of g^f , $\chi^2_{1/f}(\sigma,\rho)\geq \chi^2_{1/f}(T(\sigma),T(\rho))$

for a quantum operation T.

Fisher information and reversibility

Denote by $Lin_{\rho}(S)$ the real linear span of $S - \rho$. Then $Lin_{\rho}(S) \subseteq \mathcal{T}_{\rho}$.

Theorem

Under the conditions 1. and 2., TFAE:

(i) *T* is reversible for *S*.
(ii) g^f_ρ(x, x) = g^f_{T(ρ)}(T(x), T(x)) for all x ∈ Lin_ρ(S) and all monotone metrics g^f.
(iii) χ²_{1/f}(σ, ρ) = χ²_{1/f}(T(σ), T(ρ)) for all χ² divergences.
(iv) Equality in (ii) holds for some f with |supp ν_f| ≥ dim(H)² + dim(K)².

(v) Equality in (iii) holds for some f as in (iv).

Some open problems

- Support conditions for μ_f and ν_f : can be relaxed?
 - Cannot be removed: the supports must contain more than 1 point.
- Can we have full equivalence for L₁-distance?
 - Up to now, only for extended family $\tilde{\mathcal{S}}$.
- Characterization by fidelity?
- Infinite dimensions: A a von Neumann algebra?
 - Some results for f divergences, relative entropy (can be infinite!), S_{α} (Petz, Petz & AJ)
 - Characterization by commutant Radon-Nikodym derivative holds.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Factorization holds for type I algebras.
- L₁ -distance?? QCB, QHB- ??